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Abstract: Adaptive clinical trials are becoming increasingly popular re-
search designs for clinical investigation. Adaptive designs are particularly
useful in phase I cancer studies where clinical data are scant and the goals
are to assess the drug dose-toxicity profile and to determine the maximum
tolerated dose while minimizing the number of study patients treated at
suboptimal dose levels.

In the current work we give an overview of adaptive design methods for
phase I cancer trials. We find that modern statistical literature is replete
with novel adaptive designs that have clearly defined objectives and estab-
lished statistical properties, and are shown to outperform conventional dose
finding methods such as the 3+3 design, both in terms of statistical effi-
ciency and in terms of minimizing the number of patients treated at highly
toxic or nonefficacious doses. We discuss statistical, logistical, and regu-
latory aspects of these designs and present some links to non-commercial
statistical software for implementing these methods in practice.
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1. Introduction

The clinical drug development starts with phase I first-in-human (FIH) studies.
The major goals of an FIH study are to explore the safety, tolerability and
pharmacokinetics of the compound and to identify suitably safe doses for testing
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in subsequent studies. In many disease areas, FIH studies are conducted in
healthy volunteers who do not expect to benefit from the drug. However, in
life-threatening diseases, such as cancer, the drugs are highly toxic and may
unnecessarily harm healthy volunteers. For this reason phase I oncology trials are
typically small, non-comparative studies conducted in patients with advanced
cancer who have failed standard treatment options.

For cytotoxic anticancer agents a dual assumption is usually made: both the
probability of toxicity and the probability of therapeutic response are increasing
with dose. It is implicitly assumed that a higher dose, if it is not prohibitively
toxic, will subsequently translate into higher treatment efficacy. The primary
objective of a phase I cancer trial is to determine the maximum tolerated dose
(MTD), defined as the highest dose level at which the rate of toxicity is “accept-
able”. A clinical trial protocol must specify the criteria for dose limiting toxicity
(DLT), often defined as any severe (requiring hospitalization) or life-threatening
adverse event. In the USA, the National Cancer Institute Common Toxicity Cri-
teria are commonly used to define DLT [1]. There are two different philosophies
in defining the MTD [2]. The first one treats MTD as a statistic observed from
the data and the second treats MTD as a quantile of a monotonic dose-toxicity
probability curve. The second approach is more scientifically sound.

Let Ωd = {d1 < · · · < dK} denote a set of pre-specified doses of an ex-
perimental drug which are selected based on data from animal studies. Let Y
denote a binary indicator of toxicity (Y = 1 if DLT; Y = 0 if no DLT). Assume
a monotone relationship between the dose and the probability of toxicity:

pi = Pr(Y = 1|di) = ψ(di), i = 1, . . . ,K, (1.1)

where ψ(d) is an unknown continuous monotone increasing function such that
0 ≤ ψ(d1) < · · · < ψ(dK) ≤ 1. Let Γ ∈ (0, 1) be a pre-specified target probability
of DLT (in phase I trials Γ is typically set between 0.1 and 0.35). Then γ, the
dose level at which probability of toxicity is equal to Γ is rigorously defined as
the (100× Γ)th quantile of ψ,

γ = ψ−1(Γ). (1.2)

Because of continuity of dose-toxicity curve, γ may not be among the dose levels
in Ωd. This leads to an alternative definition of the MTD as the dose level in
Ωd with toxicity probability closest to Γ,

d∗ = arg min
1≤i≤K

|ψ(di)− Γ|. (1.3)

At the time when a trial is designed, knowledge about the underlying dose-
toxicity relationship is scant, and so phase I trial designs are naturally adaptive.
The basic setup of a phase I oncology trial design include pre-specified doses
to be evaluated, a starting dose that is thought to be safe (commonly d1), a
maximum sample size in the study, a number of subjects to be treated at each
dose (cohort size), criteria for dose escalation/de-escalation, stopping rules, and
criteria for determining an MTD at the end of the trial. Commonly patients are
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enrolled in cohorts of size c, where c is a fixed small positive integer (if c = 1 we
have a fully sequential design). Let Xj denote the dose assignment (Xj ∈ Ωd),
and Y j = (Yj1, . . . , Yjc) denote the toxicity outcomes for the jth cohort of
patients. Let Fj = {(x1,y1), . . . , (xj ,yj)} denote the cumulative data from
cohorts 1, . . . , j in the study (lowercase (xj ,yj) is used instead of (Xj ,Y j) to
emphasize the observed data). In general, the dose assignment for the (j +1)th
cohort of patients is determined as

Xj+1 = D(Fj), (1.4)

where D is some prospectively defined design adaptation rule. We shall now
discuss some terminology and classifications of phase I trial designs.

The designs which utilize only data from the most recent cohort of patients
(in which case the allocation rule is Xj+1 = D(xj ,yj)) are referred to as “short
memory” or “memoryless” [3, 4]. For instance, the 3+3 design (Subsection 2.1)
uses estimated toxicity rate based on data from 3 or 6 patients to determine
the dose assignment for the next cohort; the “biased coin design” [5, 6] (Sub-
section 2.5.1) uses the dose and the toxicity outcome of a current patient to
determine the dose assignment for a new patient (Markovian design). Other
designs utilize greater amount of information in the allocation scheme. For ex-
ample, the “cumulative cohort design” [7] (Subsection 2.5.4) uses cumulative
toxicity data from patients at a given dose (while ignoring information at other
doses) to determine the dose assignment for the next cohort of patients. In con-
trast, the designs that are based on parametric models for dose-toxicity curves
utilize the entire history Fj = {(x1,y1), . . . , (xj ,yj)} to borrow information
across different dose levels. The latter designs are referred to as “long memory”
[8] or “designs with memory” [4], and we shall discuss them in Section 3.

In any phase I study, there are two important goals related to the individual
and collective ethics. The individual ethics (treatment goal) requires that every
patient be treated at the dose closest to the MTD. The collective ethics (esti-
mation goal) requires that the trial achieves accurate estimation of the MTD
an the end of the study, to benefit future patients. The designs that attempt to
assign each new patient to the dose that is currently viewed as closest to the
target given current data are referred to as “Best Intention” (BI) designs [9].
Examples of BI designs include the Continual Reassessment Method (CRM) of
O’Quigley et al. [10] (Subsection 3.1), the Escalation with Overdose Control
(EWOC) method of Babb et al. [11] (Subsection 3.2), to name a few. BI designs
are viewed as ethically appealing as they attempt to fulfil the treatment goal;
however, they can be suboptimal in terms of convergence and estimation effi-
ciency of the parameters of interest [8, 12]. In contrast, designs that attempt to
achieve the estimation goal are based on formal optimal design theory [13, 14].
Dose assignments for such designs are determined sequentially to minimize some
convex criterion of the Fisher information matrix, which is best from a statisti-
cal perspective but may result in placing many subjects to highly toxic doses.
Recently, several adaptive design methods were proposed to achieve tradeoff be-
tween individual and collective ethics; these include constrained Bayesian opti-



6 O. Sverdlov et al.

mal designs [15] (Subsection 3.3.2), “hybrid” designs [16, 17] (Subsection 3.3.3),
and penalized adaptive D-optimal designs [18].

Some desirable properties of a phase I trial design are formalized in [19].
These include coherence [20] (dose escalate (de-escalate) only when no toxicity
(toxicity) is observed), consistency (the sequence of dose assignments should
converge to the target MTD), high sensitivity (an interval in which the toxic-
ity probability of the selected dose will eventually fall should be narrow), and
unbiasedness (the design should have improved performance as the underlying
dose-toxicity curve becomes steep). In brief, a scientifically sound phase I trial
design should concentrate dose assignments at and near the MTD, minimize
dose assignments at suboptimal (either too low or overly toxic) dose levels,
recognizing that greater penalty is associated with overdosing compared to un-
derdosing, and the design should lead to accurate estimation of the MTD at the
end of the study.

In this paper, we give an overview of statistical designs for phase I cancer trials
to determine the MTD. We distinguish two major types of designs: i) algorithm-
based and nonparametric model-based designs (Section 2) and ii) designs that
use explicit parametric models to direct dose assignments (Section 3). Such a
classification is consistent, for example, with the one in the edited volume by
Chevret [21]. Section 4 discusses data analysis issues following phase I trial de-
signs. Section 5 describes additional important topics including designs which
perform dose search over a continuum of dose levels, designs for drug combina-
tion and dose-schedule combination trials, and designs for more complex settings
with multiple toxicities. Section 6 presents concluding remarks.

2. Algorithm-based and nonparametric designs to determine MTD

A useful definition of an algorithm-based design is given in Chapter 2 of Che-
ung [22], p. 14: “Generally, an algorithm-based design prescribes a set of es-
calation rules for any dose without regard to the outcomes at other doses.”
This definition ensures that the rule can be tabulated and clinical investiga-
tors can preview all possible dose escalation decisions before the trial starts.
Some notable algorithm-based designs are the “traditional” 3+3 design and its
generalizations (Subsections 2.1–2.2) and Bayesian designs based on toxicity
posterior intervals (Subsection 2.3). Unlike algorithm-based designs, nonpara-
metric model-based designs can include additional features such as randomiza-
tion and/or nonparametric estimation of dose-toxicity probability curve which
increases design complexity. Both algorithm-based and nonparametric designs
require no parametric assumption about the underlying dose-toxicity probabil-
ity relationship. We will discuss nonparametric up-and-down designs and their
generalizations in Subsection 2.5 and isotonic designs in Subsection 2.6.

2.1. The “traditional” 3+3 design and A+B designs

The “traditional” or 3+3 design is the most commonly used design in phase I
oncology trials [23]. The 3+3 design uses the philosophy that MTD is identifiable
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from the data. The design is very simple which explains its popularity among
clinical investigators. Patients are treated in cohorts of size 3, starting with the
lowest dose level and never skipping an untested dose when escalating. At any
dose level a maximum of 6 patients are treated. For the initial three patients at
each dose, if 0/3 toxicities are observed then the next three patients are treated
at the next higher dose; if 1/3 toxicities are observed then the next three patients
are treated at the same dose; if ≥ 2/3 toxicities are observed then the MTD is
considered to have been exceeded. Suppose six patients have been treated at a
given dose. If 1/6 toxicities are observed then the next three patients are treated
at the next higher dose; if 2/6 toxicities are observed then the current dose is
declared the MTD; if ≥ 3/6 toxicities are observed then the MTD is considered
to have been exceeded. Therefore, by construction, the 3+3 design is supposed to
target the 33rd percentile of a dose-toxicity distribution curve [24]. Heather and
Mackey [25] made an interesting observation that the 3+3 design uses isotonic
regression for estimating MTD. Storer [26, 27] was one of the first to explore
statistical properties of the 3+3 design and proposed a few modifications, called
“up-and-down designs”. Several other practical modifications of the 3+3 design
were proposed [28, 29, 30, 31].

Many papers assessed operating characteristics of the 3+3 design (along with
other phase I designs) via simulation [32, 33, 34, 35, 36, 37]. Reiner et al. [38]
studied the issue of early stopping of the 3+3 design and found that “the prob-
ability of coming to an early halt at an incorrect level is higher than generally
believed”, and if the trial stops after fewer than 15 patients then results should
be interpreted with caution. Exact statistical properties of the 3+3 design were
investigated, among others, by Kang and Ahn [39, 40] and Lin and Shih [41]. In
particular, Lin and Shih [41] found that target toxicity level (TTL), defined as
the probability of a DLT at the MTD for a 3+3 design is not 33% as opposed to
the popular belief. In fact, the design does not have a fixed TTL and it is advis-
able that several possible dose-toxicity scenarios be explored to determine the
corresponding TTLs before implementing a clinical trial with the 3+3 design.
Ivanova [42] showed theoretically that the 3+3 design will, on average, select a
dose with toxicity rate between 0.16 and 0.27. Overall, despite its popularity,
the 3+3 design is an ad hoc method with poor statistical properties. In addition
to that the design identifies MTD imprecisely and unreliably, its dose escala-
tion algorithm is quite slow and many patients in the trial may be treated at
suboptimal dose levels [10, 43].

Lin and Shih [41] proposed generalizations of the 3+3 design, the A+B de-
signs which can enroll cohorts of size other than 3 and can be cast with or
without dose de-escalation. Ivanova [42] showed how to calibrate design param-
eters in an A+B design to achieve selection of the dose with the toxicity rate
close to the target Γ. The A+B designs were further studied in [44, 45].

2.2. Accelerated titration designs

Simon et al. [46] proposed accelerated titration designs (ATDs) to improve the
3+3 design. An ATD consists of three important components: a rapid accelera-
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tion phase, an intra-patient dose escalation phase and a model-based analysis of
the dose-toxicity relationship. A rapid acceleration phase is achieved by treat-
ing one patient per dose level and using single-dose or double-dose escalation
steps until the first instance of a DLT or the second instance of grade 2 toxic-
ity, at which step the design switches to the traditional 3+3 scheme (two more
patients are treated at the dose level that has triggered the switch and 3 to 6
patients are treated in subsequent cohorts). The intra-patient dose escalation
part allows dose titration during subsequent treatment cycles in those patients
who remain in the study and have no evidence of toxicity during the current
cycle. A nonlinear mixed-effects model is used for data analysis at the end of
the trial. Simon et al. [46] evaluated the performance of three different ATDs
through simulation, using parameter estimates elicited from 20 real trials. They
found that ATDs, on average, can substantially reduce the number of under-
treated patients with very little increase in the number of patients experiencing
DLTs. Also, ATDs require substantially fewer patients compared to the tra-
ditional design to achieve similar information about MTD, and in some cases
ATDs can reduce the trial duration. Since ATDs use a dose-toxicity model, they
provide greater information about cumulative toxicity, inter-patient variability
and steepness of the dose-toxicity curve. An MS Excel macro for managing dose
assignments and an S-Plus program to facilitate data analysis following ATDs
are available at the Biometric Research Branch of National Cancer Institute
(see Table 2). ATDs can be advantageous over the traditional 3+3 design, but
these designs have found little use in practice, likely due to conservativeness of
investigators. One successful application of an ATD is reported in [47].

2.3. Bayesian algorithm-based designs

Ji et al. [48] proposed an algorithm-based dose finding method based on toxicity
posterior intervals (TPI). A Beta-binomial model for toxicity probabilities at
each dose level is assumed. Given a target toxicity rate and toxicity outcomes at
any dose, one calculates posterior probabilities of three non-overlapping intervals
that partition the (0, 1) interval. These intervals correspond to decisions of dose
escalation, staying at the same dose, or dose de-escalation. The interval with the
highest posterior probability triggers the decision for the next cohort of patients.
The algorithm includes a stopping rule which may facilitate early termination
of a trial if dose 1 is excessively toxic, and an exclusion rule which restricts
escalation to a dose that is likely to be highly toxic. At the end of the trial,
the MTD is selected as the dose for which the isotonic-transformed posterior
probability of toxicity is closest to the target toxicity probability. The merits
of the TPI method are three-fold: simplicity of implementation, transparency
to clinical investigators, and good statistical properties (the method can target
any user-defined toxicity probability and performs comparably to model-based
methods such as the CRM [10]. A decision theoretic justification for the TPI
procedure is given in [49]. Ji et al. [50] proposed a modified version of the TPI
procedure (mTPI), based on the unit probability mass statistic. The mTPI
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inherits many attractive features of the TPI procedure, but it is simpler as it
only requires specification of an equivalence interval where any dose with toxicity
probability within the interval can be considered as the MTD. The authors
provide an MS Excel macro for implementing both TPI and mTPI methods in
real time, and an R code for performing simulations (see Table 2). A recent
simulation study [51] shows that the mTPI design generally outperforms the
traditional 3+3 design both in terms of mean number of patients treated above
MTD and the percentage of correct MTD selection.

2.4. Other algorithm-based designs

Pharmacologically guided designs [52, 53] were proposed to improve the 3+3 de-
sign by utilizing exposure-toxicity data from animal studies to direct initial dose
escalation in a phase I trial until the first DLT, after which the 3+3 algorithm
is applied. Although scientifically sound, these designs have been rarely used in
practice [54]. Cheung [55] developed a sequential procedure for identifying MTD
based on stepwise tests which control family-wise error rates without assuming
monotonic dose-toxicity relationship. Jiang et al. [56] proposed algorithms to
construct optimal and approximately optimal designs based on minimization of
a penalty function associated with selection of the MTD. Their methodology
includes the 3+3 design as a special case, but it is more flexible as it can target
doses with pre-specified toxicity levels. Blanchard and Longmate [57] proposed
“toxicity equivalence range design”, a frequentist version of the mTPI design of
Ji et al. [50].

2.5. Up-and-down designs

Up-and-down designs (sometimes referred to as “random walk rules”) are non-
parametric procedures that can be used to target quantiles of interest. They
should be distinguished from Storer’s [26] “up-and-down” procedures which are
modifications of the 3+3 design.

2.5.1. Biased coin designs

In the context of phase I clinical trials, the most famous up-and-down design
is the “biased coin design” (BCD) developed by Durham and Flournoy [5, 6]
and Durham et al. [58]. The BCD is a randomized extension of the Dixon and
Mood’s [59] up-and-down design.

Let Γ (0 < Γ ≤ 0.5) denote the pre-specified target toxicity level (similar
results are available for 0.5 ≤ Γ < 1). Define b = Γ/(1 − Γ), the bias coin
probability. For the jth patient (j = 1, . . . , n), let Yj denote a binary indicator
of toxicity (Yj = 1 if toxicity; Yj = 0 if no toxicity) and Xj ∈ Ωd denote the
dose level assignment. The first patient is treated at the dose that is thought to
be closest to the target (alternatively, the experiment can start at d1 and doses
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can be escalated one at a time until first toxicity is observed, at which instant
the main algorithm starts). Suppose the jth patient has been assigned to dose
dk for some k = 1, . . . ,K. The (j+1)th patient’s dose assignment is determined
as follows.

i Suppose Xj = dk for some k = 2, . . . ,K − 1. If Yj = 1 then assign
patient (j+1) to dose dk−1. If Yj = 0 then randomize patient (j+1) with
probability b to dose dk+1 and with probability 1− b to dose dk.

ii Suppose Xj = d1. If Yj = 1 then assign patient (j + 1) to dose d1. If
Yj = 0 then randomize patient (j + 1) with probability b to dose d2 and
with probability 1− b to dose d1.

iii Suppose Xj = dK . If Yj = 1 then assign patient (j + 1) to dose dK−1. If
Yj = 0 then assign patient (j + 1) to dose dK .

The experiment continues until the pre-specified number of patients have been
treated in the trial. The BCD generates a random walk on the lattice of doses.
The exact and asymptotic properties of the design have been established using
the theory of finite Markov chains [5, 6, 58, 60]. These properties as well as
an application of the BCD are presented in [61]. The asymptotic distribution
of allocation proportions at different dose levels is unimodal around the target
quantile γ. Bortot and Giovagnoli [62] showed that the BCD possesses certain
optimal asymptotic properties. Specifically, empirical mode estimator of the tar-
get quantile has smallest variance and the BCD has fastest speed of convergence
to the stationary distribution. Estimation of the target quantile following the
BCD was explored in [61, 62, 63, 64, 65, 66]. While maximum likelihood esti-
mators (MLEs) using logistic models are consistent and asymptotically normal
[63], for small and moderate samples such estimators may not exist, may be
biased [64] or may be highly variable [61]. The empirical mode is strongly con-
sistent for the mode of the stationary treatment distribution [62, 65]; yet it
may be unsatisfactory for small and moderate samples. Stylianou and Flournoy
[66] investigated five different estimators of the target quantile and found that
the isotonic regression estimator has best small-sample performance. The toxi-
city probabilities {ψ(dk)}Kk=1 can be also estimated by isotonic regression [67].
Stylianou [68] showed how to derive exact distributions of various statistics of
interest by enumerating all possible outcomes in a BCD with a pre-determined
sample size.

The original BCD as described by Durham and Flournoy [5] is a first order
Markovian design: its dose escalation rule depends only on the toxicity outcome
of the current patient. By utilizing more information than just the most recent
response one can enhance the design performance. For this purpose a number
of proposals have been made.

2.5.2. Improved up-and-down designs

Ivanova et al. [69] studied several designs including the “k-in-a-row rule” [70, 71],
the “moving average up-and-down rule”, and the “Narayana rule” to target
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toxicity probabilities of the form Γ = 1 − (0.5)1/k, where k = 1, 2, . . . is a
pre-specified number. A distinctive feature of these designs is that they look
at the k most recent responses at the current dose level to determine the dose
assignment for the next patient. Simulations show that these designs improve
the BCD by assigning more patients in a neighborhood of the target dose and
achieving more precise estimation of the MTD. An isotonic regression estimator
is recommended for data analysis [69].

2.5.3. Group up-and-down designs

In many trials it is desired to treat patients in cohorts so that patients in the
same cohort receive the same dose, but the doses may differ across the cohorts.
Gezmu and Flournoy [72] proposed “group up-and-down designs” (GUDs) which
make dose modifications based on the number of toxicities from the most recent
cohort of patients. These designs are non-randomized. They use additional pa-
rameters (cohort size and cutoff points for the number of toxicities in a cohort)
that can be tuned to target certain toxicity probabilities of interest. In particu-
lar, for cohorts of size k, the designs can target toxicity probabilities of the form
Γ = 1− (0.5)1/k. Baldi Antognini et al. [73] proposed randomized GUDs which
can target any given Γ ∈ (0, 1).

2.5.4. Cumulative cohort designs

Ivanova et al. [7] proposed “cumulative cohort design” (CCD) which utilizes
cumulative toxicity data from patients at a given dose in the dose-allocation
algorithm. Let dk be the currently administered dose (for the jth cohort of

patients), ψ̂(dk) be an estimate of ψ(dk) based on data from patients that have
been assigned to dk thus far, and ∆ > 0 be the pre-determined constant. The
dose assignment Xj+1 for the next, (j + 1)th cohort of patients is determined
as follows.

i If ψ̂(dk) ∈ (Γ−∆,Γ +∆), then Xj+1 = dk;

ii If ψ̂(dk) ≤ Γ−∆, then Xj+1 = dk+1 (Xj+1 = dK if k = K);

iii If ψ̂(dk) ≥ Γ +∆, then Xj+1 = dk−1 (Xj+1 = d1 if k = 1).

How to judiciously choose the design parameter ∆ (e.g. to maximize the total
number of patients assigned to the MTD over a set of dose-toxicity scenarios)
is also discussed in [7]. Oron et al. [74] proved almost sure convergence of the
CCD to the target dose under widely satisfied conditions on ψ(d). Simulations
show favorable properties of the CCD [7, 75, 76]. In particular, Liu et al. [76]
reported a comprehensive simulation study comparing six different up-and-down
designs under various experimental settings. Their findings are summarized as
follows: “The results show that the CCD has the best overall performance in
terms of selecting the MTD, assigning patients to the MTD and patient safety.
Its performance is generally close to the upper bound of nonparametric designs,
but improvement seems possible in some cases.”
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2.5.5. Up-and-down designs with delayed responses

In trials with long evaluation periods some patients may enroll into the study
before toxicity outcomes from previous patients are available. Stylianou and
Follman [77] proposed an “accelerated BCD” for which the dose assignment for
the next patient is based on the last completely evaluated patient. Their design
can reduce the total study duration (20%–70% less time depending on sample
size and accrual rate) while having similar statistical properties to the BCD of
Durham and Flournoy [5]. Jia and Braun [78] proposed “adaptive accelerated
BCD” which accounts for the patients’ follow-up times in the study and facil-
itates dose assignments without delay. Ivanova et al. [7] proposed a version of
the cumulative cohort design with delayed toxicity outcomes.

2.5.6. More complex trials

Generalizations of up-and-down designs to trials with ordinal toxicity grades are
available [79, 80]. Applications of up-and-down designs in trials with toxicity
and efficacy considerations are discussed in [81, 82]. A review of merits and
limitations of up-and-down designs can be found in [83]. Most recently, Oron
and Hoff [8] found that up-and-down designs can outperform more complex
model-based “long memory” designs in small sample studies (10–40 patients)
which are typical in phase I cancer trials.

2.6. Isotonic designs

Since phase I trials are small, estimation of toxicity probabilities may be chal-
lenging. Parametric methods such as the maximum likelihood estimators may
be unsatisfactory, especially if the model is misspecified. A popular nonpara-
metric approach to estimating a monotone dose-toxicity curve is the isotonic
regression. Recently, several nonparametric designs for MTD finding have been
proposed that use current isotonic regression estimates of toxicity probabilities
to determine the next dose assignment [84, 85, 86, 87]. Ivanova and Flournoy
[75] performed a simulation study comparing several such designs and found
that designs that select the next dose with the estimated toxicity rate closest
to the target (e.g. designs of Leung and Wang [84], Yuan and Chappell [85] and
Conaway et al. [86] perform less well than the cumulative cohort design [7], both
in terms of correct identification of the MTD and in terms of assigning more
patients to doses near the MTD. Cheung [22] notes that isotonic designs may
be undesirably rigid.

3. Parametric model-based designs to determine MTD

Model-based designs for phase I trials were proposed as alternatives to algorithm-
based designs. A distinctive feature of these methods is the postulation of a para-
metric statistical model for dose-toxicity relationship. The dose-toxicity curve
is sequentially updated based on accumulating data from patients in the trial,
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and the dose assignment for an incoming patient is determined on the basis of
the current model-based estimates of toxicity probabilities. Since model-based
approaches utilize the entire history from subjects in the trial, they are expected
to be more efficient than algorithm-based approaches. On the other hand, these
designs may be subject to modeling bias and careful assessment of robustness
properties of the methods is essential. Also, these designs may be more difficult
to implement and require more upfront planning than conventional designs.
Since phase I studies are small, a model to facilitate design adaptations should
be parsimonious, typically with one or two parameters. Sophisticated models
should be avoided at the design stage because parameter estimates may be nu-
merically unstable. In this section we will discuss several popular model-based
approaches for phase I trials: the Continual Reassessment Method (CRM), the
Escalation with Overdose Control (EWOC), and Bayesian decision-theoretic
approaches.

3.1. Continual reassessment method

The Continual Reassessment Method (CRM) is the first model-based design in
the clinical trial literature, proposed in 1990 by O’Quigley et al. [10]. Many
modifications of the original CRM have been developed since then. A compre-
hensive exposition of the CRM is given in the book by Cheung [22]. Other
excellent reviews of the CRM are available [88, 89].

The defining feature of the original CRM is a one-parameter working model
for the dose-toxicity probability curve:

pi = ψ(di, a), i = 1, . . . ,K, (3.1)

where a > 0 is the parameter. It is assumed that ψ(d, a) is monotonically in-
creasing in d for every value of a and ψ(d, a) is monotone in a for every d. Given
any Γ ∈ (0, 1) it is assumed that for each d there exists a unique parameter ã
such that ψ(d, ã) = Γ. In other words, the chosen one-parameter model should
be rich enough to uniquely determine the target toxicity probability at each dose
level. As noted by O’Quigley and Conaway [89], while a one-parameter model
may not be best for describing the entire dose-toxicity probability curve, it is
more important that the model provides adequate local fit near the MTD. In
practice, it is helpful to have a graphical review of dose-toxicity curves to assess
plausibility of the selected family of models; this should be done collaboratively
by clinician and statistician [88]. Three one-parameter models are commonly
proposed [10, 22]:

• Power model: ψ(d, a) = da (a > 0, 0 < d < 1);
• Hyperbolic tangent model: ψ(d, a) = { tanh d+1

2 }a (a > 0, −∞ < d <∞);

• Logistic model with a fixed intercept: ψ(d, a) = exp(c+ad)
1+exp(c+ad) (c is pre-

specified, a > 0, −∞ < d <∞).

Suppose a one-parameter model is chosen and let a0 be an unknown value of the
parameter that defines the “true” model ψ(x, a0). Let 0 < α1 < · · · < αK < 1 be
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pre-specified a priori toxicity probabilities at theK dose levels (the “skeleton” of
the CRM) and let â0 be the prior estimate of a0. To achieve consistency between
the prior assumptions and the postulated model, the dose labels d1, . . . , dK for
implementing CRM can be determined by solving the equations αi = ψ(di, â0),
i = 1, . . . ,K. Importantly, this preserves the ordering of the doses, i.e. d1 <
· · · < dK .

Given initial uncertainty about the parameter a, one may use a Bayesian
approach to the trial design. Three distinct approaches to establish the prior
distribution, including the use of analytically tractable prior (e.g. a standard
exponential density), the use of pseudo-data prior, and the use of empirical
prior are discussed in O’Quigley and Conaway [89]. The original CRM is fully
sequential. The first patient is treated at the dose which a priori is thought
to be closest to the MTD. Any subsequent patient is treated at a dose with
estimated toxicity probability closest to the target toxicity level. Let g(a) de-
note the prior density and let Fj = {(x1, y1), . . . , (xj , yj)} denote the history
from first j patients in the trial, where xm ∈ {d1, . . . , dK} is the dose assign-
ment and ym is the toxicity outcome of the mth patient (m = 1, . . . , j). Using
Bayes formula, the posterior density for a is g(a|Fj) = C−1Lj(a)g(a), where

Lj(a) =
∏j

m=1{ψ(xm, a)}ym{1− ψ(xm, a)}1−ym is the binomial likelihood and
C =

∫∞

0
Lj(a)g(a)da is the normalizing constant. The posterior mean toxicity

probability at di is estimated as

Ea{ψ(di, a)|Fj} =

∫ ∞

0

ψ(di, a)g(a|Fj), i = 1, . . . ,K. (3.2)

Then the dose assignment for the (j + 1)th patient is determined as

Xj+1 = arg min
1≤i≤K

|Ea{ψ(di, a)|Fj} − Γ|. (3.3)

The dose assignment algorithm (3.3) is applied sequentially until a pre-specified
number of patients, n, have been treated in the trial. The final recommendation
of the MTD is based on data from n patients. In (3.3), instead of Ea{ψ(di, a)|Fj}
one can use plug-in estimators p̃i = ψ(di, ãj), where ãj is the posterior mean of
a, or p̂i = ψ(di, âj), where âj = argmaxa Lj(a), the maximum likelihood esti-
mator. The latter approach (proposed by O’Quigley and Shen [90]) is referred to
as the likelihood CRM (CRML). The maximum likelihood estimator of toxicity
probability p̂i = ψ(di, ân) is asymptotically fully efficient, and the confidence
intervals based on p̂i are quite accurate even for samples as small as n = 12 or
n = 16 [91].

Theoretical large sample properties of the CRM have been established [92,
93, 94]. Under widely satisfied conditions, the maximum likelihood estimator is
consistent and asymptotically normal and the recommended dose level converges
to the target level even if the dose-toxicity model is misspecified [92, 94]. Cheung
[20] introduced the coherence principle for phase I trials which posits that dose
escalation is appropriate only when the most recent patient has no toxicity and
dose de-escalation is coherent only when a toxic outcome has just been seen. The
one-stage Bayesian CRM is coherent whereas the two-stage CRM is in general
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not coherent in escalation [22]. Cheung [95] developed a sample size formula
for a clinical trial with the Bayesian CRM. O’Quigley et al. [96] proposed a
non-parametric optimal design (assuming that complete dose-toxicity profile is
available) as the benchmark for comparing small sample efficiency of various
designs in term of percentage of correct dose selection. The CRM is shown to
be highly efficient, with limited potential for improvement, compared to the
optimal design [96, 97, 98].

Small-sample properties of the CRM were investigated via simulations which
also included comparisons of the CRM with other phase I dose finding designs
[32, 33, 34, 35, 99, 100, 101]. Some authors emphasize the importance of in-
cluding measures of variability in simulations to facilitate comparisons among
the designs [2, 8]. The CRM has been shown to yield high percentage of correct
selection of the MTD under a variety of dose-toxicity models and sample sizes
applicable in phase I trials. However, Oron and Hoff [8] recently showed that
the CRM, while performing well on average, has a highly variable distribution
of the number of cohorts treated at the MTD which may be unsatisfactory in
small trials.

Some early criticisms of the CRM were attributed to the fully sequential
nature of the method and the fact that escalation may occur too fast [32]. Many
practical improvements of the method have been proposed to overcome these
criticisms and make the method attractive to investigators. Some important
modifications and extensions of the CRM are outlined as follows.

3.1.1. More cautious escalation schemes

The original CRM starts at the dose which a priori is thought to be closest to
the MTD. More cautious strategies include starting the design at the lowest dose
[32]; not allowing escalation if the most current outcome is DLT [102]; escalating
one dose level at a time [103, 104]; and treating more than one patient at the
higher dose levels [32, 103, 105].

3.1.2. Two-stage CRM

To facilitate better learning at the beginning of the trial, two-stage designs have
been proposed. At the first (“start-up”) stage, patients are treated in cohorts
at escalating doses until the first instant of toxicity is seen. This is done to
ascertain initial data and gain prior knowledge about the drug characteristics.
The second (main) stage involves implementation of the CRM or its modification
[90, 104, 106, 107, 108].

3.1.3. Model calibration in the CRM

The performance of the CRM may depend on the specification of a prior dis-
tribution and the working model. Model calibration strategies for the CRM are
presented in [109, 110, 111, 112, 113, 114, 115, 116].
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3.1.4. Curve-free Bayesian designs

Gasparini and Eisele [117] proposed a class of curve-free designs by placing a
multivariate prior distribution on the vector of toxicity probabilities at the K
doses. O’Quigley [118] showed equivalence of this class of curve-free designs to
a class of CRM designs. Cheung [119] noted that curve-free designs with vague
priors may be undesirably rigid and suggested using slightly more informative
priors. Whitehead et al. [120] proposed a Bayesian dose-finding approach as-
suming only monotonicity of the dose-toxicity curve.

3.1.5. Robustified CRM

Yuan and Yin [121] proposed a hybrid design which uses the traditional 3+3
scheme if observed data are informative about the toxicity rate at a given dose,
and it switches to Bayesian CRM if there is not enough information to make
such a definitive decision. Su [122] proposed an approach combining Bayesian
and likelihood-based CRM designs. Yuan and Yin [123] proposed a “robust EM
CRM” which addresses the issues of choosing prior toxicity probabilities and
handling delayed toxicity outcomes.

3.1.6. Stopping rules

The CRM uses a fixed and pre-determined sample size. An investigator may
want to stop the trial before the target sample size is reached for safety issues
and/or budgetary reasons. The proposals for early stopping of the CRM trial
design include using the width of the posterior 95% confidence interval for the
MTD as a stopping criterion [43], using Bayesian stopping rules for early detec-
tion of mis-choice of the dose range [124, 125], and terminating the trial at the
point when one can predict with high probability the final recommendation for
the MTD [126, 127].

3.1.7. Time-to-event CRM (TITE-CRM)

The CRM requires model updates after each patient or group of patients. How-
ever, in many trials toxicity outcomes are not observed immediately after treat-
ment. Cheung and Chappell [128] proposed an extension of CRM which accounts
for patient staggered entry and delayed toxicity outcomes (TITE-CRM). Their
method can shorten the trial duration while maintaining important statisti-
cal properties of the original CRM. Some further enhancements of TITE-CRM
have been proposed recently [129, 130, 131, 132]. Applications of TITE-CRM
are presented in Muler et al. [133] and Normolle and Lawrence [134].

3.1.8. More complex trials

O’Quigley and Conaway [135] discuss extensions of the CRM to dose-finding tri-
als with special considerations. These include studies where two subpopulations
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of patients have possibly different susceptibility to toxicity and the objective
is to find the MTD within each subpopulation [136, 137], dose finding trials
using ordinal toxicity grades [138, 139, 140, 141], dose finding trials of combi-
nation drugs [142, 143, 144] and trials with both toxicity and efficacy outcomes
[145, 146, 147]. Huang and Chappell [148] proposed an extension of CRM by
using multiple dose levels in the cohorts, to achieve faster and more efficient
design.

Some recent interesting papers report applications of CRM in pediatric phase I
cancer trials [149], phase I cancer trials in Japanese patients [150, 151], and a
trial for a rare disease with constraints on the maximal sample size [152]. Soft-
ware for CRM implementation is available [153, 154, 155]. R packages ‘dfcrm’
and ‘bcrm’ are available for download from the Comprehensive R Archive Net-
work (Table 2).

3.2. Escalation with overdose control (EWOC)

The EWOC is a Bayesian adaptive design proposed by Babb et al. [11]. The
method uses a similar idea to the CRM of treating each patient at the dose
estimated to be closest to the MTD, but it places heavier penalties on overdosing
than underdosing. The method starts with a two-parameter dose-toxicity model

pi = Pr(Y = 1|di) = ψ(α+ βdi), i = 1, . . . ,K, (3.4)

where α and β are unknown parameters and ψ(x) = 1/(1+e−x) is the standard
logistic distribution. It is assumed that β > 0 so that ψ(α + βx) is strictly
increasing in dose. The model (3.4) is also re-parameterized in terms of more
clinically interpretable measures such as ρ, the toxicity probability at d1, and γ
(d1 ≤ γ ≤ dK), the unknown MTD that corresponds to the pre-specified target
toxicity level Γ ∈ (0, 1). Since ρ = ψ(α + βd1) and Γ = ψ(α + βγ), we have

α =
d1logit(Γ)− γlogit(ρ)

d1 − γ
,

β =
logit(ρ)− logit(Γ)

d1 − γ
,

where logit(x) = log{x/(1− x)}, and we can write

ψ(α+ βx) = ψ

(

(d1 − x)logit(Γ)− (γ − x)logit(ρ)

d1 − γ

)

= F (x, ρ, γ).

Let g(ρ, γ) denote the joint prior density for (ρ, γ) with support on [0, ρ0] ×
[d1, dK ], which can be elicited from physicians. Given history of dose assignments
and toxicity outcomes from j patients in the trial, Fj = {(x1, y1), . . . , (xj , yj)},
the joint posterior density for (ρ, γ) can be obtained as g(ρ, γ|Fj) =

C−1Lj(ρ, γ)g(ρ, γ), where Lj(ρ, γ)=
∏j

m=1{F (xm, ρ, γ)}ym{1−F (xm, ρ, γ)}1−ym

is the likelihood and C =
∫ dK

d1

∫ ρ0

0 Lj(ρ, γ)g(ρ, γ)dρdγ is the normalizing con-
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stant. The parameter of interest is γ whose marginal posterior density is
g(γ|Fj) =

∫ ρ0

0
g(ρ, γ|Fj)dρ.

The distinctive feature of the EWOC method is the dose allocation rule.
Assuming g(γ|Fj) is available, the (j + 1)th patient’s dose assignment Xj+1 is
chosen such that

Pr(γ < Xj+1) = ǫ, (3.5)

for some small pre-specified feasibility bound ǫ > 0. In other words, the dose
is selected such that the posterior probability of overdosing is low. Note that
the described procedure considers doses on a continuous scale. To modify the
procedure for a discrete dose space, one can cast the allocation rule as

X̃j+1 = max{d1, . . . , dK : di −Xj+1 ≤ T1 and Pr(γ < Xj+1)− ǫ ≤ T2},

where Xj+1 is determined from (3.5) and T1 and T2 are suitably chosen non-
negative numbers referred to as “tolerances” [11]. The EWOC procedure can
be applied sequentially or for cohorts of patients. If some patients’ toxicity out-
comes are delayed, one just uses all available data to update the model and
perform dose allocation for an incoming patient. Final data analysis following
EWOC is performed using Bayesian methods. Simulations from the original pa-
per [11] showed that EWOC has similar estimation efficiency of the MTD but
lower frequency of overdosing compared to CRM, and it compares favorably to
various non-parametric dose escalation schemes.

The EWOC design has a firm theoretical basis [11, 156, 157, 158]. Under
mild regularity conditions a sequence of EWOC-generated dose assignments
converges in probability to the true MTD and the EWOC design is optimal in
the class of Bayesian-feasible designs [156]. Furthermore, the EWOC is coherent
in both escalation and de-escalation [157].

Important extensions of EWOC include incorporation of covariates [159, 160,
161], accounting for the number and ordinal nature of toxicity grades [162, 163],
accounting for late onset toxicities [164], the choice of a cohort size [165], the
use of variable feasibility bound [166], and an extension to drug combination
trials [167]. The free interactive software from the authors of the method is
available (see Table 2). A review of the software is given in [168]. An interesting
application of EWOC is given in [169].

3.3. Bayesian decision theoretic and optimal designs

In this subsection we discuss novel Bayesian adaptive designs which incorporate
formal optimality criteria in design adaptation rules. Subsection 3.3.1 discusses
Bayesian decision theoretic designs that encompass many model-based methods
under one paradigm. Subsection 3.3.2 discusses Bayesian optimal sequential
designs which simultaneously address the objectives of efficient estimation and
an ethical dilemma of restricting allocation of patients to highly toxic doses by
sequentially solving a restricted optimization problem. Subsection 3.3.3 discusses
“hybrid” designs that achieve a tradeoff between efficiency and ethics by solving
a stochastic optimization problem.
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3.3.1. Bayesian decision theoretic designs

Whitehead and Brunier [170] proposed a Bayesian decision theoretic frame-
work for phase I dose finding studies. This approach requires specification of a
dose-toxicity model, a prior distribution for model parameters, a set of possible
decisions (dose level assignments for the patients) and a gain (or loss) function.
Consider a two-parameter logistic model for the dose-toxicity curve:

pi =

{

1 + exp

(

−di − α

β

)}−1

, β > 0, i = 1, . . . ,K. (3.6)

Let g(θ) denote the prior density for θ = (α, β) and g(θ|Fj) denote the posterior
density for θ given data from first j patients in the trial. Let L(θ, x) denote the
loss function which represents the value of loss if dose x is assigned to the
(j + 1)th patient (x ∈ {d1, . . . , dK}) when parameter θ is valid. Given g(θ|Fj),
one can obtain posterior expected loss for each of the K dose levels:

Eθ{L(θ, di)} =

∫

L(θ, di)g(θ|Fj)dθ, i = 1, . . . ,K.

The dose level for the (j + 1)th patient is chosen to minimize the posterior
expected loss:

Xj+1 = arg min
x∈{d1,...,dK}

Eθ{L(θ, x)}.

As noted by Whitehead and Williamson [171], instead of posterior expected
loss, one can use more convenient plug-in estimators such as L̃ = L(θ̃j , di),

where θ̃j =
∫

θg(θ|Fj)dθ is the posterior mean, or ˜̃L = L(˜̃θj , di), where
˜̃
θj =

argmaxθ g(θ|Fj) is the posterior mode.
The form of a loss function must reflect the study objectives. Recall that p(x)

denotes the toxicity probability at dose x, Γ ∈ (0, 1) is the pre-specified target
toxicity level and γ is an unknown (100 × Γ)th quantile of p(x). The two key
considerations are the patient loss and the information loss. For the patient loss,
one can choose

L1(θ, x) = (p(x) − Γ)2,

which is the loss function used in the CRM method. The design sequentially
selects a dose with toxicity probability closest to Γ [10]. A “more cautious”
asymmetric loss of the EWOC method [11] puts higher penalties on overdosing
than on underdosing:

L2(θ, x) = ǫ(γ − x)+ + (1 − ǫ)(x− γ)+,

where x+ = max(x, 0). Some other loss functions to limit exposure of pa-
tients to doses higher than the estimated MTD can be found in Whitehead
and Williamson [171].

For the information loss one can consider some criterion of the Fisher informa-
tion matrix. If the goal is to estimate the target quantile γ = α+β log{Γ/(1−Γ)}
as accurately as possible (see Subsection 3.3.2 for details), then a loss function
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can be chosen as

L3(θ, x) = var{α̂+ β̂ log{Γ/(1− Γ)},
which is an asymptotic variance of the maximum likelihood estimator of γ, as-
suming that j patients have been treated at doses x1, . . . , xj and the (j + 1)th
patient is treated at dose x. This can be derived using delta-method using
the Fisher information matrix for (α, β). The (j + 1)th patient’s dose assign-
ment should be one which results in the smallest variance of γ̂. Other measures
of information such as the determinant of the Fisher information matrix or a
weighted combination of different criteria can be used [172].

The operating characteristics of Bayesian decision theoretic designs with two-
parameter logistic model for sample sizes typical to phase I trials were assessed
via simulations [171, 173, 174]. Zhou and Whitehead [175] provide guidance to
practical implementation of Bayesian dose escalation procedures. The authors
developed a software package Bayesian ADEPT [176, 177, 178]. In ADEPT one
can assess the operating characteristics of several designs via simulations, and
the software has a utility to implement Bayesian dose escalation designs in real
time. The authors point out that ADEPT should be viewed as an assistant in
decision-making, but it should not replace clinical judgment.

3.3.2. Bayesian optimal sequential designs

Haines et al. [15] used optimal design theory to construct Bayesian optimal
sequential designs for phase I trials. Consider a two-parameter location-scale
logistic model for the dose-toxicity curve (3.6). For a chosen toxicity level Γ,
the target quantile is expressed as γ = α+ β log{Γ/(1− Γ)}, which is linear in
the parameters α and β. Let n be the fixed and predetermined study sample
size. A design for model (3.6) is determined by a discrete probability measure

ξ = {(di, ρi), i = 1 . . . ,K,
∑K

i=1 ρi = 1}, where ρi = ni/n is the proportion of
patients assigned to dose di. Let zi = (di − α)/β. Then the Fisher information
for θ = (α, β) at di is given by

I(di, θ) =
ezi

β2(1 + ezi)2

(

1 zi
zi z2i

)

,

and the full design information matrix isM (ξ, θ) =
∑K

i=1 ρiI(di, θ). An optimal
design problem is to maximize some concave criterion of M (ξ, θ). Haines et al.
[15] considered two Bayesian criteria: a D-optimality criterion

φD(ξ) = Eθ{log |M(ξ, θ)|} =

∫

log |M (ξ, θ)|g(θ)dθ, (3.7)

and a c-optimality criterion

φc(ξ) = −Eθ{cTM (ξ, θ)−1c} = −
∫

cTM(ξ, θ)−1cg(θ)dθ. (3.8)

In (3.7) and (3.8), g(θ) denotes the prior probability density for θ and the
integrals are taken over the support of g(θ). In (3.8), c = (1, log{Γ/(1− Γ)})T
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and the expression under the integral is proportional to the asymptotic variance
of the maximum likelihood estimator γ̂ = α̂+ β̂ log{Γ/(1− Γ)}.

To incorporate ethical constraints, a restriction on the dose space is imposed.
Let ΓR ≤ Γ be a pre-defined maximum acceptable level of toxicity and γR = α+
β log{ΓR/(1−ΓR)} denote the corresponding quantile (the “maximally allowed
dose”). Given prior g(θ), one can obtain the prior distribution for γR. The
restricted dose space is ΩR = {d : d ≤ γR}. To minimize probability of highly
toxic dose assignments in the trial, one introduces a linear constraint function
φR(ξ) =

∑K
i=1 ρi Pr(γR ≤ di) ≤ ǫ, where ǫ > 0 is some small probability

chosen by an investigator. Then a constrained Bayesian D-optimal optimization
problem is formulated as

{

maximize φD(ξ)
subject to φR(ξ) ≤ ǫ.

(3.9)

A similar problem can be formulated using c-optimality criterion as the objec-
tive function. The optimization problem (3.9) is well defined and the solution
(optimal design points and probability mass at these points) can be obtained
numerically. The problem (3.9) covers both the case when optimal dose levels
are sought on the continuous (log-transformed) scale and a more practical case
when the dose levels are pre-specified in advance. In the latter case, the opti-
mization problem is simpler because the design points are known and only the
optimal proportions at these points are to be found.

The described optimal designs are theoretical measures. To construct sequen-
tial Bayesian optimal designs, Haines et al. [15] proposed a two-stage approach.
At the first (pilot) stage, a small number of n0 patients are allocated among the
K dose levels according to the optimal design with prior density g(θ). Based on
the history Fn0

= {(x1, y1), . . . , (xn0
, yn0

)}, the posterior density is obtained as
g(θ|Fn0

). At the second stage, stepwise allocation of (n− n0) patients is made
to maximize the D-optimality criterion

∫

log |n0M(ξ∗, θ) + I(d, θ)|g(θ|Fn0
)dθ (3.10)

or maximize the c-optimality criterion

−
∫

cT{n0M(ξ∗, θ) + I(d, θ)}−1cg(θ|Fn0
)dθ. (3.11)

subject to constraint Pr(γR ≤ d) ≤ ǫ evaluated over the posterior g(θ|Fn0
).

In (3.10) and (3.11), M (ξ∗, θ) =
∑K

i=1Ni(n0)I(di, θ)/n0, where Ni(n0) is the

number of patients assigned to dose di after the pilot stage, with
∑K

i=1Ni(n0) =
n0. At the end of the trial, statistical inference can be based on the Bayes
estimator θ̃n =

∫

θg(θ|Fn)dθ.
Roy et al. [179] established theoretical properties of the sequential D-optimal

design. They showed convergence of the design measure to the locallyD-optimal
design as well as consistency and asymptotic normality of the Bayes estimator.
Their proof requires that the logistic model is correctly specified. Simulations
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show that sequential designs provide good approximations to the “true” optimal
designs, for sample sizes as large as n = 35 even with moderately misspecified
priors [15]. A web-based application for implementing Bayesian optimal sequen-
tial designs is available [180].

Warfield and Roy [181] proposed semiparametric sequential designs for a class
of 2-parameter models which includes logistic model as a special case. Roth [182]
proposed “sequential locally optimal designs” which use the 3+3 design at initial
stages of the trial and then switch to an optimal design once model parameters
become estimable.

3.3.3. Hybrid designs

Bartroff and Lai [16] proposed another approach to handle “treatment versus
experimentation” dilemma in phase I clinical trials. For a trial of size n, they
proposed selecting dose assignments sequentially to minimize the “global risk”

Eθ







n
∑

j=1

h(γ, xj) + h̃(γ̂n, γ)







, (3.12)

where for j = 1, . . . , n, h(γ, xj) is the loss for the jth patient, γ̂n is the fi-

nal estimate of the MTD, and h̃(γ̂n, γ) represents the final loss in estimation
efficiency. As described by Bartroff and Lai [16], this stochastic minimization
problem can be solved using dynamic programming which may be computa-
tionally prohibitive. In practice an approximate solution can be obtained using
rollout algorithms [183]. An approximate solution which Bartroff and Lai [16]
call “hybrid” designs is a convex combination of a “treatment” design such as
EWOC and a “learning” design such as D-optimal design, with an adaptive
weight that is skewed in favor of the “learning” design at initial stages of the
trial and the weight becomes skewed in favor of the “treatment” design as the
trial progresses. Recently, Bartroff and Lai proposed another simpler and more
efficient hybrid design [17].

4. Data analysis following phase I trial designs

The issue of data analysis following a phase I trial is often overlooked in practice.
For instance, for the popular 3+3 design the MTD is simply taken to be one
dose below the dose at which the trial has stopped. This approach may be unsat-
isfactory because it provides no information about uncertainty of the estimator.
Clearly, one can do much better by utilizing all collected trial data in statisti-
cal modeling. Given the final data set {ti, ni, di, i = 1, . . . ,K}, where ti is the
number of toxicities among ni patients assigned to dose di, how do we estimate
the MTD? Also, how do we estimate toxicity probabilities p(d) = Pr(Y = 1|d)
for d ∈ {d1, . . . , dK}?

For the 3+3 design and some of its modifications, Storer [26, 27] discussed
confidence interval estimation of the MTD using a two-parameter logistic model
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for dose-toxicity curve. The approaches include delta-method, a method related
to Fieller’s theorem, and a method based on likelihood ratio test. Storer found
that none of these approaches is completely satisfactory because of small sam-
ple sizes and sparse data in a phase I trial. Tremmel [184] considered a probit
model for a dose-toxicity relationship: pk = Pr(Y = 1|dk) = Φ(log(dk), µ, σ),
k = 1, . . . ,K and found that this approach estimates the MTD better than
the traditional 3+3 approach. He et al. [185] proposed a model-based approach
for estimating the MTD assuming a one-parameter dose-toxicity model within a
CRM framework. Their main finding is that the method provides more accurate
estimation of the MTD when the one-parameter model is correctly specified, but
the method can overestimate the toxicity levels when the model is misspecified.
O’Quigley [186] notes that applying directly CRM-type analysis to data gener-
ated by another design may not be satisfactory because of potential lack of fit of
a one-parameter model. Instead, O’Quigley [186] suggests obtaining parameter
estimates by solving a weighted estimation equation where the weight at a given
dose is proportional to the number of patients the CRM would have assigned to
that dose. Iasonos and Ostrovnaya [187] addressed the issue of analyzing data
following the 3+3 design. They compared several estimation methods and found
that constrained maximum likelihood estimation method for MTD estimation
performs better than weighted CRM approach [186] and isotonic regression.
Confidence intervals around toxicity probabilities at each dose are obtained us-
ing cumulative toxicity data.

For up-and-down designs of Durham and Flournoy [5] and their modifica-
tions, data analysis issues were investigated in several papers [61, 66, 67]. In
particular, Stylianou and Flournoy [66] investigated different estimators of the
MTD, including the maximum likelihood estimator, the weighted least squares
estimator, the empirical mean and the isotonic regression estimator with linear
interpolation. They found that the isotonic regression estimator has best small-
sample performance. Stylianou et al. [67] recommend using isotonic estimates
of toxicity probabilities at different dose levels {ψ(dk)}Kk=1.

For clinical trials that use model-based approach in the design, the subsequent
data analysis can be performed using final model-based estimates. The final
recommended dose is taken as an estimate of the MTD. For designs such as the
CRM [10], EWOC [11], or Bayesian optimal sequential design [15], theoretical
results are available that ensure consistency and asymptotically normality of
parameter estimates. Therefore, standard asymptotic procedures for statistical
inference should apply for these designs. A cautionary note should be made
that the results are valid asymptotically and are subject to certain assumptions,
including the form of the model and the prior. In practice these assumptions are
hard to verify, models are likely to be misspecified, and sample sizes in phase I
trials are small. Therefore, fitting a more elaborate model to the final data set
may provide a better approach than just analyzing data using the “working”
model which formed the basis for design adaptations. Since phase I trials are
exploratory studies, they are not subject to the same level of statistical scrutiny
as confirmatory phase III trials. The model for final data analysis does not
necessarily have to be specified in the protocol. Different models can be tried
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to obtain the best fit to the observed data. Meta-analytic approaches may be
useful under certain circumstances [188].

5. Miscellany

5.1. Finding MTD in a continuous dose space

Instead of considering pre-fixed dose levels, one can assume the dose is measured
on a continuous scale. Sequential designs to determine the MTD in a continuous
dose setting have been proposed in the literature; yet few of them have found use
in clinical trials [19, 189]. Robbins and Monro [190] introduced a nonparametric
stochastic approximation method for finding a root of the regression function,
which can be used to generate a sequence of dose assignments to converge to
the target quantile as follows:

Xj+1 = xj −
1

jb
(yj − Γ), (5.1)

where b > 0 is a pre-determined constant. Importantly, for the algorithm (5.1),
Pr(Xn → γ) = 1 and the procedure is coherent [19]. For a logistic model
p(x) = {1 + exp(−(α + βx))}−1, the choice b = β minimizes asymptotic vari-
ance of

√
n(Xn − γ). Since β is unknown in practice, one can replace it with a

strongly consistent sequence of estimators, which leads to an adaptive Robbins-
Monro procedure. Such a procedure, however, may be numerically unstable for
small and moderate samples [19]. Wu [191] proposed logit-MLE designs which,
under certain regularity conditions, are asymptotically equivalent to the adap-
tive Robbins-Monro procedure. Wu’s designs use sequentially computed MLEs
from a two-parameter logistic model and can be applied only when data are
not too sparse. For the same two-parameter logistic model, McLeisch and Tosh
[192] proposed a design that sequentially selects points to achieve maximal in-
cremental increase in some criterion such as D- or c-optimality. The c-optimal
sequential design of McLeisch and Tosh [192] is very similar to Wu’s logit-MLE
design [191]. Liu et al. [193] conducted a comprehensive study of various sequen-
tial designs for phase I binary clinical trials with both discrete and continuous
dose spaces. They addressed multiple issues including the choice of a “start-up”
design to ensure existence of MLEs for the logistic model, the construction of
the “follow-on” stage to achieve nonseparable data before applying the desired
sequential design, and the issue of data analysis. They conclude that in a con-
tinuous dose space Wu’s logit-MLE design [191] applied in combination with
appropriate start-up and follow-on rules outperforms nonparametric methods
in terms of estimation efficiency but may place more subjects to highly toxic
doses. Cheung [22] notes that assuming a continuum of doses is not always
feasible in practice. Modification of Robbins-Monro’s procedure or Wu’s logit
MLE method to a discrete dose space objective is not straightforward. One
possibility is to run a sequential design on “virtual observations” which are
functions of observed toxicity data and doses on both discrete and continuous
scale [194].
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5.2. Finding maximum tolerated combinations in drug combination
trials

Many modern phase I cancer trials are designed to evaluate the effect of two or
more drugs used in a combination [195]. Typically, each compound in a combi-
nation has been studied previously and has an established dose range and the
MTD. For each cytotoxic drug in the combination, a monotone dose-toxicity
probability relationship is assumed to hold marginally. However, the joint prob-
ability of toxicity as a function of combination drugs may exhibit a complex
pattern due to possibly unknown interactions between the drugs. As noted by
Gasparini et al. [196], there are three possible types of interaction for multi-
agent therapies: antagonism (one drug reduces or neutralizes the toxic potential
of the other), no interaction, and synergy (co-administration of the drugs results
in greater toxicity compared to administration of each drug alone). The latter
one (synergy) is the most plausible type of interaction for cytotoxic agents.

Consider a trial with combination of two drugs. Let s1 < · · · < sI denote the
dose levels for drug one and t1 < · · · < tJ denote the dose levels for drug two,
I ≥ J . The set of all possible drug combinations is a two-dimensional lattice
{(si, tj), i = 1, . . . , I; j = 1, . . . , J}. Let Γ ∈ (0, 1) denote the target toxicity
level for the drug combination. The objective is to find maximum tolerated
combinations (MTCs), i.e. one or more pairs (si, tj) with an estimated toxicity
level closest to Γ. Ivanova and Wang [197] quantified this as an objective to find
combinations w∗

j = (s∗j , tj), where s
∗
j = argmin1≤i≤I |Pr(Y = 1|si, tj) − Γ| is

the “optimal” dose of drug one corresponding to a selected dose tj of drug two,
for j = 1, . . . , J .

In general, how should one perform a search on a two-dimensional lattice
of dose combinations to find MTCs? Both algorithm-based and model-based
approaches have been proposed for this purpose. The traditional approach is
to pre-specify an escalation path on the lattice and apply the 3+3 algorithm
along this path. However, such an approach is essentially using only one path,
and it can miss more promising dose combinations located outside of the path.
Fan et al. [198] proposed two-dimensional search strategies based on two-stage
(A+B) and three-stage (A+B+C) designs. Braun and Alonzo [199] considered
A+B+C designs with “fast escalation” that allow simultaneous increases in the
doses of both agents. After the first DLT is observed, further searches are split
into two directions (corresponding to one dose de-escalation for each agent);
therefore, two different MTCs may be potentially identified. Lee and Fan [200]
proposed an A+B+C algorithm that takes into account the nature of observed
DLTs (whether they were likely due to agent 1, agent 2, or their interaction)
when making a decision to de-escalate a dose. Assuming the toxicity proba-
bility is increasing in dose of each agent, Ivanova and Wang [197] proposed
a two-dimensional Narayana design with a two-dimensional isotonic regression
procedure for estimating MTC in the end of the trial.

For clinical settings when all drug combinations can be ordered a priori in
terms of toxicity probabilities, Kramar et al. [142] proposed applying techniques
for a single-agent problem to a combination-agent problem. In situations when
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only a partial ordering is available, one can use a nonparametric procedure of
Conaway et al. [86] or a CRM-type design of Wages et al. [143, 201, 202]; see
also [203]. Yuan and Yin [204] proposed another elegant sequential design which
converts a two-dimensional search into a series of one-dimensional searches using
the CRM which allows to explore many promising combinations in one trial.

When ordering of drug combinations is unclear, model-based approaches may
be preferred. A model-based approach for drug combination trials uses similar
building blocks as for single-agent trials. For a drug combination x = (x1, x2)
(where x1 ∈ {s1, . . . , sI} is the dose level of drug one and x2 ∈ {t1, . . . , tJ} is
the dose level of drug two), the probability of toxicity is modeled as

p(x) = Pr(Y = 1|x) = ψ(x, θ)

for some function ψ (0 ≤ ψ(x, θ) ≤ 1 for all x and θ). The parameter vector
θ contains effects of the two drugs and their interaction. With a Bayesian ap-
proach, θ follows some prior distribution g(θ) which can be elicited from physi-
cians based on single-agent toxicity profiles. Let Fm = {(x1, y1), . . . , (xm, ym)}
denote the history fromm patients in the trial, where yl = 1(0), if the lth patient
experienced (did not experience) toxicity at drug combination xl, l = 1, . . . ,m.
The likelihood function is Lm(θ) =

∏m
l=1{ψ(xl, θ)}yl{1 − ψ(xl, θ)}1−yl . The

dose combination for the (m+1)th patient is determined based on the posterior
density g(θ|Fm) ∝ Lm(θ)g(θ). A most common approach is to assign combina-
tion x∗ that minimizes |Eθ(ψ(x, θ)|Fm) − Γ|. Dose escalation may be applied
to either individual patients or cohorts of patients.

Several methods based on this model-based framework have been recently
proposed [205, 206, 207, 208, 209, 210, 211, 167]. Thall et al. [205] developed
a two-stage Bayesian design assuming a six parameter dose-toxicity model. At
the first (escalation) stage, dose combinations are selected along the diagonal
path until m patients have been treated. Given g(θ|Fm), the dose combina-
tions for the (n−m) patients in the second stage are sought along the contour
{x : Eθ(ψ(x, θ)|Fm) = Γ} subject to certain optimality criteria. Wang and
Ivanova [206] considered a three parameter model and proposed a two-stage
Bayesian CRM-type design which, after an initial escalation stage with an up-
dated posterior g(θ|Fm), attempts to find dose combinations for subsequent
patients by minimizing the distance to the target toxicity level. Yin and Yuan
[207] proposed a Bayesian procedure for which a dose-toxicity probability sur-
face is modeled using a three-parameter copula model. Yin and Yuan [208]
used another modeling approach based on latent 2 × 2 contingency tables for
toxicity probabilities for the two agents. Bailey et al. [209] used a Bayesian lo-
gistic regression model to estimate toxicity probabilities for drug combinations
and suggested calculating posterior probabilities for the four toxicity categories
(underdosing, targeted, excessive and unacceptable toxicity) as a decision mak-
ing tool. Braun and Wang [210] developed a Bayesian adaptive design based
on a hierarchical model for toxicity probabilities. Huo et al. [211] developed a
method for finding MTCs in trials involving combinations of a continuous-dose
standard-of-care agent and a discrete-dose investigational drug. Shi and Yin
[167] proposed a two-dimensional EWOC design for drug combination trials.
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5.3. More complex settings

Thall [212] provides a comprehensive discussion on early phase clinical trials
with special considerations. Two important topics we shall focus on in this
subsection are the use of various grades and types of toxicity and optimization
of dose and schedule assignments.

Most oncology chemotherapy trials use ordinal scales to measure severity of
toxicity, and different types of toxicities may have different clinical implications.
Bekele and Thall [213] introduced a measure “total toxicity burden” (TTB)
which quantifies in a single score the number and severity of toxicities a patient
may experience in the study. The authors proposed a Bayesian adaptive design
to find a dose with a pre-specified TTB. This method requires an assignment of
weights to different types of toxicities and a selection of the target TTB at the
trial onset. Some extensions of Bekele and Thall’s [213] method were proposed
by Yuan et al. [139] and Lee et al. [141] (CRM-type designs) and by Chen et al.
[162] (EWOC-type design).

In clinical trial practice, in addition to determining an optimal dose level
of the drug, it is important to account for the duration of treatment and fre-
quency of dosing. Braun et al. [214] is perhaps the first paper that proposed
a design that simultaneously optimizes schedule of treatment and dose per-
administration. The design uses a Bayesian model for time-to-toxicity and per-
forms a search over a two-dimensional lattice of successive administration times
and the doses at those times. The authors demonstrate via simulations that
the method “outperforms any method that searches for an optimal dose but
does not allow schedule to vary, both in terms of the probability of identifying
optimal (dose, schedule) combinations, and the numbers of patients assigned to
those combinations in the trial.” Several important extensions of the method-
ology of Braun et al. [214] were recently published in major statistical journals
[215, 216, 217]. While these designs have not been widely known yet, we believe
they hold much promise to improve clinical trial practice in the near future.

6. Concluding remarks

In this paper we presented an overview of adaptive designs for phase I cancer
trials where the objective is to find the maximum tolerated dose or maximum
tolerated combinations. Unlike confirmatory trials that are driven by hypothe-
sis testing considerations, phase I studies are driven by estimation of the drug
dose-toxicity profile and selection of the most appropriate dose(s) for subsequent
studies. Since at the beginning of clinical drug development there is limited
knowledge about the drug characteristics, adaptive designs are attractive re-
search designs for phase I dose finding trials. The use of adaptive designs in this
setting is explicitly encouraged by the Health Authorities [218, 219]. In particu-
lar, the Committee for Medicinal Products for Human Use (CHMP) Guideline
on Clinical Trials in Small Populations [219], page 8, states:

“. . . A variation of response-adaptive designs is those used for dose finding—they
are typically referred to as ‘continual re-assessment’ methods. They are some-
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Table 1
Phase I cancer trial designs

Method Primary References Other References
Algorithm-Based

3+3 [25, 26, 38, 39, 40, 41] [3]
A+B [41, 42] [44, 45]
Accelerated Titration [46] [47]
TPI [48, 49, 50, 51]
Other designs [55, 56, 57] [52, 53]

Nonparametric

Biased Coin Design (BCD) [5, 6, 58, 60, 61, 66, 67] [62, 65, 68]
Extensions of BCD:

k-in-a-row [69, 70, 71]
Group Up-and-Down [72, 73]
Cumulative Cohort [7, 74] [75, 76]
Delayed responses [77, 78]
More complex trials [79, 80, 81, 82]

Isotonic [84, 85, 86, 87] [75]
Parametric Model-Based

CRM [10, 22, 88, 89, 90, 91, 92, 93] [94, 96, 97, 98]
Extensions of CRM:

More cautious escalation [32, 102, 103, 104, 105]
Two-stage CRM [90, 104, 106, 107, 108]
Model calibration [111, 112, 113, 114, 115, 116] [109, 110]
Curve-free Bayesian [117, 118, 119] [120]
Robustified CRM [121, 122, 123]
Stopping rules [43, 124, 125, 126, 127]
TITE-CRM [128, 129, 130, 131, 132] [133]
Drug combination [143, 201, 203, 204]
More complex trials [135], [145, 146, 148]

EWOC [11, 156, 157, 158]
Extensions of EWOC [159, 160, 161, 162, 163, 164, 165] [166, 167]
Bayesian Decision-Theoretic [170, 171, 172, 173] [175, 178]
Bayesian Optimal Designs [15, 179, 180] [181, 182]
Hybrid Designs [16, 17]

Special Considerations

Continuous dose space [19, 190, 191, 192, 193] [189, 194]
Drug combination trials:

Algorithm-based [197, 198, 199, 200] [86]
Model-based [205, 206, 207, 208, 209, 210, 211]

Multiple toxicities [213, 139, 141, 162]
Dose-schedule combination [214, 215, 216, 217]

times, but rarely, used. The properties of such methods far outstrip those of
conventional ‘up and down’ dose finding designs. They tend to find the opti-
mum (however defined) dose quicker, they treat more patients at the optimum
dose, and they estimate the optimum dose more accurately. Such methods are
encouraged.

Despite significant recent advances in adaptive design methodology for phase I
cancer trials, the traditional 3+3 design remains the most popular choice in prac-
tice [220]. Our literature review provides a comprehensive, but not exhaustive
list of novel adaptive dose-finding methods for phase I cancer trials. A succinct
summary is presented in Table 1. Many of these designs have clearly defined
objectives and established statistical properties, and are shown to outperform
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Table 2
Web-links for statistical software for Phase I cancer trial designs (accessed on 3-Feb-2014)

Web-link Implemented Methodology
http://linus.nci.nih.gov/~brb/Methodologic.htm [46]
https://biostatistics.mdanderson.org/SoftwareDownload/ [48, 113, 205, 214]
http://cran.r-project.org/web/packages/CRM/ [10]
http://cran.r-project.org/web/packages/dfcrm/index.html [10, 128]
http://cran.r-project.org/web/packages/bcrm/index.html [10, 11, 101]
http://cran.r-project.org/web/packages/pocrm/index.html [201]
http://biostatistics.csmc.edu/ewoc/ewoc-s.php [11]

conventional procedures such as the 3+3 design, both in terms of statistical effi-
ciency and in terms of minimizing the number of patients treated at suboptimal
dose levels. One should be mindful that model-based adaptive designs are op-
erationally more complex and require continuous collaboration between clinical
investigator and biostatistician. Simulations must be routinely used to evaluate
the design performance under a variety of hypothetical experimental scenarios.
Validated statistical software is crucial for successful implementation of adaptive
dose finding methods. Table 2 gives some web-links to non-commercial software
packages. While more upfront planning is needed before implementation of a
phase I adaptive design, this may profoundly benefit the development program.

Our review covers adaptive designs for cancer trials of cytotoxic agents in
which acceptable toxicity is used as a surrogate for a therapeutic response. Many
novel anti-cancer therapies, such as cytostatic agents are typically tolerable and
much less toxic than cytotoxic anti-cancer drugs, and efficacy is more relevant a
consideration than toxicity in trials of cytostatic agents [221, 222]. Dose finding
trial designs utilizing both toxicity and efficacy measurements are referred to as
“seamless phase I/II designs”. A review of these methods is beyond the scope
of the current paper, but the interested reader is referred to [223].
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