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ROUGH PATH RECURSIONS AND DIFFUSION APPROXIMATIONS

BY DAVID KELLY1

University of North Carolina, Chapel Hill

In this article, we consider diffusion approximations for a general class of
stochastic recursions. Such recursions arise as models for population growth,
genetics, financial securities, multiplicative time series, numerical schemes
and MCMC algorithms. We make no particular probabilistic assumptions on
the type of noise appearing in these recursions. Thus, our technique is well
suited to recursions where the noise sequence is not a semi-martingale, even
though the limiting noise may be. Our main theorem assumes a weak limit
theorem on the noise process appearing in the random recursions and lifts it
to diffusion approximation for the recursion itself. To achieve this, we ap-
proximate the recursion (pathwise) by the solution to a stochastic equation
driven by piecewise smooth paths; this can be thought of as a pathwise ver-
sion of backward error analysis for SDEs. We then identify the limit of this
stochastic equation, and hence the original recursion, using tools from rough
path theory. We provide several examples of diffusion approximations, both
new and old, to illustrate this technique.

1. Introduction. In this article, we consider the limiting behaviour for a class
of stochastic recursions. These recursions are natural approximations of contin-
uous time stochastic equations. They arise as models for fast, discretely evolv-
ing random phenomena [15, 18, 33, 40, 41] and also as numerical discretizations
of continuous stochastic equations [23]. The class is similar to the rough path
schemes of [3] (see also [11], Section 8.5), but more general in the sense that
the noise driving the recursion is not required to be a rough path, but may be an
approximation (or discretization) of a rough path.

Let V :Re →R
e×d and V= (V1, . . . ,Ve) where Vκ :Re →R

d×d is defined by
V

αβ
κ (·) = ∑

γ ∂γ V
β
κ (·)V α

γ (·) for α,β = 1, . . . , d and V = (V
β
κ ) for κ = 1, . . . , e,

β = 1, . . . , d . For each n ≥ 0, define Yn
k ∈R

e by the recursion

Yn
k+1 = Yn

k + V
(
Yn

k

)
ξn
k +V

(
Yn

k

)
:�n

k + error,(1.1)

where ξn
k ∈ R

d , �n
k ∈ R

d×d are noise sources and we use the notation A :B =
trace(ABT ) = ∑

α,β AαβBαβ to denote the matrix inner product.
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Let Pn = {τn
k :k = 0, . . . ,Nn} be a partition of a finite time interval [0, T ],

which gets finer as n tends to infinity. The vector ξn
k should be thought of as an

approximation of a random increment

ξn
k ≈ X

(
τn
k+1

) − X
(
τn
k

)
,(1.2)

where X is some given stochastic process (a semi-martingale or fractional Brown-
ian motion, e.g.). Formally, the symbol ≈ means that the approximation gets better
as n tends to infinity. Likewise, the matrix �n

k should be thought of as some ap-
proximation of an iterated stochastic integral

�n
k ≈

∫ τn
k+1

τn
k

(
X(s) − X

(
τn
k

)) ⊗ dX(s),(1.3)

where ⊗ denotes the outer product and where the notion of stochastic integration
(Itô, Stratonovich or otherwise) is given.

Define the path Yn : [0, T ] → R
e by Yn(t) = Yn

j where τn
j is the largest mesh

point in Pn with τn
j ≤ t [note that we could equally define Yn(·) by linear inter-

polation, without altering the results of the article]. Our objective is to show that
the path Yn(·) converges to the solution of a stochastic differential equation (SDE)
driven by X as n tends to infinity.

REMARK 1.1. In the case where (ξn
k ,�n

k) are the increments of a rough path,

that is, ξn
k = X(τn

k+1)−X(τn
k ) and �n

k = ∫ τn
k+1

τn
k

(X(s)−X(τn
k ))⊗dX(s), the recur-

sions we consider are precisely the rough path schemes defined in [3]. However,
we only require that (ξn

k ,�n
k) be approximations of rough paths. This means the

class of recursions we consider is much more general than the class of rough path
recursions and includes many natural approximations that do not fall under [3].
This fact will be illustrated by the examples below.

To see why such diffusion approximations should be possible, it is best to look
at a few examples. The most common variant of (1.1) is the “first-order” recursion,
where �n = 0, so that

Yn
k+1 = Yn

k + V
(
Yn

k

)
ξn
k + error.(1.4)

This resembles an Euler scheme with approximated noise ξn
k ≈ X(τn

k+1) − X(τn
k ).

Hence, it is reasonable to believe that there should be a diffusion approximation
Yn ⇒ Y (where ⇒ denotes weak convergence of random variables), where Y sat-
isfies the SDE

dY = V (Y ) 
 dX,

and 
dX denotes some method of stochastic integration (e.g., Itô, Stratonovich
or otherwise). It turns out that the choice of approximating sequence ξn

k of the
increment X(τn

k+1) − X(τn
k ) has a huge influence as to what type of stochastic

integral arises in the limit.
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We now explore this idea with a few examples. The first four examples are
first-order recursions as in (1.4) and the final two are higher order recursions, as
in (1.1).

EXAMPLE 1.1 (Euler scheme). Suppose that B is a d-dimensional Brownian
motion, let ξn

k = B((k+1)/n)−B(k/n) and define the partition Pn with τn
k = k/n.

Then clearly Yn defines the usual Euler–Maruyama scheme on the time window
[0,1]. It is well known that Yn ⇒ Y where Y satisfies the Itô SDE

dY = V (Y )dB.

This creates a feeling that any Euler looking scheme, like (1.4), should produce
Itô integrals. As we shall see in the next few examples, when some correlation is
introduced to the random variables ξn

k , this is certainly not the case.

Less trivial recursions of the form (1.4) have shown up in the areas of popu-
lation genetics [18, 41], econometric models [40], psychological learning models
[33], nonlinear time series models [10] and MCMC algorithms [36], to name but a
few. Here, we will list the example from [18]; our analysis follows that performed
in [25].

EXAMPLE 1.2 (Population and genetics models). In [18], the authors consider
the stochastic difference equation

Yn
k+1 = f

(
Sn

k

) + exp
(
g
(
Sn

k

))
Yn

k ,(1.5)

where f (0) = g(0) = 0 and {Sn
k }k≥0 is a stationary sequence of random variables

with ESn
k = μ/n, var(Sn

k ) = σ 2/n, cov(Sn
k , Sn

0 ) = σ 2rk/n and with mixing as-
sumptions on the centered sequences (Sn

k − ESn
k ) and ((Sn

k )2 − E(Sn
k )2). This re-

cursion arises naturally in models for population growth and also gene selection,
where the environment is evolving in a random way.

Since the equation (1.5) is linear, the solution can be written down explicitly.
As a consequence, it is easy to directly identify the limiting behaviour of each
term appearing in the solution, for instance with the help of Prokhorov’s theo-
rem. Alternatively, we can incorporate the problem into the scope of this article by
making (1.5) look more like the recursion (1.4). We first write

Yn
k+1 = Yn

k + Ef
(
Sn

k

) + E
(
exp

(
g
(
Sn

k

)) − 1
)
Yn

k

+ (
f

(
Sn

k

) − Ef
(
Sn

k

)) + (
exp

(
g
(
Sn

k

)) − E exp
(
g
(
Sn

k

)))
Yn

k .

Now if we replace g,f and exp by their second-order Taylor expansion, we obtain

Yn
k+1 = Yn

k + n−1
(
fs(0)μ + 1

2
fss(0)σ 2 + μgs(0)Y n

k + 1

2

(
gss(0) + g2

s (0)
)
σ 2Yn

k

)

+ n−1/2(
fs(0)n1/2(

Sn
k − ESn

k

) + gs(0)n1/2(
Sn

k − ESn
k

)
Yn

k

)
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+ n−1

2

(
fss(0)n

((
Sn

k

)2 − E
(
Sn

k

)2)
+ (

gss(0) + g2
s (0)

)
n
((

Sn
k

)2 − E
(
Sn

k

)2)
Yn

k

)
.

Thus, if we set

V 1(y) = fs(0)μ + 1
2fss(0)σ 2 + μgs(0)Y n

k + 1
2

(
gss(0) + g2

s (0)
)
σ 2y,

V 2(y) = fs(0) + gs(0)y, V 3(y) = 1
2

(
fss(0) + (

gss(0) + g2
s (0)

)
y
)

and

ξ
n,1
k = n−1, ξ

n,2
k = n−1/2(

n1/2(
Sn

k − ESn
k

))
,

ξ
n,3
k = n−1(

n
((

Sn
k

)2 − E
(
Sn

k

)2))
,

then Yn satisfies the recursion

Yn
k+1 = Yn

k + V 1(Yk)ξ
n,1
k + V 2(Yk)ξ

n,2
k + V 3(Yk)ξ

n,3
k + error.

Moreover, due to the assumptions on Sn
k −ESn

k and (Sn
k )2 −E(Sn

k )2, the functional
central limit theorem for stationary mixing sequences implies that(	n·
−1∑

i=0

ξ
n,2
i ,

	n·
−1∑
i=0

ξ
n,3
i

)
⇒ (W2,W3),

where W2,W3 are Brownian motions with a computable covariance structure.
Thus, we should expect a diffusion limit of the form

dY = V 1(Y ) dt + (
V 2,V 3)

(Y ) 
 (dW2, dW3).

By writing down the solution explicitly, it is shown in [18] that this is indeed the
case and the method of integration involves a correction term that is neither Itô nor
Stratonovich.

In nonlinear scenarios, more sophisticated machinery is required [25], but this
still entails quite heavy and often nonrealistic mixing assumptions on the stationary
sequence. The framework of martingale problems [38] has proved quite suitable
for this analysis [25]. In [24], the authors beautifully address the case where the
noise is a semi-martingale sequence, using the idea of a good sequence of semi-
martingales. The following example is taken directly from [9, 24].

EXAMPLE 1.3 (Discrete time asset pricing). Let rn
k denote the periodic rate

of return for a security with value Sn
k . It follows that

Sn
k+1 = Sn

k + Sn
k rn

k .
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The authors consider the case where rn
k is a semi-martingale difference sequence

defined in such a way that, if Mn denotes the partial sum process

Mn(t) =
	nt
−1∑

i=0

rn
k

then Mn ⇒ M where M is a semi-martingale. It is natural to expect a diffusion
approximation

dS = S 
 dM

with some undetermined method of integration 
dM . In [24], the authors provide
a natural condition on Mn that ensures this method of integration is Itô type, which
is clearly the most natural. Sequences Mn that satisfy this condition are called good
semi-martingales. Thus, if Mn is good, then

dS = S dM,

where the integral is of Itô type. The authors also permit for a class of semi-
martingales which are a reasonable perturbation of a good semi-martingale. For
instance, suppose that Mn = M̃n + An, where M̃n is a good sequence of semi-
martingales and An is a sequence of semi-martingales with An ⇒ 0 as n → ∞
(hence M̃n ⇒ M). Now define Hn(t) = ∫ t

0 An(s) dAn(s) where the integral is of
Itô type and Kn(t) = [M̃n,An]t where [·, ·] denotes quadratic covariation and sup-
pose that (Mn,An,Hn,Kn) ⇒ (M,0,H,K) as n → ∞. Then Sn ⇒ S where S

satisfies the Itô SDE

dS = S dM + S d(H − K).

So formally speaking, we have 
dM = dM + d(H − K). Thus, two equally rea-
sonable approximations of M can yield two vastly different limiting diffusions.
This class of perturbed semi-martingales is comprehensive enough to cover vir-
tually every diffusion approximation where the recursion is driven by a semi-
martingale sequence.

The next example is a rather important one, which unfortunately does not fit
into the classes of diffusion approximations already studied in the literature. Un-
derstanding the diffusion approximation for this example is one of the main moti-
vations of this paper.

EXAMPLE 1.4 (Fast–slow systems). Let T :� → � describe a chaotic dy-
namical system with invariant ergodic measure μ. Define the fast–slow system

Yn
k+1 = Yn

k + n−1/2h
(
Yn

k , T kω
) + n−1f

(
Yn

k , T kω
)
,

where ω ∈ � and h,f :Te × � → T
e where T denotes the torus [0,2π) and h

satisfies the centering condition
∫

h(x, y)μ(dy) = 0. If we assume that ω is a ran-
dom variable with law μ, then the path Yn(·) = Yn	n·
 becomes a random variable
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on càdlàg space. Note that the assumption ω ∼ μ simply means that the chaotic
dynamical system is started in stationarity.

Fast–slow systems of this type have been considered in [5, 8, 15] and are funda-
mental to the understanding of naturally occurring physical systems with separated
time scales [30]. Previous attempts at diffusion approximations typically involve
heavy mixing assumption on the dynamical system T which are difficult to prove
for most reasonable systems [25]. In [8], the author develops an alternative Itô
calculus, but only in the case where T defines a partially hyperbolic dynamical
system. In [15], the authors study the special case where the noise is additive.
This allows them to use path-space continuity properties to lift convergence of the
partial sum process to convergence of Yn.

Let us see how fast–slow systems fit into the recursion framework (1.4). Using
a Fourier expansion truncated at level d , we can replace h(x, y) with the prod-
uct h(x)v(y) where h :Re → R

e×d , v :� → R
d ,

∫
v(y)μ(dy) = 0 and similarly

replace f (x, y) with f (x)g(y). Hence, we obtain

Yn
k+1 = Yn

k + n−1/2h
(
Yn

k

)
v
(
T kω

) + n−1f
(
Yn

k

)
g
(
T kω

)
.

This clearly satisfies the recursion (1.4) with V = (h, f ) and ξn
k = (n−1/2v(T kω),

n−1g(T kω)). The limiting behaviour of the partial sums

Wn(t) = n−1/2
	nt
−1∑

i=0

v
(
T i) and Sn(t) = n−1

	nt
−1∑
i=0

g
(
T i)

is well understood under extremely weak conditions on the dynamical system [1,
19, 32, 42]. In particular,

Wn ⇒ W and Sn(t) → t ḡ (μ-a.s.),

where W is a multiple of Brownian motion and ḡ = ∫
g dμ. Thus, we would expect

a diffusion approximation of the form

dY = h(Y ) 
 dW + ḡf (Y ) dt.

In the situations that are already understood, namely partially hyperbolic dynami-
cal systems [8] or additive noise [15], the limiting stochastic integral shown to be
neither Itô nor Stratonovich type. Thus, the interpretation of the integral in a more
general setting is an important problem.

The more general family of recursions defined in (1.1) (with �n
k 
= 0) arise when

using a second-order approximation. Naturally, it is easy to find examples from
numerical analysis.

EXAMPLE 1.5 (Semi-implicit numerical schemes). Let X be some stochastic
process (e.g., fractional Brownian motion) and introduce the shorthand X(s, t) =
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X(t)−X(s). Suppose we approximate a stochastic equation using a semi-implicit
method of integration, for instance,

Yn
k+1 = Yn

k + 1
2

(
V

(
Yn

k

) + V
(
Yn

k+1
))

X
(
τn
k , τn

k+1
)
.

It is easy to show that Yn satisfies (1.1) with ξn
k = X(τn

k , τn
k+1) and �n

k =
1
2X(τn

k , τn
k+1) ⊗ X(τn

k , τn
k+1). For a simple stochastic process X, like Brownian

motion, it is well known that the limit of this numerical scheme is

dY = V (Y ) ◦ dX,

where the integral is of Stratonovich type. But for more complicated objects like
fractional Brownian motion, it is not so simple [37]. Thus, studying recursions
of the type (1.1) can lead to a better understanding well-posedness for numerical
schemes, that is, whether they are approximating the correct continuous time limit.

EXAMPLE 1.6 (Sub-diffusion approximations). Despite the article’s title, its
scope is not restricted to diffusions, in particular the results also concern sub-
diffusions. In [4, 39], the authors consider partial sum processes of the form

Xn(t) = d−1
n

	nt
−1∑
k=0

ξk,

where {ξk}k≥0 is a stationary dependent sequence of random variables and dn is
some normalizing constant, such that Xn ⇒ X in the Skorokhod topology, where
X is fractional Brownian motion with some Hurst parameter H ∈ (0,1) depending
on the correlation structure. With this in mind, it is natural to consider a recursion

Yn
k+1 = Yn

k + V
(
Yn

k

)
d−1
n ξk +V

(
Yn

k

)
:�n

k,

where �n
k is some approximation of an iterated integral defined using the sequence

{ξk}k≥0. For instance, as indicated by Example 1.5, if �n
k = d−2

n

2 ξk ⊗ ξk then the
above recursion corresponds to a mid-point rule approximation of a stochastic in-
tegral. In particular one would expect Yn ⇒ Y where

Y(t) = Y(0) +
∫ t

0
V

(
Y(s)

) ◦ dX(s)

and where the integral is of symmetric type [37], which is the natural limit of the
mid-point scheme. Of course, this is only a guess and it is quite possibly wrong.
As we will see, the tools introduced in this article provide a natural basis for the in-
vestigation of such sub-diffusion approximations. Understanding such recursions
is vastly important and could facilitate for the design of new methods for simulat-
ing stochastic differential equations driven by fractional Brownian motion.
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The technique employed in this article is similar in spirit to that found in [15,
24], in that we will lift an approximation result for the noise signal into diffusion
approximation for the recursion. However, in our more general scenario, where we
do not assume any particular probabilistic structure on the noise, we require not
just an invariance principle for the noise but also for its iterated integral. More
precisely, define the noise signal

Xn(t)
def=

	nt
−1∑
i=0

ξn
i ,

which is the natural approximation of the limiting noise signal X. Moreover, define
the discrete iterated integral

X
n(t)

def=
	nt
−1∑

i=0

i−1∑
j=0

ξn
i ⊗ ξn

j +
	nt
−1∑

i=0

�n
i ,

which is the natural approximation of the limiting iterated integral
∫ t

0 X ⊗ dX.
In this paper, we shall lift a limit theorem for the discrete pair (Xn,Xn) into a
diffusion approximation for the recursion Yn. In essence, the limiting behaviour
of Xn tells us what type of noise appears in the limiting stochastic integral and
the limiting behaviour of Xn tells us what type of stochastic integral we are talking
about. Looking back at Example 1.4, for instance, this suggest that we can interpret
the integral 
dW , provided we can identify the limit of the discrete iterated integral

	nt
−1∑
i=0

i−1∑
j=0

v
(
T j ) ⊗ v

(
T i).

To derive this diffusion approximation technique, we use tools from rough path
theory [29].

1.1. Diffusion approximations using rough path theory. For stochastic differ-
ential equations driven by piecewise smooth signals, the relationship between the
noise and the solution is extremely well understood—mostly thanks to rough path
theory. For the purpose of exposition, suppose that X is some piecewise smooth
stochastic process and that Y solves the equation

Y(t) = Y(0) +
∫ t

0
V

(
Y(s)

)
dX(s),(1.6)

where the integral is defined in the Riemann–Stieltjes sense. It is well known that
the map X �→ Y is not continuous in the sup-norm topology. The theory of rough
path proposes that we can build a continuous map from the noise to the solution,
provided we know a bit more information about X. In particular, suppose that
we can define X(t) = ∫ t

0 X(s) ⊗ dX(s) where the integral is again of Riemann–
Stieltjes type. Then one can show that the map (X,X) �→ Y is continuous in a
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topology called the ργ topology (known colloquially as the rough path topology).
This topology can be thought of as an extension of the γ -Hölder topology, defined
on the space of objects similar to the pair (X,X). The objects (X,X) are called
rough paths and the metric space of such objects is called the space of γ -Hölder
rough paths.

This idea clearly has ramifications to the diffusion approximations. Indeed, sup-
pose that Yn solves the stochastic equation

Yn(t) = Yn(0) +
∫ t

0
V

(
Yn(s)

)
dXn(s)

for some smooth stochastic process Xn and also define the iterated integral
X

n(t) = ∫ t
0 Xn(s) ⊗ dXn(s). Since continuous maps preserve weak convergence,

this suggests that a weak limit theorem for the pair (Xn,Xn) in the ργ topology can
be lifted to a weak limit theorem for Yn. The general procedure can be summarized
by two steps.

1. Show that (Xn,Xn)
f.d.d.→ (X,X), where

f.d.d.→ denotes convergence of finite-
dimensional distributions.

2. Show that the sequence is tight in the ργ topology. For instance, one could
use a Kolmogorov type argument, by checking estimates of the form(

E
∣∣Xn(s, t)

∣∣q)1/q � |t − s|γ and
(
E

∣∣Xn(s, t)
∣∣q/2)2/q � |t − s|2γ(1.7)

for all s, t ∈ [0, T ], with some suitable γ and with q large enough.

Since the map: rough path �→ solution is continuous in the rough path topology,
the conclusion from these two steps is that Yn ⇒ Y where Y is the solution to an
SDE whose form can be determined by the limit X. For instance, suppose that X

were a continuous semi-martingale and that

X(t) =
∫ t

0
X(r) ◦ dX(r) + λt,

where the above integral is Stratonovich type. Then the limiting equation can be
written

dY = V (Y ) ◦ dX + λ :V(Y ) dt.

This precise idea has proved useful in the areas of stochastic homogenization [27]
and equations driven by random walks [2].

Unfortunately, for the recursion (1.1) the path Yn does not satisfy a stochastic
equation in the sense of rough path theory, so we cannot simply apply the above
procedure.

The objective of this article is to overcome this obstacle. It turns out that the
same two step procedure defined above, more or less still works. All we have to
do is replace iterated integrals with their discrete counterparts and replace step 2
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with the same statement up to some resolution. That is, we need only check the
estimates (1.7) for all s, t ∈ Pn, which requires no continuity at all. In checking
these discrete estimates, we obtain a tightness-like result for a discrete version of
the Hölder metric, defined (on càdlàg paths) by

max
s 
=t∈Pn

|A(t) − A(s)|
|t − s|γ .

This is of course always finite, since it is a maximum over a finite set, but the
tightness result will tell us something about the asymptotics.

At the heart of the proof is an approximation theorem (Theorem 2.2), which
we believe to be useful in its own right. The theorem allows us to approximate
the recursion (1.1) with the solution to a stochastic differential equation driven by
piecewise smooth paths. This approximation theorem can be thought of as a gen-
eralization of the method of modified equations for SDEs [43] (otherwise known
as backward error analysis [6]). In particular, our approximation theorem has the
advantage of being completely pathwise, without depending on the probabilistic
properties of the stochastic process Xn whatsoever. By approximating Yn by the
solution to a genuine stochastic equation, we unlock the tools of rough path theory
introduced above.

The outline of the paper is as follows. In Section 2, we sketch the main theorem
of the paper. In Section 3, we list a few applications. In Section 4, we give a brief
introduction to rough path theory and mention some results that are important to
the present article. In Section 5, we rigourously define rough paths recursions,
these are the central objects to the article. In Section 6, we derive the properties of
rough path recursions that will be needed for the main theorem. In Section 7, we
prove the main theorem of the article, concerning weak convergence of rough path
recursions.

2. The main results and some applications. In this section, we state the
main theorem, avoiding the technical definitions that will be introduced in sub-
sequent sections. In particular, the main theorem (Theorem 2.1) can be stated and
applied without requiring any knowledge of rough path theory and similarly for
the approximation theorem (Theorem 2.2).

Let Pn = {τn
j : j = 0, . . . ,Nn} be a partition of [0, T ] with mesh size �n =

maxj |τn
j+1 −τn

j |. As stated above, one should regard ξn
j ∈ R

d as an approximation
of the increment

ξn
j ≈ X

(
τn
j+1

) − X
(
τn
j

)
.(2.1)

Likewise, one should regard �n
j ∈ R

d×d as an approximation of the iterated inte-
gral

�n
j ≈

∫ τn
j+1

τn
j

(
X(s) − X

(
τn
j

)) ⊗ dX(s).(2.2)
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The only consequence of this analogy is that it influences how we define the path
corresponding to the incremental processes. Indeed, the increments can be any-
thing at all, provided they satisfy the convergence properties stated in the theorem
below. To recap, the recursions we consider in this article are of the form

Yn
j+1 = Yn

j + V
(
Yn

j

)
ξn
j +V

(
Yn

j

)
:�n

j + rn
j ,(2.3)

where j = 0, . . . ,Nn − 1 and |rn
j | � �λ

n for some λ > 1 and the implied constant
is uniform in n.

We now define the rough step-function (Xn,Xn) corresponding to the incre-
ments ξn

j ,�n
j . If τn

k is the largest grid point in Pn such that τn
k ≤ t then

Xn(t) =
k−1∑
j=0

ξn
j and X

n(t) =
k−1∑
i=0

i−1∑
j=0

ξn
i ⊗ ξn

j +
k−1∑
i=0

�n
i .(2.4)

We similarly define the incremental paths

Xn(s, t) =
k−1∑
j=l

ξn
j and X

n(s, t) =
k−1∑
i=l

i−1∑
j=l

ξn
i ⊗ ξn

j +
k−1∑
i=l

�n
i ,(2.5)

where τn
l is the largest grid point in Pn such that τn

l ≤ s. It is easy to check that
this is the natural choice, given the motivation (2.1) and (2.2). The main theorem
is as follows.

THEOREM 2.1. Let Yn satisfy (2.3) and let (Xn,Xn) be càdlàg paths de-

fined by (2.4). Suppose that (Xn,Xn)
f .d.d.→ (X,X) where X is a continuous semi-

martingale and X is of the form

X(t) =
∫ t

0
X(r) ⊗ ◦dX(r) + νt,

where the integral is defined in the Stratonovich sense and ν ∈ R
d×d . Suppose that

the pair (Xn,Xn) satisfy the estimates(
E

∣∣Xn(
τn
j , τn

k

)∣∣q)1/q �
∣∣τn

j − τn
k

∣∣γ and
(2.6) (

E
∣∣Xn(

τn
j , τn

k

)∣∣q/2)2/q �
∣∣τn

j − τn
k

∣∣2γ

for all τn
j , τn

k ∈ Pn where q > 0, γ ∈ (1/3 + q−1,1/2] and the implied constant is
uniform in n. Then Yn ⇒ Y in the sup-norm topology, where Y satisfies the SDE

dY = V (Y ) ◦ dX + ν :V(Y ) dt.

REMARK 2.1. Although we only require q > 0 it is clear from γ ∈ (1/3 +
q−1,1/2] that we always have q > 6.
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REMARK 2.2. If the estimates (2.6) hold for γ = 1/2 and all q ≥ 1, then
the condition V ∈ C3 can be relaxed to V ∈ C2+. This follows using the standard
techniques of (p, q) rough paths (see [28] and [14], Chapter 12). Additional details
will be given in Remark 7.1.

REMARK 2.3. The result naturally extends to the case with an additional
“drift” vector field W ∈ C1+(Re;Re)

Y n
j+1 = Yn

j + V
(
Yn

j

)
ξn
j +V

(
Yn

j

)
:�n

j + W
(
Yn

j

)(
τn
j+1 − τn

j

) + rn
j .

In this setting, the limiting SDE is given by

dY = V (Y ) ◦ dX + (
ν :V(Y ) + W(Y)

)
dt.

This is a more natural way to treat the problem introduced in Example 1.4. As with
Remark 2.2, this extension is a standard application of (p, q) rough paths.

The next result is not so much a theorem as it is a guide for other theorems. It
applies to situations where the noise driving the limiting equation is not a semi-
martingale, such as the sub-diffusions encountered in Example 1.6.

META THEOREM 2.1. In the same context as above. Suppose that (Xn,

X
n)

f .d.d.→ (X,X) where X is some continuous stochastic process and

X(t) =
∫ t

0
X(r) 
 dX(r),

where 
dX denotes some constructible method of integration. Suppose moreover
that (Xn,Xn) satisfy the estimates (2.6). Then Yn ⇒ Y where Y satisfies the
stochastic equation

Y(t) = Y(0) +
∫ t

0
V

(
Y(s)

)

 dX(s).

Theorem 2.1 and Meta Theorem 2.1 will be proved in Section 7. The proof of the
meta theorem indicates what we mean by a “constructible method of integration”.

Finally, the main tool used to derive the results above is the approximation theo-
rem, which should be thought of as a pathwise version of backward error analysis
(or the method of modified equations) [6, 43]. The rate estimate depends on the
discrete γ -Hölder norm Cγ,n which is the smallest number such that∣∣Xn(

τn
j , τn

k

)∣∣ ≤ Cγ,n

∣∣τn
j − τn

k

∣∣γ and
∣∣Xn(

τn
j , τn

k

)∣∣ ≤ C2
γ,n

∣∣τn
j − τn

k

∣∣2γ(2.7)

for all τn
j , τn

k ∈ Pn. Since this number can be achieved by taking the maximum
over a finite set, it is clear that each Cγ,n is finite, regardless of the path (Xn,Xn).
We will always need some kind of asymptotic estimate on Cγ,n to make use of the
approximation theorem.
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THEOREM 2.2. Suppose that Yn(·) is the path defined by the recursion (2.3)
and that the pair (Xn,Xn) defined by (2.4) satisfy the estimates (2.6) for some q, γ

as in Theorem 2.1. Then for each n we can find a pair of piecewise smooth paths
(X̃n, Z̃n) : [0, T ] → R

d ×R
d×d such that if Ỹ n solves

Ỹ n(t) = Ỹ n(0) +
∫ t

0
V

(
Ỹ n(s)

)
dX̃n(s) +

∫ t

0
V

(
Ỹ n(s)

)
:dZ̃n(s),(2.8)

where the integrals are of Riemann–Stieltjes type, then∥∥Ỹ n − Yn
∥∥∞ � Kγ,n�

3γ−1
n ,(2.9)

where ‖ ·‖∞ denotes the sup-norm and where the constant Kγ,n = 1∧C4
γ,n, where

Cγ,n is the constant defined in (2.7).

The proof of Theorem 2.2 is contained in Section 6. We will give one simple
example to illustrate the idea behind this approximation theorem.

EXAMPLE 2.1. Suppose that B is a Brownian motion and that

Yn
k+1 = Yn

k + V
(
Yn

k

)(
B

(
τn
k+1

) − B
(
τn
k

))
.

It is easy to check that, for almost every Brownian path, the constant Cγ,n defined
in (2.7) is bounded uniformly in n, for any γ < 1/2. It follows that we can find an
equation driven by smooth paths, with solution Ỹ n such that∥∥Ỹ n − Yn

∥∥∞ � �3γ−1
n

for any γ < 1/2.

3. Some applications. We will now discuss some potential applications for
the tools introduced above.

3.1. Random walk recursions. We start with a quite trivial and well known
result, with the sole intention of illustrating how Theorem 2.1 should be used.
A continuous time version of this example can be found in [2]. It should be said
that the following can easily be deduced from either [24] or [2].

Suppose that {ξi}i≥0 is an i.i.d. sequence of random variables taking values in
R

d with Eξi = 0 and Eξi ⊗ ξi = D, with D ∈ R
d×d . We will consider the random

walk recursion

Yn
k+1 = Yn

k + n−1/2V
(
Yn

k

)
ξk

with associated partition Pn with τn
k = k/n. If we define the path Yn(·) = Yn	n·


then it is well known that Yn ⇒ Y in càdlàg space (with sup-norm topology),
where Y solves the SDE

dY = V (Y )D1/2 dW,
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where W is standard Brownian motion on R
d . The following lemma illustrates

how to prove this using Theorem 2.1. First, we define the rough step function

Xn(t) = n−1/2
	nt
−1∑

i=0

ξi, X
n(t) = n−1

	nt
−1∑
i=0

i−1∑
j=0

ξj ⊗ ξi .

LEMMA 3.1. Suppose that E|ξ0|q < ∞ for some q > 6. Then the pair
(Xn,Xn) satisfy the assumptions of Theorem 2.1 with X = D1/2W and ν = −1

2D.
In particular Yn ⇒ Y where

dY = V (Y )D1/2 dW,

where the integral is of Itô type.

REMARK 3.1. The moment condition on E|ξ0|q is much stronger than re-
quired by more traditional solutions to the problem. This is due to the fact that the
conclusion of the theorem is actually stronger than most traditional versions. In
particular, we could actually show that Yn converges in (a discrete version) of the
rough path topology, which is much stronger than the sup-norm topology. We will
not pursue such statements in this article.

PROOF OF LEMMA 3.1. From Donsker’s theorem, we already know that
Xn ⇒ X = D1/2W . To identify the limit of Xn we simply write it as a stochas-
tic integral. In particular, we see that

X
n(t) =

∫ t

0
Xn(s−) ⊗ dXn(s),

where the integral is of left-Riemann type (hence Itô type). That is,∫ t

0
Y(s−) dZ(s) = lim

∑
Y(si)

(
Z(si+1) − Z(si)

)
,

where {si} is a partition of [0, t] and the limit is taken as the maximum of si+1 − si
tends to zero. The theory of good semi-martingales [24] provides a class of semi-
martingale sequences for which the limit of a sequence of Itô integrals is an Itô
integral.

Since the partial sum process Xn is clearly a martingale with respect to the
filtration generated by the sequence {ξi}	nt
−1

i=0 , we can appeal to [24], Theorem 2.2.
In particular, since the quadratic variation

[
Xn,Xn]

t = n−1
	nt
−1∑

i=0

ξi ⊗ ξi,

we have that E[Xn,Xn]t = D	nt
/n which is of course bounded uniformly in n.
Thus, Xn is good and [24], Theorem 2.2, immediately tells us that(

Xn,Xn) ⇒ (X,X)
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in the sup-norm topology, where

X(t) =
∫ t

0
X(s) ⊗ dX(s) =

∫ t

0
X(s) ⊗ ◦dX(s) − 1

2
Dt,

where the integrals are of Itô and Stratonovich type, respectively, and we have
converted between them in the usual way. This is of course stronger than the finite-
dimensional distribution result which we required, but the tools from [24] make it
quite easy to prove.

All that remains is to obtain the discrete tightness estimates (2.6) with q > 6 and
γ = 1/2. Since Xn is a martingale, we can apply the Burkholder–Davis–Gundy
(BDG) inequality

E
∣∣Xn(j/n, k/n)

∣∣q � E
∣∣[Xn,Xn]

j/n,k/n

∣∣q/2

= n−q/2E

∣∣∣∣∣
k−1∑
i=j

ξi ⊗ ξi

∣∣∣∣∣
q/2

≤ n−q/2E

(
k−1∑
i=j

|ξi |2
)q/2

.

By the Hölder inequality, we see that

k−1∑
i=j

|ξi |2 ≤ (k − j)1−q/2

(
k−1∑
i=j

|ξ |q
)2/q

.

It follows that

E
∣∣Xn(j/n, k/n)

∣∣q � n−q/2(k − j)q/2−1
k−1∑
i=j

E|ξi |q

= n−q/2(k − j)q/2−1
k−1∑
i=j

E|ξ0|q = E|ξ0|q(k/n − j/n)q/2.

Since X
n is a stochastic integral (or martingale transform) it too is a martingale

and hence we can again apply the BDG inequality. A similar argument yields

E
∣∣Xn(j/n, k/n)

∣∣q/2 � E|ξ0|q(k/n − j/n)q.

And since q > 6, the interval (1/3+q−1,1/2] is nonempty, so we do indeed satisfy
the requirements of Theorem 2.1. It follows that Yn ⇒ Y where

dY = V (Y ) ◦ D1/2 dW − 1
2D :V(Y ) dt

and we obtain the required expression by converting Stratonovich to Itô. �



440 D. KELLY

3.2. Fast–slow systems. Instead of showing how the tools can be used on each
of the examples given in the Introduction, we concentrate on the fast–slow systems,
since it is the least understood. The tools of this article are applied to fast–slow
systems in a companion paper [21] (see also [20]), to yield new results for fast–
slow systems. The dynamical system theory required is slightly too involved to be
included in this paper, thus we will only sketch the ideas behind the result.

We will restrict our attention to the fast–slow system

Yn
k+1 = Yn

k + n−1/2h
(
Yn

k

)
v
(
T kω

)
,

the general case is treated in [21]. Setting V = h, ξn
k = n−1/2v(T k) and �n

k = 0
we see that the rough step function is defined by

Xn(t) = n−1/2
	nt
−1∑

i=0

v
(
T i) and X

n(t) = n−1
	nt
−1∑

i=0

i−1∑
j=0

v
(
T i) ⊗ v

(
T j )

.

We will also introduce the sigma algebra M which is whatever sigma algebra we
chose to go with the measure space (�,μ).

PROPOSITION 3.1. Under “sufficient” mixing conditions on T , the pair
(Xn,Xn) satisfy the assumptions of Theorem 2.1 with X = D1/2W where

Dαβ =
∫

vαvβ dμ +
∞∑

j=1

(∫
vαvβ(

T j )
dμ +

∫
vα(

T j )
vβ dμ

)

and

ναβ = −1

2

∫
vαvβdμ + 1

2

∞∑
j=1

(∫
vαvβ(

T j )
dμ −

∫
vα(

T j )
vβ dμ

)
.

In particular, Yn ⇒ Y where

dY = h(Y )D1/2 ◦ dW + ν :H(Y ) dt,

where H is defined precisely as V, but in terms of h.

SKETCH OF PROOF. To identify the limit of the pair (Xn,Xn), we proceed
similarly to the random walk recursion case, namely identify the limit of Xn and
then lift it to X

n. To identify the limit of Xn, we will use a martingale central limit
theorem on the time reversal of the partial sum process Xn.

By applying the natural extension of a dynamical system, we can assume with-
out loss of generality that the map T is invertible. Now, fix a time window [0,L]
on which we will identify the limit of Xn. By stationarity, we have that

Xn(t) = n−1/2
nt−1∑
i=0

v
(
T i) dist= n−1/2

nt−1∑
i=0

v
(
T i−nL)

.
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By setting i = nL − k, the above equals

nT∑
k=nT −nt

v
(
T −k) =

nT∑
k=1

v
(
T −k) −

n(T −t)∑
k=1

v
(
T −k).

Now, if we define the backward time partial sum Xn−(t) = n−1/2 ∑	nt

i=1 v(T −i ) then

the above calculation show that

Xn(t) = Xn−(L) − Xn−(L − t).

Under “sufficient” mixing conditions on the dynamical system, one can show that
Xn− is a martingale with respect to the backward time filtration Ft = T 	nt
−1M.
Thus, using the central limit theorem for ergodic stationary L2 martingale differ-
ence sequences [31] it follows that Xn− ⇒ X where X = D1/2W . And thus,

Xn ⇒ X(L) − X(L − t)
dist= X(t),

using the time reversal property of Brownian motion. Now that we know the lim-
iting behaviour of Xn, we can use the tools from [24] to identify the limiting be-
haviour of Xn. In particular, Theorem 2.2 from [24] allows us to identify the limit
of integrals against the martingale Xn−, so all we have to do is rewrite X

n in back-
ward time, so that it becomes an integral driven by dXn− (plus corrections). Using
this idea, we show that (Xn,Xn) ⇒ (X,X) where

X(t) =
∫ t

0
X(s) ⊗ ◦dX(s) + νt,

where the integral is of Stratonovich type. All that remains is to prove the dis-
crete tightness estimates. To do so, we again write the pair (Xn,Xn) in terms of
the martingale Xn− and stochastic integrals driven by dXn−. Since these are both
martingales, we can apply the BDG inequality and the tightness estimates follow
(somewhat) easily, using the ergodic properties and stationarity of T . It follows
from Theorem 2.1 that Yn ⇒ Y where Y solves the SDE

dY = h(Y ) ◦ dW + ν :H(Y ) dt. �

It is important to note that although the diffusion approximation is essentially a
consequence of the martingale central limit theorem, those martingale sequences
only appear in backward time. In particular, the fast–slow system cannot be written
as an equation driven by a semi-martingale, so the theory of good semi-martingales
cannot be applied directly to the fast–slow system. The advantage of Theorem 2.1
is that even though it is not possible to apply martingale limit theory to the recur-
sion, it is quite easy to do so to the noise processes (Xn,Xn).

REMARK 3.2. In the companion paper [21], the details are far more compli-
cated than we present above. For example, the backward time object Xn− is not in
fact a good martingale, but rather a reasonable perturbation of a good martingale,
as described in Example 1.3. This makes matters more interesting.
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3.3. Connection to [24]. We will now briefly comment on the connection be-
tween Theorem 2.1 and the tools introduced in [24]. Given a partition Pn, consider
the recursion

Yn
k+1 = Yn

k + V
(
Yn

k

)
ξn
k ,

where the increments ξn are defined in such a way that the step-function Xn(t) =∑k−1
i=0 ξn

i were a semi-martingale with respect to some given sequence of filtrations,
the random walk recursion provides a nice example. It follows that the path Yn(·)
solves the equation

Yn(t) = Yn(0) +
∫ t

0
V

(
Yn(s−)

)
dXn(s),

where the integral is of Itô type, as defined Section 3.1. Suppose moreover that
Xn = Mn + An where Mn is a good sequence of semi-martingales and An ⇒ 0.
Also define

Hn(t) = [
Mn,An]

t , Kn(t) =
∫ t

0
An(s) ⊗ dAn(s),

where the integral is of Itô type. Suppose moreover that(
Xn,An,Hn,Kn) ⇒ (X,0,H,K)(3.1)

in the sup-norm topology, where the limits are continuous semi-martingales. Then
[24], Theorem 5.1, states that Yn ⇒ Y where

dY = V (Y )dX +V :d(H − K)(3.2)

and the integrals are of Itô type.
Let us see how this fits into Theorem 2.1. It is not hard to see that the assump-

tion (3.1) implies the assumption (Xn,Xn) ⇒ (X,X). For instance, since

X
n(t) =

∫ t

0
Xn(s−) ⊗ dXn(s)

=
∫ t

0
Mn(s−) ⊗ dMn(s) +

∫ t

0
Mn(s−) ⊗ dAn(s)

+
∫ t

0
An(s−) ⊗ dMn(s) +

∫ t

0
An(s−) ⊗ dAn(s)

=
∫ t

0
Mn(s−) ⊗ dMn(s) + An(t)Mn(t) − [

Mn,An]
t

+
∫ t

0
An(s−) ⊗ dAn(s)

=
∫ t

0
Mn(s−) ⊗ dMn(s) + An(t)Mn(t) − Hn(t) + Kn(t).
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Combining the fact that Mn is good with (3.1) we see that (Xn,Xn) ⇒ (X,X)

where

X(t) =
∫ t

0
M(s) ⊗ dM(s) − H(t) + K(t)

=
∫ t

0
M(s) ⊗ ◦dM(s) + 1

2
[M,M]t − H(t) + K(t).

Taking the tightness estimates for granted, we see that in the case where
1
2 [M,M]t − H(t) + K(t) = νt , Theorem 2.1 reproduces the diffusion approxi-
mation (3.2). It is quite possible to extend the Theorem 2.1 so that it only requires,
for instance, [M,M] − H + K to be of bounded variation, which would yield a
result closer to that of [24], but we do not pursue this here.

3.4. Numerical schemes. Several recent articles have used rough path ideas to
study numerical schemes for stochastic equations. To name a few, [3, 7, 12, 13]
are all concerned with similar but typically higher order schemes than (2.3). In [7],
the authors also use the idea that a recursion can be approximated by an RDE, but
only for much higher order Milstein-type schemes. In a recent preprint [35], the
authors consider Euler-type schemes, again by approximating the recursion with a
genuine RDE.

The recursion considered in this article handles most numerical schemes for
SDEs, provided the driving noise is a random path with Hölder exponent γ > 1/3.
It is easy to see that the Euler scheme

Yn
j+1 = Yn

j + V
(
Yn

j

)
X

(
j/n, (j + 1)/n

)
fits into the framework of (2.3). Using nothing more than a Taylor expansion, one
can also show that another typical numerical scheme, the semi-implicit scheme,
fits into (2.3). This is defined by

Yn
j+1 = Yn

j + θV
(
Yn

j

)
X

(
j/n, (j + 1)/n

) + (1 − θ)V
(
Yn

j+1
)
X

(
j/n, (j + 1)/n

)
,

where θ ∈ [0,1]. When θ = 1 this is of course the (forward) Euler scheme, when
θ = 1/2 this is the Stratonovich mid-point scheme and when θ = 0 this is the
backward Euler scheme. In [23], one can find a plethora of schemes that also fit
into the class of recursions defined by (2.3), using similar arguments to that given
below.

In the context of numerical schemes, we see two key areas where the ability to
identify weak limits is beneficial.

1. Well-posedness of numerical schemes. When the noise is not a semi-
martingale, it may not be clear whether a limit exists and if it does—how it should
be interpreted. Theorem 2.1 provides a quick criterion for this situation. In par-
ticular, since Xn = X one need only identify the limit of Xn. If the limit of Xn

corresponds to a reasonable type of integral (it should correspond to the method
of integration used by the numerical scheme) then the limiting equation can be
interpreted in the sense of that integral.
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2. Numerical schemes that depend on an approximation of the noise, rather
than the exact distribution. Such situations arise if the noise is difficult to simulate
and must instead be approximated, a common scenario when Gaussianity is not
present. One also encounters this situation in the context of stochastic climate mod-
eling, where ocean–atmosphere equations are driven by an under-resolved source
of noise with persistent correlations in time [34] and also in data assimilation,
where a perturbation of a stochastic observation is fed into the numerical simu-
lation of a forecast model. The article [22] contains a brief overview of the latter
idea.

Finally, the approximation theory above clearly has applications to determining
the pathwise order of numerical schemes. For example, suppose that Yn is defined
by the Euler scheme

Yn
j+1 = Yn

j + V
(
Yn

j

)
X

(
j/n, (j + 1)/n

)
.

Since X does not depend on n the weak limit Y is determined by the weak limit X
of

X
n(t) =

	nt
−1∑
j=0

X(0, j/n) ⊗ X
(
j/n, (j + 1)/n

)
.

Using Theorem 2.2 as well as the tools from rough path theory (Lemma 4.2) it is
easy to show that

sup
k=0,...,n

∣∣Yn(
τn
k

) − Y
(
τn
k

)∣∣ ≤ Kγ,n

(
�3γ−1

n + sup
k=0,...,n

∣∣Xn(
τn
k

) −X
(
τn
k

)∣∣θ)
,

where Kγ,n only depends on n through the discrete Hölder norm of Xn. If X were
Brownian motion, then one can trivially calculate moments of |Xn(τn

k ) − X(τn
k )|

exactly, thus obtaining a rate of convergence is simple. However, obtaining the
optimal rate of convergence is slightly more subtle. The topic of convergence rates
will not be discussed further in this article but is the subject of a future article.

4. A taste of rough path theory. In this section, we will serve an appetizer
in rough path theory. For the full course, we recommend [11], which is closely
aligned with the exposition below.

4.1. Space of rough paths. A rough path has two components to its definition,
an algebraic one and an analytic one. The algebraic component ensures that the ob-
jects X,X do indeed behave like the increments they hope to imitate. The analytic
component describes the Hölder condition that is required to construct solution
maps. In the definition below, we always require that the exponent γ > 1/3. We
use the notation T 2(Rd) = R

d ⊕R
d×d for the step-2 tensor product algebra.
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DEFINITION 4.1. We say that X : [0, T ]× [0, T ] → T 2(Rd) is a rough path if
for X = (X,X)

X(s, t) = X(s,u) + X(u, t) and
(4.1)

X(s, t) = X(s, u) +X(u, t) + X(s,u) ⊗ X(u, t)

for all s, u, t ∈ [0, T ]. These are known as Chen’s relations. If moreover we have
that ∣∣X(s, t)

∣∣ � |t − s|γ and
∣∣X(s, t)

∣∣ � |t − s|2γ(4.2)

for all s, t ∈ [0, T ] then X is a γ -Hölder rough path. The set of γ -Hölder rough
paths will be denoted Cγ ([0, T ];Rd). Every rough path defines a path X : [0, T ] →
T 2(Rd) by setting X(t) = X(0, t). Likewise, we could equally have defined rough
paths as paths X : [0, T ] → T 2(Rd) and then simply taken Chen’s relations as a
definition for X(s, t). This identification between paths and increments will be
used frequently throughout the article.

We will make use of two metric spaces of rough paths. First, Cγ ([0, T ];Rd) is
a metric space when furnished with the metric

ργ (X, X̃) = sup
s 
=t∈[0,T ]

|X(s, t) − X̃(s, t)|
|s − t |γ + sup

s 
=t∈[0,T ]
|X(s, t) − X̃(s, t)|

|s − t |2γ
.

It is easy to check the interpolation inequality

ρα ≤ ρ
α/β
β ρ

1−α/β
0(4.3)

for any 0 ≤ α ≤ β . We also make use of the related γ -Hölder “norm”

|||X|||γ = sup
s 
=t∈[0,T ]

|X(s, t)|
|s − t |γ + sup

s 
=t∈[0,T ]
|X(s, t)|1/2

|s − t |γ ,

which is by definition finite on Cγ ([0, T ];Rd). Clearly, we have that∣∣X(s, t)
∣∣ ≤ |||X|||γ |s − t |γ and

∣∣X(s, t)
∣∣ ≤ |||X|||2γ |s − t |2γ

for all s, t ∈ [0, T ] and X = (X,X) ∈ Cγ ([0, T ];Rd).
The second metric space we make use of is the set of continuous rough paths

X : [0, T ] → T 2(Rd) endowed with the uniform metric ‖ · ‖∞. By this, we simply
mean the sup-norm defined on functions with range Rd ⊕R

d×d (with the ordinary
Euclidean norm on the range). It is easy to see that this topology is equivalent to
that generated by ρ0.

REMARK 4.1. There is a good reason for using ||| · |||γ in addition to ργ .
This is due to the relationship between the Euclidean norm on and the Carnot–
Caratheodory norm, defined on homogeneous groups. This will be utilised in Sec-
tion 6.
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4.2. Rough differential equations. For X ∈ Cγ ([0, T ];Rd) and V ∈ C2
b , there

is a class of paths Y : [0, T ] → R
e known as controlled rough paths, for which one

can define the integral
∫ t

0 V (Y )dX. We say that Y is an X-controlled rough path if
Y(s, t) = Y(t) − Y(s) has the form

Y i(s, t) = Y ′
i (s)X(s, t) + O

(|t − s|2γ )
for all i = 1, . . . , e and 0 ≤ s ≤ t ≤ T , where Y ′

i : [0, T ] → R
e×d is a γ -Hölder

path. For a thorough treatment of controlled rough paths and their use in defining
the above integrals, see [11], Section 4.

The integral is defined as a compensated Riemann sum∫ t

0
V (Y )dX = lim

P→0
SP ,

where

Si
P = ∑

[tk,tk+1]∈P
V i(Y(tk)

)
X(tk, tk+1) +

e∑
j=1

(
Y ′

j (tk) ⊗ ∂jV
i(Y(tk)

))
:X(tk, tk+1)

and P denotes a partition of [0, t]. Note that the integral is defined pathwise, for
each X ∈ Cγ ([0, T ];Rd).

A controlled rough path Y is said to solve the RDE dY = V (Y )dX with initial
condition Y(0) = η if it solves the integral equation

Y(t) = η +
∫ t

0
V (Y )dX

for all t ∈ [0, T ]. In this case, we write Y = �(X). When required, we write Y =
�(X;V,η, s) to denote the solution to Y(t) = η + ∫ t

s V (Y ) dX with t ≥ s. For a
thorough treatment of RDEs, see [11], Section 8.

We will now state a few basis results concerning RDEs, proofs can be found in
[3, 11, 16].

PROPOSITION 4.1. If V ∈ C3
b and X ∈ Cγ ([0, T ];Rd) then for each ini-

tial condition ξ and any s < T , there exists a unique global solution Y =
�(X;V, ξ, s). Moreover,

Y(t) = Y(s) + V
(
Y(s)

)
X(s, t) +V

(
Y(s)

)
:X(s, t) + R(s, t),(4.4)

for all s, t ∈ [0, T ], where |R(s, t)| � (1 ∧ |||X|||3γ )|s − t |3γ .

REMARK 4.2. To see that the remainder scales in this particular way, see the
proof of [3], Lemma 3.4.

LEMMA 4.1. If Y = �(X;V,η) and Ỹ = �(X;V, η̃), then |Y(t) − Ỹ (t)| �
|||X|||γ |Y(s) − Ỹ (s)| for any s ≤ t ≤ T , where the implied constant depends only
on T ,V .
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LEMMA 4.2. Suppose that V ∈ C3
b and X, X̃ ∈ Cγ ([0, T ];Rd) satisfying

ργ (X,0), ργ (X̃,0) ≤ M . Then, on any time window [0, T ], the map �(·) satis-
fies the following local Lipschitz estimate∥∥�(X) − �(X̃)

∥∥∞ ≤ CMργ (X, X̃),

where CM depends only on M and T .

The next lemma is a slight modification of a result in [14], hence we only sketch
the proof.

LEMMA 4.3. Let 0 ≤ γ < α. Then the ball

BR,α = {
X ∈ Cα([0, T ];Rd)

: |||X|||α ≤ R
}

is compact in the space Cγ ([0, T ];Rd).

PROOF. The proof is a standard modification of a similar statement found in
[14]. Fix a sequence {Xn} ⊂ BR,α . Use Arzela–Ascoli to find a subsequence that
converges in the sup-norm topology. Use the interpolation (4.3) between Cα ⊂
Cγ ⊂ C0 to show that this subsequence also converges in Cγ . Since Cγ is a metric
space, sequential compactness implies compactness. �

The final result, which is a direct corollary of [14], Theorem 17.3, allows us to
translate RDE solutions to Stratonovich SDEs.

LEMMA 4.4. Suppose that V ∈ C3
b , X = (X,X) ∈ Cγ ([0, T ];Rd) and let

Y = �(X;V ). Suppose that X is a continuous semi-martingale and that X can
be written

X
αβ(t) =

∫ t

0
Xβ(s) ◦ dXα(s) + ναβt,(4.5)

for α,β = 1, . . . , d . where the integral on the right-hand side is defined in the
Stratonovich sense and where ν ∈ R

d×d . Then Y satisfies the SDE

dY = V (Y ) ◦ dX +V(Y ) :ν dt.(4.6)

REMARK 4.3. In all of the results of this section, if in addition to γ > 1/3, it
is also known that γ can be taken arbitrarily close to 1/2 (as for Brownian rough
paths), then the condition V ∈ C3 can be relaxed to V ∈ C2+. For instance, the
versions of the results in any of [3, 14, 16] will adhere to this.

5. Rough path recursions. In this section, we introduce rough path recur-
sions, driven by rough step functions. Before proceeding with the definitions, we
must introduce some assumptions and terminology.
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5.1. Partitions of [0, T ]. Fix an interval [0, T ] and let Pn = {τn
k :k = 0, . . . ,

Nn} be a partition of [0, T ], that is 0 = τn
0 ≤ τn

1 ≤ · · · ≤ τn
Nn

= T . We also intro-
duce the mesh size �n = maxk |τn

k+1 − τn
k |. For all the partitions considered in this

article, we will assume that

�n → 0 as n → ∞ and sup
n≥1

Nn�n < ∞.(5.1)

The first assumption is obviously natural, the second condition is effectively saying
that the largest bin the partition does not shrink too much slower than the smallest
bin in the partition. Given some u ∈ [0, T ], we will also use the notation τn(u) to
denote the largest mesh point τn(u) ∈ Pn with τn(u) ≤ u. It follows from (5.1)
that τn(u) → u as n → ∞.

5.2. Rough path recursions. We will now define rough step functions and
rough path recursions rigorously.

DEFINITION 5.1 (Rough step functions). Fix a partition Pn of [0, T ] and sup-
pose ξn

j ∈ R
d and �n

j ∈ R
d×d for all j = 0, . . . ,Nn − 1. The rough step function

above the increments (ξn,�n) is a path Xn = (Xn,Xn) : [0, T ] → T 2(Rd) defined
by

Xn(t) =
k−1∑
j=0

ξn
j and X

n(t) =
k−1∑
i=0

i−1∑
j=0

ξn
i ⊗ ξn

j +
k−1∑
i=0

�n
i ,

where τn
k = τn(t). We similarly define the incremental paths

Xn(s, t) =
k−1∑
j=l

ξn
j and X

n(s, t) =
k−1∑
i=l

i−1∑
j=l

ξn
i ⊗ ξn

j +
k−1∑
i=l

�n
i ,

where τn
k = τn(t) and τn

l = τn(s). We will often employ the shorthand Xn(τn
j ,

τn
k ) = Xn

j,k and X
n(τn

j , τn
k ) = X

n
j,k . We define the discrete γ -Hölder “norm”

||| · |||γ,n by

∣∣∣∣∣∣Xn
∣∣∣∣∣∣

γ,n

def= max
τn
j ,τn

k ∈Pn

|Xn
j,k|

|τn
j − τn

k |γ + max
τn
j ,τn

k ∈Pn

|Xn
j,k|1/2

|τn
j − τn

k |γ .

In particular, we see that∣∣Xn(
τn
j , τn

k

)∣∣ ≤ ∣∣∣∣∣∣Xn
∣∣∣∣∣∣

γ,n

∣∣τn
j − τn

k

∣∣γ and
∣∣Xn(

τn
j , τn

k

)∣∣ ≤ ∣∣∣∣∣∣Xn
∣∣∣∣∣∣2

γ,n

∣∣τn
j − τn

k

∣∣2γ

for all mesh points τn
j , τn

k ∈Pn. Since it is a maximum over a finite set, the discrete
Hölder norm is finite for every fixed n. It will only play a role in an asymptotic
sense.
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DEFINITION 5.2 (Rough path recursions). Fix a sequence of partitions
{Pn}n≥1. A rough path recursion {Yn}n≥1 with Yn : [0, T ] → R

e is defined by
Yn(t) = Yn

j , where τn
j = τn(t) and satisfying the recursion

Yn
j+1 = Yn

j + V
(
Yn

j

)
ξn
j +V

(
Yn

j

)
:�n

j + rn
j ,(5.2)

for all j = 0, . . . ,Nn − 1 with Yn
0 = η and arbitrary ξn

j ∈ R
d and �n

j ∈ R
d×d . The

remainder is assumed to satisfy the estimate

|rj | � (
1 ∧ ∣∣∣∣∣∣Xn

∣∣∣∣∣∣3
γ,n

)
�3γ

n ,(5.3)

where the implied constant is uniform in n and Xn is the rough step function over
the increments (ξn,�n). We will use the notation Yn = �n(Xn).

REMARK 5.1. The estimate (5.3) is picked as it seems to be the most naturally
occurring upper bound in applications. However, at the expense of a few extra
constraints we could equally use |rn

j | � (1∧φ(Cn))�
λ
n for any increasing function

φ : [0,∞) → [0,∞) and λ > 1.

REMARK 5.2. Although we require that Yn be constant in between mesh
points, it is easy to see that all the properties of rough path recursions discussed in
the sequel are still true if we assume that Yn is defined by a reasonable interpola-
tion between mesh points. For example, even though the solution to an RDE sat-
isfies the recursion (5.2), it is not a rough path recursion. However, it can be well
approximated by a rough path recursion, and any convergence results for rough
path recursion easily imply convergence results for the associated RDE solution.
As a more general course of action, we could have defined a rough path recursion
to any path satisfying (5.2) as well as∣∣Yn(t) − Yn(

τn(t)
)∣∣ � Dn�

μ
n ,

for some sequence of constants Dn and μ > 0. It is clear that, assuming the right
conditions on Dn and μ, all the statements made in the sequel regarding rough
path recursions are unaltered if we were to adopt this more general definition.

6. Properties of rough path recursions. In this section, we discuss some
useful properties of rough step functions and their associated rough path recur-
sions. The main result, Lemma 6.3, states that every rough path recursion can be
approximated arbitrarily well by the solution to a rough differential equation. At
the heart of this result is the fact that for every rough step function Xn, one can
find a genuine rough path X̃n that agrees with Xn on Pn. This is the content of
Lemma 6.2. Before stating the theorems, we must introduce some terminology
associated with geometric rough paths. For a more detailed exposition of this ma-
terial, see [14] and also [11], Section 2.2.
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We first define G2(Rd), the step-2 nilpotent Lie group, by G2(Rd) =
exp(G2(Rd)) where G2(Rd) is the step-2 Lie algebra over Rd and where exp is
the tensor exponential. In particular, g ∈ G2(Rd) if and only if

g = exp
(
aαeα + bβ,κ [eβ, eκ ]) = aαeα + (1

2aβaκ + bβ,κ − bκ,β

)
eβ ⊗ eκ,

where {eα} denotes the canonical basis of Rd and we employ the Einstein summa-
tion convention. It is easy to see that every element A ∈ T 2(Rd) can be decom-
posed into

A = g + z,

where g ∈ G2(Rd) and z ∈ Sym(Rd×d). The pair (G2(Rd),⊗) forms a group.
This group has a homogeneous metric known as the Carnot–Caratheodory metric,
defined using geodesic paths. To make this precise, we first define the signature
of a smooth path. Let BV([0,1];Rd) be the space of paths � : [0,1] → R

d with
bounded variation. For � ∈ BV([0,1];Rd), the signature is defined by

S(�)(s, t) =
(
�(t) − �(s),

∫ t

s

(
�(u) − �(s)

) ⊗ d�(u)

)
,

where the integral is constructed in the Riemann–Stieltjes sense. The Carnot–
Caratheodory (CC) norm is defined by

‖g‖CC
def= inf

{∫ 1

0
|d�| :� ∈ BV

([0,1];Rd)
and g = S(�)(0,1)

}
.

The following result (which is a refinement of Chow’s theorem) shows that the
norm is well defined (see [14], Theorem 7.32, for a simple proof).

LEMMA 6.1. If g ∈ G2(Rd) then there exists a path � : [u, v] → R
d with

|�̇| = const such that g = S(�)(u, v) and ‖g‖CC = (v − u)|�̇|.

The CC norm can also be “compared” with the usual Euclidean norms in the
following way. Suppose that g ∈ G2(Rd) can be decomposed into g = g1 + g2
where g1 ∈ R

d and g2 ∈R
d×d , then we have the comparison

|g1| + |g2|1/2 � ‖g‖CC � |g1| + |g2|1/2.(6.1)

This comparison will be useful in the sequel.

LEMMA 6.2. Let {Xn}n≥1 be a rough step function on a partition {Pn}n≥1

and let γ ∈ (1/3,1/2]. For each n, there exists X̃n ∈ Cγ ([0, T ];Rd) with

X̃n(
τn
j

) = Xn(
τn
j

)
for all τn

j ∈ Pn.

Moreover, we have that |||X̃n|||γ � |||Xn|||γ,n where the implied constant is uniform
in n.
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PROOF. We will start by constructing X̃n(s, t) for fixed s, t ∈ [τn
j , τn

j+1] with

s ≤ t . First, note that since Xn
j,j+1 ∈ T 2(Rd), we have the decomposition

Xn
j,j+1 = g

(
τn
j , τn

j+1
) + z

(
τn
j , τn

j+1
)
,

where g(τn
j , τn

j+1) ∈ G2(Rd) and z(τn
j , τn

j+1) ∈ Sym(Rd×d) is defined by

z
(
τn
j , τn

j+1
) = 1

2

(
X

n,αβ
j,j+1 +X

n,βα
j,j+1 − X

n,α
j,j+1X

n,β
j,j+1

)
eα ⊗ eβ.

We will now define

X̃n(s, t) = g(s, t) + z(s, t).

First, define z(s, t) by a simple linear interpolation

z(s, t) = t − s

τn
j+1 − τn

j

z
(
τn
j , τn

j+1
)
.

Now, to define g(s, t), we know from Lemma 6.1 that there exists a path
� : [τn

j , τn
j+1] → R

d such that |�̇| = const and g(τn
j , τn

j+1) = S(�)(τn
j , τn

j+1) and

‖g(τn
j , τn

j+1)‖CC = (τn
j+1 − τn

j )|�̇|. We set g(s, t) = S(�)(s, t).

We will now define X̃n(s, t) for arbitrary s, t ∈ [0, T ] with s ≤ t . Suppose with-
out loss of generality that s ≤ τn

j ≤ τn
k ≤ t where τn

j−1 = τn(s) and τn
k = τn(t).

Then we define X̃n(s, t) = (X̃n, X̃n)(s, t) using Chen’s relations

X̃n(s, t) = X̃n(
s, τn

j

) + Xn
j,k + X̃n(

τn
k , t

)
and

X̃
n(s, t) = X̃

n(
s, τn

j

) +X
n
j,k + X̃

n(
τn
k , t

)
+ Xn

j,k ⊗ X̃n(
τn
k , t

) + X̃n(
s, τn

j

) ⊗ X̃n(
τn
j , t

)
.

We will now check that X̃n satisfies the requirements of the theorem. First, we will
show that Chen’s relations hold. It is easy to see that Chen’s relations hold when
restricted to the interval s, u, t ∈ [τn

j , τn
j+1]. Indeed, since g(s, t) is a signature and

since z(s, t) is an increment, both objects individually obey Chen’s relation. Thus,
if we write g = g1 + g2, with g1 ∈ R

d and g2 ∈ R
d ⊗R

d then

X̃n = (
X̃n, X̃n) = (g1, g2 + z).

Therefore,

X̃n(s, t) = g1(s, t) = g1(s, u) + g1(u, t) = X̃n(s, u) + X̃n(u, t)

and

X
n(s, t) = g2(s, t) + z(s, t)

= g2(s, u) + g2(u, t) + g1(s, u) ⊗ g1(u, t) + z(s, u) + z(u, t)

= (g2 + z)(s, u) + (g2 + z)(u, t) + g1(s, u) ⊗ g1(u, t)

= X̃
n(s, u) + X̃

n(u, t) + X̃n(s, u) ⊗ X̃n(u, t),
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as required. Now, for arbitrary s ≤ u ≤ t it follows immediately from the construc-
tion that (X̃n, X̃n) satisfies Chen’s relations.

Using the shorthand Cn = |||Xn|||γ,n, we will now prove that |||X̃n|||γ � Cn. First,
suppose that s, t ∈ [τn

j , τn
j+1] with s ≤ t . Then using the comparison (6.1) and the

construction of g, we have that∣∣X̃n(s, t)
∣∣ = ∣∣g1(s, t)

∣∣ ≤ ∣∣g1(s, t)
∣∣ + ∣∣g2(s, t)

∣∣1/2

�
∥∥g(s, t)

∥∥
CC = (t − s)

(τn
j+1 − τn

j )

∥∥g(
τn
j , τn

j+1
)∥∥

CC

and again by (6.1) we have that∥∥g(
τn
j , τn

j+1
)∥∥

CC �
∣∣g1

(
τn
j , τn

j+1
)∣∣ + ∣∣g2

(
τn
j , τn

j+1
)∣∣1/2

�
∣∣Xn

j,j+1

∣∣ + (∣∣Xn
j,j+1

∣∣ + ∣∣Xn
j,j+1

∣∣2)1/2(6.2)

� Cn

(
τn
j+1 − τn

j

)γ
.

It follows that

∣∣X̃n(s, t)
∣∣ � Cn

(t − s)

(τn
j+1 − τn

j )1−γ
= Cn(t − s)γ

(
t − s

τn
j+1 − τn

j

)1−γ

≤ Cn(t − s)γ ,

where in the last inequality we use the fact that t−s
τn
j+1−τn

j
≤ 1. By a similar argument,

we can show that

∣∣X̃n(s, t)
∣∣ �

(
t − s

τn
j+1 − τn

j

)2(∣∣Xn
j,j+1

∣∣2 + ∣∣Xn
j,j+1

∣∣) +
(

t − s

τn
j+1 − τn

j

)∣∣Xn
j,j+1

∣∣(6.3)

and hence ∣∣X̃n(s, t)
∣∣ � C2

n(t − s)2γ .

Now suppose s, t ∈ [0, T ] with s ≤ τn
j ≤ τn

k ≤ t as above. By Chen’s relations, we
have that∣∣X̃n(s, t)

∣∣ ≤ ∣∣X̃n(
s, τn

j

)∣∣ + ∣∣Xn
j,k

∣∣ + ∣∣X̃n(
τn
k , t

)∣∣
� Cn

(∣∣τn
j − s

∣∣γ + ∣∣τn
j − τn

k

∣∣γ + ∣∣τn
k − t

∣∣γ ) ≤ Cn|t − s|γ
and∣∣X̃n(s, t)

∣∣ ≤ ∣∣X̃n(
s, τn

j

)∣∣ + ∣∣Xn
j,k

∣∣ + ∣∣X̃n(
τn
k , t

)∣∣
+ ∣∣Xn

j,k ⊗ X̃n(
τn
k , t

)∣∣ + ∣∣X̃n(
s, τn

j

) ⊗ X̃n(
τn
j , t

)∣∣
� C2

n

(∣∣τn
j − s

∣∣2γ + ∣∣τn
j − τn

k

∣∣2γ + ∣∣τn
k − t

∣∣2γ

+ ∣∣τn
j − τn

k

∣∣γ ∣∣τn
k − t

∣∣γ + ∣∣τn
j − s

∣∣γ ∣∣τn
j − t

∣∣γ )
� Cn|t − s|2γ .

This completes the proof. �
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We now have all the tools we need to prove the main result of this section,
namely that rough path recursions can be well approximated by the solution to an
RDE.

LEMMA 6.3. Let Yn = �n(Xn). Let X̃n be any rough path satisfying the con-
ditions of Lemma 6.2 and let Ỹ n = �(X̃n). Then∥∥Ỹ n − Yn

∥∥∞ �
(
1 ∧ ∣∣∣∣∣∣Xn

∣∣∣∣∣∣4
γ,n

)
�3γ−1

n ,

for any γ ∈ (1/3,1/2], where the implied constant is uniform in n.

PROOF. We will again use the shorthand Cn = |||Xn|||γ,n. For any t ∈ [0, T ],
we have that∣∣Ỹ n(t) − Yn(t)

∣∣ ≤ ∣∣Ỹ n(t) − Ỹ n(
τn
k

)∣∣ + ∣∣Ỹ n(
τn
k

) − Yn(
τn
k

)∣∣,
where τn

k = τn(t), and hence Yn(t) = Yn(τn
k ). It follows from (4.4) that

Ỹ n(t) = Ỹ n(
τn
k

) + V
(
Ỹ n(

τn
k

))
X̃n(

τn
k , t

) +V
(
Ỹ n(

τn
k

))
: X̃n(

τn
k , t

) + R
(
τn
k , t

)
,

where |R(τn
k , t)| � |||X̃n|||3γ (t − τn

j )3γ ≤ C3
n�

3γ
n . Since γ ≤ 1/2, it follows that∣∣Ỹ n(t) − Ỹ n(

τn
k

)∣∣ �
(
1 ∧ C3

n

)
�γ

n �
(
1 ∧ C4

n

)
�3γ−1

n .

To estimate |Ỹ n(τn
k ) − Yn(τn

k )| we need some new terminology. For each l ≤ k,

define Z
(l)
k by

Z
(l)
k

def= �
(
X̃n;V,Yn

l , τ n
l

)(
τn
k

)
.

That is, Z
(l)
k = Ŷ (τ n

k ), where Ŷ is the unique solution to the RDE driven by X̃n

with vector field V , initialised at time τn
l with initial condition Yn

l [recalling that

Yn
l = Yn(τn

l ), as in Definition 5.2]. In particular, we have that Ỹ n(τn
k ) = Z

(0)
k ,

Yn
k = Z

(k)
k and

Z
(k)
k+1 = Yn

k + V
(
Yn

k

)
X̃n(

τn
k , τn

k+1
) +V

(
Yn

k

)
X̃

n(
τn
k , τn

k+1
) + R

(
τn
k , τn

k+1
)

(6.4)

for any k. It follows that

∣∣Ỹ n(
τn
k

) − Yn(
τn
k

)∣∣ = ∣∣Z(0)
k − Z

(k)
k

∣∣ ≤
k−1∑
l=0

∣∣Z(l)
k − Z

(l+1)
k

∣∣.(6.5)

But since

Z
(l)
k = �

(
X̃n;V,Yn

l , τ n
l

)(
τn
k

) = �
(
X̃n;V,Z

(l)
l+1, τ

n
l+1

)(
τn
k

)
and Z

(l+1)
k = �(X̃n;V,Z

(l+1)
l+1 , τ n

l+1)(τ
n
k ), it follows from Lemma 4.1 that∣∣Z(l)

k − Z
(l+1)
k

∣∣ �
(
1 ∧ ∣∣∣∣∣∣X̃n

∣∣∣∣∣∣
γ

)∣∣Z(l)
l+1 − Z

(l+1)
l+1

∣∣ ≤ (1 ∧ Cn)
∣∣Z(l)

l+1 − Z
(l+1)
l+1

∣∣.(6.6)
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By (6.4), we have

Z
(l)
l+1 − Z

(l+1)
l+1

= Yn
l + V

(
Yn

l

)
X̃n(

τn
l , τ n

l+1
) +V

(
Yn

l

)
: X̃n(

τn
l , τ n

l+1
) + R

(
τn
l , τ n

l+1
) − Yn

l+1

= Yn
l + V

(
Yn

l

)
Xn

l,l+1 +V
(
Yn

l

)
:Xn

l,l+1 + R
(
τn
l , τ n

l+1
) − Yn

l+1

= R
(
τn
l , τ n

l+1
) − rn

l ,

where in the last line we have used the fact that X̃n agrees with Xn on Pn, as well
as the recursive definition of the rough path scheme Yn. Hence, we have that

∣∣Z(l)
l+1 − Z

(l+1)
l+1

∣∣ � 1 ∧ (∣∣∣∣∣∣X̃n
∣∣∣∣∣∣3

γ + C3
n

)
�3γ

n �
(
1 ∧ C3

n

)
�3γ

n .

It follows from (6.5) and (6.6) that∣∣Ỹ n(
τn
k

) − Yn(
τn
k

)∣∣ �
(
1 ∧ C4

n

)
Nn�

3γ
n �

(
1 ∧ C4

n

)
�3γ−1

n ,

where in the last inequality we have used the assumption supn Nn�n < ∞. This
completes the proof. �

PROOF OF THEOREM 2.2. All that is required is to show that Ỹ n = �(X̃n)

solves (2.8) where X̃n = (X̃n, X̃n) ∈ Cγ ([0, T ];Rd) is derived in Lemma 6.2. By
definition and by construction of X̃n we have that

Ỹ n(t) = Ỹ n(s) + V
(
Ỹ n(s)

)
X̃n(s, t) +V

(
Ỹ n(s)

)
: X̃n(s, t) + o

(|t − s|),
where X̃n is a piecewise smooth path (obtained from the signature realizing g) and

X̃
n(s, t) =

∫ t

s
X̃n(s, r) ⊗ dX̃n(r) + Z̃n(t) − Z̃n(s),

where the integral is of Riemann–Stieltjes type and where Z̃n is constructed by
concatenating the increments z(s, t), in particular Z̃n is piecewise Lipschitz. By
[14], Theorem 12.14, it follows that Ỹ n satisfies (2.8). Note that [14], Theo-
rem 12.14, is basically Lemma 4.4 but under the assumption that the driving path
is piecewise smooth rather than a semi-martingale. �

6.1. Discrete Kolmogorov criterion. In Section 7, we will employ the standard
method of lifting weak convergence in the sup-norm topology to weak conver-
gence in some γ -Hölder topology, using a tightness condition. In the continuous
time setting (which we cannot use), the Kolmogorov–Lamperti criterion [14, 26]
is the usual method for checking this tightness condition. The following is a slight
modification of a version of the criterion found in Corollary A12 [14].
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LEMMA 6.4. Let Xn = (Xn,Xn) define a sequence of rough paths. Suppose
that (

E
∣∣Xn(s, t)

∣∣q)1/q � |t − s|α and
(
E|Xn(s, t)|q/2)2/q � |t − s|2α(6.7)

for each s, t ∈ [0, T ], uniformly in n ≥ 1. Then

sup
n≥1

E
∣∣∣∣∣∣Xn

∣∣∣∣∣∣q
γ < ∞

for any γ ∈ (0, α − q−1). In particular, we have that

sup
n≥1

P
(∣∣∣∣∣∣Xn

∣∣∣∣∣∣
γ > M

) → 0 as M → ∞.(6.8)

And moreover {Xn}n≥1 is tight in the ργ topology for every γ ∈ (0, α − q−1).

PROOF. In the case of geometric rough paths [where Xn takes valued in
G2(Rd)], the result is simply Corollary A12 of [14]. To extend the result to general
rough paths, one simply applies the Garcia–Rodemich–Rumsey interpolation re-
sult to the components X and X individually. This argument can be found in [16],
Corollary 4. �

Obviously, this result cannot be used directly on rough step functions, since
step functions have no hope of satisfying the Kolmogorov estimates. Fortunately,
a discrete version of the above result turns out to be equally as useful. We define
the discrete tightness condition as

sup
n≥1

P
(∣∣∣∣∣∣Xn

∣∣∣∣∣∣
γ,n > M

) → 0 as M → ∞.(6.9)

This essentially says that the rough step functions are “Hölder continuous,” pro-
vided we do not look at them too closely (i.e., near the jumps). We will now show
that the discrete tightness criterion can likewise be checked using a discrete ver-
sion of the continuous Kolmogorov criterion. In particular, we need only check the
estimate on the partition Pn.

LEMMA 6.5. Suppose that(
E

∣∣Xn(
τn
j , τn

k

)∣∣q)1/q �
∣∣τn

j − τn
k

∣∣α and
(
E

∣∣Xn(
τn
j , τn

k

)∣∣q/2)2/q �
∣∣τn

j − τn
k

∣∣2α

for each τn
j , τn

k ∈ Pn uniformly in n ≥ 1, for some α ∈ (0,1/2]. Then the discrete

tightness condition (6.9) holds for any γ ∈ (0, α − q−1).

PROOF. The idea behind the proof is to replace Xn with the genuine rough
path X̃n constructed in Lemma 6.2, which, as you recall, agrees with Xn on Pn.
Since ∣∣∣∣∣∣Xn

∣∣∣∣∣∣
γ,n = ∣∣∣∣∣∣X̃n

∣∣∣∣∣∣
γ,n ≤ ∣∣∣∣∣∣X̃n

∣∣∣∣∣∣
γ ,
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to prove the discrete tightness condition (6.9) it is sufficient to check the Hölder
estimate (6.7) for the process X̃n and apply Lemma 6.4. Hence, we need only
verify that

E
∣∣X̃n(s, t)

∣∣q � |s − t |qα and E
∣∣X̃n(s, t)

∣∣q/2 � |t − s|qα,(6.10)

holds for each s, t ∈ [0, T ], uniformly in n ≥ 1.
Assume without loss of generality that s, t ∈ [0, T ] and τn

j−1 < s < τn
j and τn

k ≤
t < τn

k+1 (note that the case s, t ∈ [τj , τj+1] is essentially a sub-argument of the
arguments below). From Chen’s relations, we know that

E
∣∣X̃n(s, t)

∣∣q � E
∣∣X̃n(

s, τn
j

)∣∣q + E
∣∣Xn

j,k

∣∣q + E
∣∣X̃n(

τn
k , t

)∣∣q .(6.11)

But from (6.2), we see that

E
∣∣X̃(

s, τn
j

)∣∣q �
(
E

∣∣Xn
j−1,j

∣∣q + E
∣∣Xn

j−1,j

∣∣q/2)( τn
j − s

τn
j − τn

j−1

)q

�
(
τn
j − τn

j−1
)qα

( τn
j − s

τn
j − τn

j−1

)q

= (
τn
j − s

)qα
( τn

j − s

τn
j − τn

j−1

)q−qα

≤ (
τn
j − s

)qα ≤ (t − s)qα.

By assumption, we have that

E
∣∣Xn

j,k

∣∣q �
(
τn
k − τn

j

)qα � (t − s)qα.

The remaining term in (6.11) can be bounded similarly. By Chen’s relations (and
Hölder’s inequality), we also have that

E
∣∣X̃n(s, t)

∣∣q/2

� E
∣∣X̃n(

s, τn
j

)∣∣q/2 + E
∣∣Xn

j,k

∣∣q/2 + E
∣∣X̃n(

τn
k , t

)∣∣q/2(6.12)

+ (
E

∣∣Xn
j,k

∣∣qE
∣∣X̃n(

τn
k , t

)∣∣q)1/2 + (
E

∣∣X̃n(
s, τn

j

)∣∣qE|X̃n(
τn
j , t

)|q)1/2
.

But from (6.3) we have that

E
∣∣X̃n(

s, τn
j

)∣∣q/2 �
(

t − s

τn
j+1 − τn

j

)q(
E

∣∣Xn
j,j+1

∣∣q + E
∣∣Xn

j,j+1

∣∣q/2)

+
(

t − s

τn
j+1 − τn

j

)q/2

E
∣∣Xn

j,j+1

∣∣q/2
.

As above, it follows that

E
∣∣X̃n(

s, τn
j

)∣∣q/2 �
(
τn
j − s

)qα ≤ (t − s)qα.

The other terms in (6.12) can be bounded similarly. This completes the proof. �
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REMARK 6.1. The discrete criterion differs from the continuous case in the
assumption α ≤ 1/2, which was not required in the continuous case. However,
this assumption only becomes a restriction when the diffusion approximation is
driven by a path with Hölder exponent γ > 1/2. Of course, one can always re-
solve the problem by treating the path as having the weaker Hölder exponent. On
the other hand, in these higher regularity situations the iterated integrals become
unnecessary and a much simpler theory of Young integration (with much weaker
assumptions) would suffice.

7. Convergence of rough path schemes. We can now prove the main result
of the article.

THEOREM 7.1. Suppose that Xn f .d.d.→ X and that Xn satisfies the discrete
tightness condition (6.9) for some γ ∈ (1/3,1/2]. Then Yn = �n(Xn) ⇒ �(X)

in the sup-norm topology.

PROOF. First, let X̃n be the γ -Hölder rough path constructed in Lemma 6.2
and let Ỹ n = �(X̃n). To prove the theorem, it is sufficient to first show that ‖Yn −
Ỹ n‖∞ → 0 in probability and second show that Ỹ n ⇒ Y in the sup-norm topology,
hence we will proceed as such.

As usual, we use the shorthand Cn = |||Xn|||γ,n. From Lemma 6.3, it follows that∥∥Yn − Ỹ n
∥∥∞ �

(
1 ∧ C4

n

)
�3γ−1

n .

Hence,

P
(∥∥Yn − Ỹ n

∥∥∞ > δ
) ≤ P

(
C

(
1 ∧ C4

n

)
�3γ−1

n > δ
)

= P
(
1 ∧ ∣∣∣∣∣∣Xn

∣∣∣∣∣∣
γ,n >

(
C−1δ�1−3γ

n

)1/4)
.

But since �
1−3γ
n → ∞ as n → ∞, we see that for any arbitrarily large M > 0

lim
n→∞ P

(∥∥Yn − Ỹ n
∥∥∞ > δ

) ≤ lim sup
n→∞

P
(∣∣∣∣∣∣Xn

∣∣∣∣∣∣
γ,n > C−1δ1/4�(1−3γ )/4

n

)
≤ lim sup

n→∞
P

(∣∣∣∣∣∣Xn
∣∣∣∣∣∣

γ,n > M
)
.

Finally, by taking M → ∞, it follows from the discrete tightness condition that

lim
n→∞ P

(∥∥Yn − Ỹ n
∥∥∞ > δ

) = 0.

Now we prove that Ỹ n ⇒ Y in the sup-norm topology. Due to the continuity of
the map �, as stated in Lemma 4.2, it is sufficient to prove that X̃n ⇒ X in the

ργ topology. It is therefore sufficient to first show that X̃n f.d.d.→ X and second that
{X̃n}n≥1 is tight in the ργ topology.
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First, due to the regularity of X̃n between mesh points, it is easy to see that
‖Xn(t) − X̃n(t)‖∞ � (1 ∨ C2

n)�κ
n for some κ > 0. Hence, by an argument similar

to that found at the start of the proof, it follows from the discrete tightness con-

dition that ‖Xn − X̃n‖∞ → 0 in probability. And since by assumption Xn f.d.d.→ X

it follows that X̃n f.d.d.→ X. We will now move onto the tightness argument. From
Lemma 6.2, we have the estimate |||X̃n|||γ � |||Xn|||γ,n. It follows that

P
(∣∣∣∣∣∣X̃n

∣∣∣∣∣∣
γ > M

) ≤ P
(
C

∣∣∣∣∣∣Xn
∣∣∣∣∣∣

γ,n > M
)
,

and the tightness of X̃n in the ργ topology follows from the discrete tightness
condition. This completes the proof. �

We can now prove the theorems introduced in Section 2. They are both imme-
diate corollaries.

PROOF OF THEOREM 2.1. By the discrete Kolmogorov criterion (Lemma 6.5),
we obtain the discrete tightness criterion, and hence can apply Theorem 7.1. To
identify the limit Y = �(X), we simply apply Lemma 4.4. �

REMARK 7.1. To prove the result with the relaxed assumption described in
Remark 2.2, one simply replaces Lemma 4.2 with the sharper version [14], The-
orem 12.10, and the remaining argument is identical. To prove the result with
additional drift, as described in Remark 2.3, we again replace Lemma 4.2 with
[14], Theorem 12.10, but now we must use the (p, q)-rough path (X̃n, t) with
(p, q) = (2 − κ,1) and arbitrarily small κ > 0. The remaining argument is identi-
cal.

PROOF OF META THEOREM 2.1. The proof is completely identical to the
proof above, but we still need to “interpret” the limit Y = �(X). This is a fairly
nonrigorous statement and, therefore, has a fairly nonrigorous proof. We are
merely sketching an idea that would apply more rigorously in concrete situations.

By definition, the limit Y solves the RDE

Y(t) =
∫ t

0
V

(
Y(s)

)
dX(s).(7.1)

It is a general heuristic that if X is constructed using some known construction
then the integral in (7.1) is constructed similarly. For instance, suppose there is
some “method of integration,” which is a bilinear operator∫ t

0
A 
 dB

def= I(A,B)(t)

for two continuous paths A,B ∈ C([0, T ];R) satisfying the obvious condition

I(1,A)(t) = A(t).
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Now suppose that X is defined by

X
αβ(t) = I

(
Xα,Xβ)

(t),

for each α,β = 1, . . . , d . Then, using the theory of controlled rough paths [16, 17],
it can be shown that Y solves (7.1) if and only if Y is a fixed point of the equation

Y(t) = Y(0) +
∫ t

0
V

(
Y(s)

)

 dX(s).

The assumptions on I are generic enough to include virtually any reasonable con-
struction of an integration map (for integrators with Hölder exponent γ > 1/3).

�
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