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Structural Nested Models and
G-estimation: The Partially Realized
Promise
Stijn Vansteelandt and Marshall Joffe

Abstract. Structural nested models (SNMs) and the associated method of
G-estimation were first proposed by James Robins over two decades ago as
approaches to modeling and estimating the joint effects of a sequence of treat-
ments or exposures. The models and estimation methods have since been ex-
tended to dealing with a broader series of problems, and have considerable
advantages over the other methods developed for estimating such joint ef-
fects. Despite these advantages, the application of these methods in applied
research has been relatively infrequent; we view this as unfortunate. To rem-
edy this, we provide an overview of the models and estimation methods as
developed, primarily by Robins, over the years. We provide insight into their
advantages over other methods, and consider some possible reasons for fail-
ure of the methods to be more broadly adopted, as well as possible remedies.
Finally, we consider several extensions of the standard models and estimation
methods.

Key words and phrases: Causal effect, confounding, direct effect, instru-
mental variable, mediation, time-varying confounding.

1. INTRODUCTION

Structural nested models (SNMs) were designed in
part to deal with confounding by variables affected by
treatment (Robins, 1986). The problem arises when
one is interested in estimating the joint effect of a se-
quence of treatments in the presence of a variable L

with three characteristics, depicted in Figure 1:

1. It is independently associated with the outcome Y

of interest. This can happen because (a) it is a di-
rect cause of the outcome, or because (b) it shares
unmeasured common causes with the outcome of
interest.

2. It predicts subsequent levels (A1) of the treatment;
3. It is affected by earlier treatment (A0).
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As a motivating example, consider an observational
study of the effect of erythropoietin alpha (EPO) on
mortality in a population with end-stage renal disease
(ESRD) receiving hemodialysis. Patients on dialysis
tend to be anemic, as commonly measured via hemat-
ocrit (Hct) or hemoglobin levels. EPO is used to treat
the anemia and stimulate the body’s production of red
blood cells; Hct (L) thus satisfies covariate character-
istic 3. Furthermore, patients with more severe ane-
mia (lower Hct) typically receive higher doses of EPO
(characteristic 2), and sicker patients tend to be more
anemic [characteristic 1(b)]. Both these characteristics
1 and 2 make Hct a confounder of the effect of later
treatment, requiring adjustment to estimate the effect
of EPO A1. Observational studies of the effect of ex-
tended EPO dosing on mortality will thus be charac-
terized by confounding by a variable (Hct) affected by
treatment.

In settings like the above, where the interest lies in
estimating the joint effect of a sequence of treatments,
standard methods which attempt to estimate these ef-
fects simultaneously (e.g., regression of Y on A0 and
A1 or some function of both) will be inappropriate,
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FIG. 1. Causal diagram for time-varying treatment.

whether or not one adjusts for or conditions on the con-
founder L. Characteristics 1(a) and 3 make Hct (L)
an intermediate variable on the pathway from early
EPO treatment A0 to outcome Y ; adjustment for it
blocks the path A0 → L → Y , making it impossible
to find the part of the effect of early EPO treatment
(A0) mediated by Hct. Characteristics 1(b) and 3 make
Hct (L) a so-called collider (Pearl, 1995) on the path
A0 → L ← U → Y ; conditioning on or adjusting for
it induces associations between A0 and Y even if no
effect of A0 on Y exists.

Over an extended period of time, James Robins (with
some help from collaborators) introduced three ba-
sic approaches for dealing with such confounding: the
parametric G-formula (Robins, 1986), structural nested
models (Robins, 1989; Robins et al., 1992) with the as-
sociated method of G-estimation and marginal struc-
tural models (Robins, Hernan and Brumback, 2000)
with the associated method of inverse probability of
treatment weighting. As we will argue throughout this
paper, SNMs and G-estimation are, in principle, better
tailored for dealing with failure of the usual assump-
tions of no unmeasured confounders or sequential ig-
norability often used to justify the application of all of
these methods, as well as with (near) positivity viola-
tions whereby certain strata contain (nearly) no treated
or untreated subjects (Robins, 2000). Despite these ad-
vantages, the application of these methods in applied
research has been relatively infrequent.

Broadly speaking, there are two types of SNMs:
models for the effect of a treatment or sequence of
treatments on the mean of an outcome, and models for
the effect of a treatment on the entire distribution of the
outcome(s). The former include structural nested mean
models (SNMMs), which have close links to structural
nested cumulative failure time models (SNCFTMs) for
survival outcomes; the latter include structural nested
distribution models (SNDMs), which have close links
to structural nested failure time models (SNFTMs) for

survival outcomes. For pedagogic purposes, we will
introduce these models first for point treatments (i.e.,
treatments which are administered at one specific time
point) in Section 2. We then discuss identifying as-
sumptions and the associated G-estimation method in
Section 3, and contrast it with alternative estimation
methods for the effect of a point treatment in Section 4.
These results are extended to time-varying treatments
in Sections 5 and 6. We show how to predict the ef-
fects of interventions in Section 7, examine extensions
to mediation analysis in Section 8 and conclude with a
discussion.

2. STRUCTURAL MODELS FOR POINT
TREATMENTS

2.1 Structural Mean Models

Let Ya denote the outcome in a given subject that
would be seen were the subject to receive treatment a.
This variable is a potential outcome, which we connect
to the observed outcome through the consistency as-
sumption that Y = Ya if the observed treatment A = a;
otherwise, Ya is counterfactual. Causal effects can now
be defined as comparisons of potential outcomes Ya

and Ya†
for the same individual subject or group of

subjects for different treatments a and a† (Rubin, 1978;
Robins, 1986). In particular, letting a† = 0 for nota-
tional convenience, average causal effects can be de-
fined in terms of comparisons of average potential out-
comes, for example, E(Ya | L = l,A = a) − E(Y 0 |
L = l,A = a) or E(Ya | L = l,A = a)/E(Y 0 | L =
l,A = a).

Structural Mean Models (SMMs) (Robins, 1994,
2000) parameterize average causal effects in subjects
receiving level a of treatment as

g
{
E

(
Ya | L = l,A = a

)}
(1)

− g
{
E

(
Y 0 | L = l,A = a

)} = γ ∗(
l, a;ψ∗)

,

for all l and a. Here, g(·) is a known link function (e.g.,
the identity, log or logit link), γ ∗(l, a;ψ) is a known
function, smooth in ψ and satisfying γ ∗(l,0;ψ) = 0
for all l and ψ . Here and throughout, ψ∗ is the true
unknown finite-dimensional parameter. With a = 0
encoding absence of treatment—as we will assume
throughout—SMMs thus express the effect of removal
of treatment on the outcome mean.

Typically, the parameterization is chosen to be such
that γ ∗(l, a;0) = 0 for all a and l, so that ψ∗ = 0 en-
codes the null hypothesis of no treatment effect. For
instance, for scalar covariate L one may consider the
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additive or linear SMM [which uses the identity link
g(x) = x]:

E
(
Ya | L = l,A = a

) − E
(
Y 0 | L = l,A = a

)
(2)

= (
ψ∗

0 + ψ∗
1 l

)
a,

for unknown ψ∗
0 ,ψ∗

1 . With A a binary exposure coded
as 1 for treatment and 0 for no treatment, ψ∗

0 thus en-
codes the average treatment effect in the treated with
covariate value L = 0, and ψ∗

1 measures how much
the average treatment effect in the treated differs be-
tween subgroups with a unit difference in L. Likewise,
the multiplicative or loglinear SMM uses the log link
g(x) = log(x), for example,

E(Ya | L = l,A = a)

E(Y 0 | L = l,A = a)
= exp

{(
ψ∗

0 + ψ∗
1 l

)
a
}
,

and the logistic SMM uses the logit link g(x) =
logit(x), for example,

odds(Y a = 1 | L = l,A = a)

odds(Y 0 = 1 | L = l,A = a)
= exp

{(
ψ∗

0 + ψ∗
1 l

)
a
}
,

where odds(V = 1 | W) ≡ P(V = 1 | W)/P (V = 0 |
W) for random variables V and W . If treatment A

can take on more than two values, then—without addi-
tional assumptions—the function γ ∗(l, a;ψ∗) cannot
be interpreted simply as a dose response function. This
is because a dose response would contrast outcomes
in the same subset at different levels of a [i.e., con-
trast E(Y a | L = l,A = a) with E(Ya′ | L = l,A = a)

for a �= a′], whereas the functions γ ∗(l, a;ψ∗) and
γ ∗(l, a′;ψ∗) for a �= a′ contrast causal effects for two
different groups (namely, those with A = a versus A =
a′, but the same L = l). We will revisit this subtlety in
Section 7.

One can use a SMM to construct a variable U∗(ψ)

whose mean value (in a subset of individuals with
given covariates and treatment) equals the mean out-
come that would have been seen had treatment been
removed from that subset. Let

U∗(ψ) ≡ Y − γ ∗(L,A;ψ),

if g(·) is the identity link,

U∗(ψ) ≡ Y exp
{−γ ∗(L,A;ψ)

}
,

if g(·) is the log link and

U∗(ψ)
(3)

≡ expit
[
logit

{
E(Y | L,A)

} − γ ∗(L,A;ψ)
]
,

if g(·) is the logit link. Then

E
{
U∗(

ψ∗) | L,A
} = E

(
Y 0 | L,A

)
.(4)

This identity will be central to the estimation methods
for ψ∗ that we will describe in Section 3. We could
have defined U∗(ψ) in general—and in particular for
the identity and log link—as U∗(ψ) ≡ g−1[g{E(Y |
L,A)} − γ ∗(L,A;ψ)]. We have avoided doing this
for the identity and log links as it makes the definition
of U∗(ψ) dependent on the expectation E(Y | L,A),
which can be undesirable when this demands addi-
tional modeling. However, this (or some alternative) is
unavoidable for the logit link. Special estimation meth-
ods will therefore be required for logistic SMMs.

SMMs can also be used to describe the effect of a
multivariate point treatment. For instance, for a bivari-
ate treatment A = (A(1),A(2))′, one may use a SMM
with γ ∗(L,A;ψ) = ψ1A

(1) + ψ2A
(2) + ψ3A

(1)A(2) to
describe the effect of setting both treatments to zero.
When primary interest lies in the interaction (ψ3) be-
tween A(1) and A(2) in their effect on the outcome,
then one may instead consider the class of less restric-
tive Structural Mean Interaction Models (Vansteelandt
et al., 2008a; Tchetgen Tchetgen, 2012). To guard
against misspecification of the main treatment effects,
these further relax the SMM restrictions by merely pa-
rameterising the contrast between the effects of A(1)

when A(2) is set to some value a(2) versus zero (or of
the effects of A(2) when A(1) is set to some value a(1)

versus 0):

g
{
E

(
Ya(1),a(2) | A = a,L = l

)}
− g

{
E

(
Y 0,a(2) | A = a,L = l

)}
− g

{
E

(
Ya(1),0 | A = a,L = l

)}
(5)

+ g
{
E

(
Y 0,0 | A = a,L = l

)}
= γ ∗(

l, a(1), a(2);ψ∗)
,

for a = (a(1), a(2))′; here, γ ∗(l, a(1), a(2);ψ) is a
known function which encodes the interaction between
both treatments, and which must be smooth in ψ and
satisfy γ ∗(l,0, a(2);ψ) = γ ∗(l, a(1),0;ψ) = 0 for all
l, a(1), a(2) and ψ . For instance, the natural choice
γ ∗(l, a(1), a(2);ψ) = ψa(1)a(2) imposes that the inter-
action between both exposures is the same at all levels
of l.

2.2 Structural Distribution Models

When the outcome mean does not adequately sum-
marize the data or the interest lies more broadly in
evaluating treatment effects on the outcome distribu-
tion, then Structural Distribution Models (SDMs) can
be used instead. These are closely related to SMMs,
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but instead map percentiles y of the conditional distri-
bution of Ya , given L = l and A = a, into percentiles
γ (y, l, a;ψ∗) of the conditional distribution of Y 0,
given L = l and A = a. In particular, they postulate
that

FY 0|L=l,A=a

{
γ

(
y, l, a;ψ∗)} = FYa |L=l,A=a(y),(6)

for all l and a. As with SMMs, γ (y, l, a;ψ) is a known
function, smooth in ψ and satisfying γ (y, l,0;ψ) = y

for all y, l. With a = 0 encoding the absence of treat-
ment, SDMs thus express the effect of removing treat-
ment on the outcome distribution rather than the out-
come mean.

Typically the parameterisation of a SDM is chosen to
be such that γ (y, l, a;0) = y, so that ψ∗ = 0 encodes
the null hypothesis of no treatment effect. For instance,
for scalar covariate L, one could assume that

FY 0|L=l,A=a

(
y − ψ∗

0 a − ψ∗
1 al

)
(7)

= FYa |L=l,A=a(y),

for all l and a. This characterizes a location shift model
following which the conditional distribution of Y 0,
given L and A, can be obtained by shifting the con-
ditional distribution of Y , given L and A, by −ψ∗

0 A −
ψ∗

1 AL. One can use this to construct a variable

U
(
ψ∗) ≡ γ

(
Y,L,A;ψ∗)

whose distribution (in a subset of individuals with
given covariates and treatment) is the same as that of
the outcome that would have been seen had treatment
been removed from that subset, in the sense that

FY 0|L,A(y) = FU(ψ∗)|L,A(y);(8)

for example, U(ψ) = Y −ψ0A−ψ1AL in the location
shift example. This will be useful for the estimation of
ψ∗.

SDMs have a stronger variant called rank preserving
SDMs (Robins and Tsiatis, 1991), which postulate that

Y 0 = γ
(
Y,L,A;ψ∗)

.

For instance, a stronger variant of the location shift
model of the previous paragraph assumes that Y 0 =
Y −ψ∗

0 A−ψ∗
1 AL. By making a mapping between the

potential outcomes themselves (rather than between
distributions), such rank preserving SDMs are easier
to understand and communicate. However, they are sel-
dom plausible because they impose that the rankings of
two subjects with different outcome values but identi-
cal treatment and covariates are preserved after map-
ping into Y 0 (hence the term “rank preserving”). In

particular, they assume that subjects with identical out-
come, treatment and covariate values experience iden-
tical treatment effects.

Location shift SDMs like (7) make substantially
stronger assumptions than correspondingly parame-
terized SMMs. The distribution models assume that
treatment level a shifts each percentile of the condi-
tional distribution of Y , given L = l,A = a by a value
γ ∗(l, a;ψ∗) constant for all y [i.e., γ (y, l, a;ψ) =
y − γ ∗(l, a;ψ)], whereas the mean model assumes
only a mean shift of γ ∗(l, a;ψ). When location shift
is implausible, it can sometimes be made more plausi-
ble by transforming y. For instance, for strictly posi-
tive y, one might obtain a location shift SDM by defin-
ing γ (y, l, a;ψ) = exp{log(y) − γ (l, a;ψ)}. There
will then be a correspondence between the parame-
ters of the SDM and those of a SMM for log(y) −
log{γ (y, l, a;ψ)}.

The parameterization and interpretation of SDMs
that are not simply shift models can be tricky. This
is because, by the nature of the cumulative distribu-
tion function, the function γ (y, l, a;ψ) must be in-
creasing in y for each l, a and ψ , and it may be
difficult to impose that. For instance, the function
γ (y, a, l;ψ) = y − aψ1 − yaψ2 may appear natu-
ral, but is not guaranteed increasing in y. An alter-
native function which is naturally increasing in y is
γ (y, a, l;ψ) = y exp(−aψ2) − aψ1. Here, interpreta-
tion is somewhat subtle; while ψ2 expresses the effect
of treatment A on the residual variability of Y , it also
has implications for the effect of treatment on the mean
of Y , and so ψ1 cannot be interpreted simply as the ef-
fect of treatment on the mean outcome, unless ψ2 = 0.

SDMs lend themselves naturally to the analysis of
failure times. For instance, consider model (6) with
T a, T 0 and t substituting for Ya,Y 0 and y. Then the
choice γ (t, a, l;ψ) = t exp(aψ0 + alψ1) implies the
failure time model defined by

ST 0|L=l,A=a

{
t exp

(−aψ∗
0 − alψ∗

1
)} = ST |L=l,A=a(t),

for all l and a, where S(·) denotes the survival function.
This model, which is an example of a Structural Accel-
erated Failure Time Model (SAFTM) (Robins, 1989;
Robins and Tsiatis, 1991; Robins, 1992; Robins et al.,
1992), expresses that treatment lengthens lifetime by a
factor exp(aψ∗

0 + alψ∗
1 ) (in distribution) among sub-

jects with treatment a and covariate l.

2.3 Structural Mean and Distribution Models for
Repeated Measures Outcomes

Structural mean and distribution models require
some modification for repeated measures outcomes.
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The modifications for SMMs are simpler, but also al-
low a new class of models for discrete-time failures.
Extension of SDMs is more complicated. We consider
these in order.

We begin with some notation common to both types
of models. Suppose that measurements on exposure
and confounders are collected at time point t0 and that
outcome measurements are recorded at fixed later time
points t1, . . . , tK+1. Let for a variable X, Xk denote
the level of the variable that one obtains at time tk .
We use overbars to denote the history of a variable;
thus, Xk = {X0,X1, . . . ,Xk} denotes the history of X

through tk . We use underbars to denote the future of a
variable; thus, Xk ≡ {Xk, . . . ,XK+1}. Finally, we use
X as shorthand notation for X1 and Xk:m for m ≥ k to
denote (Xk, . . . ,Xm).

2.3.1 Structural mean models and structural cumu-
lative failure-time models. Extension of SMMs to re-
peated measures is relatively straightforward, because
they model separately the effect of a treatment on each
component outcome. SMMs parameterize contrasts of
Ya and Y 0 as

g
{
E

(
Ya | L = l,A = a

)} − g
{
E

(
Y 0 | L = l,A = a

)}
= γ ∗(

l, a;ψ∗)
,

for all l and a. Here, g(·) is a known (K + 1)-
dimensional link function, γ ∗(l, a;ψ) is a known (K +
1)-dimensional function with components γ ∗

k (l, a;ψ),

k = 1, . . . ,K + 1, that parameterize the effect of treat-
ment on Yk . These components are smooth in ψ and
satisfy γ ∗

k (l,0;ψ) = 0 for all l and ψ . For instance,
the SMM defined by

E
(
Ya

k | L = l,A = a
) − E

(
Y 0

k | L = l,A = a
)

= (
ψ∗

0 + ψ∗
1 l

)
a(tk − t0),

for k = 1, . . . ,K + 1, expresses that the effect of treat-
ment a may depend on covariates l and changes lin-
early over time, being zero at the baseline time t0.

Under this repeated measures SMM, as in Sec-
tion 2.1, it is possible to define a transformation U∗(ψ)

of the observed outcome vector Y so that

E
{
U∗(

ψ∗) | L,A
} = E

(
Y 0 | L,A

)
.

Here, U∗(ψ) is a vector with components Yk − γ ∗
k (L,

A;ψ) for k = 1, . . . ,K + 1 if g(·) is the identity
link, Yk exp{−γ ∗

k (L,A;ψ)} if g(·) is the log link, and
expit[logit{E(Yk | L,A)} − γ ∗

k (L,A;ψ)] if g(·) is the
logit link.

Structural Cumulative Failure Time Models
(SCFTMs; Picciotto et al., 2012) are a variant of re-
peated measures loglinear SMMs for the modeling of
cumulative failure time probabilities:

P(T a < tk | L = l,A = a)

P (T 0 < tk | L = l,A = a)
= exp

{
γ ∗
k

(
l, a;ψ∗)}

,

for all l, a and k = 1, . . . ,K + 1. A limitation of this
class of models is that their parameterization can be
tricky when the cumulative probability of failure be-
comes large, because the model does not restrict the
outcome probabilities to stay below 1. Martinussen
et al. (2011) independently proposed a continuous-time
version of this model and lay out connections with ad-
ditive hazard models.

2.3.2 Structural distribution models. For multivari-
ate outcomes, SDMs parameterize the effect of a treat-
ment A on the marginal distribution of the vector of
future potential outcomes Ya . This mapping is typi-
cally done recursively, taking the components Ya

k and
Yk in forward sequence. These models are therefore
most easily understood by first considering the class
of more restrictive rank-preserving SDMs, which pos-
tulate that, for subjects with A = a and L = l:

Y 0
k = γk

(
Yk,Y k−1, l, a;ψ∗)

(9)

for k = 1, . . . ,K + 1. Here, γk(yk, yk−1, l, a;ψ) is a
known function, smooth in ψ and monotonic in yk , and
γk(yk, yk−1, l,0;ψ) = yk for all yk, l, and ψ . For in-
stance, with two time points (K = 1), a rank preserving
SDM may be given by the following set of restrictions:

Y 0
2 = Y2 − (

ψ∗
1 + ψ∗

2 Y1
)
A,

(10)
Y 0

1 = Y1 − ψ∗
3 A.

If the effect of A on Y2 varies with Y1, as in this
example, then one must model this explicitly since
the model would otherwise—perhaps unrealistically—
assume that treatment does not affect the correlation
between repeated outcomes (conditional on A,L).
This is unlike in SMMs where one can average the
effect of A on Y2 over all Y1-values. This makes it
substantially more difficult to parameterize SDMs than
SMMs. It moreover complicates the interpretation of
effects; for example, ψ∗

1 in (10) is difficult to interpret
when ψ∗

2 �= 0 since it expresses the effect of treatment
on Y2 in subjects with A = 1 and Y1 = 0, where Y1
may itself be affected by treatment. Equation (10) may
hence by easier to interpret upon re-expressing it as

Y 0
2 = Y2 − {

ψ∗
1 + ψ∗

2
(
Y 0

1 + ψ∗
3 A

)}
A

= Y2 − (
ψ∗

1 + ψ∗
2 Y 0

1 + ψ∗
2 ψ∗

3 A
)
A.
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A SDM relaxes the restrictions of the rank-
preserving SDM by demanding that the equality (9)
merely holds in distribution, conditional on L = l and
A = a. Assuming that given L and A, Y has a continu-
ous multivariate distribution with probability 1, a SDM
can thus be defined by the set of restrictions

FY 0|L=l,A=a

{
γ

(
y, l, a;ψ∗)} = FYa |L=l,A=a(y)

= FY |L=l,A=a(y),

for all l, a, where

γ
(
y, l, a;ψ∗) ≡ {

γ1
(
y1, l, a;ψ∗)

,

γ2
(
y2, l, a;ψ∗)

, . . . ,

γK+1
(
yK+1, l, a;ψ∗)}

is given by (Robins, Rotnitzky and Scharfstein, 2000):

γ1
(
y1, l, a;ψ∗) = F−1

Y 0
1 |L=l,A=a

◦ FY1|L=l,A=a(y1),

γk

(
yk, l, a;ψ∗) = F−1

Y 0
k |L=l,A=a,Y

0
k−1=γ1:k−1(yk−1,l,a;ψ∗)

◦ FYk |L=l,A=a,Y k−1=yk−1
(yk),

for k = 2, . . . ,K + 1. For instance, the SDM corre-
sponding to (10) may be written:

FY 0
1 |L=l,A=a

(
y1 − ψ∗

3 a
)

= FY1|L=l,A=a(y1),
(11)

FY 0
2 |L=l,A=a,Y 0

1 =y1−ψ∗
3 a

{
y2 − (

ψ∗
1 + ψ∗

2 y1
)
a
}

= FY2|L=l,A=a,Y1=y1(y2).

The decomposition of the causal effects in the blip
functions γk(yk, l, a;ψ∗) is recursive because one
must model not merely average effects but instead the
full mapping between distributions. In particular, the
effect of treatment on the first potential outcome is
modeled first; then, mapping between distributions is
done successively for the outcome at successive times.
The overall blip function encoded by γ (·) and the first
element of this function has the usual structure and in-
terpretation of causal estimands; that is, as a compari-
son of distributions of potential outcomes under differ-
ent interventions for the same group of subjects. How-
ever, the component functions γk(·), k > 1 do not in
general have this interpretation, since the conditioning
in these mapping functions is not common between Y 0

k

and Yk ; for instance, the left-hand side of (11) condi-
tions on Y 0

1 , whereas the right-hand side conditions on
Y1. Nonetheless, these component functions are causal
in the sense that they represent the impact of treat-
ment on the conditional distribution of a variable. This

feature is shared with the causal rate or hazard ratio
(Hernan, 2010). Under the strong assumption of rank
preservation, the conditioning is on a common vari-
able, and so then the components of the blip function
do have a standard causal interpretation.

For repeated measures outcomes, SDMs correspond
with similarly parameterized SMMs if the SDMs are
shift models. In a shift SDM, the component func-
tions γk(yk, yk−1, l, a) may be written as γk(yk, yk−1,

l, a) = yk − γ ∗
k (l, a;ψ). These require that the shift in

percentiles of the distribution of yk not only be inde-
pendent of yk but also of yk−1. Thus, shift SDMs make
substantially stronger assumptions than similarly pa-
rameterized SMMs.

Under the SDM, a (K + 1)-dimensional variable
U(ψ∗) = {U1(ψ

∗), . . . ,UK+1(ψ
∗)} can be constructed

with components Uk(ψ) = γk(Y k,L,A;ψ). This vec-
tor mimics the counterfactual outcome vector Y 0 in the
sense that

P
{
U

(
ψ∗)

> y | L,A
} = P(Y 0 > y | L,A}.

This result will be useful for estimation.

2.4 Retrospective Blip Models

The blip functions and causal models discussed
above largely consider the effect of a blip of treatment
conditional only on treatment and baseline covari-
ates; the sole exception has been SDMs for repeated
measures outcomes, where the effect of treatment on
later outcomes is modeled additionally conditional on
earlier outcomes, and where the interpretation of the
model parameters is not clear as a usual causal con-
trast. This focus is consistent with an orientation of
the models to be more directly useful for making deci-
sions, where the effect of treatment is modeled condi-
tional only on information available at the time of the
decision.

For explanatory purposes, one can construct struc-
tural models for the effect of a treatment conditional on
information not available at the time of treatment. Such
models may have explanatory uses even though the
quantities they model are less directly relevant for mak-
ing decisions. Consider modeling the effect of screen-
ing mammography on breast cancer mortality (Joffe,
Small and Hsu, 2007). To a first approximation, one
might assume that the mammogram has an effect on
death only among subjects for whom it detects a tu-
mor. Suppose that some subjects undergo screening at
the start of the study (A = 1; A = 0 otherwise). Let L1
indicate 1 if cancer is detected at time t1 after the start
of the study and 0 otherwise. It is of interest to know
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how much the screening mammogram affects mortal-
ity for subjects for whom it is effective in detecting
cancer. We can then model the effect of the treatment
on the outcome using a retrospective SDM (RSDM) or
SFTM, which conditions on L1 in addition to treatment
and baseline covariates:

FY 0|L0=l0,L1=l1,A=a

{
γ

(
y, l0, l1, a;ψ∗)}

(12)
= FY |L0=l0,L1=l1,A=a(y).

In this example, we might assume that γ (y, l0,0, a;
ψ∗) = y to reflect that screening has no effect in sub-
jects for whom no tumor is detected. Note that though
L1 may be affected by A, conditioning on it does
not distort the interpretation of the parameters as en-
coding a causal effect because identity (12) still in-
volves a comparison of the same subjects (those with
L0 = l0,L1 = l1,A = a) under different interventions.

Models of this sort might also be useful in determin-
ing whether the effect of a treatment given at baseline is
modified by post-treatment covariates and so whether
there are identifiable subgroups of subjects for whom
treatment appears not to be working (Stephens, Keele
and Joffe, 2013). Changes or additions to treatment
might then be proposed in such subgroups after base-
line. Joffe, Small and Hsu (2007) consider the relation
between these retrospective models and the popular ap-
proach of principal stratification (Frangakis and Ru-
bin, 2002). These models can generalize to a sequence
of time-varying treatments, where there are additional
justifications for their use (see Section 5.3).

3. IDENTIFICATION AND ESTIMATION IN
STRUCTURAL MODELS FOR POINT TREATMENTS

Two kinds of assumptions have been proposed for
use in most of the literature on estimation in SMMs and
SDMs: no unmeasured confounders and instrumental
variables type assumptions. In this section, we will fo-
cus on the former, and defer discussion of the latter to
Section 6.3.

3.1 Ignorability

The required no unmeasured confounders assump-
tion for the identification of the parameter ψ∗ indexing
SMMs and SDMs can be formulated as

A ⊥⊥ Y 0 | L,(13)

where U ⊥⊥ V | W for random variables U,V,W de-
notes that U is conditionally independent of V , given
W . This assumption, which is empirically unverifiable,

expresses that L is sufficient to adjust for confound-
ing of the association between A and Y . Assumption
(13), which is also referred to as the weak ignora-
bility or exchangeability assumption, is weaker than
the strong ignorability assumption of Rosenbaum and
Rubin (1984) which, for binary treatments, states that
A ⊥⊥ (Y 0, Y 1) | L. However, it is generally difficult
to imagine settings where assumption (13) holds, but
strong ignorability fails (one exception might be set-
tings where individuals choose treatment on the ba-
sis of their perceived belief of benefit, which may be
correlated with actual benefit Y 1 − Y 0). That (13) is
a weaker assumption is exhibited in the fact that, for
binary treatments, it only identifies the effect of treat-
ment on the treated—a contrast that has been of inter-
est in econometrics and epidemiology (Greenland and
Robins, 1986):

E
(
Y 1 − Y 0 | A = 1,L

)
= E

(
Y 1 | A = 1,L

) − E
(
Y 0 | A = 1,L

)
= E

(
Y 1 | A = 1,L

) − E
(
Y 0 | A = 0,L

)
= E(Y | A = 1,L) − E(Y | A = 0,L);

the second equality follows due to ignorability (13) and
the third due to the consistency assumption. The pa-
rameters of SMMs, SDMs and SCFTMs represent the
effect of treatment in the treated (or, more generally,
the effect of receiving treatment level a for subjects
who received level a of treatment), and so this weaker
assumption is sufficient for identification.

It follows by a similar reasoning that the blip func-
tions in the SMMs and SDMs discussed in Sec-
tions 2.1–2.3 are nonparametrically just identified un-
der ignorability (Robins, Rotnitzky and Scharfstein,
2000). That is, the contrast of the outcomes under the
observed treatment and the outcomes that would have
been seen in the absence of treatment is computable for
each level of a and l (and, for SDMs, of y) from the law
of the observables without assuming any restrictions or
parameterization on these functions. While such non-
parametric identification is of limited use in complex
settings (especially with time-varying treatments con-
sidered subsequently), due to the curse of dimensional-
ity (Robins and Ritov, 1997), it does ensure the ability
to check the assumptions in any assumed causal model
(provided a sufficient sample size). In contrast, the ret-
rospective blip functions considered in Section 2.4 are
not identified nonparametrically (Vansteelandt, 2010;
Stephens, Keele and Joffe, 2013). Multiple retrospec-
tive blip models may thus explain the same law of the
observables equally well even under ignorability.
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3.2 Estimation Under Ignorability

The SMM together with the ignorability assumption
(13) implies that

E
{
U∗(

ψ∗) | L,A
} = E

(
Y 0 | A,L

) = E
(
Y 0 | L)

= E
{
U∗(

ψ∗) | L}
.

Estimation of ψ∗ in a SMM can thus be based on solv-
ing estimating equations:

0 =
n∑

i=1

[
d∗(Ai,Li) − E

{
d∗(Ai,Li) | Li

}]
(14)

· [
U∗

i (ψ) − E
{
U∗

i (ψ) | Li

}]
,

which essentially set the empirical conditional covari-
ance between U∗(ψ) and arbitrary functions d∗(A,L)

of the dimension of ψ , given L, to zero. For instance,
for model (2), the choice d∗(Ai,Li) = (1,Li)

′Ai re-
sults in estimating equations

0 =
n∑

i=1

(
1
Li

){
Ai − E(Ai | Li)

}

· [
Yi − E(Yi | Li)(15)

− (ψ0 + ψ1Li)
{
Ai − E(Ai | Li)

}]
,

from which estimates for (ψ0,ψ1) can be solved. A lo-
cally efficient estimator of ψ∗ [under the SMM to-
gether with the ignorability assumption (13)] can be
attained by setting

d∗(A,L) = E

{
∂U∗(ψ∗)

∂ψ

∣∣∣ A,L

}
,

when the variance of U∗(ψ∗) given A,L is constant;
local here means that the efficiency is only attained
when this constant variance assumption is met and
models for all conditional expectations involved in (14)
are correctly specified.

The SDM together with the ignorability assumption
(13) implies the more restrictive constraint that

U
(
ψ∗) ⊥⊥ A | L.(16)

This motivates estimating ψ∗ by picking the value ψ

that makes this conditional independence hold. This
forms the default approach in SAFTMs, where estima-
tion is based on a grid search whereby the indepen-
dence (16) is tested for different values of ψ∗ using a
(standard) statistical test until it is found to be satisfied
(Robins et al., 1992). Equivalently, estimation can be

based on solving an estimating equation of the form

0 =
n∑

i=1

d
{
Ui(ψ),Ai,Li

}

− E
[
d
{
Ui(ψ),Ai,Li

} | Li,Ui(ψ)
]

(17)
− E

(
d
{
Ui(ψ),Ai,Li

}
− E

[
d
{
Ui(ψ),Ai,Li

} | Li,Ui(ψ)
] | Ai,Li

)
,

for ψ , where d{Ui(ψ),Ai,Li} is an arbitrary in-
dex function of the dimension of ψ ; for example,
d{Ui(ψ),Ai,Li} = (1,Li)

′AiUi(ψ). A locally effi-
cient estimator of ψ∗ [under the SDM together with
the ignorability assumption (13)] can be obtained
by solving (17) with d{U(ψ),A,L} = E{Sψ(ψ) |
U(ψ),A,L}, where Sψ(ψ) is the score for ψ under
the observed data likelihood

∂U(ψ∗)
∂Y

f (L)f
{
U

(
ψ∗) | L}

f (A | L)(18)

with all components substituted by suitable paramet-
ric models (Robins, 1997). For instance, under model
(7) with U(ψ∗) given L following a normal distri-
bution with mean linear in L and constant variance,
Sψ(ψ) = (1,L)′A{aU(ψ) + bL + c} for certain con-
stants a, b, c, so that a locally efficient estimator is ob-
tained by solving (15).

Estimating equations of form (14) and (17) may
also be used for repeated measures outcomes. In (14),
d∗(Ai,Li) now becomes a p × (K + 1)-dimensional
matrix, with p the dimension of ψ . In (17), d{Ui(ψ),

Ai,Li} remains an arbitrary index function of the
dimension of ψ ; for example, d{Ui(ψ),Ai,Li} =
(1,Li)

′Ai

∑K+1
m=1 Uim(ψ).

REMARK. Note that the SMM together with as-
sumption (13) is the same model for the observables
as the semiparametric regression model (Chamberlain,
1987):

g
{
E(Y | L,A)

} = ω(L) + γ ∗(
L,A;ψ∗)

,(19)

with ω(L) unspecified. Likewise, the SAFTM [with,
e.g., γ (t, a, l;ψ) = t exp(−aψ)] together with as-
sumption (13) can be viewed as a semiparametric gen-
eralization of the accelerated failure time model (Wei,
1992), defined by logT = ψA + ε with ε ⊥⊥ A | L.

Because of the curse of dimensionality, evaluating
the conditional expectations appearing in equations
(14) and (17) requires a parametric working model A
for the conditional distribution of the exposure A:

f (A | L) = f
(
A | L;α∗);
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here f (A | L;α) is a known density function, smooth
in α, and α∗ is an unknown finite-dimensional parame-
ter. For instance, for dichotomous exposure, one could
assume that P(A = 1 | L) = expit(α∗

0 + α∗
1L) with

α∗ = (α∗
0 , α∗

1)′. Here, α∗ can be estimated via standard
(maximum likelihood) methods.

Evaluating (14) and (17) moreover requires a para-
metric working model B for the conditional distri-
bution of U(ψ∗) or the conditional expectation of
U∗(ψ∗). For (17), we model:

f
{
U

(
ψ∗) | L} = f

{
U

(
ψ∗) | L;β∗}

,

where f {U(ψ∗) | L;β} is a known density function,
smooth in β , and β∗ is an unknown finite-dimensional
parameter; to evaluate equations (14), specification of
the conditional mean of U∗(ψ∗), given L, suffices.
For instance, for a continuous outcome, one could as-
sume that conditional on L and for given ψ∗, U(ψ∗) =
Y − ψ∗

0 A − ψ∗
1 AL is normally distributed with mean

β∗
0 + β∗

1 L and variance β∗2
2 , with β∗ = (β∗

0 , β∗
1 , β∗

2 )′.
For each fixed value of ψ∗, β∗ can be estimated using
standard regression methods.

A consistent estimator of ψ∗ indexing the SMM or
SDM can now be obtained by solving equations (14) or
(17), respectively, with α∗ and β∗ substituted by con-
sistent estimators under models A and B, respectively.
The resulting estimator of ψ∗ is called a G-estimator.
In SDMs and linear or loglinear SMMs, it has the at-
tractive property of being doubly robust (Robins and
Rotnitzky, 2001): consistent when either model A or
model B is correctly specified (in addition to a cor-
rectly specified structural model and ignorability); it
does not require both to be correctly specified, nor does
it require specifying which of both is correctly speci-
fied. That the solution to equation (14) is doubly ro-
bust can be seen because this equation has mean zero at
ψ = ψ∗ when either model A or model B is correctly
specified, even if one of them is misspecified. Equation
(17) is likewise seen to have mean zero at ψ = ψ∗ un-
der model B; that it also has mean zero under model A
at ψ = ψ∗ is seen by rewriting the equation as

0 =
n∑

i=1

d
{
Ui(ψ),Ai,Li

}

− E
[
d
{
Ui(ψ),Ai,Li

} | Li,Ai

]
− E

(
d
{
Ui(ψ),Ai,Li

}
− E

[
d
{
Ui(ψ),Ai,Li

} | Li,Ai

] | Ui(ψ),Li

)
.

The result now follows, provided that the parameters
α and β are variation-independent (i.e., not function-
ally related), so that a consistent estimator of α∗ does

not require consistent estimation of β∗ and vice versa.
Sandwich standard errors are obtained via the usual es-
timating equations theory.

In logistic SMMs, to the best of our knowledge, no
estimators of ψ∗ have been found that are root-n con-
sistent under model A and the ignorability assumption.
This is because the evaluation of U∗(ψ) is anyway de-
pendent upon a model for the conditional mean E(Y |
A,L) [see (3)]. Tchetgen Tchetgen, Robins and Rot-
nitzky (2010) show that double robustness can instead
be attained against misspecification of either a model
for the density f (Y | A = 0,L) or a model for the den-
sity f (A | Y = 0,L). Their key to estimation of ψ∗
is that the parameterized association γ ∗(L,A;ψ) be-
tween A and Y , when evaluated at ψ = ψ∗, can be used
to render A and Y conditionally independent (given
L) via inverse probability weighting. Their results ap-
ply equally to case-control designs (Tchetgen Tchetgen
and Rotnitzky, 2011).

For Structural Mean Interaction Models, inference
is developed in Vansteelandt et al. (2008a) when g(·)
is the identity or log link and in Tchetgen Tchetgen
(2012) when g(·) is the logistic link. Tchetgen Tchet-
gen and Robins (2010) focus on case-only designs and
note that when g(·) is the log link, the multiplicative
interaction (5) is identical to the conditional odds ratio
between A(1) and A(2), given L within the subgroup of
cases. This enables the use of results on logistic SMMs
(Tchetgen Tchetgen, Robins and Rotnitzky, 2010) for
robust estimation of multiplicative interactions under
outcome-dependent sampling.

3.3 Censoring

Censoring presents additional challenges for the
analysis of failure-time outcomes T . Random censor-
ing or loss to follow-up can be dealt with through in-
verse probability of censoring weighting (Robins et al.,
1992). Type I censoring, also known as censoring by
end of follow-up, can be ignored in the analysis of
SCFTMs, but must be dealt with in a different fash-
ion in the analysis of SAFTMs. This is because U(ψ∗)
involves the failure-time itself, which is missing for all
subjects who fail after planned end-of-follow-up; the
coarsening process is informative here as it depends
on the actual failure time. We will next describe how
Type I censoring can be dealt with in the analysis of
SAFTMs.

Let C denote the planned end of follow-up time for
given individual. C is known for all subjects, even
those observed to fail. However, U(ψ) cannot be eval-
uated for those who do not fail prior to time C. Know-
ing that U(ψ∗) ⊥⊥ A | L under ignorability, the aim is
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then to find a function q{U(ψ),C} which is observable
for all individuals and for which

q
{
U

(
ψ∗)

,C
} ⊥⊥ A | L.

If such function is found, then ψ∗ can be estimated
by solving the original estimating equations for SDMs
with q{U(ψ),C} replacing U(ψ). A natural choice
would be q{U(ψ),C} = min{U(ψ),U(C,A,L;ψ)}
with U(C,A,L;ψ) the blipped-down censoring time,
which is defined like U(ψ) but with T substituted by
C. However, this choice would not satisfy the required
conditional independence property. The reason is that
since C is fixed by design, U(C,A,L;ψ) will in gen-
eral be a function of A when ψ �= 0 and so will gener-
ally fail to be conditionally independent of A, given L.
Robins and Tsiatis (1991) thus propose to eliminate
the dependence of U(C,A,L;ψ) on A by redefining
it to be C(ψ) ≡ mina{U(C,a,L;ψ)}. By thus mini-
mizing over all feasible treatments a, any dependence
on the observed treatment is broken so that X(ψ) ≡
min{U(ψ),C(ψ)} and 	(ψ) ≡ I {U(ψ) < C(ψ)} be-
come always observable quantities that are indepen-
dent of A given L under ignorability, when evaluated at
ψ∗. We may thus choose q{U(ψ),C} to be an arbitrary
function of X(ψ) and 	(ψ).

With each choice of q{U(ψ),C}, some subjects who
are observed to fail may be treated as censored when
ψ �= 0. This can happen because for some subjects,
C(ψ) may be smaller than U(ψ) even though T < C.
Such subjects are called artificially censored. Artificial
censoring has several consequences. Besides decreas-
ing information about ψ∗ as more subjects are arti-
ficially censored, the estimating equations are not, in
general, continuous in ψ . This is because the functions
q{U(ψ),C} are not generally continuous in ψ , which
happens in part because 	(ψ) is not a smooth func-
tion of ψ . This can present problems for optimization,
especially when ψ is a vector, and may moreover im-
ply that the estimating equations have no solution in fi-
nite samples. This problem may be mitigated by choos-
ing q{U(ψ),C} to be a smooth function of ψ , for ex-
ample, q{U(ψ),C} = 	(ψ)wα{X(ψ)/C(ψ)}, where
wα(t) ≡ I (t > 1 − α)(1 − t)/α + I (t ≤ 1 − α) (Joffe,
Yang and Feldman, 2012). Vock et al. (2013) consider
functions q(·;ψ) whose first derivatives exist for all ψ ;
they appear to have had better success in convergence
for their optimization algorithm.

4. PROPERTIES OF G-ESTIMATION IN
STRUCTURAL MODELS FOR POINT TREATMENTS

UNDER IGNORABILITY

4.1 Comparison with Ordinary Regression
Estimators

Insight into the behavior of G-estimators can be gar-
nered by focusing on the simple model MSMM defined
by the ignorability assumption that Ya ⊥⊥ A | L for
a = 0,1, known treatment mechanism f (A | L) and
the SMM

E
(
Ya − Y 0 | A = a,L

) = ψ∗a.

Under homoscedasticity (i.e., when the conditional
variance of the outcome, given A and L, is a con-
stant σ 2), the locally efficient G-estimator of ψ∗ under
model MSMM has influence function (Newey, 1990)

E
{
Var(A | L)

}−1{
A − E(A | L)

}
(20)

· {
Y − ψ∗A − E

(
Y − ψ∗A | L)};

it can thus in particular be obtained by setting the sam-
ple average of these influence functions to zero and
solving for ψ∗. For binary treatment A, linear regres-
sion adjustment for the propensity score (Rosenbaum
and Rubin, 1984) results in an estimator of ψ∗ with in-
fluence function of the same form (20), but with E(Y −
ψ∗A | L) substituted by the population least squares fit
from a regression of Y − ψ∗A on the propensity score
E(A | L). Linear regression adjustment for the propen-
sity score can therefore be viewed as an inefficient
and nondoubly robust G-estimation approach (Robins,
Mark and Newey, 1992). The close relation between
G-estimation and regression adjustment for the propen-
sity score is not maintained in nonlinear models, where
propensity score adjustment may not only demand cor-
rect models for the propensity score, but also for its
association with outcome (Vansteelandt and Daniel,
2014). In nonlinear models, due to non-collapsibility
of the treatment effect parameter (Greenland, Robins
and Pearl, 1999), its meaning may also change depend-
ing on whether covariates are adjusted for in addition
to the propensity score.

Ordinary regression estimators [in particular, max-
imum likelihood estimators obtained by fitting model
(19) under a finite-dimensional parameterization of
ω(L)] are at least as efficient as the previously con-
sidered G-estimators, provided correct model specifi-
cation. From the variance of the influence functions,
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we can deduce that the asymptotic variance of the lo-
cally efficient G-estimator is

σ 2

E{Var(A | L)} ,(21)

when there is homoscedasticity and the conditional
mean E(Y − ψ∗A | L) = E(Y | A = 0,L) is correctly
specified. The ordinary least squares (OLS) estima-
tor under the linear regression model E(Y | A,L) =
β ′L+ψA has an asymptotic variance which is smaller
but, interestingly, usually not much smaller:

σ 2

E[Var(A | L) + {E(A | L) − Ẽ(A | L)}2] .
This follows from its influence function, which is of
the same form (20), but with E(A | L) substituted by
Ẽ(A | L), the population least squares fit from a regres-
sion of A on L.

Despite their greater efficiency, ordinary regression
estimators have a number of limitations not shared by
G-estimators, an important one being their lack of ex-
tensibility to the analysis of sequential treatments (see
Section 5). Furthermore, their explicit reliance on a
model for the association between outcome and covari-
ates can be disadvantageous when the treated and un-
treated subjects are very different in their covariate dis-
tributions, for then even well-fitting models for the out-
come may be prone to extrapolation bias (Rosenbaum
and Rubin, 1984). This is not the case for G-estimators
when they are based on a correctly specified model (A)
for the treatment process. This is also seen from the
form of the influence functions (20), following which
individuals in regions of little or no overlap [i.e., at co-
variate values L where Var(A | L) is small] will hardly
contribute in the calculation of the G-estimator because
A − E(A | L) ≈ 0 for such individuals. As with other
estimation approaches based on propensity score ad-
justment (e.g., matching), the information about ψ∗
will thus come primarily from regions with sufficient
overlap, which we view as desirable. In contrast, OLS
estimators are more susceptible to extrapolation bias
since the leading term A − Ẽ(A | L) in their influ-
ence functions may be far from zero for individuals
in regions of little or no overlap. Finally, an advan-
tage of G-estimation methods is that they can incor-
porate a priori knowledge on the exposure distribu-
tion. For instance, Vansteelandt et al. (2008b) exploit
knowledge on the distribution of offspring genotypes
given parental genotypes (based on Mendel’s law of
segregation), by using G-estimators to develop gene-
environment interaction tests that are robust against
misspecification of the effect of environmental expo-
sures on the outcome.

4.2 Comparison with Inverse Probability Weighted
Estimators

For the analysis of sequential treatments (see Sec-
tion 5), marginal structural models (MSM) (Robins,
Hernan and Brumback, 2000) and inverse probabil-
ity weighted (IPW) estimators are much more popular
than SMMs and SDMs and G-estimators. This is re-
lated to G-estimation being computationally more de-
manding by the lack of off-the-shelf software. It is thus
of interest to compare the behaviour of these estimators
in a simple setting with dichotomous treatment. Con-
sider therefore model MMSM, which is defined by the
ignorability assumption that Ya ⊥⊥ A | L for a = 0,1,
known propensity score E(A | L) and the nonparamet-
ric MSM

E
(
Ya) = α + ψ∗a.

Note, since Ya ⊥⊥ A | L for a = 0,1, that ψ∗ =
E(Y 1 − Y 0) in both models MSMM and MMSM, and
thus defines the same parameter. Nonetheless, model
MMSM is less restrictive than model MSMM in that
it does not postulate that the treatment effect is ho-
mogeneous (i.e., constant over levels of L). This ex-
plains why the asymptotic variance of the locally effi-
cient IPW estimator under model MMSM, which has
influence function (Robins, Rotnitzky and Zhao, 1994)

A{Y − E(Y | A = 1,L)}
E(A | L)

− (1 − A){Y − E(Y | A = 0,L)}
1 − E(A | L)

+ E(Y | A = 1,L) − E(Y | A = 0,L) − ψ∗,
is strictly larger than the variance of the locally efficient
G-estimator (unless A and L are independent, as may
be the case when A refers to a randomized treatment,
in which case they are equally efficient). In particular,
the asymptotic variance of the locally efficient IPW es-
timator equals

σ 2E

{
1

Var(A | L)

}
,(22)

when the treatment effect is homogeneous. The differ-
ence between (21) and (22) can be sizeable when the
propensity score is close to zero or 1 for some val-
ues of L for then Var(A | L) is close to zero and thus
1/Var(A | L) can take on large values. In our opinion,
this difference is not usually offset by the weaker re-
strictions imposed by the MSM. Indeed, the marginal
treatment effect would seldom be of scientific inter-
est when certain subjects are almost precluded from
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receiving treatment or no treatment. Moreover, the G-
estimator retains a useful interpretation even when the
assumption of constant treatment effects fails in the
sense that E(Y 1 − Y 0 | A = 1,L) = ψ(L) for some
function ψ(L). Indeed, in that case the locally efficient
G-estimator converges to

E{Var(A | L)ψ(L)}
E{Var(A | L)} ,(23)

which continues to be useful as a weighted average
of treatment effects ψ(L), with most weight given to
strata with most information about the treatment effect.

This difference in asymptotic variance between both
estimators becomes even more pronounced in the
likely event that the model for E(Y | A = 0,L) =
E(Y 0 | L) = E(Y − ψ∗A | L) is misspecified. Let
	(L) = E(Y | A = 0,L) − E∗(Y | A = 0,L) denote
the degree of misspecification at covariate value L,
with E(Y | A = 0,L) the true expectation and E∗(Y |
A = 0,L) the expectation used for evaluating the lo-
cally efficient G-estimator. Furthermore, assume that
in truth the treatment effect is homogeneous. Then the
asymptotic variance of the G-estimator becomes

σ 2

E{Var(A | L)} + E{Var(A | L)	(L)2}
E{Var(A | L)}2 ,

and the asymptotic variance of the previously consid-
ered IPW estimator becomes

σ 2E

{
1

Var(A | L)

}

+ E

[{	(L) + ψ∗E(1 − A | L)}2

Var(A | L)

]
.

Consider now that model misspecification is more
likely in regions of little overlap. Then because Var(A |
L) ≈ 0 in these regions, model misspecification in
these regions will only have a minor impact on the
variance of the G-estimator, but a particularly strong
impact on the variance of the locally efficient IPW es-
timator. Similar findings have been noted concerning
the asymptotic bias of these estimators (Vansteelandt,
Bekaert and Claeskens, 2012).

While this contrast between G-estimation and IPW-
estimation under misspecification of the outcome mo-
del could turn out to be somewhat less dramatic when
the propensity score is not considered as fixed and
known, we believe that the above findings more likely
understate the factual differences if one considers that
mainstream applications are based on sequential treat-
ments (and thus even more variable inverse probability

weights) and on simple, inefficient inverse probability
weighting methods. The latter can be viewed as induc-
ing extreme misspecification in the outcome model as
they amount to setting E(Y | A = 1,L) = E(Y | A =
0,L) = 0. We thus believe that more routine applica-
tion of G-estimation is warranted.

5. STRUCTURAL NESTED MODELS FOR
TIME-VARYING TREATMENTS

Before introducing SNMs for time-varying or se-
quential treatments, we consider the structure of ob-
served data in observational studies with repeated treat-
ments and covariates, as well as definitions of causal
effects in such setting. Suppose that measurements are
collected at fixed time points t0, t1, . . . , tK+1. Let Ak

denote the treatment provided at time tk, k = 0, . . . ,K ,
and Lk denote other covariates measured at that time;
Yk , the outcome measured at time tk, k = 1, . . . ,K +1,
is part of Lk . We presume the variables are ordered L0,
A0, L1, A1, etc.; thus, covariates and outcome at tk pre-
cede treatment at tk .

Let Y
am−1
m denote the outcome that would be seen

at time tm in a given individual were (s)he to receive
treatment history am−1 through time tm−1. The vari-
ables Y

am−1
m are potential outcomes, which are again

linked to the observed data via the consistency as-
sumption that Ym = Y

am−1
m if Am−1 = am−1. We pre-

sume that treatment at or after tm cannot affect out-

come at times up to tm; thus, Y
am−1,am
m = Y

am−1,a
†
m

m for
am �= a†

m. Causal effects can now be defined as com-
parisons of potential outcomes Y aK for the same group
of subjects for different treatment histories aK , a

†
K ,

aK �= a
†
K (Robins, 1986). If the outcome is measured

only at the end of a fixed follow-up period, or only at
a subset of the follow-up times, we can let Ym = (·),
where “·” denotes missing or undefined values for the
times where the outcome is not measured. Most of the
subsequent presentation then applies to those settings.

5.1 Structural Nested Mean Models

Structural nested mean models (SNMMs) (Robins,
1994; Robins, Rotnitzky and Scharfstein, 2000) sim-
ulate the sequential removal of an amount (“blip”) of
treatment at tm on subsequent average outcomes, af-
ter having removed the effects of all subsequent treat-
ments. Given a history am, define the counterfactual
history (am,0) as the history a† that agrees with am

through time tm and is 0 thereafter. SNMMs then
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model the effect of a blip of treatment at tm on the sub-
sequent outcome means when holding all future treat-
ments fixed at their reference level 0; thus, they param-
eterize contrasts of Y

am,0
m+1 and Y

am−1,0
m+1 conditionally on

treatment and covariate histories through tm as

g
{
E

(
Y

am,0
m+1 | Lm = lm,Am = am

)}
− g

{
E

(
Y

am−1,0
m+1 | Lm = lm,Am = am

)}
= γ ∗

m

(
lm, am;ψ∗)

,

for each m = 0, . . . ,K and (lm, am), where γ ∗
m(lm, am;

ψ) is a known (K + 1 − m)-dimensional function,
smooth in ψ , and for each lm, am−1 and ψ it is by def-
inition required that γ ∗

m(lm, am−1,0;ψ) = 0. Alterna-
tively, one may focus on the effect of treatment on the
end-of-study outcome Y ≡ YK+1 only, in which case
one obtains a SNMM of the form

g
{
E

(
Yam,0 | Lm = lm,Am = am

)}
− g

{
E

(
Yam−1,0 | Lm = lm,Am = am

)}
= γ ∗

m

(
lm, am;ψ∗)

,

for each m = 0, . . . ,K and (lm, am), where γ ∗
m(lm, am;

ψ) is now 1-dimensional. The above contrasts general-
ize the notion of the effect of treatment on the treated
to the setting of a sequence of treatments. The name
“nested” refers to the nesting across time, of the sub-
groups defined by Lm and Am within which the effects
are evaluated.

Typically, the parameterization is chosen to be such
that γ ∗

m(lm, am;0) = 0 for all lm, am so that ψ = 0 en-
codes the null hypothesis of no treatment effect. For
instance, with 2 time points (K = 1) a linear SNMM
may be given by

E
(
Y

(a0,a1)
2 − Y

(a0,0)
2 | L1 = l1,A1 = a1

)
= (

ψ∗
0 + ψ∗

1 l1 + ψ∗
2 a0

)
a1,

E
(
Y

(a0,0)
2 − Y 0

2 | L0 = l0,A0 = a0
)

= (
ψ∗

3 + ψ∗
4 l0

)
a0,

E
(
Y

(a0,0)
1 − Y 0

1 | L0 = l0,A0 = a0
)

= (
ψ∗

0 + ψ∗
1 l0

)
a0.

Here, the first equation models the effect of A1 on
Y2, the second models the effect of A0 on Y2 and the
third models the effect of A0 on Y1, all within levels
of variables defined prior to the considered exposure.
Thus, ψ∗

0 ,ψ∗
1 and ψ∗

2 encode short-term treatment ef-
fects, which are here assumed to be constant at all time

points, and ψ∗
3 and ψ∗

4 encode long-term treatment ef-
fects. These effects are visualised in Figures 2 and 3
below. When interest merely lies in the effect on the
end-of-study outcome, then the above model for Y1 can
be ignored.

Under the SNMM, as in Section 2.1, it is possible
to define a transformation U∗

m(ψ∗) of Ym+1, whose
mean value equals the mean that would be observed
if treatment were suspended from time tm onward, in
the sense that

E
{
U∗

m

(
ψ∗) | Lm,Am−1 = am−1,Am

}
(24)

= E
(
Y

am−1,0
m+1 | Lm,Am−1 = am−1,Am

)
,

for m = 0, . . . ,K . Here, U∗
m(ψ) is a vector with com-

ponents

Yk −
k−1∑
l=m

γ ∗
l,k(Ll,Al;ψ),

for k = m + 1, . . . ,K + 1 (or for k = K + 1 only if
interest merely lies in the effect on the end-of-study
outcome) if g(·) is the identity link, and

Yk exp

{
−

k−1∑
l=m

γ ∗
l,k(Ll,Al;ψ)

}
,

if g(·) is the log link. These equations formalize the
notion of peeling off or blipping down the treatment
effects over the treatment period from tm to tk−1. For
instance, in the previous example for 2 time points,

U∗
1 (ψ∗) = Y2 − (

ψ∗
0 + ψ∗

1 L1 + ψ∗
2 A0

)
A1,

U∗
0 (ψ∗) = (

Y1 − (
ψ∗

0 + ψ∗
1 L0

)
A0, Y2

− (
ψ∗

0 + ψ∗
1 L1 + ψ∗

2 A0
)
A1

− (
ψ∗

3 + ψ∗
4 L0

)
A0

)′
.

For link functions other than the identity and log link,
such a transformation can still be defined, but depends
on the observed data distribution in a complicated and
contrived way. For instance, when g(·) is the logit link
and there are 2 time points (K = 1), then under the
SNMM we have that

E
(
Y 0

2 | L0 = l0,A0 = a0
)

= g−1[
g
{
E

(
g−1[

g
{
E(Y2 | L1,A1,A0 = a0)

}
− γ ∗

1
(
L1,A1,A0 = a0;ψ∗)]

| L0 = l0,A0 = a0
)}

− γ ∗
0

(
l0, a0;ψ∗)]

.
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FIG. 2. Visualisation of the effects E(Y
(a0,0)
1 − Y 0

1 | L0 = l0,A0 = a0) and E(Y
(a0,a1)
2 − Y

(a0,0)
2 | L1 = l1,A1 = a1). Lines within the

circles depict covariate strata; lines outside the circles depict exposure strata.

The calculation of U0(ψ) thus not only demands
knowledge of E(Y2 | L1,A1), but also of the distri-
bution of (L1,A1), given (L0,A0).

The effect of a sequential treatment on the failure
time distribution can be parameterized through a col-
lection of SNMMs with log link, one for each time
point (Robins and Hernan, 2009; Picciotto et al., 2012).
In continuous time (Martinussen et al., 2011), such
structural nested cumulative failure time models are
defined by restrictions of the form:

P(T am,0 > t | Lm = lm,Am = am,T ≥ tm)

P (T am−1,0 > t | Lm = lm,Am = am,T ≥ tm)

= exp
{
γ ∗
m

(
t, lm, am;ψ∗)}

,

for all t and m = 0, . . . ,K , where γ ∗
m(t, lm, am;ψ) is a

known function, smooth in ψ and monotonic in t , and
γ ∗
m(t, lm, am−1,0;ψ) = 0 for all t, lm, am−1 and ψ .

5.2 Structural Nested Distribution Models

Structural nested distribution models (SNDMs) are
closely related to SNMMs, but parameterize a map be-
tween percentiles of the distribution of Y

am,0
k and per-

centiles of the distribution of Y
am−1,0
k . They are most

easily understood by first considering the class of more
restrictive rank-preserving SNDMs. In particular, for
each exposure Am,m = 0, . . . ,K , let us first consider
a rank-preserving SNDM to parameterize its effect on
the end-of-study outcome Y :

Yam−1,0 = γm

(
Yam,0, lm, am;ψ∗)

,

for subjects with Am = am and Lm = lm, m = 0,

. . . ,K . Here, γm(y, lm, am;ψ) is a known function,
smooth in ψ and a smooth, monotonic function of y,
which contrasts the counterfactuals Yam−1,0 and Yam,0,
and must satisfy γm(y, lm, am−1,0;ψ) = y for all y

and ψ . For instance, with 2 time points (K = 1) a rank
preserving SNDM may be given by the following set
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FIG. 3. Visualisation of the effects E(Y
(a0,0)
2 − Y 0

2 | L0 = l0,A0 = a0). Lines within the circles depict covariate strata; lines outside the
circles depict exposure strata.

of restrictions:

YA0,0 = γ1(Y,L1,A1) = Y − (
ψ∗

1 + ψ∗
2 L1

)
A1,

Y 0 = γ0
(
YA0,0,L0,A0

)
= YA0,0 − (

ψ∗
1 + ψ∗

2 L0
)
A0

= Y − ψ∗
1 (A0 + A1) − ψ∗

2 (L1A1 + L0A0).

A SNDM relaxes these restrictions by demanding that
they merely hold in distribution, conditional on the ob-
served history (i.e., Lm = lm and Am = am).

To describe the effect on a repeated counterfac-
tual future Y

am,0
m+1, we can borrow ideas from Sec-

tion 2.3.2. In particular, upon substituting A by Am, L

by Lm,Am−1 and Yk by Y
am,0
m+k in the rank-preserving

model (9), we obtain the identity:

Y
am−1,0
m+k = γm,m+k

(
Y

am,0
m+1:m+k, lm, am;ψ∗)

,(25)

for subjects with Am = am and Lm = lm, m = 0, . . . ,K

and k = 1, . . . ,K + 1 − m. Here, γm,m+k(ym:m+k, lm,

am;ψ) is a known function, smooth in ψ and a
smooth, monotonic function of ym+k , which contrasts
the counterfactuals Y

am−1,0
m+k and Y

am,0
m+k , and must sat-

isfy γm,m+k(ym:m+k, lm, am−1,0;ψ) = ym+k for all
ym+k, lm, am−1 and ψ . For instance, with 2 time points
(K = 1) a rank preserving SNDM may be given by the
following set of restrictions:

Y 0
1 = γ0,1

(
Y1,L0,A0;ψ∗)

= Y1 − (
ψ∗

1 + ψ∗
2 L0

)
A0,

(26)
Y

A0,0
2 = γ1,2

(
Y2,L1,A1;ψ∗)

= Y2 − (
ψ∗

1 + ψ∗
2 L1

)
A1,

Y 0
2 = γ0,2

(
Y1, Y

A0,0
2 ,L0,A0;ψ∗)

= Y
(A0,0)
2 − (

ψ∗
3 + ψ∗

4 Y1
)
A0

(27)
= Y2 − (

ψ∗
1 + ψ∗

2 L1
)
A1

− (
ψ∗

3 + ψ∗
4 Y1

)
A0.
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Here, the first two equations express short-term expo-
sure effects, that is, the effect of A0 on Y1 and of A1

on Y2. The third equation expresses the effect of A0

on Y2 (more precisely, its effect on Y
A0,0
2 ). As in Sec-

tion 2.3.2, this equation must take into account that the
effect may be different depending on the outcome level
at time t1; this allows for A0 to also affect the depen-
dence between Y1 and Y2, but evidently complicates in-
terpretation. More generally, rank-preserving SNDMs
allow for the effect of am on Ym+k , as encoded by a
contrast of Y

am,0
m+k and Y

am−1,0
m+k , to depend on the his-

tory of treatments and covariates up to time tm, but ad-
ditionally on the potential outcome history under the
treatment regime (am,0), up to time tm+k−1.

A SNDM relaxes the restrictions of a rank preserv-
ing SNDM by demanding that the equality (25) merely
holds in distribution, conditional on Lm = lm and
Am = am. Assuming that for given (Lm,Am), Ym+1
has a continuous multivariate distribution with proba-
bility 1, a SNDM can thus be defined by

F
Y

am−1,0
m+1 |Lm=lm,Am=am

{
γm

(
y

m+1
, lm, am;ψ∗)}

(28)
= F

Y
am,0
m+1 |Lm=lm,Am=am

(y
m+1

),

for all lm, am, where γm(y
m+1

, lm, am;ψ∗) is a vec-

tor with components γm,k(ym+1:m+k, lm, am;ψ∗) for
k = 1, . . . ,K + 1 − m, where the components γm,k

are defined in recursive fashion similar to in Sec-
tion 2.3.2.

Under the SNDM, a variable Um(ψ∗) =
(Um,m+1(ψ

∗), . . . ,Um,K+1(ψ
∗))′ can be constructed

which predicts how the outcomes past time tm would
look like if treatment were suspended from time tm on-
ward, in the sense that

P
{
Um

(
ψ∗)

> y
m+1

| Lm,Am = am

}
(29)

= P
(
Y

am−1,0
m+1 > y

m+1
| Lm,Am = am

)
.

This variable can be recursively obtained for m =
K, . . . ,0 from

Um,m+k(ψ)
(30)

≡ γm,m+k

{(
Ym+1,Um+1:m+k(ψ)

)
,Lm,Am;ψ}

,

for k = 1, . . . ,K + 1 − m, where we define
Um+1,m+k(ψ) to be empty for k = 1. For instance, in
the SNDM that assumes the identities in (26) hold in
distribution (conditional on the observed history), we

have that

U1(ψ) = U1,2(ψ) = γ1,2(Y2,L1,A1;ψ)

= Y2 − (ψ1 + ψ2L1)A1,

U0(ψ) = (
U0,1(ψ),U0,2(ψ)

)
= (

γ0,1(Y1,L0,A0;ψ),

γ0,2
(
Y1,U1,2(ψ),L0,A0;ψ))

= (
Y1 − (ψ1 + ψ2L0)A0,

Y2 − (ψ1 + ψ2L1)A1 − (ψ3 + ψ4Y1)A0
)
.

The identity (30) will be useful in estimation and for
predicting the effect of specific interventions on the
outcome distribution.

Structural nested failure time models (SNFTMs) are
a variant of SNDMs which have seen most applica-
tions to date. These link percentiles from the condi-
tional distributions of T am−1,0 and T am,0, conditional
on Lm,Am = am, and for subjects who are still in the
risk set (say, alive) at time tm:

S
T am−1,0|nLm=lm,Am=am,T ≥tm

{
γm

(
t, lm, am;ψ∗)}

= ST am,0|Lm=lm,Am=am,T ≥tm
(t),

for t > tm, where S(·) denotes a survival function.
Here, γm(t, lm, am;ψ∗) is a known function, smooth
in ψ and monotonic in t , and γm(t, lm, am−1,0;ψ) = t

for all t, lm, am−1 and ψ . For instance, the choice
γm(t, lm, am;ψ) = tm + (t − tm) exp(amψ) for t > tm
expresses that the effect of suspending treatment am at
time tm is to change the residual lifetime t − tm with
a factor exp(amψ). For this choice of model, one can
predict among individuals who survive to (or through,
or until) time tm what their lifetime would be had treat-
ment been suspended from time tm onward, as

Um(ψ) = tm + ∑
k:tm≤tk≤T

(tk − tk−1) exp(Akψ)

+ (T − tT −) exp(AtT − ψ),

where tT − denotes the largest time point in {t0, . . . , tK}
less than T and Um(ψ) is a random variable for which
(for t > tm)

P
{
Um

(
ψ∗)

> t | Lm,Am = am,T ≥ tm
}

= P
(
T am−1,0 > t | Lm,Am = am,T ≥ tm

)
.

5.3 Retrospective Blip Models

Retrospective blip models have been extended to
model the effect of a sequential treatment on a scalar
end-of-study outcome Y ≡ YK+1 conditional on the
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treatment and covariate history up to end-of-study.
Mean models take the form

g
{
E

(
Yam,0 | LK = lK,AK = aK

)}
− g

{
E

(
Yam−1,0 | LK = lK,AK = aK

)}
(31)

= γ ∗
m

(
lK, aK;ψ∗)

,

where γ ∗
m(lK, aK;ψ) is a known function, smooth in

ψ and equaling zero for all ψ, lK and aK with am = 0.
Distribution models take the form:

F
Yam−1,0|LK=lK ,AK=aK

{
γm

(
y, lK, aK;ψ∗)}

= FYam,0|LK=lK ,AK=aK
(y),

where γm(y, lK, aK;ψ) is a known function, smooth
in ψ and equaling y for all ψ,y, lK and aK with
am = 0; a rank-preserving version of this was pro-
posed by Joffe, Small and Hsu (2007). For nonparamet-
ric identifiability, restrictions are needed on the func-
tions γ ∗

m(lK, aK;ψ∗) and γm(y, lK, aK;ψ), for exam-
ple, that they do not involve the future am+1 and lm+1
(Vansteelandt, 2010).

Retrospective blip models can be useful for model-
ing a dichotomous outcome (Vansteelandt, 2010). Un-
der these models, identity (24) is satisfied with U∗

m(ψ)

being a vector with components

g−1

[
g
{
E(Y | LK,AK)

} −
K∑

l=m

γ ∗
l (LK,AK;ψ)

]
.

Evaluation of U∗
m(ψ) (which is needed to make estima-

tion of ψ∗ manageable) then merely requires a model
for E(Y | LK,AK), but not for the distribution of treat-
ment and covariates at each time. The parameters in-
dexing these models are nonetheless more limited than
the parameters indexing SNMMs in that they cannot
be used by themselves for making treatment decisions
prior to the end-of-study time, unless one integrates
over the distribution of covariates subsequent to m (see,
e.g., Vansteelandt, 2010).

6. IDENTIFICATION AND ESTIMATION IN
STRUCTURAL NESTED MODELS FOR

SEQUENTIAL TREATMENTS

This section sketches identifying assumptions and
inferential methods for sequential treatments. Under
instrumental variables assumptions sketched in Sec-
tion 6.3 and under the future ignorability assumptions
sketched in Section 6.2, inferential methods have been
developed for SNMs, but these assumptions do not suf-
fice for the identification of marginal treatment effects,

and hence parameters indexing MSMs. The broader ar-
ray of useful identifying assumptions thus constitutes
an important advantage of SNMs.

6.1 Sequential Ignorability

The assumption of ignorable treatment assignment
can be generalised to sequential treatments as follows:

Am ⊥⊥ Y
am−1,0
m+1 | Lm,Am−1 = am−1,(32)

for m = 0, . . . ,K . This assumption has been called var-
iously “no unmeasured confounders assumption,” “se-
quential ignorability,” “sequential randomization” or
“exchangeability.” It expresses that at each time tm, the
observed history of covariates Lm and exposures Am−1
includes all risk factors of Am that are also associated
with future outcomes.

This assumption together with identity (24) imply
that

E
{
Um

(
ψ∗) | Lm,Am

} = E
{
Um

(
ψ∗) | Lm,Am−1

}
for all m under a SNMM. The parameter ψ∗ indexing
a SNMM can therefore be estimated by solving

0 =
n∑

i=1

K∑
m=0

[
dm(Lim,Aim)

− E
{
dm(Lim,Aim) | Lim,Ai,m−1

}]
(33)

× [
Uim(ψ) − E

{
Uim(ψ) | Lim,Ai,m−1

}]
,

where dm(Lim,Aim),m = 0, . . . ,K is an arbitrary p ×
(K + 1 − m)-dimensional function, with p the di-
mension of ψ . This estimating equation essentially
sets the sum across time points m of the conditional
covariances between Uim(ψ) and the given function
dm(Lim,Aim), given Lim,Ai,m−1, to zero. When the
previous outcome is included in the confounder his-
tory (i.e., Lim includes Yim) and there is homoscedas-
ticity [i.e., when the conditional variance of Uim(ψ∗)
given Lim,Aim is constant for m = 0, . . . ,K], then lo-
cal semiparametric efficiency under the SNMM is at-
tained upon choosing

dm(Lim,Aim) = E

{
∂Um(ψ∗)

∂ψ

∣∣∣ Lim,Aim

}
.

Sequential ignorability (32) together with identity
(29) moreover implies that

Um

(
ψ∗) ⊥⊥ Am | Lm,Am−1

for all m under the SNDM. This conditional indepen-
dence restriction suggests that the parameter indexing
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a SNDM can be solved from

0 =
n∑

i=1

K∑
m=0

dm

{
Uim(ψ),Aim,Lim

}

− E
[
dm

{
Uim(ψ),Aim,Lim

} | Lim,Aim

]
− E

(
dm

{
Uim(ψ),Aim,Lim

}
(34)

− E
[
dm

{
Uim(ψ),Aim,Lim

} | Lim,Aim

] |
Uim(ψ),Lim,Ai,m−1

)
,

where the index functions dm{Uim(ψ),Aim,Lim} must
be of the dimension of ψ . When the previous outcome
is included in the confounder history (i.e., Lim includes
Yim), then local semiparametric efficiency is obtained
upon choosing

dm

{
Uim(ψ),Aim,Lim

}
= E

{
Sψ(ψ) | Uim(ψ),Aim,Lim

}
,

where Sψ(ψ) is the score for ψ under the observed
data likelihood

f (YK+1,LK,AK)

= f
{
U0

(
ψ∗)}

·
K∏

m=0

[
f

{
Lm | Lm−1,Am−1,Um

(
ψ∗)}

× f
{
Am | Lm,Am−1,Um

(
ψ∗)}

·
∣∣∣∣ ∂Um(ψ∗)
∂Um+1(ψ∗)

∣∣∣∣
]
,

with all components substituted by suitable paramet-
ric models (Robins, 1997); here, the term f {Am |
Lm,Am−1,Um(ψ∗)} = f (Am | Lm,Am−1) under se-
quential igorability, and thus can be ignored. This like-
lihood formulation is of interest in itself because it en-
ables specifying the joint distribution of the variables in
a way that is consistent with the sharp null hypothesis
of no effect under the assumption of sequential ignora-
bility, even in the presence of confounding by variables
affected by treatment, which turns out more difficult
with standard parameterisations (Robins, 1997).

Solving estimating equations (33) and (34) requires
a parametric model A for the conditional distribution
of the exposure Am for m = 0, . . . ,K :

f (Am | Lm−1,Am−1) = f
(
Am | Lm−1,Am−1;α∗)

,

where f (Am | Lm−1,Am−1;α) is a known density
function, smooth in α, and α∗ is an unknown finite-
dimensional parameter which can be estimated via

standard maximum likelihood. In addition, it requires
a parametric model B for the conditional mean (or dis-
tribution) of U∗

m(ψ∗) [or Um(ψ∗)] for m = 0, . . . ,K :

f
{
Um

(
ψ∗) | Lm,Am−1

}
= f

{
Um

(
ψ∗) | Lm,Am−1;γ ∗}

,

where f {Um(ψ∗) | Lm,Am−1;γ } is a known density
function, smooth in γ and γ ∗ is an unknown finite-
dimensional parameter. As before, when the parame-
ters α and γ are variation-independent, then so-called
G-estimators that solve (33) and (34), obtained upon
substituting α∗ and γ ∗ by consistent estimators, are
doubly robust (Robins and Rotnitzky, 2001): consis-
tent when the SNM and either model A or model B
is correctly specified, regardless of which. This dou-
ble robustness property of the G-estimator is desirable
for various reasons. First, it provides justification for
using simple models for the multivariate distribution
f {Um(ψ∗) | Lm,Am−1} or even setting E{Uim(ψ) |
Lim,Ai,m−1} = 0 in (33) for computational conve-
nience. Second, while alternative proposals that rely on
correct specification of model B (see, e.g., Almirall,
Ten Have and Murphy, 2010; Henderson, Ansell and
Alshibani, 2010) tend to give more efficient estima-
tors (under correct model specification), the concern
for misspecification of model B may be considerable
in view of the aforementioned difficulty of postulat-
ing this model. This distribution can indeed be dif-
ficult to specify in view of its multivariate nature,
the fact that Um(ψ∗) represents a transformation of
the observed data and that it may moreover share the
same outcome over multiple time points, so that the
models for Um(ψ∗) corresponding to different time
points may not be congenial at all times. This con-
cern can be overcome by inferring the conditional ex-
pectations E{Um(ψ∗) | Lm,Am−1} from models for
the conditional distribution of Lm+1 given Lm,Am−1
at each time m (Robins, Rotnitzky and Scharfstein,
2000; Almirall, Ten Have and Murphy, 2010). How-
ever, when the covariate Lm is high-dimensional and/or
strongly associated with treatment Am, specifying such
models can be a thorny and nontrivial task.

6.2 Departures from Sequential Ignorability and
Sensitivity Analysis

Specified departures from (32) can also yield iden-
tification. For instance, one can allow dependence of
treatment on a specified portion of the future potential
outcomes, by relaxing (32) to (Joffe, Yang and Feld-
man, 2010; Zhang, Joffe and Small, 2011)

Am ⊥⊥ Y
am−1,0
m+	 | Lm,Am−1 = am−1, Y

am−1,0
m+1:m+	−1,
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for some integer 	 ≥ 1; such assumptions have been
termed future ignorability, since the independence at
m is conditional on potential outcomes referring to
times after m. This assumption can sometimes elimi-
nate residual confounding bias, for instance, because
the treatment process occurs in continuous time but
confounding covariates are only measured intermit-
tently, as is common in observational studies (Zhang,
Joffe and Small, 2011), or when the future potential
outcomes serve as proxies for other unmeasured con-
founding variables (Rosenbaum, 1984). However, it
does not lead to nonparametric identification of the
SNM parameters, so that inference becomes more de-
pendent on correct specification of the causal model.

Alternatively, deviations from sequential ignorabil-
ity can be parameterized as

f
(
Am = am | Lm = lm,

Am−1 = am−1, Y
am−1,0
m+1 = y

m+1

)
= t (Am = am | Lm = lm,Am−1 = am−1)

(35)
· exp

{
qm(y

m+1
, lm, am)

}
·
(∫

t
(
Am = a†

m | Lm = lm,Am−1 = am−1
)

· exp
{
qm

(
y

m+1
, lm,

(
am−1, a

†
m

))}
da†

m

)−1

,

with qm(·) known, satisfying qm(y
m+1

, lm, am−1, am =
0) = 0 for all (y

m+1
, lm, am−1) and with t (Am |

Lm,Am−1) an unknown conditional density. With
qm(·) = 0 encoding the assumption of sequential ig-
norability, the function qm(·) thus expresses the de-
gree of departure from that assumption. As the data
carry no genuine information about it, progress must
be made by repeating the analysis with qm(·) fixed at
different values, which are then varied over some plau-
sible range (Robins, Rotnitzky and Scharfstein, 2000);
for example, by setting qm(y

m+1
, lm, am) = γym+1am,

where γ is varied between −1 and 1.

6.3 Instrumental Variables Assumptions

When the assumption of sequential ignorability fails,
progress can sometimes be also made using an instru-
mental variable (IV). Such variable A0 is assumed to
satisfy

A0 ⊥⊥ Y 0 | L0(36)

and

FY 0|L0=l0,A0=a0
(y) = FYa0,0|L0=l0,A0=a0

(y)(37)

for all a0, l0 (Robins, 1989). Both these assumptions
together imply that the instrument A0 is not associ-
ated with the outcome, except through its association
with subsequent treatments Am,m ≥ 1, which may af-
fect outcome. These or similar assumptions have been
used in adjusting for noncompliance in randomized tri-
als (Robins and Tsiatis, 1991; Mark and Robins, 1993;
Robins, 1994). With Am,m ≥ 1 denoting actual treat-
ment and A0 denoting randomized treatment, these as-
sumptions are plausible when randomization does not
affect the outcome other than by influencing the actual
treatment.

Estimation under the IV assumptions can be based
on estimating equations (33) and (34), but requires set-
ting dm(Lim,Aim) = 0 and dm{Uim(ψ),Aim,Lim} =
0 for m > 0. Because of these restrictions, root-n es-
timation of ψ∗ typically requires additional assump-
tions on γ ∗

m(lm, am;ψ∗) and γm(y
m+1

, lm, am;ψ∗). In
particular, it is commonly assumed that these functions
are linear in am and do not involve a0; moreover, time-
varying covariates are commonly ignored, that is, Lm

is set empty for m > 0. For instance, in linear SMMs
for a single treatment A1 (i.e., when K = 1) and di-
chotomous instrument, ω(L0) in

E
(
Y1 − Y

a00
1 | L0 = l0,A1 = a1

) = ω(l0)a1,

is just identified. Thus residual dependencies on a0 or
nonlinear dependencies on a1 cannot be identified un-
less other untestable assumptions are imposed.

The resulting class of G-estimators contains the pop-
ular two-stage least squares estimator as a special case
(Okui et al., 2012). However, the framework of G-
estimation for SNMMs and SNDMs has the advantage
that it extends immediately to outcomes that do not
lend themselves to linear modeling, for example, cen-
sored failure-time outcomes (Robins and Tsiatis, 1991)
and dichotomous outcomes (Vansteelandt and Goet-
ghebeur, 2003; Robins and Rotnitzky, 2004), as well
as to sequential treatments (Robins and Hernan, 2009).
For instance, when K = 1 and L1 is empty, the logistic
SMM

odds(Y a1
2 = 1 | L0 = l0,A1 = a1)

odds(Y 0
2 = 1 | L0 = l0,A1 = a1)

= exp
(
ψ∗a1

)
,

can be fitted by solving the SMM estimating equa-
tions with U∗(ψ) given by expit{logitE(Y2 | A1,L0)−
ψA1} [cfr. (3)] and E(Y1 | A1,L0) substituted by the
fitted value under a parametric model (Vansteelandt
and Goetghebeur, 2003; Vansteelandt et al., 2011).
This additional model may sometimes not be congenial
with the SMM and instrumental variables assumptions



726 S. VANSTEELANDT AND M. JOFFE

in the sense that there may be no choice of parame-
ter values indexing this model that satisfies these as-
sumptions. This can be overcome by avoiding parame-
terization of the main effect of A0 (conditional on L0)
in the model for E(Y1 | A1,L0) and instead modeling
the distribution of A1, given A0 and L0 (Robins and
Rotnitzky, 2004), or by completely saturating the pa-
rameterization of the main effect of A0 (conditional on
L0) (Vansteelandt et al., 2011). van der Laan, Hubbard
and Jewell (2007) abandon logistic SMMs in favor
of an interesting, but difficult to interpret relative risk
parameterization. Alternatively, multiplicative SMMs
can be used; under such models, case-only estimators
have been constructed, which remain valid under case-
control sampling (Bowden and Vansteelandt, 2011).

Variant assumptions have been proposed that allow
use of time-varying instruments along with SNMMs
and G-estimation. Robins and Hernan (2009) consider
settings in which, at each time point, there is a variable
whose association with the outcome of interest may
be explained solely by its association with prior his-
tory and its effect on some treatment of interest. Joffe,
Yang and Feldman (2010) consider settings in which
the conditional independence of treatment and future
potential outcomes in (32) holds for only an identi-
fiable subset {i,m} of the person-observations in the
population rather than for all such observations. Treat-
ment assignment in that subset may thus be considered
an instrument for its effect and the effect of subsequent
treatments.

IV analyses have several drawbacks relative to those
based on sequential ignorability: (1) nonparametric
identification is lost, and so inference is more depen-
dent on correct specification of the causal model; (2)
decreased power and precision; and (3) larger finite-
sample bias.

6.4 Censoring

In SNFTMs, Type I censoring can be dealt with as
previously explained by substituting Um(ψ) by an ar-
bitrary function of Xm(ψ) ≡ min{Um(ψ),Cm(ψ)} and
	m(ψ) ≡ I {Um(ψ) < Cm(ψ)}, where

Cm(ψ) ≡ min
{
Um(C,aC, lC;ψ);aC, lC ∈ LAm(C)

}
,

where LAm(C) is a given set of (aC, lC) histories
which agree with the observed history of L through
time tm or C, whichever comes first, and A through
time tm−1 or C, whichever comes first, and where
Um(C,aC, lC;ψ) is defined like Um(ψ) in Section 5.2,
but with C replacing T and aC and lC replacing AT

and LT .

7. PREDICTING THE EFFECTS OF
INTERVENTIONS

Identities (24) and (30) suggest using U∗
m(ψ∗) and

Um(ψ∗), respectively, as a prediction of Y
am−1,0
m+1 among

individuals with observed history Am = am. In par-
ticular, E(Y 0 | A0,L0) = E{U∗

0 (ψ∗) | A0,L0} in SN-
MMs and E(Y 0 | A0,L0) = E{U0(ψ

∗) | A0,L0} in
SNDMs, so that the expected outcome in the absence
of treatment can be estimated as the sample average of
U∗

0 (ψ̂) in SNMMs and of U0(ψ̂) in SNDMs. To esti-
mate E(Y aK ) for a different treatment regime aK , one
could use a different structural nested model (SNM)
with aK as the reference treatment regime. However,
when—as often—the interest lies in comparing the
expected counterfactual outcomes between different
treatment regimes, then a concern is that these differ-
ent SNMs may fail to imply a coherent model. Fur-
ther complications arise when the goal is to evaluate
the expected counterfactual outcome following a dy-
namic treatment regime whereby the treatment at each
time tm is assigned as a function of the treatment and
covariate history up to that time; that is, for each m,
am = g(am−1, lm).

These complications can be overcome by supple-
menting the SNM with so-called current treatment in-
teraction functions (Robins, Rotnitzky and Scharfstein,
2000) about which the data carry no information, but
which enable one to transport treatment effects in the
treated to population-averaged treatment effects. For
instance, let K = 1 and suppose that a SNMM has been
fitted with g(·) the identity link. For simplicity, we fo-
cus here only on the effect of a nondynamic regime
(a0, a1) at an end-of-study outcome Y = Y2; results for
dynamic treatment regimes are recovered upon making
the substitutions (g0(l0), g1(a0, l1)) for (a0, a1). Two
current treatment interaction functions can be defined,
one for each sequential treatment:

r∗
1 (L1, a1)

= E
(
Ya0a1 − Ya00 | A0 = a0,A1 = a1,L1

)
− E

(
Ya0a1 − Ya00 | A0 = a0,A1 �= a1,L1

)
,

r∗
0 (L0, a1)

= E
(
Ya0a1 − Y 0 | A0 = a0,L0

)
− E

(
Ya0a1 − Y 0 | A0 �= a0,L0

)
.

These express how much the effects of subsequent
treatment at m [i.e., a1 and (a0, a1) at times 1 and
0, resp.] differ between groups that received that
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level of treatment at m and those that did not. Under
the SNMM, it is easily deduced from knowledge of
r∗

1 (L1, a1) and r∗
0 (L0, a1) that E(Y a0a1 − Y 0 | A0 =

a0,L0) equals

E
(
Ya0a1 − Ya00 | A0 = a0,L0

)
+ E

(
Ya00 − Y 0 | A0 = a0,L0

)
= E

{
γ ∗

1
(
L1, a1;ψ∗)

− r∗
1 (L1, a1)P (A1 �= a1 | A0 = a0,L1) |

A0 = a0,L0
}

+ γ ∗
0

(
L0, a0;ψ∗)

.

Because E(Ya0a1 − Y 0 | L0) moreover equals

E
(
Ya0a1 − Y 0 | A0 = a0,L0

)
− r∗

0 (L0, a1)P (A0 �= a0 | L0),

we thus obtain that E(Ya0a1) = E(Ya0a1 − Y 0) +
E(Y 0) equals

E
[
E

{
γ ∗

1
(
L1, a1;ψ∗)

− r∗
1 (L1, a1)P (A1 �= a1 | A0 = a0,L1) |

A0 = a0,L0
}

+ γ ∗
0

(
L0, a0;ψ∗)

− r∗
0 (L0, a1)P (A0 �= a0 | L0) + U∗

0
(
ψ∗)]

.

When there is no current treatment interaction [i.e.,
r∗

1 (l1, a1) = r∗
0 (l0, a1) = 0 for all a0, a1, l0, l1], we thus

have that

E
(
Ya0a1

)
= E

[
E

{
γ ∗

1
(
L1, a1;ψ∗) | A0 = a0,L0

}
+ γ ∗

0
(
L0, a0;ψ∗) + U∗

0
(
ψ∗)]

.

While the components γ ∗
1 (L1, a1;ψ∗), γ ∗

0 (L0, a0;ψ∗)
and U∗

0 (ψ∗) can be estimated along the lines described
in previous sections, a complication is that a model for
the distribution of L1, conditional on A0,L0, is needed
to evaluate this; this can be cumbersome when L1 is
high-dimensional. This complication is avoided in sim-
ple structural models in which there is no effect modi-
fication by post-treatment variables [i.e., γ ∗

1 (L1, a1) is
not a function of L1] and nondynamic regimes are con-
sidered.

The assumption of no current treatment interaction
is satisfied under a mild strengthening of sequential ig-
norability such that

Am ⊥⊥ Y
aK

m+1 | Lm,Am−1 = am−1,

for all m and all treatment histories aK . It is likewise
sometimes satisfied under a mild strengthening of the
instrumental variables assumption (36) such that for all
treatment histories aK :

A0 ⊥⊥ YaK | L0,

and a mild strengthening of the structural model such
that, for instance, for binary A1 (0/1):

E
(
Ya0a1 − Ya0a

†
1 | A1 = a1,A0 = a0,L0

)
= γ ∗

1
(
a

†
1,L0;ψ∗)(

a1 − a
†
1

)
,

for all a1, a
†
1 . Following the instrumental variables as-

sumptions, Ya00 and Ya01 should then be independent
of A0, given L0, which respectively implies that

E
{
Y − γ ∗

1
(
0,L0;ψ∗)

A1 | A0,L0
}

= E
{
Y − γ ∗

1
(
0,L0;ψ∗)

A1 | L0
}
,

E
{
Y − γ ∗

1
(
1,L0;ψ∗)

(1 − A1) | A0,L0
}

= E
{
Y − γ ∗

1
(
1,L0;ψ∗)

(1 − A1) | L0
}
.

It follows from this that γ ∗
1 (0,L0;ψ∗) = −γ ∗

1 (1,L0;
ψ∗), and thus again that the no current treatment in-
teraction assumption is satisfied (Hernan and Robins,
2006).

8. DIRECT AND INDIRECT EFFECTS

SNMs parameterize the effects of treatment at each
time with subsequent treatments set to some reference
level. These effects can be viewed as controlled direct
effects (Robins and Greenland, 1992), controlling all
subsequent treatments at their reference levels. The for-
malism of SNMs is therefore more widely applicable
for inferring the controlled direct effect of some tar-
get exposure A0 on an outcome Y , other than through
some mediator A1 (e.g., the direct effect of the FTO
gene on the risk of myocardial infarction other than via
body mass). In particular, in the SNMM

E
(
Y − Ya00 | A1 = a1,L1

) = γ ∗
1

(
a1,L1;ψ∗)

,

E
(
Ya00 − Y 0 | A0 = a0,L0

) = γ ∗
0

(
a0,L0;ψ∗)

,

γ ∗
0 (a0,L0;ψ∗) encodes the controlled direct effect of

setting A0 to zero, controlling A1 at zero uniformly
in the population. However, caution is warranted be-
cause γ ∗

0 (a0,L0;ψ∗) may not encode the controlled
direct effect of setting A0 to zero, when controlling A1
at some value a1 �= 0 (Robins and Wasserman, 1997).
From knowledge that γ ∗

0 (a0, l0;ψ∗) for all a0, l0, one
thus cannot deduce that A0 has no direct effect on Y
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(other than via A1). Robins (1999) therefore proposed
directly parameterizing the controlled direct effect as

E
(
Ya0a1 − Y 0a1 | A0 = a0,L0

)
(38)

= m
(
a0, a1,L0;ψ∗)

,

where m(a0, a1,L0;ψ) is a known function, smooth
in ψ , which satisfies m(0, a1, l0;ψ) = 0. In contrast to
SNMMs, (38) parameterizes only the effect of a0; in
(38), a1 may, however, be a modifier of the effect of
a0.

Since model (38) for fixed a1 is a SMM for the coun-
terfactual outcome Ya1 , the techniques of Section 3
would be applicable to estimate ψ∗ if Ya1 were ob-
served for each subject. Since Ya1 is only observed
for individuals with exposure level a1, Robins (1999)
proposed treating subjects who receive a level of A1
other than a1 as censored and, assuming sequential ig-
norability, to inversely weight the data by the density
f (A1 | A0,L1) to control resulting selection bias. This
amounts to solving ψ from an estimating equation of
the form

0 = 1

n

n∑
i=1

1

f (Ai1 | Ai0,Li1)

[
d(Ai0,Li0)

− E
{
d(Ai0,Li0) | Li0

}]
(39)

× [
Yi − m(Ai1,Li0;ψ)

− E
{
Yi − m(Ai1,Li0;ψ) | Li0

}]
,

where d(Ai0,Li0) is an arbitrary index function. More
efficient and doubly robust estimators have been re-
ported elsewhere (Goetgeluk, Vansteelandt and Goet-
ghebeur, 2008), as well as extensions to time-varying
treatments (Robins, 1999).

Ignorability assumptions can be violated even in ran-
domized trials (and Mendelian randomization studies),
where assumption (36) is guaranteed by design, but the
processes underlying the evolution of subsequent me-
diators may be poorly understood. Robins and Green-
land (1994) avoid ignorability assumptions concerning
the mediators by using initial randomization (or more
generally, instrumental variables assumptions) to esti-
mate controlled direct effects with SNFTMs. One can
also use these approaches with SNMMs or SNDMs
(e.g., Ten Have et al., 2007) and, in principle, in the
presence of multiple mediators.

SMMs have also been developed for so-called natu-
ral direct effects (Robins and Greenland, 1992; Pearl,
2001). With Ya0A

0
1 denoting the counterfactual out-

come if A0 were set to a0 and A1 to the counterfac-
tual level A0

1 that A1 would take if A0 were set to

zero, these are defined by contrasts between Ya0A
0
1 and

Y 0A0
1 for some a0 �= 0. Because A0

1 may often reflect
a natural level of A1 (as in the absence of treatment)
which differs between subjects, natural direct effects
may have a more appealing interpretation than con-
trolled direct effects. They moreover correspond with a
measure of natural indirect effect in terms of contrasts
between Ya0A

a0
1 and Ya0A

0
1 for some a0 �= 0. SMMs

for natural direct effects have been considered van der
Laan and Petersen (2008) and Tchetgen Tchetgen and
Shpitser (2011). Such models are defined by

E
(
Ya0A

0
1 − Y 0A0

1 | A0 = a0,L0 = l0
)

(40)
= m

(
a0, l0;ψ∗)

,

for each a0, l0, where m(a0,L0;ψ) is a known func-
tion, smooth in ψ , which satisfies m(0,L0;ψ) = 0.
Extensions to sequential treatments or mediators have
so far not been developed in view of difficulties of iden-
tification in such settings.

9. CONCLUDING REMARKS

Structural nested models were designed in part to
deal with confounding by variables affected by treat-
ment. These models maintain close resemblance to
ordinary regression models by parameterizing condi-
tional treatment effects. However, in contrast to these,
they avoid conditioning on post-treatment variables by
modeling the outcome at each time conditional on the
treatment and covariate history up to that time; they
do this after having removed the effects of later treat-
ments so as to disentangle the unique contributions of
each treatment at each time. The associated method
of G-estimation has close resemblance to ordinary re-
gression methods because it realizes control for mea-
sured confounders through conditioning. In spite of
these strong connections with popular estimation meth-
ods, SNMs and G-estimation have not become quite
as popular as MSMs and the associated IPW methods
(Robins, Hernan and Brumback, 2000).

The lack of popularity of G-estimation is largely re-
lated to the fact that it cannot usually be performed
via off-the-shelf software; however, note that SAS and
Stata macros for SNFTMs and SNCFTMs are available
at http://www.hsph.harvard.edu/causal/software/. This
lack of popularity is additionally related to difficulties
in solving the estimating equations in the analysis of
censored survival times using SNFTMs. These difficul-
ties can now be overcome by using the newer class of
SNCFTMs instead (Picciotto et al., 2012; Martinussen
et al., 2011).

http://www.hsph.harvard.edu/causal/software/
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In spite of these limitations, SNMs and G-estimation
allow for greater flexibility than MSMs and typically
yield better performing estimators (see Section 4.1).
This is especially so when handling continuous ex-
posures or when handling a binary exposure that is
strongly correlated with subject characteristics (e.g.,
when the treated and untreated are very different in
terms of subject characteristics). In the latter case, IPW
estimators will typically have a poor performance, re-
flecting the lack of information about the treatment ef-
fect in strata where most/all subjects are treated or un-
treated. In contrast, because SNMs parameterize treat-
ment effects conditionally on covariates, nonsaturated
models allow for borrowing of information, so that G-
estimators can pool the treatment effects across strata,
as in expression (23), downweighing those strata where
information on treatment effect is lacking. SNMs can
also incorporate effect modification by time-varying
covariates. As such, a saturated SNM encodes all pos-
sible causal contrasts on the considered scale, in con-
trast to MSMs which average the effects across (time-
varying) covariates, thereby diluting the effects when
effect heterogeneity exists on the considered scale.
SNMs can moreover make use of instrumental vari-
ables.

G-estimation is not to be confused with G-computa-
tion (Robins, 1986), which involves standardizing the
predictions from an outcome model corresponding to
the considered treatment regime, relative to the con-
founder distribution in the population. Up to recently,
also this approach has received little attention in prac-
tice because it is computationally intensive and be-
cause correct specification of models for the distribu-
tion of the (possibly high-dimensional) confounders
can be a thorny issue in practice. These concerns,
which also relate to likelihood-based inference under
SNDMs (Robins, Rotnitzky and Scharfstein, 2000),
can be somewhat mitigated by summarising the con-
founders at each time by a longitudinal propensity
score defined as the probability of treatment at that
time, given the history of confounders at that time
(Achy-Brou, Frangakis and Griswold, 2010). However,
this may demand correct specification of propensity
score models in addition to a model for the outcome
at each time. G-computation moreover does not en-
able a transparent parameterization of the effect of a
particular treatment regime on the outcome and may
thereby imply a null paradox (Robins and Wasserman,
1997) according to which tests of the null hypothesis
of no effect may be guaranteed to reject in large sam-
ples (Robins, 1997). However, recent empirical appli-

cations have turned out to be rather successful (Cain
et al., 2011).

We have attempted to make the literature on struc-
tural nested models and G-estimation more accessi-
ble, while also giving pointers to the related litera-
tures on effect modification and mediation. Variants of
SNMs have also been developed to help identify opti-
mal sequences of treatments when treatments may be
assigned dynamically as a function of previous treat-
ment and covariate history. In such settings, it is more
natural to model the effect of a blip of treatment at m

on a particular utility function Y , such as the outcome
at the end-of-study time, if all subsequent treatments
are optimal; that is, ak = a

opt
k (lk, ak−1) for k > m.

This can be done by parameterizing the so-called re-

grets: contrasts of E(Yam,a
opt
m+1 | Lm,Am = am) and

E(Yam−1,a
opt
m | Lm,Am = am) (Murphy, 2003). Alter-

natively, since the optimal treatment is unknown, it
may be easier to parameterize the effect of a blip of
treatment at m relative to no treatment when all fu-
ture treatments are optimal. This amounts to contrast-

ing E(Y am,a
opt
m+1 | Lm,Am = am) and E(Yam−1,0,a

opt
m+1 |

Lm,Am = am) (Robins, 2004). We refer the reader
to other papers in this issue for detailed accounts of
such models. We conclude by expressing our hope
that efforts will be continued to develop computational
algorithms and corresponding software programs for
SNMs, so as to make these methods accessible to a
wider audience.
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