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tional cumulative distribution function given a functional covariate. Given
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1. Introduction

The aim of Functional Data Analysis (FDA) is to analyse information on curves
or functions. This field has attracted a lot of attention over the past decades,
thanks to its numerous applications. We refer to Ramsay and Silverman [54],
Ferraty and Vieu [33] for case studies and Ferraty and Romain [31] for a recent
overview. In many situations, it is of interest to understand the link between
a scalar quantity Y and a functional random variable X. For instance, it has
been pointed out (Glaser et al. [38, 39]) that the probability of occurrence of
cerebral edema in children treated with diabetic ketoascidosis depends on the
evolution over time of the drugs and fluids administred (and not only on their
quantity). In another application, the focus is in explaining the link between the
chemical composition of a sample of material and its spectrometric curve (such
a problem related to food industry will be illustrated in the numerical study).

We suppose that the random variable X takes values in a separable infinite-
dimensional Hilbert space (H, (-,-),| - ||). The latter can be L?(I), the set of
squared-integrable functions on a subset I of R, or a Sobolev space. The link
between the predictor X and the response Y is classically described by regression
analysis. However, this can also be achieved by estimating the entire conditional
distribution of the variable Y given X. The target function we want to recover
is the conditional cumulative distribution function F' (denoted by conditional
c.d.f. in the sequel) of Y given X defined by

F(y) =PY <y|X =2), (v,y) e HxR. (1)

To estimate it, we have access to a data sample {(X;,Y;),i = 1,...,n} dis-
tributed like the couple (X,Y).

In the sequel, we consider kernel estimators similar to the ones defined by
Ferraty, Laksaci and Vieu [29], Ferraty et al. [34], for which we provide a detailed
nonasymptotic adaptive and minimax study.

The pioneering works on conditional distribution when the covariate is func-
tional are the one of Ferraty and Vieu [32], Ferraty, Laksaci and Vieu [29],
completed by Ferraty et al. [34]. Kernel estimators, which depend on a smooth-
ing parameter, the so-called bandwidth, are built to address several estima-
tion problems: regression function, conditional c.d.f., conditional density and its
derivatives, conditional hazard rate, conditional mode and quantiles. A lot of
research has then been carried out to extend or adapt the previous procedures to
various statistical models. For instance, the estimation of the regression function
is studied by Rachdi and Vieu [53], Ferraty, Mas and Vieu [30], Dabo-Niang and
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Rhomari [24]. The case of dependent data is the subject of the works of Masry
[51], Aspirot, Bertin and Perera [5], Laib and Louani [47], Dabo-Niang, Kaid
and Laksaci [23] under several assumptions (a-mixing, ergodic or non-stationary
processes). Demongeot et al. [27] consider local-linear estimators of the condi-
tional density and conditional mode. Robust versions of the previous strategies
are proposed by Crambes, Delsol and Laksaci [21], Azzedine, Laksaci and Ould-
Said [6], Gheriballah, Laksaci and Sekkal [36]. Gijbels, Omelka and Veraverbeke
[37] investigate the estimation of the dependence between two variables condi-
tionally to a functional covariate through copula modelling. Most of this liter-
ature focuses on asymptotic results (almost-complete convergence, asymptotic
normality,. .. ). Bias-variance decompositions are provided. Few papers tackle
the problem of bandwidth selection: Rachdi and Vieu [53] and Benhenni et al.
[7] have studied global or local cross-validation procedures which are shown to
be asymptotically optimal in regression contexts. Recently, a Bayesian criterion
has been investigated from a numerical point of view by Shang [55].

To our knowledge, adaptive estimation procedures in a nonasymptotic frame-
work can only be found in conditional distribution estimation with real or mul-
tivariate covariates. We refer to Brunel, Comte and Lacour [10] and Plancade
[52] for c.d.f estimation with a real covariate and to Akakpo and Lacour [2] and
references therein for conditional density estimation with a multivariate covari-
ate. Nevertheless, these works are based on projection estimators which cannot
be extended directly to a functional framework in a nonparametric setting.

In keeping with the studies of functional conditional distribution, we investi-
gate the properties of the nonparametric Nadaraya-Watson-type estimators of
Ferraty, Laksaci and Vieu [29], but with a new perspective, only used so far
for real and multivariate covariates. To estimate the c.d.f. defined by (1), we
consider

n

5 i i Kn(d(Xi, z))
Fy(y) :== W )(x)l - <y} Where W, )(:17) = == ,
h ; h {vi<y} h Ej:1 Kh(d(Xj,:z:))

(2)

for any (z,y) € H x R, with d a general semi-metric on the Hilbert space H,
Kj it — K(t/h)/h, for K a kernel function (that is [; K(t)dt = 1) and h
a parameter to be chosen, the so-called bandwidth. We choose the kernel K
of type I (Ferraty and Vieu 33): its support is in [0,1] and there exist two
constants cx,Cx > 0 such that cxlp < K < Ckljg,1. We focus on the
metric associated to the norm of the Hilbert space

d(z,2') = ||z —2'||, z,2' € H. (3)

The main goal is to define a fully data-driven selection rule for the bandwidth h,
which satisfies nonasymptotic adaptive results. The criterion we propose draws
inspiration from both the so-called Lepski method (see the recent paper of
Goldenshluger and Lepski 40) and model selection tools. We show that the
bias-variance trade-off is realized and that the selected estimator automatically
adapts to the unknown regularity of the target function. As usual, the variance
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term of the risk depends on asymptotic properties of the small ball probability
w(h) =P(d(X,0) < h) when h — 0. The behaviour of the small ball probability
is a difficult problem which is still the subject of research studies. We compute
precise rates for our estimator under several assumptions on the distribution
of the process X, fulfilled e.g. by a large class of Gaussian processes. Consis-
tently with the previous works, the rates we obtain are quite slow. However, we
prove that they are minimax optimal. The results are also shown to be coherent
with lower bounds computed by Mas [50] for the estimation of the regression
function.

To bypass the difficulties inherent to the infinite dimensional nature of the
data, some researchers (see e.g. Masry [51], Ferraty, Laksaci and Vieu [29],
Geenens [35]) have suggested replacing the norm || - || in the definition of the
estimator (2) by a semi-norm. The case of projection semi-norms has received
particular attention. In that case the estimator can be redefined this way

~ " i . i Kh(d (X“(E))
Fr o) =S W ()1 1y, <y with W) (2) 1= =P .
R0 1= 2 Wiale P oz it Wiy @)= oo e (6, )
where d2(x,2') = bi(x— 7' e;)? and (e;)j>1 is a basis of H. Defining this

estimator amounts to project the data into a p-dimensional space. We show that
it does not improve the convergence rates of the Nadaraya-Watson estimator
since the lower bounds are still valid. In order to understand what is going on,
we briefly study a bias-variance decomposition of the risk of this estimator.

The paper is organized as follows: in Section 2, we provide a bias-variance
decomposition of the estimator (2) in terms of two criteria, a pointwise and an
integrated risk. The bandwidth h is shown to influence significantly the quality
of estimation. In Section 3, we define a bandwidth selection criterion achieving
the best bias-variance trade-off. Rates of convergence of the resulting estimator
are computed in Section 4. To ensure that these rates are optimal, we also prove
lower bounds. Properties of the estimator defined with a projection semi-metric
are investigated in Section 5. The results are illustrated via simulations and
examples in Section 6. Finally, the proofs are presented in Section 7, and some
details are postponed to the Appendix (Section A).

2. Integrated and pointwise risk of an estimator with fixed
bandwidth

2.1. Constidered risks
We consider two types of risks for the estimation of (x,y) — F?(y). Both are
mean integrated squared error with respect to the response variable y.

The first criterion is a pointwise risk in x, integrated in y:

E[I1F - Fo )3,
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for a fixed xg € H, D a compact subset of R and

1713 = /D f(t)%dt,

keeping in mind that the Hilbert norm of H is ||.||. We also denote by |D| := [}, dt
the Lebesgue measure of the set D.
Next, we introduce a second criterion, which is an integrated risk with respect

to the product of the Lebesgue measure on R and the probability measure Px
of X, defined by

B 1 - Y 1ptse0) <2 | [ ([ (Frw) - r0) dy) dexio).
5

where X' is a copy of X independent of the data sample and B is a subset of H.

The motivation for studying the two risks is twofold. First, in practice, we
can either be interested in the estimation of FX»+1 where X, ; is a copy of
X independent of the sample or we can be interested in estimating the c.d.f
conditionally to X = xy where x¢ is a point chosen in advance. Such an ap-
proach is rather classical in functional linear regression (Ramsay and Silverman
[54], Cardot, Ferraty and Sarda [14]) where either prediction error on random
curves (Crambes, Kneip and Sarda [22]) or prediction error over a fixed curve
(Cai and Hall [13]) are considered. Second, integrated risks have been relatively
unexplored in nonparametric functional data analysis. Indeed, there is no mea-
sure universally accepted as the Lebesgue measure in finite-dimensional setting
(see e.g. Delaigle and Hall [26], Dabo-Niang and Yao [25]). The only measure
at hand is the probability measure of X.

2.2. Assumptions

Hereafter, we denote by ¢® the shifted small ball probability:
¢"(h) =P(|X —z| <h), h>0, z€H

We write ¢(h) instead of ¢°(h). If X’ is a random variable, X" is the condi-
tional small ball probability: X (h) = Px/(||X — X'|| < h), where hereafter the
notation Py (resp. Ex/, Vary:) stands for the conditional probability (resp.
expectation, variance) given X’. For simplicity, we assume that the curve X is
centred. We also consider the following assumptions. The first one is related to
the choice of the kernel, the two following are regularity assumptions for the
function to estimate and the process X.

Hp There exists 8 € (0;1) such that F belongs to the functional space Fg,
the class of the maps (x,y) € H x R +— F*(y) such that:

— for all x € H, F* is a c.d.f;
— there exists a constant Cp > 0 such that, for all z,z’ € H

|F* = F*||p < Cplle — a||".
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H, There exist two constants c,,C, > 0 such that for all A € R,
cop(M1p(X') < ¥ ()1p(X') < Cop(h)1p(X') as.,

where X’ is an independent copy of X.

Assumption Hp is an Holder-type regularity condition on the map z +—
F*. This type of condition is natural in kernel estimation. It is very similar
to Assumption (H2) of Ferraty, Laksaci and Vieu [29] or Assumption (H2’)
of Ferraty et al. [34]. Note, however, that no regularity condition on the map
y — F*(y) is required here. A similar phenomenon appears for the estimation
of the c.d.f when the covariate is real: for instance, the convergence rate given
by Brunel, Comte and Lacour [10, Corollary 1] only depends on the regularity
of F' with respect to x.

Assumption H, is very similar to assumptions made by Ferraty, Laksaci and
Vieu [29], Burba, Ferraty and Vieu [12], Ferraty et al. [34]. This condition H, is
reasonable, since the class of Gaussian processes fulfills it provided that B is a
bounded subset of H. Indeed the upper bound is verified with C, = 1 thanks to
Anderson’s Inequality (see Anderson [3] and also Li and Shao [48, Theorem 2.13]
or Hoffmann-Jgrgensen, Shepp and Dudley [42, Theorem 2.1, p. 322]) and from
Hoffmann-Jorgensen, Shepp and Dudley [42, Theorem 2.1, p. 322] we know that

the lower bound is verified with ¢, := e~ R*/2 where R := max{||z||, x € B}.

2.3. Upper bound

Under the assumptions above we are able to obtain a nonasymptotic upper
bound for the risk, proved in Section 7.2.
Theorem 1. Suppose that Assumption Hp is fulfilled. Let h > 0 be fized.

(i) For all xy € H we have

E [Hﬁ; — P

ool ) o

where C > 0 only depends on ¢k, Ck, |D| and Cp.
(1) If, in addition, Assumption H, is fulfilled,

o [ e e ) L

where C > 0 only depends on ci, Ck, ¢y, Cyp, |D| and Cp.

The first term of the right-hand-side of inequalities (6) and (7) corresponds to
a bias term, and the second is a variance term, which increases when h goes to 0
(since ™0 (h) and p(h) decrease to 0 when h — 0). Note that the upper bounds
are very similar to the results of Ferraty, Laksaci and Vieu [29, Theorem 3.1]
and Ferraty et al. [34, Corollary 3]. However, we do not have an extra-lnn factor
in the variance term.
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We deduce from Theorem 1 that the usual bias-variance trade-off must be
done if one wants to choose h in a family of possible bandwidths. The ideal
compromise h* is called the oracle, and is defined by

~ ol 12
B = argmin | [HF,;X _FX HD lB(X’)] . (8)

It cannot be used as an estimator since it both depends on the unknown regu-
larity index 8 of F' and on the rate of decrease of the small ball probability ¢(h)
of X to 0. The challenge is to propose a fully data-driven method to perform
the trade-off.

3. Adaptive estimation

In this section, we focus on the integrated risk. We refer to Remark 1 below for
the extension of the results for the pointwise criterion.

3.1. Bandwidth selection

We have at our disposal the estimators F}, defined by (2) for any h > 0. Let
‘H,, be a finite collection of bandwidths, with cardinality depending on n and

properties precised below. For any h € H,,, an empirical version for the small
ball probability ¢(h) = P(|| X|| < h) is

~ IR
) == > Laxisn- (9)
i=1
For any h € H,,, we define
In(n) ., .
~ , TP AN ~ — fo(h)#0
A(h) = max (HFh Eu| —V(h’)) LT = { e TP
b €Hn .
+ 400 otherwise,

(10)
where £ is a constant specified in the proofs which depends neither on A, nor on
n, nor on FX ". The quantity V'(h) is an estimator of the upper bound for the
variance term (see (7)) and g(h) is proved to be an approximation of the bias
term (see Lemma 5). This motivates the following choice of the bandwidth:

h = argming, s, {E(h) + IA/(h)} . (11)

The selected estimator is ﬁﬁ.

This selection rule is inspired both by the recent version of the so-called Lep-
ski method (see Goldenshluger and Lepski [40]) and by model selection tools.
The main idea is to estimate the bias term by looking at several estimators.
Goldenshluger and Lepski [40] propose to first define “intermediate” estimators
13,5(,;/ (h,h' € H,,), based on a convolution product of the kernel with the esti-
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mators with fixed bandwidths. However, this can only be done when the bias of
the estimator is written as the convolution product of the kernel with the target
function. Since it is not the case in our problem, we perform the bandwidth se-
lection with F,f(,;, = F,ff/,h/ in (10). This is analogous to the procedure proposed
by Chagny [15]701“ Comte and Johannes [19] for model selection purpose. Thus,
V(Rh) can also be seen as a penalty term. We also refer to the doctoral thesis
of Chagny [16, p. 170] for technical details leading to this choice. Finally, let
us notice that a criterion based on the maximum h V k' also appears in Kerky-
acharian, Lepski and Picard [43], and more recently, similar ideas are used in
Goldenshluger and Lepski [41].

3.2. Theoretical results

To prove our main results, we consider the following hypothesis, in addition to
the assumptions defined in Section 2.2.

Hj The collection H,, of bandwidths is such that:
Hy, its cardinality is bounded by n,

Hyy for any h € H,,, o(h) > Coln(n)/n, where Cy > 0 is a purely numer-
ical constant (specified in the proofs).

Remark 1. e Assumption Hjp; determines the size of the bandwidth col-
lection: compared to the assumptions of Goldenshluger and Lepski [40],
we consider a discrete set and not an interval, which permits to use the
classical tools of model selection theory in the proofs.

e In practice, it is impossible to verify Assumption Hjo since the function ¢
is unknown. However, this difficulty can be circumvented by introducing
a random collection of bandwidths H,, verifying, for all h € H,,, ¢(h) >
2CyIn(n)/n where @ is an estimator of ¢ (see Equation (9)). However,
since it does not add significant difficulty (see Comte and Johannes [19],
Brunel, Mas and Roche [11]) but would complicate the understandability
of proofs, we choose to keep Assumption Hps.

We now state the following nonasymptotic bound for the maximal risk over
the class Fg.

Theorem 2. Assume H,, Hy and thatn > 3. There exist two constants c¢,C > 0
depending on ck, Ck, ¢y, Cyp, |D|, Cp and k such that

sup E[’ﬁﬁ,—FX,

FeFg

ZlB(X’)] Schnel?i_llln{h2ﬁ+%}+%. (12)

The optimal bias-variance compromise is reached by the estimator, which is
thus adaptive with respect to the unknown smoothness of the target function
F. The selected bandwidth h is performing as well as the unknown oracle h*
defined in (8), up to the multiplicative constant ¢, up to a remainding term of
order 1/n which is negligible, and up to the In(n) factor. This extra-quantity
also appears in the term V' (h). The loss is due to adaptation. In Section 4, we
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prove that it does not affect the convergence rates of the estimator which is
nevertheless optimal in the minimax sense in most of the cases.

The proof of Theorem 2 is mainly based on model selection tools, specifically
concentration inequalities (see Section 7.3). A specific difficulty comes from
the fact that the variance term in (7) depends on the unknown distribution
of X, through its small ball probability. Thus, we cannot estimate this variance
term with V(h) = kln(n)/(np(h)), since it cannot be used in practice. This
explains why we plug (9), an estimator for (k) in V(h). However, for the sake
of clarity, we begin the proof by establishing the result with V(h) replaced by
its theoretical counterpart V(h) = kln(n)/(np(h)). Notice also that we could
build an adaptive estimator for the pointwise risk. To do so, replace @(h) in (10)
by 3% (h) = 31, 1{x,—ao|)<n}/m and X’ by o in the definition of A(h).

4. Minimax rates

In this section, we compute the convergence rate of the oracle ﬁh* with h*
defined by (8), the rate of the selected estimator F%, and prove lower bounds
for the conditional c.d.f. estimation problem under various assumptions on the
rate of decrease of the small ball probability of the covariate X.

4.1. Small ball probabilities

The computation of the oracle h*, as well as the computation of the minimum
in the right-hand-side of (12) require to fix conditions on the rate of decrease
of the small ball probability ¢(h). The choice of the assumptions is crucial
and determines the rates of convergence of our estimators. Small ball problems
have aroused considerable interest and attention in the past decades. Lots of
studies propose to compute lower and upper bounds for ¢(h), in the case of
particular types of process X. If much attention has been given to Gaussian
processes (see for example the clear account provided by Li and Shao [48]),
systematic studies have also been undertaken to handle the general case of
(infinite) sum of independent random variables (Lifshits [49], Dunker, Lifshits
and Linde [28], Mas [50]). We consider in the sequel one of the following three
hypothesis which are frequently used in the literature. This allows to understand
how the small ball probability decay influences the rates (see Section 4.2). We
describe below large classes of processes for which they are fulfilled.

Hx There exist some constants ¢1, C; > 0 such that ¢®°(h) satisfies one of the
following three assumptions, for any h > 0.

Hx 1, There exist some constants 1,72 € R, and « > 0 such that
c1h™ exp(—cah ™) < 0 (h) < C1h"2 exp(—coh™®);

Hx pr There exist some constants 1,72 € R, and « > 1, such that
c1h" exp(—ca In®(1/h)) < p*0(h) < C1h"2 exp(—ce In®(1/h));

Hx p There exists a constant v > 0, such that ¢;hY < ™ (h) < Cy1h7,

where we set o = 0 if we consider the integrated risk.
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Such inequalities are strongly connected with the rate of decrease of the
eigenvalues of the covariance operator I' : f € H — I'f € H with T'f(s) =
(f(+),Cov(X(-), Xs)). Recall the Karhunen-Loeve decomposition of the process

X, which can be written
X = Z VAN, (13)

Jj=1

where (7;)j>1 are uncorrelated real-random variables, (A;);>1 is a non-increasing
sequence of positive numbers (the eigenvalues of I') and (;);>1 an orthonor-
mal basis of H. When X really lies in an infinite dimensional space, the set
{j > 1, A\; > 0} is infinite, and under mild assumptions on the distribution
of X, it is known that ¢(h) decreases faster than any polynomial of h (see
e.g. Mas [50], Corollary 1, p. 10). This is the case in Assumptions Hx ; and
Hx pr. Moreover, the faster the decay of the eigenvalues is, the more the data
are concentrated close to a finite dimensional space, and the slower p(h) de-
creases.

For example, when X is a Gaussian process with eigenvalues (A;); such that
cj72 <\ < Cj7% a > 1/2 (¢,C > 0), Assumption Hx j is satisfied with
M= =0B-a)/2a—1), c = a2a/(2a — 1))V and o = 1/(a —
1/2) (Hoffmann-Jgrgensen, Shepp and Dudley [42, Theorem 4.4 and example
4.5, p. 333-334]). This classical situation of such polynomial decay covers the
example of the Brownian motion, with @ = 1 (see Ash and Gardner [4]). More
generally, if X is defined by a random serie X = Zj>1 j24Z;, for variables
Z; with a c.d.f. regularly varying at 0 with positive index, one can also define
71,72, and « such that Hx j is fulfilled (see Dunker, Lifshits and Linde [28,
Proposition 4.1 p. 11] and also Mas [50, (19) p. 9]). The second case Hx ps
typically happens when the eigenvalues of the covariance operator exponentially
decrease (see Dunker, Lifshits and Linde [28], Proposition 4.3 p. 12). In the
case of a Gaussian process with cexp(—2j)/j < A; < Cexp(—25)/j, we have
ca = 1/2 and @ = 2 in Hx p (Hoffmann-Jorgensen, Shepp and Dudley [42,
Theorem 4.4 and example 4.7, pp. 333 and 336]).

Finally, it also follows from the above considerations that Hx r only covers
the case of finite dimensional processes (the set {j, A; > 0} is finite, that is the
operator I has a finite rank). This is the extreme case of Hy ps (witha =1,y =
2 = 0). Nevertheless, even if our main purpose is to study functional data, the
motivation to keep this case is twofold. First, we show below that our estimation
method allows to recover the classical rates (upper and lower bounds) obtained
for c.d.f. estimation with multivariate covariates. Then, processes which fulfill
Hx r can still be considered as functional data since the finite space to whom
X belongs is unknown for the statistician.

4.2. Convergence rates of kernel estimators

Under the previous regularity assumptions, we compute the upper bounds for
the pointwise and integrated risks of the estimators, the proofs are deferred to
the Appendix-Section A.
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TABLE 1

Rates of convergence of the oracle estimator (line (a)) and the adaptive estimator
(line (b)). Minimaz lower bounds (line (c))

Hx 1 Hx n Hx r
(lower rate) (medium rate) (fast rate)
(a) Rates for Fj- —28/a 28 1 1/a _ 28
(upper bounds) | (7(%) &P\ T In*7% (n) n 20Fy

(b) Rates for ﬁﬁ —28/a 28 1/ ” T35+
(upper bounds) (In(n)) xp s/ I’ (n) ( L ) !

(c) Minimax risk —28/a 28 1 1/a s
(lower bounds) (In(r)) exp e In*/(n) n~ 2By

Proposition 1. (a) Under the assumptions of Theorem 1, and if Hp is ful-
filled, the convergence rates of the pointwise risk E[Hﬁ,ff — F*||?], and the
integrated risk E[Hﬁ,ﬁl — FX'||3] of the oracle Fy- are given in Table 1,
line (a).

(b) Under the assumptions of Theorem 2, the convergence rates of the in-
tegrated risk E[Hﬁﬁxl — FX'||215(X")] of the estimator ﬁﬁ are given in
Table 1, line (b).

For both cases, the upper bounds are given up to a multiplicative constant,

and for the different cases Hx 1, Hx p, and Hx .

Let us comment on the results. The faster the small ball probability decreases
(that is the less concentrated the measure of X is), the slower the rate of con-
vergence of the estimator is. In the generic case of a process X which satisfies
Hx 1, the rates are logarithmic, which is not surprising. It reflects the “curse of
dimensionality” which affects the functional data. Similar rates are obtained by
Ferraty, Laksaci and Vieu [29] (section 5.3) in the same framework, and by Mas
[50] for regression estimation (section 2.3.1). However, we show that the results
can be improved when the process X is more regular, although still infinite di-
mensional. Under Assumption Hx s, the rates we compute have the property
to decrease faster than any logarithmic function. Assumption Hx g is the only
one which yields to the faster rate, that is the polynomial one.

We have already noticed that our adaptive procedure leads to the loss of a
logarithmic factor (see the comments following Theorem 2). Nevertheless, by
comparing line (a) to line (b) in Table 1, we obtain that the adaptive estimator
still achieves the oracle rate if Hx j or Hx js are fulfilled. The loss is actually
negligible with respect to the rates.

4.3. Lower bounds

We now establish lower bounds for the risks under mild additional assump-
tions, showing that the estimators suggested above attain the optimal rates of
convergence in a minimax sense over the class of conditional c.d.f. 73 (defined
in Section 2.2). The results for the integrated risk are obtained through non-
straightforward extensions of the pointwise case.
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Theorem 3. Suppose that Hx is fulfilled, and that n > 3.

(i) The minimaz risk inf 5 suppe r, Ep[[|F*0 — F*|2] is lower bounded by a
quantity proportional to the ones in line (c) in Table 1.

(i) Assume moreover that B contains the ball {x € H, ||x|| < p} where p > 0
is a constant to be specified in the proof, and that there exist two constants
ca,Co > 0 such that, for all h > 0, for all x € B,

@(h) > 0 and c2p(h) < ¢*(h) < Cop(h). (14)

Then the minimaz risk infzsuppez, Ep[|FX — FX'1315(X")] is also
lower bounded by a quantity proportional to the ones in line (¢) in Table 1.

For both cases, the infimum is taken over all possible estimators obtained with
the data-sample (X;,Y:)i=1,....n- In (1), Ep is the expectation with respect to the
law of {(X;,Y;),t =1,...,n} and in (ii), Ep is the expectation with respect to
the law of {{(X;,Y:),i =1,...,n}, X'} when, foralli=1,...,n, for allx € H,
the conditional c.d.f. of Y; given X; = x is F**.

Theorem 3, which is proved in Section 7.4, shows that the upper bounds of
Proposition 1 cannot be improved, not only among kernel estimators but also
among all estimators, under assumptions Hy ; and Hx . The estimator F3 is
thus both adaptive optimal in the oracle and in the minimax senses.

The computations are new for conditional c.d.f. estimation with a functional
covariate. Under Hx g, with v = 1, the lower bounds we obtain are consistent
with Theorem 2 of Brunel, Comte and Lacour [10] or Proposition 4.1 of Plancade
[52] for c.d.f. estimation with a one-dimensional covariate, over Besov balls. In
the functional framework, the results can only be brought close to those of Mas
[50] (Theorem 3) for regression estimation.

Remark 2. The rates (both lower and upper-bounds) depend on the smooth-
ness of the target function F' (assumption Hp, F € Fg, to control the bias
term) and on the smoothness of the process X, through the rate of decay of the
small ball probabilities (larger variance for smaller small ball probabilities). The
broad range of rates we establish in Table 1 (from polynomial to logarithmic
rates, with intermediate cases) can be compared to the rates which are computed
for the density estimation of a variable Z in a deconvolution model W = Z + ¢,
from a sample drawn as W, and with known noise ¢ distribution. Actually, the
standard rates in this setting depend on smoothness assumptions both on the
density to recover and on the noise density. Similarly to our framework, the
rates are known to be slow (logarithmic) under classical smoothness assump-
tions (a “supersmooth” noise, and an “ordinary” smooth signal) but they can
be improved by considering differents assumptions. See e.g. Comte, Rozenholc
and Taupin [20] and Lacour [45].
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5. Impact of the projection of the data onto finite-dimensional
spaces

We have seen in Section 4.2 that, when X lies in an infinite dimensional space
(assumptions Hx ps and Hy 1), the rates of convergence are slow. This “curse
of dimensionality” phenomenon is well known in kernel estimation for high or
infinite dimensional datasets. The introduction of the projection semi-metrics
dp, leading to the estimators (4), has thus been proposed in order to circum-
vent this problem. Defining such estimators amounts to project the data into
a p-dimensional space. Indeed, this permits to address the problem of variance
reduction since ¢, (h) := P(d,(z,0) < h) ~p0 C(p)h? and then the variance
is of order 1/(nh?). Notice that, even if the variance orders of magnitude are
the same, the situation here is different from Assumption Hx p with v = p:
Hx r amounts to suppose that the curve X lies a.s. in an unknown finite-
dimensional space (see Section 4.1) whereas, here, the data is projected into a
finite-dimensional space but may lie in an infinite-dimensional space.

A first thing we can say is that, under our regularity assumption Hp, The-
orem 3 remains true and the convergence rate of the risk of Fj, , cannot be
better than the lower bounds given in Table 1, line (c). This implies that, in
our setting, the estimator F h,p cannot converge at significantly better rates than
our adaptive estimator ﬁﬁ even if the couple of parameters (p, h) is well-chosen.
Precisely, as shown in Proposition 2 below, project data also adds an additional
bias term which compensates for the decrease of the variance.

5.1. Assumptions

In order to state the result, we need the following assumptions.

H;) There exist two constants c,, C, > 0 such that for all A € R, for all p € N*,
copp(M1E(X") < & (W15(X') < Copp(W)Lp(X') as,

where X’ is an independent copy of X and wg(l (h) :==Px/(dp(X, X") <h).
He Let & := (X, ej)/o; where o; := Var((X, e;)). One of the two following
assumptions is verified:

H g”d the sequence of random variables (§;);>1 is independent and there
exists a constant C¢ such that, for all j > 1

E [éf } < Cg;
Hé’ there exists a constant C¢ such that, for all j > 1,
6] < Ce as.

Note that Assumption H/, is the equivalent of Assumption H,, replacing d by
d,. If X is a Gaussian process, the vector ((X,e1),...,(X,e,)) is a Gaussian
vector and Assumption H,, is also verified provided that B is bounded. Assump-
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tion Hg”d is true if X is a Gaussian process and (e;);>1 is the Karhunen-Loeve
basis of X (see (13) above, and also Ash and Gardner [4]). Assumption Hf is
equivalent to suppose that X is bounded a.s. We are aware that both assump-
tions H, é”d and Hé’ are strong since in most cases the Karhunen-Loeve basis is
unknown. The aim of Proposition 2 below is to permit a better understanding of
the bias-variance decomposition of the risk when the data are projected. A fur-
ther study would be needed to obtain weaker assumptions but this is beyond
the scope of this paper.

5.2. Upper bound

Proposition 2. Suppose assumptions Hrp and H¢ are satisfied. Let h > 0 and
p € N* be fized.

(i) For all xy € H we have
B B 1
B[ —Folp] < €| h+ (307 | +{ Do twoe)” | s ).
. Jj>p Ji>p ep (h)
(15)

where C' > 0 only depends on C¢, 8, ¢k, Ck, |D| and Cp.
(1) If, in addition, Assumption H, is satisfied,

B
Eﬂﬁif;—FXW%lB(X'ﬂSC(W+<ZU?> — ) (16)

j>p ,n'(Pp (h)

where C > 0 only depends on C¢, B, ¢k, Ck, ¢y, Cyp, |D| and Cp.

We have additional bias terms compared to Ferraty, Laksaci and Vieu [29)],
Ferraty et al. [34]. This is due to the fact that our regularity assumption Hp (see
Section 2.2) is different from Assumption (H2) of Ferraty, Laksaci and Vieu [29]
or Assumption (H2’) of Ferraty et al. [34]. Our assumption is expressed with
the norm of H whereas their assumptions are expressed with the semi-norm
used in the definition of the estimator (here d,). Remark that, with projection
semi-norms, the assumptions of Ferraty, Laksaci and Vieu [29], Ferraty et al.
[34] imply that the function F* only depends on ((z,e€;))i1<;j<p. Indeed, if we
take = and 2’ such that (z,e;) = (2, ¢;) for j = 1,...,p (but (z,e;) # (2',¢;)
for some j > p), both (H2) and (H2’) imply that F*(y) = F* (y) for all y. Our
assumption is then less restrictive.

Remark 3. Notice that the estimator (4) is not consistent when p is fixed.
This is also noted by Mas [50] in a regression setting (see Remark 2, p. 4). It is
coherent with the fact that we loose information when we project the data. In-
deed, suppose that the signal X lies a.s. in (span{ey, ..., e, })*, then d,(X;, x) =

\/ 21 (w,e5)? as. and F (y) = IS Livizyy if Kn(y/ L (r,e)?) #0
and 0 otherwise. The bias of such an estimator is then constant and non null as
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soon as there exists F*(y) # P(Y < y) on a subset of D of positive Lebesgue
measure. Hence in order to obtain a consistent estimator in the case where o; > 0
for all j, we have to impose that p is depending on n and lim, oo p = +00.

5.3. Discussion

The rates obtained can be compared to the lower bounds given in Table 1 in
the Gaussian case under assumptions Hx r and Hx .

5.3.1. Comparison with the rates obtained under Assumption Hx r

We start from the Karhunen-Loeéve decomposition of X defined in (13). For a
Gaussian process, the variables 7; are independent standard normal, (\;);>1
is a non-increasing sequence of positive numbers and (;);>1 a basis of H. If
A41 = 0 and Ay > 0 and if the law of (m1,...,7ny) is non-degenerate then
Assumption Hx r is satisfied. Two cases may then occur.

o If ¢j = +¢; for all j, then oF = E[(X,¢;)*] = E[(X,1;)*] = \; and
ogj = 0 for j > ~. Then from Inequality (16), with a good choice of
(p, h), the integrated risk is upper bounded by Cn~28/(28+7) which fits
with the lower bound. According to Inequality (15), the pointwise risk is
penalized by the term Zj>p<:vo,ej>2 and the minimax rate is attained
only if zg € span{er,...,ep}.

e However, if the basis (e;);>1 is not well-chosen for instance if e; = 9, for
J&{v.v+1} (1 >0), ey = yqy and €44y = 1., the integrated risk of the

estimator is upper bounded by Cn~—2#/(26+7+1) whereas the minimax rate
is n—26/(23+V)_

5.3.2. Comparison with the rates obtained under Assumption Hx p
Thanks to Proposition 2, we are able to obtain the rate of convergence for the
estimator.

Corollary 1. Suppose that the assumptions of Proposition 2 are satisfied and
that (&1,...,&p) admits a density f, with respect to the Lebesgue measure on RP
such that there exists a constant cy verifying

fp(0) = .
Assume also that there exist 6 > 1, ¢ > 0 such that Zj>p

(i) Then, for all o € H such that there exist &' > 1, ¢ > 0 such that
Zj>p<$0aej>2 < p~" 1 we have

2 —25+1
o; <cp .

)

N 1n(n) B(1—2min{6,8"})

E (I - FoIp] <€ (op
17z - 1] < ()

for a well-chosen bandwidth h and a good choice of p, and where C > 0 is

a numerical constant.
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(i) We also have

A~y ’ ln(n) 5(1726)
E|FX —FX 3| < i Sh7 A
A -] <0 ()

for a well-chosen bandwidth h and a good choice of p, and where C > 0 is
a numerical constant.

If ¢j72% < \; < Cj=2%, for two constants ¢, C' > 0, then Assumption Hx as
is satisfied with o = 1/(a—1/2), the estimator converges with the minimax rate
if 6 = a (adding the condition ¢’ > a for the pointwise risk). The conclusion is
similar to Paragraph 5.3.1: if e; = £, for all j > 1 (recall that this condition is
unrealistic since in most cases the basis (1;);>1 is unknown) then we can choose
p and h such that the minimax rate is achieved, up to a logarithmic factor, for
the integrated risk and the pointwise risk under an additional condition on xg.
Otherwise, we do not know if the minimax rate can be achieved.

6. Numerical study

We briefly present an illustration of the theoretical results. We first describe the
parameters we use and the way the risks are computed. Then we illustrate the
performances of our method with some figures and tables, for both simulated
samples and a real dataset.

6.1. Implementation of the estimators

We implement the two types of estimators (2) and (4) with the uniform kernel
K = 1(0;1). We choose the bandwidth h in a collection H,, with H,, = {C/k, 1 <
k < Emax}. Thanks to the definition of the kernel K, it is useless to consider
bandwidths h which are larger than max{||X; — zol|,7 = 1,...,n}. Indeed, for
any h > max{||X; — xo|,? = 1,...,n} we have K;(|X; — xo|) = 1/h and
Fuly) = LS 1 1{vi<y}- Then we set C' = max{[|X; — zo|,i = 1,...,n}. To
choose the other parameter kpax, keep in mind that @(h) should not be too
small: the aim is to have an empirical counterpart for Assumption Hpz and
also to avoid instabilities in the calculation of V' (k). We propose to ensure that
p(h) > In(n)/n. This is the case when C/kmax is the quantile of order In(n)/n
of the sample {|| X;||, 1 <4 < n}.

For the collection of estimators (ﬁh)he’;—[n defined in (2), we obviously im-
plement the selection algorithm which lead to ﬁﬂ. The method to compute
it is entirely described in Section 3.1. The L? norm involving in the defini-
tion of A(h) (see (10)) is approximated by the trapezoidal rule over D =
(minj <;<n ¥, maxj<i<p Y;). The only parameter to be adjusted is the constant
% of the penalty term V (k). The simulations permit to tune it (see Section 6.2
below).

This calibration, as well as the simulation study of the performances of the
estimators requires risk computations. For an estimator F' of the conditional
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c.df. F, the integrated risk E[||FX — X' |%] is approximated by the mean of
N = 50 Monte-Carlo replications of the random variable ||[FX" — FX'||%. The
interval D is chosen as explained above. The set B involved in (5) is necessary
only for the theoretical study and can be chosen as large as possible. It is ignored
here.

6.2. Simulation study
6.2.1. Simulation of the data-samples

Our procedure is applied to different simulated samples (X, Yi)ie{1 ,,,,, n}, With
n = 500, drawn as (X,Y’). The functional covariate X is simulated in the fol-
lowing way:

J
X(t) =& + Z VA& (),

where (A;);>1 is a sequence of positive real numbers such that 3,5, A; < 400,
(&);>0 is a sequence of i.i.d. standard normal random variables and ;(t) :=
V2sin(7(j — 0.5)t), t € R. Remark that the simulated X is a finite-dimensional
Gaussian process. Hence, Assumption Hx p (see Section 4.1) is satisfied, for
v = J + 1. However, if J is sufficiently large, we will consider that

X(t) = Z VNG () = V& (1)

Jj=1

and X has thus a behaviour very similar to the one of an infinite-dimensional
process. In the simulation study, only a few coefficients are estimated, since the
sample size is finite, evidently.

The three following choices are considered, to illustrate the three regularity
conditions studied above. The processes are plotted in Figure 1.

(a) \; = j2, J = 150, corresponding to a Brownian motion, which verifies
Assumption Hy .

(b) \; =e%/4, J =150, which corresponds to a process X verifying Hx us.

(c) \; =2, J =2, which leads to a process X satisfying Hx p (with v = 3).

When X is simulated, we obtain Y as follows.

Example 1 (Regression model) Y = (3, X)? + ¢ with 3(t) = sin(4nt) and
e ~ N(0,0?), where ¢ is independent of X and o2 = 0.1. With this model,
the cumulative distribution function of ¥ given X = z is

Fi(y) = 2((y = (8,2)%) /o),

where ®(z) = P(Z < z) for a Z ~ N(0,1).
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(a) — Hx,L, (b) — Hx M () — Hx,r

F1G 1. Realisations of the process X : 8 independent curves in Examples (a), (b), and (c).

Example 2 (Gaussian mixture model) The conditional distribution of Y
given X =z is 0.5 (8—4|z|[, 1)+ 0.5N (8+4||x|, 1). Then, the cumulative
distribution function of Y given X = x is

FE(y) == 0.50(8 — 4]lz])) + 0.50(8 + 4] z|).

0.2.2. Calibration of the penalty constant

The question that needs to be answered now is: how to choose the constant x
involved in the penalty term V'(h) (in (10))? Its choice is crucial for the quality
of adaptive estimation. Keep in mind that h is chosen as the bandwidth which
realizes the best compromise of two terms, the estimator of the bias term, namely

~

A(h) and the variance term V(h) = rIn(n)(n@(h))~. From (11), heuristically,

e if x is small, then A(h) is the most influential term. Since this term tends
to decrease with h, we select small bandwidths;
e if x is large, the reverse occurs: we select large bandwidths.

To illustrate this phenomenon, we plot the risk of the estimator ﬁﬁ in function
of the parameter x, see Figure 2. In the light of the results, as expected, x should
not be chosen too small (otherwise the risk blows up), neither too large. However
a choice for k larger than the minimizer does not make the risk blowing up (same

8 9
S o
c
é o | “: é 1
c 5 - c g 4
§ o 3
s 2z
L
9 | h
g 1 1 T T T T o 1 1 1 T T
0 2 4 6 8 10 0 2 4 6 8 10
K K
Example 1 (Regression) Example 2 (Gaussian mixture)

F1G 2. Plot of approzimated mean risk with respect to k. Blue curves: Process (a) — Hx r,.
Green curves: Process (b) — Hx 1. Red curves: Process (c) — Hx p.
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Example 1 (Regression model)

02 00 E
v v

(a) — Hx,L (b) — Hx

Example 2 (Gaussian mixture model)

(a) — Hx,1, (c) — Hx.p

Fia 3. Plots of true conditional c.d.f. (black dotted line) versus 10 estimators ﬁg“ calculated

from independent samples of size n = 500 (red thin lines), with xo a copy of X. First line:
Ezample 1, true c.d.f. F{'°. Second line: Example 2, true c.d.f. Fy°.

results are obtained in Bertin, Lacour and Rivoirard [8]). We thus fix k = 4.
Another value around 4 just improves the results for some c.d.f. and deteriorates
them for some others. Data-driven calibration tools developed in model selection
contexts, such as slope heuristic, could be very useful here. However this kind
of tool does not exist in our bandwidth selection context, and this is beyond the
scope of the paper.

6.2.3. Simulation results

Beams of estimators are presented in Figure 3. The estimation is quite stable
for the regression model (Example 1). However the estimation is harder for the
Gaussian mixture model in the cases Hx 1: a more detailed study shows that
our criterion selects models with too small h. The bandwidth selection criterion
behaves better in the cases Hx r and Hx pr.

To study the impact of the projection of the data from the practical point of
view, we also compare the estimator F, ,, (see (2)) with F}, (see (4)), which can
be seen as F\h,p for p = oo. Since we have not developed adaptive estimation
for ﬁhﬁp with finite value of p, we choose to compare the corresponding oracle
estimators ﬁh*7p with h* defined by (8) (just replace Fy, in the r.h.s of (8) by
ﬁhﬁp). As expected from the theory (see Proposition 2), the smaller p, the more
biased the estimators: as an example, the oracle estimates in Example 1 (b)
(regression model with process X satisfying Hx as) are plotted on Figure 4.
The boxplots for the corresponding risks (over 50 estimators) are also plotted
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Example 1 (Regression model), (a)
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Example 2 (Gaussian mixture model), (a)
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Fic 4. First column: Plots of true conditional c.d.f. (black dotted line) versus estimators
ﬁ;fi{p, forp e {1,2,3,4,5,00}, calculated from a sample of size n = 500 (thin lines), with zo
a copy of X, in Example 1 (first line) and 2 (second line) with process (a). Second column:
Bozxplots of the risks of 50 previous estimators for the same values of p.

(outliers are not drawn). The mean integrated risks for all the studied models
are presented in Table 2. Both the boxplots of Figure 4 and the risks of Table
2 confirm that the risks generally become quite smaller when p increases.

6.3. Application to a spectrometric dataset

We propose to study a classical dataset, widely studied in regression contexts
(see Ferraty and Vieu [32, 33], Ferraty, Mas and Vieu [30]). The data is available
on line!, and have been recorded on Tecator Infratec Food and Feed Analyzer.
For each unit ¢ (i = 1,...,n, with n = 215), we observe one spectrometric curve
X; which corresponds to the absorbances of a piece of chopped meat measured
at 100 wavelengths ranging between 850 and 1050 nm. The aim is to describe
the link between a spectrometric curve of a chopped meat and its fat content.
For each curve X;, we denote by Y; the corresponding fat content. The sample
curves are plotted in Figure 5, first column.

In a first step, the data are centred to match our assumptions. Then we apply

Ihttp://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/
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TABLE 2
Values of the Mean integrated risks x10 averaged over 50 samples, for the estimators F\'0 »
with o a copy of X, and for p € {1,2,3,4,5,00}

Example 1

p= 1 2 3 4 5 +00
(a) 0.0044  0.0043 0.0039 0.0039 0.0038 0.0037
(b) 0.1796  0.1788 0.1768 0.1773  0.1649  0.1483
(c) 0.0171  0.0166  0.0075 0.0074 0.0071  0.0061

Example 2

p= 1 2 3 4 5 +00
(a) 0.7110  0.6603 0.6251 0.6545 0.6144 0.6184
(b) 1.2826  1.1817 1.0440 1.0212 0.9677 0.8481
(c) 1.1528 1.0509 0.7024 0.7034 0.6968 0.6596

our global adaptive estimation procedure. We choose ten curves :E((Jj )= X (i((Jj ))

(j € {1,...,10}) randomly in the sample. For each curve :Eéj) we estimate
the conditional distribution of Y given X = :E((JJ) using the information of

{(X;,Y5),i # z'(()j)}. The results are given in Figure 5. We see that when Y.
0

is small (blue curves), the estimated conditional distribution function y
)
F}i: ° is strongly increasing in the interval [0, 10], which indicates that our es-

timator detects that Y must be small with large probability. Conversely, when

Y. is large (red curves) the estimated conditional distribution function faster
0

increases in the interval [30, 50]. These results prove that our estimators are able

to capture the repartition of Y given X = zy when z is taken in the sample.

Concluding remarks

e The estimation procedure we propose is not restricted to the case where
the covariate X is functional. Indeed the adaptive estimator I3 can be
calculated as soon as the covariate X takes values in a general Hilbert

Absorbance
Fat content

: wavelength (nm) y

Fic 5. First column: Curves of the sample (left). The colors of each curve is defined by its

(3
corresponding fat content (right). Second column: Plots of F;U , forj=1,...,10. The color
of each plot is defined by the fat content )/’L,(j) as represented in the first column.
0
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space (H, [|-]|). The results can be applied to a function space such as L?(1)
(I C R), L*(R%) or a Sobolev space but also R?, C?, £2(N),... The results
given in sections 2 and 3 remain valid. For instance, in the case where X €
R, an immediate consequence of Theorem 1, is that both the pointwise
and integrated risks of F converge to 0 at the rate (n/In(n))=28/(28+d),

e [s there a solution to the “curse of dimensionality”? We prove that, un-
der our assumptions, the classical Nadaraya-Watson estimator (2) with
d(z,x’) = || — 2'|| attains the minimax rate of convergence. Then, in our
setting, even if these rates are slow, they cannot be significantly improved
by changing the semi-norm d in the kernel. A reflexion is under way on
determining if it is possible to modify the rates considering more regular
functions F than the ones of the class Fj3, for instance taking into ac-
count the derivatives of the covariate X in the spirit of Ferraty and Vieu
[32]. Another approach may be to reduce the structural complexity of the
model considering e.g. single or multiple-index models (Chen, Hall and
Miiller [17], Ait-Saidi et al. [1]).

7. Proofs
7.1. Preliminary notation and results

We will mainly focus on the proof of the results for the integrated risk (since
it is the one for which adaptation results are provided), and only highlight the
differences when choosing the pointwise criterion. Some technical proofs are
postponed to the Appendix (Section A).

We denote by Ex. (resp. Px, Varx) the conditional expectation (resp. prob-
ability, variance) given X'. We also introduced the classical norm ||.[| a(r) of the
space L1(R) of integrable functions (the notation will be used with ¢ = 2 and
q= ).

Recall that Kj,(z) := h~'K(h~'z). Assumptions on the kernel and H,, imply
that, for all [ > 1,

h mup(h)15(X') < Exo [K}(d(X, X")] 15(X") < h™ ' Myp(h)1p(X') as.
(17)
where m; := cbc, and M, := C4 C,,. These inequalities are useful in the sequel.
One of the key arguments in the proofs of Theorems 1, 2, and Proposition 2
is the control of the deviations (in probability and expectation) of the process
Rj, for x € H, defined by

- dXs, X))
ZIEX/ [Fp@x, xny rr=X,
R = (18)

- Xl x))
’ , if x € H is fixed.
ZE [Kp(d(X, x))]

The following lemma, proved in Section A, establishes the result which is useful
to control the integrated risk of the estimators. The proof can be found below.
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Lemma 1. Assume H,. For any n > 0, on the set {X' € B}, the following
inequality holds a.s.

~ nPp(h)
2 (X 4 Cxn)
my

m1

Py (‘th/—l‘ > ) < 2exp (19)

Moreover, assume also Hyz, and denote by Vr(h) = krln(n)/(np(h)), we have

a.s.
AN AM, 64C2N 1
o ((th 1) —VR(h)> ‘|§min (%%) (20
+

na
mi;  mi ) n

for any o > 0, as soon as kr > max(4Maa/m3,32C%-a*/m3Cy).
Fix a point xg € H. Then Inequality (19) becomes

2 o h
PR —1]> ) < 2exp | ——2T2 () ) (21)

C2
2(F+ )

CK

7.2. Proof of Theorem 1
7.2.1. Main part of the proof of the Inequality (7)

Following Ferraty, Laksaci and Vieu [29], Ferraty et al. [34], we define

FX () e SO (7 =)y Bn(d(Xi, X))
Fit (y) ._;Wh (X")1(y;<yy, where W,”(X') = E [ 5 X

(22)

We alio T,klave RX = ,Z?:l Whi) (X') (see Definition (18)). First, notice that
since F,f( <1land FX <1 as.,

E [||13,f<' _ FX/||%1{R§/<1/2}1B(X’)} < 4|D|P ({th/ < 1/2} N{x’'e B}) .

Now, with P({RY < 1/2}n{X' € B}) < P({|R)\ —1| > 1/2}N{X’' € B}) and
with Lemma 1 we get

BX X2 ) n] < _ mi
E (15 = FY b1 ey 1o(X)] < 8|D|6Xp( 8 (Wajmy + Crj2) ")
C
<
= np(h)’

where C' = 64|D|e*1M2/m;l7TCK/2. The last inequality comes from the bound
re ' < e_l, x> 0.
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We must now control IE[Hﬁh ' —FX,|\2DIB(X’)1{RX/>1/2}]. Recall that ﬁ,f(’ =
o ’ ’ ho=
FX' /RX". We thus have,

E[IEY = FX 315X )1 x50/

Y Y ,
<38 ||| 2o — B | g || 15Xy
D
I ’ )
+ 3E | [|Ex/ 7 — 1B(X )1 X7
Ri( RhX b {R;y">1/2}
— FX/ o 2 I
+3E || o = FX|| 1) g5
L h D
~ ~ 2 ~ 112
< 19E “F,;X By {Fﬂ ‘Dlg(X’)] +12E [H]EX, [Fﬂ ~ FX D]

’ 2 ’
+12E {(1 ~R¥ ) HFX

2
5 1B(X/)} : (23)

The first and third terms are variance terms, bounded by Lemmas 2 and 3
proved below. The second one is a bias term, controlled by Lemma 4.

Lemma 2. Under Assumption H,, on the set {X' € B},

M, 1
m3 np(h)’

s [ s [

2
)
D

Lemma 3. Under Assumption H,

- ] s 2l

Lemma 4. Under Assumption Hp,
’ ~ ! 2
E [HFX CEx [F,ﬂ” ] < LR,
D

This ends the proof of Inequality (7). The scheme can easily be adapted to
prove (6). O

7.2.2. Proof of Lemmas 2 and 8 (upper bounds for the variance terms)
Proof of Lemma 2 By Fubini’s Theorem

s [ -me (][] < [ e (30w [ 0]) ] o
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~ !
= / Varx (F,f( (y)) dy.
D

Since, for ally € D, F X ' (y) is a mean of independent and identically distributed
random variables (conditionally to X’), we have, on the set {X' € B},

(d(X1, X)) Lyvi <y
‘Z] B %/DVMX/ <I§Ehxfl[f)f(h (fi((Xj;)_)]}> W

EX,Mﬁg“_E&V[ﬁgj

22 K (d(X:, X)) DM, 1

S [(EX' [Kh(d(XlaX’))])Q] ~nomip(h)’

where the last inequality comes from Inequality (17). O

Proof of Lemma 8 Since Ex/[RX'| = 1, remark that,
’ 2 ’
E [(th —1) 1B(X’)} = E [Varx, (RhX ) 1B(X’)}

= 5[V (e fa ) =)

and the result comes also from Inequality (17).

7.2.8. Proof of Lemma 4 (upper bound for the bias term,)
First remark that, for y € D, a.s.
Ex: [F¥' ()] = nEx: [E[WD (X)L, 1% | = nEx [V (X)F5 ()]
and since nEx [W (X)) FX'] = FX',
F¥ (y) = Bxr [ ()] = B WV (X)) (FX' () - Y ()]

Then, thanks to the generalized Minkowski Inequality (see Lemma A.1 of Tsy-
bakov [56]), which can be easily extended to the integral over Hilbert spaces

]

2,2 L)yt ik
< CpnE |Ex WX 1% - X)) | (24)

’FXI _FX

E [HFX By {ﬁ,ﬂ HQD] <n’E {EX/ [W,E”(X’)

by Hp. Now, since K is supported on [0, 1], if d*(X1,X’) = || X1 — X'||? > h
then W M(X") =0,

E {HFX Ey [i,ﬂ HH < C3n’E [EX, [W,E”(X’)hﬁﬂ .
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But IEX/[W,?)(X’)] = 1/n, which ends the proof:

[le e [B] < o

7.3. Proof of Theorem 2
7.8.1. Main part of the proof of Theorem 2
Let A be the set

r- N

h€Hn

Yy

We split the loss function of the estimator

We will argue as follows, with two steps. First, on the set A, @(h) is close to
©(h), and the proof comes down to the control of the estimator of the bias
approximation of the criterion (10). Second, the probability of the set A° is
shown to be negligible. Let us prove these two claims.

o~ ! ’ 2
A
D

A~ /112
3 A];X - FX HD(IA—FIAC).

e Step 1. Upper bound for FX _pX'|2 1. Let h € H,, be fixed. We start
7 D

with the following decomposition for the loss of the estimator ﬁ% "

The definitions of A(h), E(ﬁ) and then the one of h enable to write

Ayt /12 g ~r ]2 A~y ~r ]2 ~ ;112
X X X X X X X
I M U R R S D

ot 112 2
X X X
3HFE —Fﬁvh’D—i—?)HFﬁvh—Fh ’

_l’_
D
_l’_
Thus,
A~ 112 ~ ~ A~ 12
HEX _FX H 15 < 6A(h)+6V(h)+3HF,§< _FX H 1n.
h D D

We now split g(h) to introduce the following intermediary

2

2 In(n) D—V(h’)) . (25)
+

V(h) = g/@
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Compared to the data-driven criterion (10), the variance term V'(h) is deter-
ministic here. Note that

-~ ~r ]2 ~
heEHn, V(R )<oo D +
~ |2
= max {H o — || - V(h/)}
h'€Hn, V(h')<oo D
- max (V) -T0)
h E€Hnpn, V(h)<oo +
< N—VH)) .
< 00 g (v -T00),
We obtain the decomposition
~ st , 2 A~ ’ 2
’ EX X HD 1, < {6A(h) Y 6V(h)+3 HF,ff _FX HD (26)

+6 max (V(h’) - XA/(h’))

+6 (XA/(h) - V(h)) } 1n.

+

For h' € H,, such that V(h') < oo, we have

- 2 In(n) [ 1 3 1
h h - =
v =¥ = 5t ()
But on the set A, for any b’ € H,, |5(R') — o(h')| < ¢(h')/2. In particular, we
thus have @(h') — p(h') < @(h')/2, that is (k') < (3/2)¢(h’). This proves that

V(h') = V(h') < 0, and hence
N1 _
max (V(h) Vih ))+ 0.

Moreover, on A, we also have, for h € H,, ¢(h) — §(h) < @(h)/2, that is
2/¢(h) > 1/@(h). Thus,

= 2 In(n) /3 1 1 2 In(n), 1

V(h)—-V(h)= = — — <= 2—— =2V(h).

W =v =3 (S~ ) <5 ()

Gathering the two bounds in (26) leads to

A~ / 2 A~ ’ 2
HFg _FX HD1Ag6A(h)+18V(h)+3HF,§ _FX HD

Besides, the quantity Hﬁ,f( "— FX'||2, is the loss of an estimator with fixed band-
width h and has already been bounded (see Theorem 1 Inequality (7)). Hence

we obtain
~ |2 1
E‘A—qull XN| < 6E[A(R)15(X")]+ 18V (h)+3C :
(|72 1a1p(X')| < 6E[AR)Lp(X")] +18V (k) + —r
(27)
where C'is the constant of Theorem 1 (Inequality (7)). The remainding part of

the step is the result of the lemma hereafter, the proof of which is postponed to
the following section.
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Lemma 5. Let h € H,, be fixred. Under the assumptions of Theorem 2, there
exist two constants C1 and Cy such that,

E[AM5(X')) < 0% 4 2. (28)

The constant Cy depends on Cy, |D|, Ma, my and Ck and the constant Cy only
depends on Cp.

e Step 2. Upper bound for ||ﬁEX/ — FX/||%1AC. We roughly bound

A~y /112
P —FXH 1Ac§2<
D

~or |12 112
P H +HFX H >1Ac < 4|D|1x-.
D D

It remains to control P(A°):

P = 3 P (I - ol = 7).
he€Hn
= 2P ( %Zl{dm,xi)sm —E [Lga,x)<m]| = @) :
heHn i=1

We apply Bernstein’s Inequality (Lemma 9), with T; = 1¢400,x,)<n} and n =
¢(h)/2. Since 0 < T; < 1, we set by = 1, and v? = Var(T1) = ¢(h)(1 — ¢(h)).

We derive
P(A9) < 2%{: eXp( o fsj((hf;))/i <p(h)/2)
- 2};; exp( +> 2,;; eXp( (h))

We thus obtain

E U
(29)

thanks to Assumptions J Hy, and Hy. Taking Co > 24, we have pi=Co/12 < -1,
Thus (29) leads to IE[HFX — FX'||215.15(X")] < 8|D|/n It remains to gather
this bound with (27), to apply Lemma 5 and to take the infimum over h € H,,.
This ends the proof of Theorem 2. O

R
EX F’

h
1pe1p( /)} < 8|D| Z exp (_%(2)> < 8D|n!=Co/12,

heHn

7.8.2. Proof of Lemma 5 (Upper bound for A(h))
Fix h,h' € H,. We define the set Qp, » = {RYX > 1/2} N {R},,, > 1/2} and
split

ot a2 2
X
HFh/ Fruw b < b (1szh w T lae )

P A~
HFh’/ _Fhvh/
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Recall that we write the estimator ﬁ,f(,(y) = ﬁh "(y)/ R, with ﬁ,f(, defined by
(22) and R by (18). We split again

ot~ 12
X B
Ry Riw

~ ~x/ 2
Fh/ _Fh\/h/ D]-Qh,h/ = ]'Qh,h’

D
<4 (Ts, + Bh,h’ + Th\/h’ + T;l;vh/> ,

where
1 =y N
T};l/ = HW (Fh’ _EX/ |:Fh’ :|)H 1Qh,h”
h! D
T}?vh’ == RX;/, (Fi{/h’ - ]EX/ |:Ff$</h’:|) ]‘Qh,h’
hVh - o 9 (30)
B = —— [Ex: [B] - Ex [ | 10,
(Rﬁl)z 1 \4 D h,h
~ 1 1 \? ~ 112
Thon = (—/ - —,> ‘EX/ {F;f(vh/} ‘ 1o, ...
R R, p

Thus, by subtracting V' (k') and taking the maximum over h' € H,,, we obtain

ot ~ ot 2
Ah) = HF*’?—FX, —v 31
= e (|8 =B, -von) (31)
h h!
h' €My 3 L WeH. 3 n
_ B
+ max <4T,Nh, _ W ))
h'EHn 3 "

PO
+4 max By, + max (|| Fiy —F,f(vh,
WeHn h' €My

2
1qec .
D Qh,,h’

We have not subtracted V(h') to two of the above terms: we show below that we
can bound these terms directly. We now deal with each of the terms involving
in (31) on the set {X’ € B}.

e Upper bound for the term depending on By, ;. Since By, jy = 0if b’ > h,
we first have maxp/eH,, Bh,h/ = MaXp’cH,, h'<h Bh,h’- ‘We then use the definition
of the set €y, 5/, and split the term to obtain the bias terms:

IN

’ 2

max By, p 4 max
heHn, R E€Hn
h'<h

8 max {HEX/ [F,ﬂ _ X
h'E€EHn
h'<h

Ex [Eff(,] —Ex/ [Eﬁ/lh/}

D

IN

2 12
-
D+H X v [l p

IN
9]
N
g
o
"
Q
(V]

2(h)%8 + C%hw) < 16C%h%", (32)

thanks to Lemma 4.
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e Upper bound for the term depending on 19; e It is the second term
which does not depend on V (h/):

2

D) '

Sx A~ !
max ‘ Fh’ - Fh\/h’

2
~
+ HF ,
= D hvh

2 A~/
lo: ) < 2 max 1o, (|BX
D h,h heHn

Thus, since |13,f,{/(y)| <1 and ‘ﬁ,ff;h(y)‘ <1,

1Qc 1p(X )]<4|D| > P(Q, N{X' €B}).

E |:maX (HFh/ Fh\/h’
h'eH,

h'€Hn

Moreover, P(Qf ,, N{X" € B}) < P{|RY —1| > In{X’ e B})+P({|Rh,vh
1| > 3} n{X’ € B})]. Thus by applying Inequality (19) of Lemma 1, with
n=1/2:

S RO X eB) < Y 2| )

e, h €M 8 (M2 + f,,fl)
h v K
+2exp _M
5 (2 + 5x)

Recall now that thanks to Hpa, ¢(h) > Coln(n)/n for all h € H,, with Cy >
16(Mz/m? + Ck /2m1). Use also Hp; to deduce

Z P(Q,N{X' €B}) < 4xnxn 8(’"1
h'€Hn

Thus, we have proved that

~ ~yr 12
X X !
e |y (18 - B 1, ) 1000 <

e Upper bound for the term depending on th)h/. The definition of this
term implies that

2
~ RX  _ RX ——r 1112
T = [y — tw HE[FXH 1o,
" (Rﬁ Ry Xl e
N 2
< 16[D| (thh’ Rﬁ),
2 , 2
< 32|D|{( M —1) (R =) }
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using that IE[}N7 ,ff/lh,] < 1. We roughly bound the supremum over h' € H,, by a
sum over h’ and use the last inequality:

<4 E (Th\/h’ (h)> 15(X")],
h'eHn
§4h§nE (32|D|{(thh/—1)2+(Ri(/l_ ) }_VEZ/))+1B(X/)‘|7

+ Z . l(32|D| (Rhl, a 1)2 B Véz/)>+ 1B(X/)] } 7

<128/D)| {h;nE <(RhX\;h/ - 1)2 - ;géTD)JJF 1B(X’)]
s 2 V() /
+h§nE ((Rﬁ 1) —768|D|)+1B(X )H

Then, Inequality (20) of Lemma 1 (with o = 2) proves that, on the set { X’ € B},

a.s.,
/ 2 2
<(R§ 1) _VR(h’)) < min <—4M2 —64CK> i
+

m2’ m? ) n?’
with Vg(h') = krln(n)/ne(h’) and kg > max(8Ms/m3,128C% /m3Cj). Choos-
ing 2k/3 > 768|D|k R in the definition of V (k') (see (25)) leads to V' (k') /768|D| >
Vr(h'), and hence we also have

C N2 V(R C[4M, 64C2\ 1
E RY —1) — 15(X")]| < 72 TTEK )
h;{ (( h ) 768|D|>+ 5 )1 —mm(mf’ m2 )’

thanks to Assumption Hpy. Since ¢(h) < o(hVh'), V(') > V(hV R'), the other
term is bounded as follows

| (1)~ ) 100

<(Ri(\;h/ - 1)2 - ‘/;QTT;'/)L lB(X/>] :

and same computations allow to deal with it. We thus deduce that

n AM, 64C2\ 1
Vi )) 15(X") 3256|D|m1n(—22,%> —. (34)
+ m ™m n

1 1

EX/

<E

E
h'eH

max (4Thvh/ —
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e Upper bound for the terms depending on 7}, or T,fb’,. First, by definition
of Qp pr, T < 4| FX = Ex/[F7X']||3. Furthermore, noticing that F;X belongs
to L?(D), the following equality is classical:

~ st ~ A 2 ~ ~
1B BB = sw (B —Ex[FX) 0, (35)
D 4eSp(0,1)

where Sp(0, 1) is a dense countable subset of the sphere S(0,1) = {t € L?(D),
Itlp = 1}. Indeed, denoting v = FX' — Ex/[FX'], for any ¢t € L2(D), the
Cauchy-Schwarz Inequality leads to sup,es(1)(v;t)p < |[v]lp, with equality
when ¢t = v/||v||. We can replace §(0,1) by Sp(0,1) thanks to the separabil-
ity of L?(D), which gives (35). Moreover, we write the scalar product (ﬁ',f,(l -
Ex/[FX'],t)p15(X’) = vnn(t), for t € Sp(0,1), where

%m>:%2wwmm—mwm&mm (36)
- Kp(d(X;, X))

with 1Z)tf,h()(i; }/z) = EX/[Kh(d(X“ X/))] <1[Y1,oo[7t>D]-B(X/)

Consequently,

E
h'€Hn, 3

V(n
<16 Z E l( sup vy (1) — ( )> 1B(X')1 .
hEH, teSb(O,l) 48 +

We use the following lemma, which permits to control the empirical process
defined by (36). Its proof can be found in Section A.

max (4Tg, - w) 1B(X’)]
+

Lemma 6. Under the assumptions of Theorem 2, for 6o > max(3528C%|D|/
M>Cy,12), there exists a constant Cs > 0 (depending only on my, Ma, &, Co
and |D|) such that

D|M> 1
E E sup vy (1) — 650' | — a(n) 1(X')
hEH tGSD(O,l) i my nSO(h) +

Choosing 2k/3 > 28880| D|Ma/m? in the definition of V (k') (see (25)) leads
to V(h')/48 > 680|(D|M2/m?)In(n)/(ne(h)). This proves that

C
<=
n

V(R 160

E ) 15(X ’)1 < : (37)
N

max (4T,‘L’, -

h'€Hn n

Recall finally that V' (k') > V(h V /'), similar computations allow to also obtain
the same bound for E[maxy e, (470, — V(1')/3)+].

Gathering Inequalities (32), (33), (34), and (37) in Inequality (31) completes
the proof of Lemma 5. O
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7.4. Proof of Theorem 3
7.4.1. Proof of (i), under Assumption Hx .

Sketch of the proof The proof is based on the general reduction scheme
described in Section 2.2 of Tsybakov [56]. We only describe in this section the
main steps, whose proofs are given in Section A.2. Let zy € H be fixed and
= (In(n))~#/* the rate of convergence. We define two functions Fy and F,
called hypotheses, such that

(A) F; belongs to Fg, for I = 0,1,

(B) [|[Ey° — Fy°||% > cry, for a constant ¢ > 0,

(C) K(PY",PS™) < « for a real number a < oo (which does not depend
on xg), where P§" (resp. P{") is the probability distribution of a sample
(XO,i; YO,i)i:l 777 n (resp. (Xl,iv m,i)i:l _____ n) for which the conditional c.d.f.
of Yo, € R given Xy,; € H (resp. of Y1,; given Xi,) is Fy (resp. Fi).
K(P,Q) is the Kullback distance between two probability distributions
P and Q: K(P,Q) = [In(dP/dQ)dP if P << @, and K(P,Q) = 4+
otherwise.

Then, thanks to Theorem 2.2 in Tsybakov [56] (p. 90), the results hold for any
xo. Moreover, the multiplicative constant ¢’ involved in Theorem 2.2 is clearly
independent on zq. In the sequel, we define Fy and Fi. The three conditions are
checked in Section A.2.

Construction of Fy and F; and of the associated samples For (z,y) €
H x R, let F§ be the c.d.f. of the uniform distribution on D, that is F§(y) =
ﬁlye D + 1y>sup 0. Choose a real random variable Yy with a uniform distribu-

tion P74, on the compact set D, and take any process Xy on H, independent on
Yy, with distribution Py verifying Hx r. For the second function, set

Fiy) = F(y) + LylH (”;—') R

where

e ¢y : R — R is a non-zero continuous function with support D with
Jg (t)dt = 0.

e H:R; — Ry is a function with support [0; 1] such that |H(u) — H(v)| <
lu —v|?, for any (u,v) € R?.

e Lisareal number such that 0<L<1/(sup,cn- {0} D|[| K[| L= (R)||¥)|| .o ())-

e 7, is a non-negative real number such that

“o
n )

ml > c(pyrn and 1,7 0" (1) < (38)

for two constants ¢(gy > 0 and ¢y > 0.
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From Hx p,, a positive number 7,, for which the properties above hold is given
by

Inn—((26+7)/a)lnlnn —1/e
1
We also choose a variable Y7, such that, for any x € H, the conditional

distribution of Y7 given Xy = z is characterized by the c.d.f. F{*. The notation
P, is the distribution of (Xg,Y7).

7.4.2. Proof of (i), under Assumption Hx a or Hx p

The proofs exactly follow the same scheme as for (i) under Hx r. The only
difference is the choice of the sequence () (see (39)).

28

T In'/® n), and replace the previous
1

e Under Hx pr, we set rp, = exp(—
choice (39) of 1, by 7, = exp(—(c;* lnn—cf(a+1)/a(26+72) Int/ % p)L/ey,
It verifies both of the required conditions (38).

e The case Hy r is the extreme case a = 1 in Hx . We set 5, = n'/(26+7)
and attain the lower bound 7, = n~28/(26+7), O

7.4.8. Proof of (ii)

The risk (5) is an integral w.r.t the measure Px ® Py, where Py, is the uniform
distribution on the set D. The tools defined to prove (i) are useful and we refer to
it. But it cannot be straightforwardly adapted, since for an integrated criterion,
two hypotheses are not sufficient. We focus on the case of Assumption Hx
(the switch to Assumption Hx y and Hx g is the same as in (i)). Denote
by r, = (In(n))~2#/® the rate of convergence again. We must build a set of
functions (F,)wecq, where £, is a non-empty subset of {0,1}™" and m,, is a
positive integer which will be precised later, such that,

(A’) F,, belongs to Fg, for all w € Q,,
(B’) For all w,w’ € Q,, w # o, B[|FX — FX'|515(X")] > cr, where ¢ > 0 is

a constant,
(C’) For all w € Q,, P, is absolutely continuous with respect to Py and
1
oo 2o K@ZMPE™) < (In(Card(Qy,
Card(Q,) Z (P, Py") < (In(Card(£2,))

wEN,

for a real number ¢ €]0,1/8[, where PE"™ is the probability distribution of
a sample (X, i, Yy i)i=1,..n for which the conditional c.d.f. of Y,,; given
X, is given by F,,.
Then the result comes from Theorem 2.5 of Tsybakov [56] (p. 85-86). We follow
the same steps as previously: below, we define the set of hypotheses (F,,),ecq,,,

and in Section A.2, we give some additional material to check conditions (A’),
(B’) and (C”).

.....
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Construction of the set of hypotheses F,, and of the associated sam-
ples The first function (x,y) — EF§(y) is defined as in the proof of (i). For all
W= (W1,...,Wn,) € {0,1}7 let

y mn
Fe) = )+ oot [ wioar Y wr (220,

-0 k=1 "
where ¢, H, L, and (n,), are introduced in the proof of (i) (a good choice
of 7, is (39)), and with z; = v/2sup,,cy- {7 }ej, for all 7 > 1, where (e;);>1
is an orthonormal basis of L2([0, 1]). Moreover ¢ verifies the following condi-
tion: ||¢||H%2(R) < In(2)/(64C|DI||H || 2(ryc(cy) (where Co appears in Assump-
tion (14), p. 2364 and c(¢) in (39)).

We also choose a variable Y,,, such that, for any € H, the conditional

distribution of Y,, given X = x is characterized by the c.d.f. FZ. The notation
P, is the distribution of (X, Y,,).

Remark that the definition of (x;);=1,....m, implies that,

.....

H<||$_Ik”)H<|x_IJ”> =0forall z € H, assoon as j # k.  (40)
n Tn

Indeed, suppose that H(||z — zx||/nm) # 0, since H has support [0, 1], we have
|z — zx|| < nn. Now remark that, as (e;);>1 is an orthonormal basis, for all

J # K, 25— akl® = 2suppen- {ma} (lles 1 — 2(ej, ex) + llex]|?) = 4sup,en- {7}
Then [z — zjl| > |lzj — ax| = [z = @xll > 2suppen-{mm} = mn > 71n and
H([lx — ax]|/nn) = 0. O

7.5. Proof of Proposition 2
7.5.1. Main part of the proof

The proof starts like the proof of Theorem 1. For Inequality (ii), we first bound
E[|FX - FX’|\2D1{R§/<1/2}IB(X’)] by C/(ng,(h)), with d replaced by d, in
the definition of RX . For E[|F/X" — FX/||2D1{R§/21/2}13(X’)] we obtain the
splitting (23). Lemmas 2 and Lemmas 3 remain valid (by replacing again d by

dp in every terms, and by using H, :0 instead of H,,). This first part is also easily
adapted to the proof of Inequality (i).

The difference lies in the control of the bias term. We substitute to Lemma 4
the following result, the proof of which can be found below. This ends the proof.

Lemma 7. Suppose that Assumptions Hp and He are fulfilled. Then

B
E [HFX ~Ex [FY)]

2
2 2
‘D]gc R DI

Jj>p
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and
B B
~ 2
T T 23 2 \2
E MF o _E [Fh;] HD] <C|hf+ Zaj + Z@O,eJ)
i>p i>p
where C > 0 only depends on Cp, B, and C¢. O

7.5.2. Proof of Lemma 7

Let us begin with the first inequality (integrated risk). Like in the proof of
Lemma 4, we also obtain (24). Then,

2
)
/272

< CHn®E [Ex/ WD (X)) | (X0, X') + ) o?(el) — ¢))? :

Jj>p

| e A

where 53(-1) = ((X1,e5)—pj)/oj and & := ((X1,e;)—p;)/0; are the standardized
versions of (X1, e;) and (X', e;). The same arguments as in Lemma 4 lead to

;)

< CHn’E |Exo [WO(X) [ 0243 o2 —¢))?

E [HFX ~Ex [FY)]

/272
Jj>p

Now, firstly, for all a,b > 0, (a + b)%/2 < (2max{a, b})?/? < 28/2(aP/? 4 15/?)
and secondly Ex- [Wél)(X')] = 1/n. We thus obtain

)

E [HFX ~Ex [FY)]

/272
< 251103 | n% 4% |Ex [WI(X) [ D o2 — &2
Jj>p
(41)
Under Assumption H é’ , the results comes from the following bound
8/21? 8
~1 1 1
E|Ex |[WDX) | Y a2l —¢))? =S e DI =2

Ji>p Ji>p
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Under Assumption H{"?, remark that
B/2]?
(1 1
E |Ex | Wi (X) [ Yo og” - )
i>p
/272
N 2
—E |Ey [Wél)(X’)} Ex | [ S o3V —¢)?
J>p
8/2]?
<R || YoofgY -6
J>p
Now, we use the following lemma, proved in Section A.
Lemma 8. Let (nj)j>1 a sequence of real random variables and (0;);>1 a se-
quence of real numbers verifying, for 5 >0,
ZUJZ <400 andVj>1, E [njﬁ] < Cuy,
Jj=1
for a constant Cp > 1, then, for allp € N
B/2 B/2

B\ D ofn | | <Cu|d 0]

Jj>p Jj>p
With n,; = §J(-1) — ¢ and Oy = 20C¢, we get

8/2]? 8
1
A DBLAGRES <2V oo
Jj>p j>p
and the result comes from Inequality (41). The proof of the first inequality of
Lemma 7 is completed.

For the second inequality (pointwise risk), the only difference is that, from
(24), we rather use

B/2
X1 —zoll” = | d2(X1,20) + Y (0,6 — (wo.e5))
Jj>p
B8/2 8/2
< 392 | dB (X4, o) + 2772 Z"?f? +28/2 Z<x0,ej>2
Jj>p i>p

The final bound then follows similarly. O
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Appendix A: Additional proofs

A.1. Proofs of the convergence rates of the estimators
(upper-bounds)

A.1.1. Proof of Proposition 1

Proof of (a) We have to compute the convergence under three regularity
assumptions (Hy 1, Hx a and Hx p), and for the two criteria (pointwise and
integrated). It follows from (7) of Theorem 1 that the risk of the estimator is
bounded by

R(h) = 1*" + 1/ (ng™ (1)),

up to a multiplicative constant, and with xg = 0 for the integrated risk. To
obtain the convergence rates, it is thus sufficient to compute the bandwidth h
which minimizes the bound R(h) when assuming Hx. If the minimum cannot
be easily computed, we can also choose a “good” value for h.

e Convergence rate under Assumption Hx ; With the lower bound on ¢*° of

Hx 1, the quantity R(h) and thus also the risks are upper bounded by a quantity
with order of magnitude

R(Rh) == h?’ + h ™V exp (c2h™*) 1.

Choosing the bandwidth hg such that

with # := c; ' (y/a+23/a) ends the proof, since R(hq) has the announced order.

e Convergence rate under Assumption Hx pr or Hx p First assume Hy pr. The
risk is bounded (up to a multiplicative constant) by the quantity

R(h) = h?% +n=th™ " exp (co In*(1/h)).

Choosing

1 L 1/«
ho = exp —(—lnn—CQ(O‘Jr )/0‘(26—71)1111/0‘11) ,

Co +
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leads to what we want to prove, that is
2
R(hg) < Cexp (—Tﬂa In'/® n) . (42)

When assuming Hx r, the optimal i can be computed: the one which mini-

mizes R(h) = h?? + h~7 has the order n'/#*+7) and immediatly gives R(h) <
Cn—28/(28+7), O

Proof of (b) The proof comes down to the proof of (a) since Theorem 1 gives
a bound of the risks of % with the form min, R(h) (R(h) defined in the proof
of (a)). The computation of the (a) bound for this minimum has thus been done
in the previous section. O

A.1.2. Proof of Corollary 1

The proof is based on the same ideas as the ones used to prove Proposition 1 in
Section A.1.1. We begin with the result (ii) (integrated risk).

Proof of (ii) Thanks to Proposition 2 (ii), the risk of the estimator is bounded

by h2P + (> jsp 03)? +n"1p, 1(h), up to a multiplicative constant. Remark that

Spp(h) :/ fp(xlv"'vxp)dxv
{XERT’, >ia U?w?ﬁfﬁ}

where f, is the density of (&,...,&,). By noticing that

P
h
x € RP, E U?l‘?ShQ ODUxeR?, |zj| < ———— ;.
: P2
j=1 7=17j

we get

op(h) > 2php/[ L fp(hay, ... hay)dx > cPhP,
0

( =1 "?)71/2]

where ¢ only depends on i>1 O'JQ- and cy. With the assumption on o, we thus
obtain the following upper bound for the risk, up to a constant R(h,p) :=
h?8 4 pf=20) 4 ¢=Pp~1hp=P Choosing h = (%)1/(254”0)71*1/(25*?) and p =
[In(n)/(d —1/2)Inln(n) — 23] gives the result.

Proof of (i) We deduce from Proposition 2 (ii), from the assumption
Y jsplTo,e5) < O, 07, and from the left-hand-side inequality of H, that
the risk is upper bounded by h?? + (> j5p sz)ﬂ +n" o, (h), up to a multi-
plicative constant. Thus, the reasoning is the same as for (ii). (]
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A.2. Supplementary details for the proof of Theorem 3
A.2.1. Additional material for the proof of (i), under Assumption Hx r,

All that remains to be done is to check that the hypotheses Fy and F; defined
in Section 7.4.1 satisfy the three conditions (A), (B) and (C) (also defined in
Section 7.4.1).

Check (A). Belonging to the space Fp For any x € H, the function F§ is
a c.d.f. by construction (it does not depend on z and is simply the c.d.f. of the
uniform distribution on D), and ||Ff¥ — F¢'||? = 0 (z,z' € H). Thus, Fy belongs
to Fg.

Let « € H be fixed. The function y — F7 (y) is continuous, with limit 0 when
Y goes to —oo (recall that D is a bounded set), and 1 when y goes to +oco (since
Jp(t)dt =0). If y & D, (FF)'(y) = 0 (the support of 1 is included in D) and
ifye D

- 1 |z — 2ol
(F)'(y) = o] +L775H( P(y)
1
> D]~ LS| H|| poe )1 ]| oo =) > O,

thanks to the definition of L above. Thus F} is increasing, and F}* is a con-
ditional distribution function. Moreover, for any x,z’ € H, denoting by I, =

fD fy dt 2dy7

irr - = pr (m (Il g (Bl )
Tn n

_ r_ 28
L2777216L/J (|£L‘ LL’QH _ HLL‘ g $0|) < L2IwHJJ—£L‘/H2’Bu
n

n

IN

thanks to the regularity property of the function H. Therefore, F; also belongs
to Fg.

Check (B). Condition on the loss |[F;° — F°||% We have, thanks to the
lower bound for 7,,

1770 = F5e [ = L2na  H?(0) 1y > L2H?(0)Iycc)rn

Check (C). Upper bound for the Kullback divergence K(PZ", P{™) In
a first step, we prove that the measure P; is absolutely continuous with respect
to Py, and compute the Radon-Nikodym derivative. First, notice that

= [ ’ ﬁmwunﬁﬂ(' nf°”>¢<t>dt.
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Therefore, keeping in mind that [ ¢(t)dt = [, (t)dt = 0, the conditional
distribution of Y7 given Xy = x admits a density with respect to the Lebesgue
measure on D given by

[l — ol

st = (o + i ( ) o) 100

n

We can thus compute the distribution Py of the random couple (X, Y7). By
definition, we see that P; << Py and dPy/dPo(z,y) = |D|fF(y). This enables
to compute the Kullback distance

dPy

K(P1,Fo) = / 1n<dTD0>dP1_ /H (DI ) 7 )y, 2),

= | [ (Dl w) £

E UD In (1 + |D|Ln2H (W) w(y)>
x (;ﬁ' + Ly H (W) w(y)> dy] :

Noting that In(1 4+ u) < u for every u > —1, we obtain

K(Py1,Po) < [DILPn2 91172y 1H 17 ) 0" (11n),

by using successively that fR ¥ (y)dy = 0 and that the support of H is [0;1].
Thus, thanks to the definition of 7, we get

K(Py,Pp) < |D|L2|W)”%2(R)HHH%“’(R)C(C)/H’
and finally,
K(PF",PE") = nK (P1,Po) < |DIL?||9]1 2 ) 1 H || ) ¢y

which completes the proof of (C). O

A.2.2. Additional material for the proof of (ii)

Similarly, it remains to check that the set of hypotheses (F,),cq, satisfy the
three conditions (A’), (B’) and (C’) defined in Section 7.4.3.

Check (A’) We have already checked that Fyy belongs to Fp. Let w € {0,1}™n
be fixed. To prove that F is non increasing (z € H fixed), as for F{’, we bound,

1
(FX)'(y) > —= — L sup I H| peow ¥l Lo (m) > 0,
|D| neN*
for y € D, thanks to Property (40) and the definition of L above. Thus, as F} in

the proof of (i), F, is a conditional distribution function, and we also similarly
obtain F,, € Fg.
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Check (B’) Tor all w,w’ € {0,1}™n,

E[IFY - FXIH1s(X")]

My, 2
_ 12,28 L HX/_IkH /
=L Mn Iﬂ)E Z(wk wk)H ]'B(X) )

1 Mn,
with I, defined in the proof of (i). From Property (40), we get:
EIFY - FY I315(x")]

Moy, X, _
= L1y Z(wk —w})?E {HQ <7” ; x’“') 1B(X’)} .
k=1 n

Now set cy 1= ming j»<1/2 H(x), since H is continuous and H(x) > 0 for all

x € H, such that ||z] < 1, we have ¢y > 0 and

o T G T

Tin M
> P ({| X' — 2|l <mn/2} N{X’ € BY}).

Now recall that, by definition, |lzx| = v2sup,en{nn}, and that B contains
the ball of H centred at 0 and of radius p. Then, as soon as, p > (1/2 +
V2) supen{nn}, we have {|| X’ — zx| < n,/2} € {|X'|| < p} C {X' € B}.
Then, since ||z|| < p, we also have x, € B and we can apply Condition (14) to
get a lower bound on the shifted small ball probability P(|| X" — x| < n,/2) =
@+ (1 /2). We get

e [ (B2 1001 = a2,

and
EIFY = FX 1H1(X)] = L3chean? Lo /2)plw, o),

where p is the Hamming distance on {0, 1}™ defined by p(w, w")= Z;n:"l Liw 2w}
Now, from Varshamov-Gilbert bound (Lemma 2.7 of Tsybakov [56]), there exists
a subset €2, of {0, 1} such that

plw,w) > %, for all w,w’ € Q,,w # ', and Card(Q,) >2m"/8.  (43)

Then fix m,, := [p(n,/2)"t] where |-| is the integer part. For all w # ', by
definition of 7,

[y

E||FS = FX 116X > <LPchean’ Tymap(na/2) > <L cyearn.

] —
0
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Check (C’) We also prove that the measure P, is absolutely continuous
with respect to Py, with derivative dP,/dPy(z,y) = |D|fZ(y) and dP,(z,y) =
12(y)dydPx (x), like in the proof of (i). Arguing again as in (i), we get

o X—z
KPP < DI [ vy ok [H <7' ’“”)} |
D k=1 n
< mn| DI 1|72 gy | H I ooy P (1 X — @el] < 7)) -

Now, arguing again as in Check (A’), we can apply Assumption (14) and get
that P(|| X — zx|| < nn) < CoP(|| X < ) = Ca(ny,). Thanks to the definition
of 1, we now obtain (as in (i))

K(BZ",BE") < Coma| DIL2||¢]1 222y | HII7 < ) (c)-

Finally, condition (43) on the cardinal of €, leads to m,

(8/In2) In(Card(£2,,)), which completes the proof of (C’), taking (
(8/1n2)C2| DIL? (|9 2y 1 H |7 o () €0y (We verify that the condition on [|¢)] 12 g
implies that ¢ < 1/8). This completes at the same time the proof of all the lower
bounds. O

A

A.3. Proofs of some technical lemmas

Here we prove the technical results which are used in Section 7.

A.8.1. Proof of Lemma 1

To prove Inequality (19), the guideline is to apply Bernstein’s Inequality (see
Birgé and Massart [9]), for the conditional probability Px-.

Lemma 9. Let T1,T5,...,T, be independent random variables and S, (T) =
S (T; — E[T;]). Assume that

1 & il
2 ! 271-2
Var(Ty) <v® and VI > 2, - igl E [|TZ| } < 51} by ~.

Then, forn >0,

AN
[N}
©)
]
ho]
/T\
3
[\v]
~
)
~—

(515012 )

A
[\
=
2
P2
@D
»
S

() (-2} 0

Here, T; = K (d(X:, X'))/Ex/[Kn(d(X;, X"))], and RY — 1= S,(T)/n (re-
call that we consider here conditional expectation and probability with respect
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to X’). Let us compute the quantities v and by involved in the inequality. First,
on the set {X’ € B}, Inequality (17) implies that
Ex [Kj(d(X1, X"))]
(Ex: [Kn(d(X1,X"))))*
W 2Map(h) My 1,
(b)) mZe(h)

VarX/(Tl) S EX/ [Tf} =

Similarly, for [ > 2,

Ex: [K}(d(X1,X"))]
(Ex: [Kn(d(X1, X))
WMgph) M, 1

(ho(hymy)' — mb @1 (h)’

1 n
=~ Ex [ITl] = Ex [T1[] =

By splitting M; = C! Cp = M20é€27 the last upper bound can be written

1 & My, 1 CL2 1 _
- E Ex [|IT; l < == K _ ’U2bl 27
n e %] m3 (h) mi=2 (p(h))!—2 0

with by = Ck/(m1¢(h)). We now apply the first inequality of Lemma 9, this
complete the proof of Inequality (19). The proof may be adapted easily to

demonstrate Inequality (21). For Inequality (20), we follow the same strategy
as Comte and Genon-Catalot [18], pages 20-21. First

((Rh/ - 1)2 —VR(h))J
Py, <( Rh/ - 1)2 - VR(h)>+ > u> du,

-/
/ ’RX —1}>\/m)du
2m

e[ o (P THON)

/""exp <_"7VU+VRW> du},
0

4by

EX/

IN

IN

thanks to Inequality (44). Now,

Via(h : :
”(uz 2R( ) — np(h)u my o) TARR
v

which leads to

[y L, PR N

42 m% nl-i-ﬁRmf/él]Wg @(h) !

N
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Since, by Assumption Hpa, ¢(h) > Cpln(n)/n, we obtain

/oo o <_n(u + VR(h))) o A 1
0

402 — Com% ln(n)nan%/4M2 )

and the last upper bound is smaller than (4Ms/Com?)/n® as soon as kg >
4Msa/m3. For the other integral, we begin with a lower bound for n+/u + Vg (h)/
4by,

m1Co

ny/u+ Vr(h) m1+v/Co
= ViR 44/2Ck

- - 1 ,

In(n) +

by using ¢(h) > CyIn(n)/n another time. Thus,

00 ~ m1/CoVFR 00
0

4bo 0 4v2Cxk

64C% /°° 1

= sexp(—s)ds
m%Cg 0 2 MI4\\//‘§\/K_R

In“(n)n K

Rte 1 6402 1

T 202 miv/Cov E — m2CO2 no
miCq 1n2(n)n714ﬁgf< roompbyn

as soon as kr > 32C%a?/miCy. This ends the proof of Lemma 1. O

A.3.2. Proof of Lemma 6 (concentration of the empirical process)

The aim is to control the deviations of the supremum of the empirical process
U, defined by (36). Since it is centred and bounded, the guiding idea is to
apply the following concentration inequality.

Lemma 10 (Talagrand’s Inequality). Let &1,...,&, be i.i.d. random variables,
and define vy, (r) = L3 7(&) — E[r(&)], for v belonging to a countable class
R of real-valued measurable functions. Then, for 6 > 0, there exists a universal
constant C' such that

E Ksup (0 (1) = )2 J

reR

o (L) B (b))

with, C(§) = (V14+0—1) A1, c(d) =2(1 +29) and

sup ||r|lpe < M7, E [sup |Vn(7°)|:| < H”, and sup Var(r (&1)) < v”.
reRrR reR reRrR
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Lemma 10 is a classical consequence of the Talagrand Inequality given in
Klein and Rio [44]: see for example Lemma 5 (page 812) in Lacour [46].

We first compute H”, M" and v", involved in Lemma 10.

e For MV, let t € Sp(0,1), z € H and y € R be fixed. By the Cauchy-
Schwarz Inequality,

|D|Ck
myp(h)

| Kl oo (m)
mih~to(h)

IN

[Yen(z,y)l < |DI[Ito = My,

thanks to (17).
e For HY, recall that

o, 2
Ex | suwp v2,0)| = Ex [HF,jf CEx/[FY] ]
teSp(0,1) D
My 1 A2
< Dl—=—~ = (H")
mi np(h)

a.s. on the set {X’ € B} with the same computation as for the variance
term, see Lemma 2.
e For v”, we also fix t € Sp(0,1), and compute,

Varys (Yen(X1, Y1) < Exo [¥7,(X1,11)],

< / 1y1<yt(y>dy>2( KidXn X) 1y x).

— Eyx Ex: [Kn(d(X1, X))

The integral is controlled with the Cauchy-Schwarz Inequality:
([p Ivi<yt(y)dy)* < |D|||t|3, = | D], and the other quantity has already
been bounded: we obtain

|D|M;
VarX/ 1/)7hX,Y SUU = .
( t ( 1 1)) m%cp(h)
Then, Lemma 10 gives, for § > 0,
E sup w2, (t) —2(1+20) (H")* | 1p(X')
teSp(0,1) 4

DMy 1 (0
<c{EF mmer(-5)

I CRIDP 1 1 NN
0 i e (‘MC(‘M VIDICx )}

We choose § = dy In(n), for a dy large enough, and given below. We compute the
order of magnitude of the last upper bound, using Assumptions Hp; and Hps.
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Recall that they imply Y, 5, 1/¢(h) < n?/Coln(n) and 37, 5, 1/90*(h) <
n3/CZ n*(n). First,

> (0 Z 1 < 1
W mp(h) P\76) ™ n1+50/6 Con50/6 Uln(n) = Con’

as soon as dp > 12 since we can reasonably assume n > 3. Then, C'(dpIn(n)) =
14+ dpln(n)—1>1,if dgIn(n) > 3, that is In(n) > 3/dy. This is satisfied since
do > 12 and n > 2. Hence

1 1 1
_ ——— e ———C(dpIn(n))+/ 00 In( \Vn
n2C2(5) he;ﬂ 22(h) Xp( 21 s ol oIn(n w/|D cK )
1 1
< L5 e a VAR ).
i 0N 21v2 V |D OK
1 1 Vo )
< = ——exp V8o (n)],
n2 heZHn ©2(h) ( 21v/2 \/|D CK
_9_ VCoMadg _ /CoM3dg
— p 2 mEmiok Z 21 < 12 n 2 2\D\CK+1§L27
ner, f (h) C21n*(n) omn

as soon as vCoMadg/(214/2|D|Ck) — 1 > 1 that is & > 3528C%|D|/CoMa
with C > 0 depending only on my, Ma, dg, Co and |D|. This shows that

< (45)

slQ

ZE[( sup Vflyh(t)—2(1+2501n(n))(H”)2> 15(X")
heH

teSp(0,1) +

for (H”)? = |D|(Ma/m3)/(n¢(h)) and C > 0 depending only on my, Ma, d,
Cy and |D|. Since
|D|M2 In(n)

mi np(h)’

Inequality (45) is also satisfied when we replace 2(1 + 280 In(n))(H")? by this
upper bound. Thus, the proof of Lemma 6 is completed. O

2(1 + 200 In(n)) (H")? < 6,

A.3.8. Proof of Lemma 8
First suppose that /2 € N*, we have
B/2 8/2

2012'7712 Z HUJLng’

Jj>p J1s--5dp/2>pl=1
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and, by a classical generalization of Holder’s Inequality

B/2

B/2 B/2
2, 2 . 2 2
E || o = > IlsE|Il%
Jj>p Jlyeee Jpj2>pl=1 =1
B/2 B/2 5 2/8
2
< Z HUJ'LHE{HJE}
Jiyendpre>pl=1  I=1
6/2 5/2
< w3 Jle <ou (D
Jieenjp/2>pl=1 i>p

Now suppose that 5 € QN]0, +oo[, we can write without loss of generality that
B/2 = p/q with p € N* and ¢ > 1 (if ¢ = 1, 8/2 € N*). Then the function
x +— /% is concave and by Jensen’s Inequality:

B/2 1 1/a
E || 2o < B\ 2o
Jj>p J>p
B/2 B/2
< ar(va] <oz
Jj>p J>p
The case § > 0 follows immediately from the density of Q into R. O
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