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1. Introduction

Throughout this paper, Gamma(α, β) denotes the gamma distribution with den-
sity

f(x) =
xα−1e−x/β

βαΓ(α)

for x > 0. In the first part, we wish to approximate the sum

S = X1 + · · ·+Xn, (1.1)

whereXi (i = 1, . . . , n) are independent Gamma(αi, βi) random variables (RV’s),
by a single gamma RV. More precisely, we consider two approximation meth-
ods, as indicated in the abstract. For convenience, it is assumed throughout that
n ≥ 2. When all the βi are equal, S is gamma distributed, and no approximation
is required. However, this case is important from a mathematical/theoretical
point of view, and is therefore not excluded.

Convolutions of gamma distributions (or sums of independent gamma vari-
ables) occur often, in particular in practical applications. See e.g. the brief
overview in [15]. Particularly worth noticing in this respect is the fact that
a weighted sum of independent chi-square RV’s can be written as a sum of
independent gamma RV’s (indeed, aχ2

ν ∼ Gamma(ν/2, 2a), a > 0, where χ2
ν

denotes a chi-square RV with ν degrees of freedom); see e.g. the brief survey
in [9]. However, exact expressions for the probability density function of S are
quite complicated in general (see below). To avoid analytical or computational
difficulties, it is useful in certain applications to approximate the exact convo-
lution by a single gamma distribution. While the most natural candidate is the
gamma distribution with the correct mean and variance, it is not necessarily
the best one to use; hence the importance of the topic at hand.

The second part of this paper, written as a substantial complement to the
first, is devoted to developing a gamma approximation to infinitely divisible (ID)
distributions on R+. It makes a significant theoretical and practical contribution.

The rest of the paper is organized as follows. The exact density function of
S is considered in Section 1.1. The approximation of S by a gamma variable
with the same mean and variance, Xm ∼ Gamma(αm, βm) in our notation, is
considered in Section 1.2. Our proposed approximation is fully developed in Sec-
tion 2. First, Section 2.1 provides some preliminaries from the theory of Lévy
processes, a key point being that S can be viewed as a sum of n independent
gamma processes evaluated at time 1. Then, in Section 2.2, the approximation
scheme is established. The approximating RV, X∗ ∼ Gamma(α∗, β∗), has by
construction the same mean as S. Based on a practical heuristic, the parame-
ter β∗ is chosen to minimize, over β > 0, the squared distance ψ(β) given in
(2.8) (where µ =

∑n
i=1 αiβi). In Section 2.3, the main results for the sum-of-

gammas case are presented. Theorem 2.1 expresses β∗ as the solution of some
equation (the solution is readily available numerically); then α∗ is given by
α∗ = (

∑n
i=1 αiβi)/β∗. Theorem 2.1 further gives lower and upper bounds for α∗

and β∗, which are the same as those given for αm and βm in Proposition 1.1.
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Next, Proposition 2.1 states that β∗ ≤ βm, with strict inequality unless all the
βi are equal (in which case X∗ and Xm are identically distributed as S). The
proof of Proposition 2.1 relies on Lemma A.1, which states some general moment
inequality. An immediate corollary of Proposition 2.1 (namely, Corollary 2.1) is
that Var(X∗) ≤ Var(S), with strict inequality unless all the βi are equal. Section
3 performs a brief numerical study of the approximations Xm and X∗ to S. The
quality of the approximations has been tested numerically by comparing the
gamma densities of the approximating RV’s with the exact density of S. The
results suggest that the approximation X∗ to S is, in general, slightly better
than Xm. After some preliminaries in Section 4.1, the proposed methodology is
generalized in Section 4.2 with S replaced by an integrable ID RV on R+. The
theoretical basis of the general methodology is justified in Remark 4.1. Various
examples demonstrate its applicability to ID distributions other than convo-
lutions of gammas or at least its good agreement with the moment-matching
method. Particularly interesting is Example 4.3, which provides new insights
into the gamma approximation to the negative binomial. Gamma approxima-
tion to the generalized Dickman distribution is considered in detail in Section
4.3, where three gamma approximations are proposed as alternatives to the
one with the same mean and variance. (A brief account of this distribution is
included as well.) Appendix A is devoted to proofs.

1.1. The exact density function

Various expressions for the exact density of S are available in the literature.
Two of them are given below ((1.2)–(1.3)).

Let fS denote the density of S. A classical expression for fS is given by

fS(x) =

n
∏

i=1

(

β1
βi

)αi ∞
∑

k=0

δkx
∑n

i=1 αi+k−1 exp(−x/β1)
β
∑

n
i=1 αi+k

1 Γ(
∑n

i=1 αi + k)
(1.2)

for x > 0, where β1 = mini(βi) and the coefficients δk satisfy the recurrence
relation

δk+1 =
1

k + 1

k+1
∑

i=1

[

n
∑

j=1

αj

(

1− β1
βj

)i
]

δk+1−i,

with initial condition δ0 = 1. See [11, Eq. (3)]; the result is due to [10]. A simple-
looking expression for fS is given by

fS(x) =
1

π

∫ ∞

0

cos
(
∑n

k=1 αk arctan(βkt)− xt
)

∏n
k=1(1 + t2β2

k)
αk/2

dt (1.3)

for x > 0. See [11, p. 134]; the result is due to [6]. A classical result not noted
in the review paper [11] is Sim’s expression for fS [14, p. 140].
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Remark 1.1. When X1, . . . , Xn are all exponential (i.e., αi = 1 for all i =
1, . . . , n) with distinct means (i.e., i 6= j ⇒ βi 6= βj), fS is given by

fS(x) =
n
∏

i=1

λi

n
∑

j=1

exp(−λjx)
∏n

k=1,k 6=j(λk − λj)

for x > 0, where λi = 1/βi, i = 1, . . . , n. See e.g. [11, Eq. (1)].

1.2. The common approximation

The common approach is to approximate S by a gamma RV with the same
first and second moments (moment-matching method, henceforth abbreviated
as MMM). See e.g. [1, 8], and, in particular, [15] and Section 4.1 in the un-
published notes of Massey, available at http://www-personal.umd.umich.edu/
∼fmassey/gammaRV. Nevertheless, it might not be easy to motivate the idea of
a gamma approximation to S in the first place (in a self-contained manner); in
this context, see [1] and reference 14 therein, and Massey’s notes. A straightfor-
ward motivation for this idea is offered at the beginning of Section 2.2.

Let Xm ∼ Gamma(αm, βm) denote the approximating RV associated with
the MMM (the subscripts “m” here mean “moments”). By

E(Xm) = αmβm, E(S) =

n
∑

i=1

αiβi,

Var(Xm) = αmβ
2
m, Var(S) =

n
∑

i=1

αiβ
2
i ,

the MMM yields

αm =
µ2

∑n
i=1 αiβ2

i

, βm =

∑n
i=1 αiβ

2
i

µ
, (1.4)

where

µ =

n
∑

i=1

αiβi.

Define
βmin = min(β1, . . . , βn), βmax = max(β1, . . . , βn),

and
αmin = min(α1, . . . , αn).

The following result is easy to establish (see Section 4.1, Propositions 3, 4, in
the unpublished notes of Massey).

Proposition 1.1. The parameter βm has the following lower and upper bounds:

βmin ≤ µ
∑n

i=1 αi
≤ βm ≤ βmax. (1.5)

http://www-personal.umd.umich.edu/~fmassey/gammaRV
http://www-personal.umd.umich.edu/~fmassey/gammaRV
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These inequalities are strict unless all the βi are equal. The parameter αm has
the following lower and upper bounds:

αmin < αm ≤
n
∑

i=1

αi. (1.6)

The right inequality is strict unless all the βi are equal.

The only non-trivial part in proving Proposition 1.1 is to show that

µ2 ≤
n
∑

i=1

αi

n
∑

i=1

αiβ
2
i ,

with strict inequality unless all the βi are equal. This result follows directly from
Cauchy-Schwarz inequality.

The MMM yields the right parameters for the case when all the βi are
equal. Namely, if Xi ∼ Gamma(αi, β) for all i = 1, . . . , n, then Xm, as S, is
Gamma(

∑n
i=1 αi, β) distributed.

Remark 1.2. An even simpler approximation to S is given in [17, Theorem 16];
it is stated that to approximate S in the sense of relative entropy, Gamma(α+,
µ/α+), which has the same mean as S, is no worse than Gamma(a, b) whenever
a ≥ α+, where b > 0 and α+ ≡

∑n
i=1 αi. However, as can be verified numerically,

this approximation is inferior, to say the least (cf. (1.6)).

2. A novel approximation

2.1. Preliminaries

This section provides some basic facts from the theory of Lévy processes con-
cerning gamma distributions and their convolutions. A classical reference on
Lévy processes is the comprehensive book [13].

Gamma distributions and their convolutions can be characterized in terms
of the associated Lévy densities. Let X be a Gamma(α, β) RV. Its Laplace
transform (given explicitly by E[e−uX ] = (1+βu)−α, u ≥ 0) admits the following
representation (see e.g. [13, Example 8.10]):

E
[

e−uX
]

= exp

[
∫ ∞

0

(e−ux − 1)
αe−x/β

x
dx

]

for u ≥ 0. It follows readily (using (1.1)) that

E
[

e−uS
]

= exp

[
∫ ∞

0

(e−ux − 1)

∑n
i=1 αie

−x/βi

x
dx

]

.

The functions ρ, ρS defined for x > 0 by

ρ(x) =
αe−x/β

x
, ρS(x) =

∑n
i=1 αie

−x/βi

x
(2.1)
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are thus the Lévy densities of X and S, respectively (cf. [13, Eq. (21.1)]; the
measures ν, νS on (0,∞) given by ν(dx) = ρ(x) dx, νS(dx) = ρS(x) dx are
the Lévy measures of X and S, respectively). They can be interpreted as
follows. Let {X(t) : t ≥ 0} be a gamma process such that X(1), as X , is
Gamma(α, β) distributed (then X(t) ∼ Gamma(αt, β), for any t > 0), and
let {Xi(t) : t ≥ 0}, i = 1, . . . , n, be independent gamma processes such that
Xi(1), as Xi, is Gamma(αi, βi) distributed. Define the process {S(t) : t ≥ 0}
by S(t) =

∑n
i=1Xi(t), t ≥ 0, so that S(1) and S are identically distributed.

Being Lévy processes, the above processes have stationary independent incre-
ments and are zero at t = 0. Further, they are pure jump processes with strictly
increasing sample paths; then their value at time t equals the accumulated sum
of jumps up to time t. The number of jumps of the process {X(·)} (respectively,
{S(·)}) up to time t (> 0) with size in the interval [a, b] ⊂ (0,∞) is Poisson dis-

tributed with parameter t
∫ b

a
ρ(x) dx (respectively, t

∫ b

a
ρS(x) dx). Consequently,

both processes have infinitely many jumps (of very small size) in any finite time
interval (note that ρ and ρS integrate to ∞ over the positive half-line, due to
their behavior near 0). In conclusion, the RV’s X and S can be represented as
an infinite sum of random jumps, which is characterized by the corresponding
Lévy density as indicated above for the RV’s X(t) and S(t) at time t = 1.

By a general property of increasing Lévy processes (see (4.2) and (4.4)),
the mean and variance of X and S can be simply expressed in terms of the
corresponding Lévy density. Indeed, note that

∫ ∞

0

xρ(x) dx = αβ,

∫ ∞

0

xρS(x) dx =

n
∑

i=1

αiβi, (2.2)

∫ ∞

0

x2ρ(x) dx = αβ2,

∫ ∞

0

x2ρS(x) dx =
n
∑

i=1

αiβ
2
i . (2.3)

Further, consider the functions H and HS defined, for x ≥ 0, by

H(x) ≡
∫ ∞

x

uρ(u) du = αβe−x/β

and

HS(x) ≡
∫ ∞

x

uρS(u) du =

n
∑

i=1

αiβie
−x/βi .

For x = 0, it holds H(0) = E(X) and HS(0) = E(S). For x > 0, consider the
representation of X and S as a sum of jumps, as indicated at the end of the
previous paragraph. Truncating the jumps smaller than x results in (compound
Poisson) RV’s, Xx↑ and Sx↑, such that E(Xx↑) = H(x) and E(Sx↑) = HS(x).
The functions H and HS will play a fundamental role in the sequel.

2.2. The approximation scheme

The basic observation is that a single-gamma approximation to S is appropriate
due to the evident similarity between the corresponding Lévy densities, ρ and
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ρS , as given in (2.1). In any approximation scheme, it is desirable that the
approximating gamma RV satisfies the following requirements: it is identically
distributed as S in the trivial case where all the βi are equal, and it has the
same mean as S. The RV Xm of Section 1.2 satisfies both requirements, and
the additional requirement that Var(Xm) = Var(S). By (2.2)–(2.3), the require-
ments E(Xm) = E(S), Var(Xm) = Var(S) (yielding (1.4)) can be expressed in
terms of the Lévy densities ρm and ρS of Xm and S as

∫ ∞

0

xρm(x) dx =

∫ ∞

0

xρS(x) dx, (2.4)

∫ ∞

0

x2ρm(x) dx =

∫ ∞

0

x2ρS(x) dx, (2.5)

respectively. We now turn to consider the proposed approximation.
Motivated by the observation made at the beginning of this section, we pro-

pose the following approximation scheme. Let X∗ ∼ Gamma(α∗, β∗) denote the
approximating RV, and ρ∗ its Lévy density. Define the function H∗ by

H∗(x) ≡
∫ ∞

x

uρ∗(u) du = α∗β∗e
−x/β∗ (2.6)

for x ≥ 0. Then, the desired condition E(X∗) = E(S), i.e.

α∗β∗ = µ, (2.7)

can be expressed as H∗(0) = HS(0), which, as written, is the same as condition
(2.4) with ρm replaced by ρ∗. The counterpart of condition (2.5) for the proposed
approximation is based on a practical heuristic, as follows (see further Remark

4.1 for clarification and generalization of the underlying idea). Let X∗ and Xx↑
∗ ,

for x > 0, play the role of X and Xx↑ at the end of Section 2.1, respectively.
Then H∗(x) = E(Xx↑

∗ ). Now, suppose that, in some sense, {E(Xx↑
∗ ) : x > 0}

well approximates {E(Sx↑) : x > 0}; then, one may intuitively expect that X∗

appropriately approximates S. Noting that, under (2.7),

∣

∣E
(

Xx↑
∗

)

− E
(

Sx↑
)∣

∣ = |H∗(x) −HS(x)| =
∣

∣

∣

∣

µe−x/β∗ −
n
∑

i=1

αiβie
−x/βi

∣

∣

∣

∣

,

it is thus natural to choose H∗ to minimize ||H − HS ||22 over H of the form
H(x) = µe−x/β, i.e. define the parameter β∗ as the minimizer, over β > 0, of
the squared distance ψ(β) given by

ψ(β) =

∫ ∞

0

[

µe−x/β −
n
∑

i=1

αiβie
−x/βi

]2

dx. (2.8)

The parameter β∗ is derived in Theorem 2.1 below. Then α∗ is determined
from (2.7).

We conclude this section with a few remarks. It would have been essentially
the same, but somewhat less convenient, to consider the counterparts H̃∗ and
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H̃S of H∗ and HS defined, for 0 < x ≤ ∞, by H̃∗(x) =
∫ x

0 uρ∗(u) du and

H̃S(x) =
∫ x

0 uρS(u) du. On the other hand, one can consider substantially dif-
ferent approximation schemes based on the observation made at the beginning
of this section. However, the present approximation proved to be quite sat-
isfactory: both from an accuracy point of view (see Section 3) and from the
point of view of mathematical tractability (as reflected in Section 2.3). The fact
that this approximation is based on a global condition (consider (2.8)) may ac-
count for its good performance. In this context, note that, using the notation
of Section 2.1, the conditions (1) E(X) = E(S) and (2) xρ(x)|0+ = xρS(x)|0+
(or, equivalently, H ′(0+) = H ′

S(0+)) yield α =
∑n

i=1 αi, β = µ/
∑n

i=1 αi, i.e.
the Gamma(α+, µ/α+) approximation in Remark 1.2. However, condition (2) is
local, and hence it is not surprising that the Gamma(α+, µ/α+) approximation
is inferior. Finally, note that analogous approximations can be established based
on the following counterparts of (2.8), where H(x) = µe−x/β :

ψ1(β) = ||H −HS ||1 =

∫ ∞

0

∣

∣

∣

∣

µe−x/β −
n
∑

i=1

αiβie
−x/βi

∣

∣

∣

∣

dx,

ψ∞(β) = ||H −HS ||∞ = max
x>0

∣

∣

∣

∣

µe−x/β −
n
∑

i=1

αiβie
−x/βi

∣

∣

∣

∣

.

The prominent advantage of (2.8) lies in its mathematical tractability.

2.3. The main results

We now state the main results for the sum-of-gammas case. The proofs are given
in the appendix. Note that Proposition 2.1 refines the upper bound (respectively,
lower bound) on β∗ (respectively, α∗) given in Theorem 2.1.

Theorem 2.1. The parameter β∗ is the solution β > 0 of the equation

µ

2
− 2

n
∑

i=1

αiβ
3
i

(βi + β)2
= 0. (2.9)

It has the following lower and upper bounds:

βmin ≤ µ
∑n

i=1 αi
≤ β∗ ≤ βmax. (2.10)

These inequalities are strict unless all the βi are equal. It follows that

αmin < α∗ ≤
n
∑

i=1

αi, (2.11)

where the right inequality is strict unless all the βi are equal.

Remark 2.1. The parameter β∗ is readily available numerically. In particular,
the bisection method can be applied, since the left-hand side of (2.9) strictly
increases from negative to positive as β increases from βmin to βmax.
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Proposition 2.1. It holds that β∗ ≤ βm (and hence α∗ ≥ αm). The inequality
is strict unless all the βi are equal.

Corollary 2.1. It holds that Var(X∗) ≤ Var(S). The inequality is strict unless
all the βi are equal.

Remark 2.2. For the non-trivial case where βmin < βmax, we can assume
without loss of generality that the βi are all distinct. Indeed, note that if we
partition {1, . . . , n} into sets Aj , j = 1, . . . , k, such that, for each j, i ∈ Aj ⇒
βi = β̃j , where β̃1, . . . , β̃k are distinct (k ≥ 2), then the same approximations
(Gamma(αm, βm) and Gamma(α∗, β∗)) would be obtained for the sum X1 +
· · · + Xn and the sum

∑

i∈A1
Xi + · · · + ∑

i∈Ak
Xi (= X1 + · · · + Xn) of k

independent Gamma
(
∑

i∈Aj
αi, β̃j

)

RV’s.

3. Numerical study

This section performs a brief numerical study of the approximations X∗ and
Xm to S. The quality of the approximations has been tested by comparing the
gamma densities of the approximating RV’s, denoted by f∗ and fm respectively,
with the exact density of S, namely fS . The density fS has been evaluated us-
ing (1.2), by truncating the infinite sum at a suitably large value. It should be
stressed, however, that the study is very limited in scope, as there are numerous
combinations (α1, . . . , αn, β1, . . . , βn) that are worth considering. Here we high-
light only a few prominent points, based on results obtained for n = 2, 3, 4, with
αi ∈ (0.5, 20) and βi ∈ (0.1, 20). More specifically, let α1, . . . , αn and β1, . . . , βn
be independent uniform(0.5, 20) and uniform(0.1, 20) RV’s, respectively. Sup-
pose without loss of generality that the βi are sorted in increasing order, so
that, in particular, β1 = mini(βi) (and hence (1.2) can be applied). For each
fixed n = 2, 3, 4, we generated 10000 realizations of the parameters αi and βi,
and computed the corresponding parameters αm, βm, α∗, and β∗, as well as the
ratio β∗/βm (= αm/α∗). The generated data provided the basis for most of our
conclusions presented below.

Our first observation is that the approximating distributions Gamma(α∗, β∗)
and Gamma(αm, βm), though very different in construction, are typically very
close to each other (while both have the same mean, by Corollary 2.1 the for-
mer has smaller variance, unless in the trivial case when S itself is gamma
distributed). We demonstrate this by showing that the ratio β∗/βm is typically
very close to 1. For N = 10000, a fixed n = 2, 3, 4, and an interval I ⊂ (0, 1),

let QN(I;n) =
∑N

k=1 1((β∗/βm)k ∈ I), where 1 is the indicator function and
(β∗/βm)k denotes the kth realization of β∗/βm as indicated above. Tabulated
values of QN (I;n) for various intervals I ⊂ (0, 1) are presented in Table 1,
confirming our claim.

Having concluded that the approximating distributions are typically very
close to each other, we proceed to consider briefly the quality of the approxima-
tions. In analyzing the quality of the Gamma(αm, βm) approximation, Stewart
et al. [15] considered the eight parameter combinations (α1, α2, β2) presented in
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Table 1

Tabulated values of QN (I;n), N = 10000, for n = 2, 3, 4 and various intervals I ⊂ (0, 1)

I n
2 3 4

(0.99, 1.00) 5588 3594 2519
(0.98, 0.99) 1832 2627 2957
(0.97, 0.98) 1080 1501 1914
(0.96, 0.97) 567 905 1114
(0.95, 0.96) 303 471 585
(0.94, 0.95) 172 276 349
(0.93, 0.94) 100 198 189
(0.92, 0.93) 96 111 117
(0.91, 0.92) 54 92 70
(0.90, 0.91) 40 54 45
(0.60, 0.90) 168 171 141

Table 2

Tabulated rounded values of αm, βm, α∗, β∗, and β∗/βm, for the eight parameter
combinations (α1, α2, β2) considered in [15]

α1 α2 β1 β2 αm βm α∗ β∗ β∗/βm

2 2 1 2 3.6000 1.6667 3.6724 1.6338 0.9803
5 2 1 2 6.2308 1.4444 6.4222 1.4014 0.9702
2 5 1 2 6.5455 1.8333 6.6099 1.8155 0.9902
5 5 1 2 9.0000 1.6667 9.1809 1.6338 0.9803
2 2 1 10 2.3960 9.1818 2.4167 9.1033 0.9914
5 2 1 10 3.0488 8.2000 3.1336 7.9780 0.9729
2 5 1 10 5.3865 9.6538 5.4026 9.6250 0.9970
5 5 1 10 5.9901 9.1818 6.0418 9.1033 0.9914

Table 2 of the present paper (β1 = 1). They concentrated on the case n = 2,
arguing that the approximation generally improves with increasing n. Figure 2
of Stewart et al. [15], as does the bottom plot in Figure 1 of the present paper,
shows the corresponding eight exact density functions fS and their approxima-
tions fm; the overall agreement is evidently good. Figure 3 of Stewart et al.
relates to the cumulative distribution functions. Note that, for each of the pa-
rameter combinations in Table 2, β∗/βm is very close to 1 (note the agreement
with Table 1). Accordingly, and as the top plot in Figure 1 confirms, fS is also
well approximated by f∗ (apparently at least as good as by fm).

Clearly, it is reasonable to expect that a ratio β∗/βm significantly smaller
than 1 (say, smaller than 0.8) generally corresponds to the case of signifi-
cantly different approximations f∗ and fm to fS , so that at least one of them
might not be satisfactory enough. While in this (non-typical) case Var(X∗) =
(β∗/βm)Var(S) << Var(S) and Var(Xm) = Var(S), the former approximation
may be preferable, as we see next. For each n = 2, 3, 4, four examples were se-
lected (from the data mentioned in the first paragraph of this section) in which
(α1, . . . , αn, β1, . . . , βn) yield a β∗/βm value significantly smaller than 1; see Ta-
bles 3–5. Figures 2–4 show the corresponding exact density functions fS and
their approximations f∗ and fm, confirming our claim.

Despite the limited scope of our numerical study, the overall results (including
others not presented here) suggest that the approximation f∗ to fS is, in general,
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Fig 1. Plots of fS and f∗ (top) and of fS and fm (bottom), corresponding to the eight
parameter combinations in Table 2.

Table 3

Examples where (α1, . . . , αn, β1, . . . , βn), n = 2, yield a ratio β∗/βm significantly smaller
than 1 (rounded values)

Example i αi βi αm βm α∗ β∗ β∗/βm

1 1 15.368 1.594 4.699 8.053 6.917 5.471 0.679
2 0.671 19.901

2 1 19.391 1.691 11.993 3.263 16.014 2.444 0.749
2 0.556 11.397

3 1 7.832 0.424 2.322 2.568 2.988 1.995 0.777
2 0.501 5.265

4 1 19.395 2.217 9.929 6.714 12.637 5.275 0.786
2 1.590 14.883
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Table 4

Counterpart of Table 3 for the case n = 3

Example i αi βi αm βm α∗ β∗ β∗/βm

1 1 17.718 0.400 7.135 5.257 10.821 3.466 0.659
2 10.316 2.009
3 0.615 15.761

2 1 6.238 1.824 7.378 6.425 9.553 4.962 0.772
2 6.937 3.814
3 0.501 19.110

3 1 5.523 0.516 12.717 4.145 16.238 3.246 0.783
2 19.050 1.852
3 1.401 10.405

4 1 14.198 1.701 6.725 7.558 8.455 6.011 0.795
2 1.765 3.682
3 1.276 15.817

Table 5

Counterpart of Tables 3 and 4 for the case n = 4

Example i αi βi αm βm α∗ β∗ β∗/βm

1 1 6.002 1.734 10.162 5.267 14.522 3.686 0.700
2 14.365 1.874
3 0.980 5.899
4 0.606 17.211

2 1 15.763 0.591 10.677 5.813 13.520 4.591 0.790
2 10.882 1.335
3 5.440 2.679
4 1.884 12.553

3 1 19.531 1.038 8.292 6.514 10.496 5.146 0.790
2 1.065 2.816
3 2.996 4.574
4 1.118 15.240

4 1 4.471 0.434 14.391 2.186 18.205 1.728 0.791
2 17.847 0.594
3 7.332 1.206
4 1.995 5.056
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Fig 2. Plots of fS , f∗, and fm corresponding to Examples 1–4 of Table 3.
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slightly better than fm (still, these approximations are typically very close to
each other). Here we assume that the underlying parameters αi and βi are such
that the approximations are appropriate in the first place. While this is typically
the case, with suitably chosen parameter values the approximations error might
be very large.

4. Gamma approximation to infinitely divisible (ID) distributions
on R+

4.1. Preliminaries

This section provides preliminaries on ID distributions on R+ and the associated
subordinators. Additional details can be found in [13] or elsewhere.

The gamma distribution is ID; i.e., for any n ∈ N, it is the n-fold convolu-
tion of a probability measure µn on R (specifically, Gamma(α, β) = µ∗n

n , where
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µn = Gamma(α/n, β)). The distribution of S is ID, being a convolution of
gamma distributions. The class of ID distributions includes surprisingly many
important distributions as special cases; see e.g. [13, Chapter 2, Section 8]. It is
a basic fact in the theory of Lévy processes that there is a one-to-one correspon-
dence between ID distributions and distributions of Lévy processes at time 1
[13, Theorem 7.10]. Lévy processes with nondecreasing paths, or equivalently
(by [13, Theorem 24.11]) with one-dimensional distributions on R+, are called
subordinators. Thus, there is a one-to-one correspondence between ID distribu-
tions on R+ and distributions of subordinators at time 1. Clearly, addition of
a positive constant, say γ0 > 0, preserves infinite divisibility on R+; this corre-
sponds to addition of a drift term {γ0t : t ≥ 0} to the associated subordinator.
Hence, in the present context, it suffices to consider driftless subordinators.

The methodology used to derive the approximation X∗ to S (including its
variants indicated at the end of Section 2.2) can be adapted to any other in-
tegrable ID random variable on R+, as long as the underlying Lévy measure
(or density, if it exists) is convenient for the calculations involved. In fact, as
discussed in Section 4.2, it is often the case in general that an ID distribution
of interest has a simple Lévy measure yet a complicated distribution or density
function (two specific examples being the convolution of gamma distributions
with arbitrary parameters and the generalized Dickman distribution considered
in Section 4.3 below); hence the importance of the proposed methodology. As a
particularly interesting opposite example, the lognormal distribution, although
ID with a simple density function, has unknown Lévy measure [2].

Let {Z(t) : t ≥ 0} be a pure-jump subordinator, i.e. a nondecreasing Lévy
process with no drift, so that Z(t) equals the accumulated sum of jumps (if any)
up to time t. Any such process is completely characterized by a measure, νZ ,
on (0,∞) such that

∫

(0,∞)min(x, 1)νZ(dx) < ∞ (the Lévy measure of {Z(·)}).
Specifically, the number of jumps of the process {Z(·)} up to time t with size
in the interval (a, b] ⊂ (0,∞) is Poisson distributed with parameter tνZ((a, b])
(where Poisson(0) and Poisson(∞) mean 0 and ∞, respectively). Consequently,
if νZ((0,∞)) = ∞ (equivalently, νZ((0, ε]) = ∞ for any ε > 0), the process
has infinitely many jumps (of very small size) in any finite time interval; if, on
the other hand, λ := νZ((0,∞)) ∈ (0,∞), then {Z(·)} is a compound Poisson
process (CPP) with rate λ and jump distribution F = λ−1νZ , so that it can be

represented as Z(t) =
∑N(t)

i=1 Yi, where {N(t) : t ≥ 0} is a Poisson process with
rate λ independent of a sequence Y1, Y2, . . . of i.i.d. RV’s with distribution F .
In either case, Z(t) is ID with Laplace transform

E
[

e−uZ(t)
]

= exp

[

t

∫

(0,∞)

(e−ux − 1)νZ(dx)

]

(4.1)

for u ≥ 0; see e.g. [13, Eq. (21.1)]. (This simplifies easily in the CPP case, in
terms of the Laplace transform of F .) Suppose in the sequel that Z is equal in
distribution to Z(1), and actually identify the two RV’s. (Z will play the same
role as S before, i.e. the RV to be approximated.) Then, Z is integrable if and
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only if
∫

(1,∞) xνZ(dx) <∞, in which case

E(Z) =

∫

(0,∞)

xνZ(dx). (4.2)

Assuming that Z is integrable, consider the function HZ defined, for x ≥ 0, by

HZ(x) =

∫

(x,∞)

uνZ(du). (4.3)

For x = 0, it holds HZ(0) = E(Z). For x > 0, consider the representation of Z
as a sum of jumps, as indicated above for the RV Z(t) at time t = 1. Truncating
the jumps not exceeding x results in a (compound Poisson) RV, Zx↑, such that
E(Zx↑) = HZ(x). (The function HZ will play the same role as HS before.)

For completeness and in view of (4.11) below, it is worth noting the following.
Z has finite variance if and only if

∫

(1,∞)
x2νZ(dx) <∞, in which case

Var(Z) =

∫

(0,∞)

x2νZ(dx). (4.4)

Thus, with the above notation for the CPP case, if νZ((0,∞)) ∈ (0,∞), then
Var(Z) = λ

∫

(0,∞)
x2F (dx) = λE(Y 2

1 ), as required. In fact, both (4.2) and (4.4)

are special cases of the following result (see [16, Proposition 1.2] or, more specif-
ically, [3, p. 93]). Z has finite nth moment if and only if

∫

(1,∞) x
nνZ(dx) < ∞,

in which case Z has cumulants κj , j = 1, . . . , n, given by

κj =

∫

(0,∞)

xjνZ(dx). (4.5)

In particular, if Z has finite fourth moment, its skewness and kurtosis are given
by κ3/κ2

3/2 and κ4/κ2
2, respectively. For the Gamma(α, β) distribution, (4.5)

yields κn = (n− 1)!αβn for every n, and thus skewness 2/
√
α and kurtosis 6/α.

4.2. Description and illustration of the general methodology

Let Z be an integrable ID RV as above, to be approximated by a gamma
RV. Denote its mean by µZ . As before, let X∗ ∼ Gamma(α∗, β∗) denote the
approximating RV, and define H∗ as in (2.6). Then, the desired condition
E(X∗) = E(Z), i.e.

α∗β∗ = µZ , (4.6)

can be expressed as H∗(0) = HZ(0). Proceeding analogously to Section 2.2, and
with the same notation, note that, under (4.6),

∣

∣E
(

Xx↑
∗

)

− E
(

Zx↑
)∣

∣ = |H∗(x) −HZ(x)| =
∣

∣

∣

∣

µZe
−x/β∗ −

∫

(x,∞)

uνZ(du)

∣

∣

∣

∣

.

Then, depending on the complexity of the calculations involved, etc., H∗ is to
be chosen to minimize ||H −HZ ||1 or ||H −HZ ||22 or ||H −HZ ||∞, respectively,
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over H of the form
H(x) = µZe

−x/β, (4.7)

i.e. β∗ is to be defined as the minimizer, over β > 0, of

ψ1(β) =

∫ ∞

0

∣

∣H(x)−HZ(x)
∣

∣ dx (4.8)

or

ψ2(β) =

∫ ∞

0

[

H(x)−HZ(x)
]2

dx (4.9)

or
ψ∞(β) = max

x>0

∣

∣H(x)−HZ(x)
∣

∣, (4.10)

respectively. Once β∗ is evaluated, α∗ is determined from (4.6). (For convenience,
we may omit the distinction between the different β∗’s.)

The following remark is fundamental from a theoretical point of view.

Remark 4.1. Let ρ be the Lévy density of a Gamma(α, β) RV X such that
αβ = µZ . The functions H and HZ defined in (4.7) and (4.3) are the tail
measures of M and MZ , respectively, where M and MZ are the measures on
(0,∞) given by M(dx) = xρ(x) dx and MZ(dx) = xνZ(dx). Under the sum-of-
jumps representation of X and Z, M(·) and MZ(·), respectively, give the mean
sum of jumps with size in · (rather than the mean number of jumps with size
in ·, as do the Lévy measures alone). This fact justifies the theoretical basis
of the proposed methodology. Moreover, by virtue of MZ (and M) being finite
with total measure µZ , |µZ

−1H − µZ
−1HZ | is merely the absolute difference

between two tail distribution functions (DF’s), µZ
−1H being the tail DF of the

exponential distribution with mean β.

In view of (4.8)–(4.10), it is essential from a practical point of view thatHZ(x)
admits a simple expression. Aiming towards a good approximation, it is desirable
that this expression be in notable agreement with H(x). (Note that both HZ

and H are monotone decreasing from µZ at x = 0 to 0 as x → ∞; further,
HZ is continuous if and only if νZ is continuous.) This is fulfilled particularly
well in the case Z = S, where HZ(x) =

∑n
i=1 αiβie

−x/βi and H(x) = µe−x/β

(µ =
∑n

i=1 αiβi), thus accounting for the high quality of the approximation X∗

to S (where (4.9) was used to derive β∗). Plots of HS(x), H∗(x) := µe−x/β∗ ,
and Hm(x) := µe−x/βm corresponding to the eight parameter combinations
(α1, α2, β2) of Table 2 are shown in Figures 5–6. Note the agreement between
Figures 5–6 and the approximations shown in Figure 1 for the corresponding
density functions, fS , f∗, and fm. The applicability of the proposed methodology
to ID distributions other than convolutions of gammas will be considered and
exemplified throughout the rest of this paper.

The following heuristic remark is of particular importance from a practical
point of view.

Remark 4.2. When HZ(x) admits a simple expression which is nonetheless
not convenient for the derivation of β∗, it can still be used to indicate the
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Fig 5. Plots of HS(x) = α1β1e−x/β1 + α2β2e−x/β2 , H∗(x) = (α1β1 + α2β2)e−x/β∗ , and
Hm(x) = (α1β1 + α2β2)e−x/βm corresponding to the first four parameter combinations in
Table 2 (Examples 1–4, respectively).

appropriateness of the MMM. This assumes, of course, that Z has finite variance,
in which case the MMM yields

αm =
µ2
Z

Var(Z)
, βm =

Var(Z)

µZ
(4.11)

as the parameters of the approximating gamma distribution. Suppose that HZ

has a shape similar enough to a decreasing exponential function, so that it agrees
well enough with H for suitably chosen β-values (and thus in particular with
the theoretical H∗). If it turns out to be the case for β = βm, then it may be
expected that β∗ ≈ βm and that the corresponding gamma approximations are
indeed appropriate. This idea will be illustrated repeatedly in the sequel.
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Fig 6. Counterpart of Figure 5 for the last four parameter combinations in Table 2 (Examples
5–8, respectively).

The proposed methodology may be suitable for a variety of ID distributions.
For a start, suppose that Z has a compound Poisson distribution, corresponding
to a CPP (at time 1) with rate λ and absolutely continuous jump distribution
F on (0,∞) with finite mean (so that Z be integrable). The distribution of Z
is quite complicated in general. Indeed, by the law of total probability,

P(Z ≤ x) =
∞
∑

k=0

e−λλk

k!
F ∗k([0, x]), (4.12)

where F ∗k is the k-fold convolution of F (F ∗0 := δ0 is the delta distribution
concentrated at 0, F ∗1 := F ). (Note that Z has mass e−λ at 0.) However, if F
is simple, then so is νZ , as νZ = λF . Two specific examples are given next.
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Fig 7. Plots relating to Example 4.1: (a) The functions HZ(x) = λθ(1 + x/θ)e−x/θ and
Hm(x) = λθe−x/(2θ), λ = 4, θ = 1; (b) The DF’s FZ and Fm of Z and the Gamma(λ/2, 2θ)
distribution, respectively.

Example 4.1. When F above is the exponential distribution with mean θ, so
that νZ(dx) = λθ−1e−x/θ dx, x > 0, it holds

HZ(x) =

∫ ∞

x

uλθ−1e−u/θ du

= λθ

(

1 +
x

θ

)

e−x/θ.

Here µZ = λθ, and hence H(x) = λθe−x/β . It can be checked graphically that
the functions HZ and H agree fairly well for β values around 2θ. In view of Re-
mark 4.2, note that the MMM yields βm = 2θ (and thus αm = λ/2), thus further
confirming the proposed methodology. The quality of the Gamma(λ/2, 2θ) ap-
proximation can be easily assessed, by comparing the respective DF’s. Following
[3, p. 98], it follows from (4.12) (where F ∗k = Gamma(k, θ), k ≥ 1) that

P(Z ≤ x) = 1− e−x/θ
∞
∑

k=0

e−λλk

k!

k−1
∑

i=0

1

i!

(x

θ

)i

for x > 0 (note that P(Z = 0) = e−λ). The DF’s of Z and the Gamma(λ/2, 2θ)
distribution are plotted in Figure 7(b) for λ = 4, θ = 1 (the agreement is
fairly good, taking into account the mass of Z at 0); the associated functions
HZ(x) = λθ(1 + x/θ)e−x/θ and Hm(x) := λθe−x/(2θ) are plotted in Figure 7(a).

Example 4.2. When F is the uniform distribution on (0, 2θ), so that νZ(dx) =
λ(2θ)−11(0,2θ)(x) dx, it holds

HZ(x) =

∫ ∞

x

uλ(2θ)−11(0,2θ)(u) du

= λθ

[

1−
( x

2θ

)2
]

1[0,2θ](x).

Here again, H(x) = λθe−x/β . However, contrary to the previous example, HZ

(concave on [0, 2θ]) and H (convex) do not agree well, for any β > 0.
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Remark 4.3. Clearly, the assumption made above that F is absolutely con-
tinuous is not essential from a theoretical point of view. As the simplest dis-
crete example, let F = δ1 (the delta distribution concentrated at 1), so that
Z ∼ Poisson(λ); then νZ = λδ1, and it holds

HZ(x) =

∫

(x,∞)

uλδ1(du)

= λ1[0,1)(x).

(4.13)

Here H(x) = λe−x/β . Not surprisingly in view of the obvious difference between
HZ and H here, (4.8), (4.9), and (4.10) lead to very different β∗ values, namely,
≈ 0.596, ≈ 1.04, and ≈ 1.44, respectively. The MMM yields βm = 1 (and thus
αm = λ). However, this example, along with Examples 4.3 and 4.4 below (as well
as the results for the sum-of-gammas case), should not suggest that (4.9) better
agrees with the MMM, as indicated by the results of Section 4.3.2 below.

The point made in Remark 4.3 is further illustrated in the following exam-
ple concerning the negative binomial distribution. Here, despite the fact that
the associated function HZ (denoted below by HZt

) has infinitely many jump
discontinuities, the parameter β∗ corresponding to (4.9) is readily obtainable
numerically, and turns out to agree very well with βm. While a gamma approx-
imation to the negative binomial is well known ((4.14) below can be found e.g.
in [7, p. 386]), Example 4.3 provides new insights to it.

Example 4.3. Let 0 < p < 1, and set q = 1 − p, λ = − log(p). Suppose
that {Z(·)} is a CPP with rate λ and jump distribution F on the positive
integers such that F ({k}) = λ−1k−1qk, k ∈ N (logarithmic distribution). Fix
t > 0 (real). Then Z(t) is negative binomial with parameters t and p, denoted
as Z(t) ∼ NB(t, p), meaning that its distribution is concentrated on Z+ =
{0, 1, 2, . . .} with

P(Z(t) = k) =
(−t)(−t− 1) · · · (−t− k + 1)

k!
pt(−q)k

for k ∈ Z+; see [13, Example 4.6]. In particular, Z(1) is geometric with pa-
rameter p: P(Z(1) = k) = pqk, k ∈ Z+. Let νZt

denote the Lévy measure
of Z(t). Then, νZt

= tνZ1 = tλF , and hence νZt
is concentrated on N with

νZt
({k}) = tk−1qk, k ∈ N. Therefore,

HZt
(x) :=

∫

(x,∞)

uνZt
(du)

=

∞
∑

k=⌊x⌋+1

ktk−1qk

=
tq

p
q⌊x⌋.

Being NB(t, p), the mean and variance of Z(t) are given by

E(Z(t)) =
tq

p
, Var(Z(t)) =

tq

p2
.
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Fig 8. Plots of q⌊x⌋ and e−px, p = 0.1, 0.3, 0.5, 0.7, relating to Example 4.3.

Table 6

Tabulated rounded values of βm = 1/p and β∗ (under (4.9)) relating to Example 4.3

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βm 10.0000 5.0000 3.3333 2.5000 2.0000 1.6667 1.4286 1.2500 1.1111
β∗ 10.0023 5.0052 3.3418 2.5122 2.0164 1.6874 1.4540 1.2803 1.1464

(For any square integrable Lévy process {X(t) : t ≥ 0}, it holds that E(X(t)) =
tE(X(1)) and Var(X(t)) = tVar(X(1)).) By (4.11), the MMM yields

αm = tq, βm = 1/p. (4.14)

Thus, in view of Remark 4.2, it is instructive to compare the functions HZt
(x) =

(tq/p)q⌊x⌋ and Hm(x) := (tq/p)e−px, or just q⌊x⌋ = elog(q)⌊x⌋ and e−px. This is
done in Figure 8 for p = 0.1, 0.3, 0.5, 0.7. For small p, log(q) ≈ −p, hence the
very good agreement in this case. Moreover, under (4.9), it can be obtained
that β∗ is the minimizer, over β > 0, of β[1 − 4(1 − e−1/β)/(1 − qe−1/β)]. As
Table 6 shows, for a wide range of p-values, β∗ is very close to βm = 1/p, and
the approximation improves as p decreases. A novel heuristic justification of
gamma approximation to the negative binomial (at least for small p) is thus
established.

Returning to the general case of Z being an integrable ID RV on R+ (corre-
sponding to (4.1) with t = 1), the following fact accounts for the wide applica-
bility of the proposed methodology (at least from a theoretical point of view).
Let Zi, i = 1, . . . , n, be independent integrable ID RV’s on R+ with respective
Lévy measures νZi

. Then, Z :=
∑n

i=1 Zi is an integrable ID RV on R+ with
Lévy measure νZ =

∑n
i=1 νZi

. (In particular, if the Zi have respective Lévy
densities ρZi

, then Z has Lévy density ρZ =
∑n

i=1 ρZi
.) It follows that

HZ(x) =

n
∑

i=1

HZi
(x), (4.15)
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Fig 9. Plots relating to Example 4.4: (a) The functions HZ (x) = abe−x/b + λ1[0,1)(x) and

Hm(x) = (ab + λ)e−x/βm , a = 2, b = 1, λ = 1; (b) The DF’s FZ and Fm of Z and the
Gamma(αm , βm) distribution, respectively.

where HZi
is defined according to (4.3). The key point here is that although the

distribution of Z above is complicated in general, being an n-fold convolution,
the corresponding function HZ is just the sum of the respective functions HZi

.

Example 4.4. Let Z1 and Z2 be independent Gamma(a, b) and Poisson(λ)
RV’s, respectively. The DF of Z = Z1+Z2 is given by the law of total probability
as

P(Z ≤ x) =

⌊x⌋
∑

k=0

e−λλk

k!

∫ x−k

0

ua−1e−u/b

baΓ(a)
du

for x ≥ 0. Here HZ1(x) = abe−x/b, x ≥ 0, and (by (4.13)) HZ2(x) = λ1[0,1)(x).
Hence, by (4.15),

HZ(x) = abe−x/b + λ1[0,1)(x),

whereas H(x) = (ab + λ)e−x/β . By (4.11), the MMM yields

αm =
(ab + λ)2

ab2 + λ
, βm =

ab2 + λ

ab+ λ
.

The DF’s of Z and the Gamma(αm, βm) distribution are plotted in Figure 9(b)
for a = 2, b = 1, λ = 1. The agreement is quite good. The associated functions
HZ(x) = abe−x/b + λ1[0,1)(x) and Hm(x) := (ab + λ)e−x/βm are plotted in
Figure 9(a), suggesting visually that, under (4.9), β∗ ≈ βm (= 1). Indeed, with
the selected parameters, it can be easily obtained that β∗ is the minimizer, over
β > 0, of 2βe−1/β − β/2− 4β/(β+1), yielding β∗ ≈ 1.0166. This confirms once
again the proposed methodology. [Under (4.10), on the other hand, β∗ is the
solution β > 0 of H(1) = (HZ(1−) +HZ(1))/2, yielding β∗ ≈ 1.1275.]

Example 4.5. Anticipating Section 4.3 (where all the details are presented),
let Z1 and Z2 be independent Gamma(a, b) and GD(θ) RV’s, respectively, so
that HZ1(x) = abe−x/b, x ≥ 0, and HZ2(x) = θ(1−x)1[0,1](x). Let Z = Z1+Z2.
Then, by (4.15),

HZ(x) = abe−x/b + θ(1 − x)1[0,1](x),

whereas H(x) = (ab + θ)e−x/β . A gamma approximation to Z is particularly
appropriate here, the distribution of Z2 being quite complicated by itself. By
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Fig 10. Plots of HZ(x) = abe−x/b + θ(1 − x)1[0,1](x) and Hm(x) = (ab + θ)e−x/βm , a = 2,
b = 1, θ = 1, relating to Example 4.5.

(4.11), the MMM yields

αm =
(ab + θ)2

ab2 + θ/2
, βm =

ab2 + θ/2

ab+ θ
.

The functions HZ(x) = abe−x/b+θ(1−x)1[0,1](x) and Hm(x) := (ab+θ)e−x/βm

are plotted in Figure 10 for a = 2, b = 1, θ = 1. The good agreement confirms
the proposed methodology once again.

The gamma and GD distributions share the following property: the cor-
responding Lévy measure is absolutely continuous with density of the form
(k(x)/x)1(0,∞)(x), where k(x), nonnegative and satisfying the integrability con-

dition
∫∞

0 min(x, 1)(k(x)/x) dx < ∞, is monotone decreasing on (0,∞) with

k(0+) > 0 (in the Gamma(α, β) case, k(x) = αe−x/β , x > 0, whereas in the
GD(θ) case, k(x) = θ1(0,1](x)). Allowing k(0+) = ∞, the following statement
holds: a non-delta ID distribution on R+ is self-decomposable if and only if it
has Lévy measure as above (cf. [13, Corollary 15.11]). Suppose that Z is an
integrable self-decomposable RV on R+, to be approximated by gamma. Then,
the associated function HZ is given by HZ(x) =

∫∞

x
k(u) du. The integrability

requirement on Z is equivalent to
∫∞

1
k(x) dx < ∞ (a condition which is not

satisfied in the α-stable case, 0 < α < 1, where k(x) = bx−α1(0,∞)(x) for some
b > 0). As an example where k(0+) = ∞, let k(x) = bx−α1(0,1](x), 0 < α < 1,
b > 0. ThenHZ(x) = µZ(1−x1−α)1[0,1](x), with µZ = b/(1−α) (the mean of Z).
Being convex on [0, 1], HZ is not too far from a decreasing exponential function,
i.e. from µZe

−x/β for suitable β = β(α) > 0. (However, this depends largely on

the value of α.) By (4.4), Var(Z) =
∫ 1

0
xbx−α dx = b/(2− α). The MMM then

yields βm = (1 − α)/(2 − α). It can be checked graphically that this typically
agrees with β(α) above, and hence with the proposed methodology. Another ex-
ample highlighting the point made in Remark 4.2 is that corresponding to k(x) =
ae−x/b1(0,1](x), i.e. to a gamma process with the jumps greater than 1 removed.

In this example, HZ(x) = ab(e−x/b − e−1/b)1[0,1](x) and βm = b− (e1/b − 1)−1.

The normalized functions HZ(x)/HZ(0) and Hm(x)/HZ(0) := e−x/βm are plot-
ted in Figure 11 for b = 0.1, 0.2, 0.3, 0.4, indicating that HZ ≈ Hm for small b,
with the approximation getting better and better as b decreases. This suggests
that a gamma approximation to Z may be particularly appropriate here.
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Fig 11. Plots relating to the example above Remark 4.4.

The last example is closely related to the paper [4]. Let {Z(t) : t ≥ 0} be a
pure-jump subordinator with continuous Lévy measure νZ . Given s > 0, denote
by νsZ the restriction of νZ to (0, s] and let {Zs(t) : t ≥ 0} be the associated
pure-jump subordinator. This corresponds to the original process with the jumps
greater than s removed. The DF of Zs(t) is given in Theorem 2.1 of [4] (where
different notation is used), in terms of νZ and the DF of Z(t). Calculating it may
be too computationally expensive, because of the multiple integrals involved.
However, applying the proposed methodology to the approximation of Z :=
Zs(t) remains conceptually simple, since the corresponding function HZ is given
by HZ(x) =

∫

(x,∞) utν
s
Z(du) = t

∫

(x,s] uνZ(du) (thus vanishing for x ≥ s).

Remark 4.4. An advantage of the proposed methodology over the MMM is
that the approximated distribution is not required to have finite variance. In
particular, contrary to the MMM, it may be suitable for compound Poisson
distributions with associated jump distribution F (on (0,∞)) having infinite
variance (but finite mean). An advantage of the MMM is indicated next.

Remark 4.5. Consider the example in Remark 4.3. Despite the obvious differ-
ence between HZ and H there and the fact that the parameter λ plays no role in
the minimization of |H−HZ |, a gamma approximation to Z may be appropriate
for large λ-values, by virtue of the central limit theorem (CLT). Specifically, this
is the Gamma(λ, 1) approximation, naturally obtained from the MMM. For the
general case, suppose that {Z(t) : t ≥ 0} is a non-zero, square integrable pure
jump subordinator, and let µZ = E(Z(1)), σ2

Z = Var(Z(1)). Further, let PZt

denote the distribution of Z(t). By the CLT, for t large enough,

PZt
≈ N(tµZ , tσ

2
Z) ≈ Gamma

(

t
µ2
Z

σ2
Z

,
σ2
Z

µZ

)

, (4.16)

with the gamma parameters corresponding to the MMM. Indeed, let n be a
positive integer such that t/n ≈ 1; writing Z(t) as the sum

∑n
i=1[Z(it/n) −
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Z((i − 1)t/n)] of n i.i.d. RV’s, each with mean (t/n)µZ and variance (t/n)σ2
Z ,

shows that, for t large enough, (Z(t)− tµZ)/(
√
tσZ) is approximately standard

normal, and hence the approximation PZt
≈ N(tµZ , tσ

2
Z). From this follows as

a special case the second approximation in (4.16); indeed, if {Z̃(·)} is a gamma
process such that Z̃(t) ∼ Gamma(tµ2

Z/σ
2
Z , σ

2
Z/µZ), t > 0, then E(Z̃(1)) = µZ

and Var(Z̃(1)) = σ2
Z , and hence PZ̃t

≈ N(tµZ , tσ
2
Z), as required.

Remark 4.5 does not reduce from the significance of the proposed methodol-
ogy, as (4.16) is only designed for large t. To illustrate this point, consider the
NB(t, p) distribution. The justification of the gamma approximation in this case
(at least for small p) has been established in Example 4.3, based on the pro-
posed methodology, independently of t. Having, in particular, the approximation
Gamma(q, 1/p) ≈ Geometric(p) (corresponding to (4.14) with t = 1), the gen-
eral approximation Gamma(tq, 1/p) ≈ NB(t, p) follows naturally (by Table 6,
the MMM agrees particularly well with (4.9)). The CLT argument of Remark
4.5 may only suggest that the approximation improves as t increases.

4.3. Application to the generalized Dickman (GD) distribution

4.3.1. A brief account of the GD distribution

The GD distribution has been extensively studied in the literature. Some key
references are [4, 5], and [12]. This distribution (or, more specifically, the as-
sociated subordinator) appears in [4] in the context of approximation of small
jumps of a gamma process (the key result there being Proposition 4.1). This
issue has been thoroughly extended in the paper [5] on “approximations of small
jumps of subordinators with particular emphasis on a Dickman-type limit”.

For fixed θ > 0, let {Z(t) : t ≥ 0} be a pure-jump subordinator, characterized
by the absolutely continuous Lévy measure νZ with density

ρZ(x) =
θ

x
1(0,1](x). (4.17)

Then, by (4.1),

E
[

e−uZ(t)
]

= exp

[

θt

∫ 1

0

e−ux − 1

x
dx

]

for u ≥ 0. Thus, for any t > 0, Z(t) has the generalized Dickman distribution
with shape parameter θt (see e.g. [12, Proposition 3(i)]). Let Z := Z(1). The RV

Z ∼ GD(θ) satisfies the distributional equation Z
d
= U1/θ(1 + Z), where U is

uniform(0, 1) independent of the Z on the right, and admits the representation

Z = U1
1/θ + (U1U2)

1/θ + (U1U2U3)
1/θ + · · · , (4.18)

where U1, U2, . . . are i.i.d. uniform(0, 1) RV’s; see e.g. [12, Proposition 2]. By

(4.5), Z has cumulants κn =
∫ 1

0
xn(θ/x) dx = θ/n for every n. In particular,

E(Z) = θ, Var(Z) = θ/2. (4.19)
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(The nth moment can be obtained recursively as E(Zn) = (θ/n)
∑n−1

k=0

(

n
k

)

E(Zk);
see [12, Proposition 3(v)].) The GD(θ) DF is quite complicated. Denote it by Fθ.
Proposition 4.2 of [4] states that Fθ is of class C⌈θ⌉−1(R), its ⌈θ⌉th derivative

F
(⌈θ⌉)
θ (·) of class C0((0,∞)), and, for j = 0, 1, . . . , ⌈θ⌉,

F
(j)
θ (x) =

e−γθ

Γ(θ + 1− j)

{

xθ−j+

⌈x⌉−1
∑

k=1

(−θ)k
∫

Bk(x)

(

x−
k

∑

i=1

ui

)θ−j
du1 · · · duk
u1 · · ·uk

}

(4.20)
for x > 0, where γ ≈ 0.5772156649 is Euler’s constant and

Bk(x) = {u ∈ R
k : 1 < u1 < · · · < uk, u1 + · · ·+ uk < x}.

Related results are indicated in [4, pp. 386–387]. The drawback of (4.20) for large
x-values is obvious. It should be stressed in this context that, while generation of
GD(θ) variates based on (4.18) is straightforward, it may be too computationally
expensive if θ is large (because of the truncation error involved).

Gamma approximation to the GD distribution is thus of notable importance.

4.3.2. Four approximations

Below, four gamma approximations are given for the GD(θ) distribution. First,
by (4.11) and (4.19), the MMM yields

αm = 2θ, βm = 1/2

as the parameters of the approximating gamma distribution. Denote the corre-
sponding density function by fm. Then,

fm(x) =
22θ

Γ(2θ)
x2θ−1e−2x (4.21)

for x > 0. The gamma approximations corresponding to (4.8), (4.9), and (4.10)
are considered next. In order to distinguish between the three approximations,
denote by β∗,1, β∗,2, and β∗,∞ the minimizers of ψ1(β), ψ2(β), and ψ∞(β),
respectively; accordingly, and in accordance with (4.6), define

α∗,1 = θ/β∗,1, α∗,2 = θ/β∗,2, α∗,∞ = θ/β∗,∞. (4.22)

Like βm, the β∗,•’s are universal constants, independent of θ.

Proposition 4.1. The following hold:

(1) β∗,1 ≈ 0.4845944. It is the minimizer over 0 < β < 1 of

− x2(β) + 2x(β)(1 − β) + β,

where x(β) is the solution 0 < x < 1 of e−x/β = 1− x.
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Fig 12. Plots of the GD(4) density function, f , and the approximating gamma densities fm,
f∗,1, f∗,2, and f∗,∞.

(2) β∗,2 ≈ 0.5337946. It is the solution β > 0 of the equation

e−1/β =
8β − 3

8β + 4
.

(3) β∗,∞ ≈ 0.5148331. It is the solution 0 < β < 1 of the equation

e−1/β = 1 + β log(β) − β.

The proof of Proposition 4.1 is given in the appendix.
Now, let

f∗,•(x) =
(β−1

∗,•)
α∗,•

Γ(α∗,•)
xα∗,•−1e−x/β∗,• , (4.23)

for x > 0, be the density functions of the approximating gamma distributions,
where • stands for 1, 2, or ∞. Since, by Proposition 4.1, the β∗,•’s are close to
1/2 (and hence, by (4.22), the α∗,•’s are close to 2θ), the f∗,•’s are close to the
gamma density fm in (4.21). The f∗,•’s and fm are plotted in Figure 12 for θ = 4
against the GD(θ) density function, f , as calculated from (4.20) with j = 1. The
respective DF’s, denoted by F∗,• and Fm, are plotted in Figure 13 against the
GD(θ) DF, F , as calculated from (4.20) with j = 0. The approximations are
quite good, taking into account the complexity of the GD distribution, on the
one hand, and the simplicity of the gamma distribution, on the other. As usual,
it is instructive to compare the associated functions HZ and H . Without loss
of generality, suppose that θ = 1; then these functions are given by HZ(x) =
(1 − x)1[0,1](x) and H(x) = e−x/β . Because of the linearity of the former on
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Fig 13. Plots of the GD(4) DF, F , and the approximating gamma DF’s Fm, F∗,1, F∗,2, and
F∗,∞.

[0, 1], the two functions do not agree well; yet, they are not too far for β values
around 1/2, in agreement with the four approximations above.

Appendix A: Proofs

Proof of Theorem 2.1. If all the βi are equal, then clearly, by (2.8), β∗ is equal
to their common value; this value is indeed the solution β > 0 of (2.9), and the
“less than or equal to” inequalities in (2.10) and (2.11) are trivially satisfied
with equality (so, in particular, αmin < α∗). So we suppose that βmin < βmax,
and, in addition to the first statement of Theorem 2.1, need to show that (2.10)
and (2.11) hold with strict inequalities. It is readily checked that

ψ(β) = µ2β

2
− 2µ

n
∑

i=1

αiβi
βiβ

βi + β
+

∫ ∞

0

[ n
∑

i=1

αiβie
−x/βi

]2

dx.

Noting that the integral term on the right is independent of β, it thus suffices
to consider the minimum (over β > 0) of the function ϕ given by

ϕ(β) =
µ

2
β − 2

n
∑

i=1

αiβ
2
i β

βi + β
.

The derivative of ϕ is given by

ϕ′(β) =
µ

2
− 2

n
∑

i=1

αiβ
3
i

(βi + β)2
, (A.1)
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which is the left-hand side of (2.9). Since ϕ′(β) is strictly increasing for β > 0,
with limβ↓0 ϕ

′(β) < 0 and limβ→∞ ϕ′(β) > 0, it thus follows that β∗ is the
solution β > 0 of (2.9). As is readily seen, it holds

ϕ′(βmin) < 0 < ϕ′(βmax),

and hence
βmin < β∗ < βmax.

On the other hand, the equation ϕ′(β∗) = 0 can be brought into the form

1

4
=

n
∑

i=1

αiβi
µ

1
(

1 + β∗

βi

)2 . (A.2)

The function g(x) = 1/(1 + x)2 is strictly convex on (0,∞) (indeed, it holds
g′′(x) > 0),

∑n
i=1(αiβi/µ) = 1, and, under the assumption βmin < βmax, the

β∗/βi are not all equal. Hence, by Jensen’s inequality,

n
∑

i=1

αiβi
µ

1
(

1 + β∗

βi

)2 >
1

(

1 +
∑n

i=1
αiβi

µ
β∗

βi

)2

=
1

(

1 + β∗
∑

n
i=1 αi

µ

)2 .

It then follows from (A.2) that β∗ > µ/
∑n

i=1 αi, and so

βmin <
µ

∑n
i=1 αi

< β∗ < βmax.

Using (2.7), it follows from the second and third inequalities above that

αmin < α∗ <

n
∑

i=1

αi.

The theorem is thus proved.

Proof of Proposition 2.1. Since ϕ′(β) in (A.1) is strictly increasing for β > 0,
with ϕ′(β∗) = 0, the proposition will follow by showing that ϕ′(βm) ≥ 0, with
strict inequality unless all the βi are equal. Using (1.4), the inequality ϕ

′(βm) ≥ 0
can be brought into the form

n
∑

i=1

αiβi
µ

(

βi

βi +
∑n

i=1
αiβi

µ βi

)2

≤ 1

4
.

Noting that
∑n

i=1(αiβi/µ) = 1, the last inequality can be written as

E

[

Y

Y + E(Y )

]2

≤ 1

4
,

where Y is a discrete RV with P(Y = βi) =
∑

j, βj=βi
(αjβj/µ). The proposition

then follows from the following general lemma, which is interesting in itself.
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Lemma A.1. Let Y be a nonnegative random variable with finite positive ex-
pectation. Then,

E

[

Y

Y + E(Y )

]2

≤ 1

4
.

The inequality is strict unless Y is a constant with probability 1.

Proof of Lemma A.1. Without loss of generality, we can assume that E(Y ) = 1.
Let F denote the distribution of Y . Note that

∫

[0,∞) yF (dy) = 1 and that

P(Y > 1/2) > 0. Further, let F̃ denote the distribution on (1/2,∞) given by

F̃ (dy) =
F (dy)

P
(

Y > 1
2

) .

Using that y/(y + 1)2 ≤ 2/9 for y ∈ [0, 1/2], we then have

E

[

Y

Y + 1

]2

=

∫

[0, 12 ]

(

y

y + 1

)2

F (dy) +

∫

( 1
2 ,∞)

(

y

y + 1

)2

F (dy)

≤ 2

9

∫

[0, 12 ]

yF (dy) + P
(

Y >
1

2

)

∫

( 1
2 ,∞)

(

y

y + 1

)2

F̃ (dy)

=
2

9

[

1−
∫

( 1
2 ,∞)

yF (dy)

]

+ P
(

Y >
1

2

)

∫

( 1
2 ,∞)

1
(

1 + 1
y

)2 F̃ (dy).

The function g(y) = 1/(1 + 1/y)2 is strictly concave on (1/2,∞) (indeed, it
holds g′′(y) < 0 for y > 1/2) and the mean, m̃, of F̃ is given by

m̃ =

∫

( 1
2 ,∞) yF (dy)

P
(

Y > 1
2

) .

Hence, by Jensen’s inequality,

∫

( 1
2 ,∞)

1
(

1 + 1
y

)2 F̃ (dy) ≤
1

(

1 +
P(Y > 1

2 )∫
( 1
2
,∞)

yF (dy)

)2 ,

with strict inequality unless F̃ is concentrated at one point. Thus,

E

[

Y

Y + 1

]2

≤ 2

9

[

1−
∫

( 1
2 ,∞)

yF (dy)

]

+
P
(

Y > 1
2

)

(

1 +
P(Y > 1

2 )∫
( 1
2
,∞)

yF (dy)

)2 , (A.3)

with strict inequality if F̃ is not concentrated at one point. Define

H(x, a) =
2

9
(1− a) +

x
(

1 + x
a

)2
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for x, a ∈ (0, 1], where x and a play the role of P(Y > 1/2) and
∫

( 1
2 ,∞) yF (dy)

in (A.3), respectively. For fixed a, H attains its maximum at x = a, yielding

H(x, a) ≤ a

(

1

4
− 2

9

)

+
2

9
.

HenceH(x, a) ≤ 1/4, with strict inequality unless x = a = 1. Now, the condition
P(Y > 1/2) = 1 implies that F̃ = F . So by (A.3) and the line that follows it,

E

[

Y

Y + 1

]2

≤ 1

4
,

with strict inequality unless Y = 1 with probability 1.

Proof of Corollary 2.1. Apply Proposition 2.1, noting that Var(X∗) = (α∗β∗)β∗
= µβ∗ and Var(S) = (αmβm)βm = µβm.

Proof of Proposition 4.1. For Z ∼ GD(θ), the associated functions H and HZ

are given by H(x) = θe−x/β and (by (4.17))

HZ(x) =

∫ ∞

x

u(θ/u)1(0,1](u) du

= θ(1− x)1[0,1](x).

To prove (1), assume first that 0 < β < 1 and note that, thus,

d1 :=
1

θ

∫ ∞

0

∣

∣H(x) −HZ(x)
∣

∣ dx

=

∫ x(β)

0

[

(1− x)− e−x/β
]

dx+

∫ 1

x(β)

[

e−x/β − (1− x)
]

dx+

∫ ∞

1

e−x/β dx

= 2x(β)− x2(β) − β + 2βe−x(β)/β − 1/2

= 2x(β)− x2(β) − β + 2β(1 − x(β)) − 1/2

= −x2(β) + 2x(β)(1 − β) + β − 1/2,

where x(β) is the solution 0 < x < 1 of e−x/β = 1− x. Let

ϕ1(β) = −x2(β) + 2x(β)(1 − β) + β.

Since limβ↓0 x(β) = 1 and limβ↑1 x(β) = 0, it holds limβ↓0 ϕ1(β) = 1 and
limβ↑1 ϕ1(β) = 1. Numerical results show that ϕ1(β), 0 < β < 1, achieves its

minimum near β̃ = 0.4845944, with ϕ1(β̃) ≈ 0.6614857. On the other hand, if
β ≥ 1, then e−x/β > (1− x)1[0,1](x) for all x > 0. In this case, d1 +1/2 is equal

to β, and in particular is greater than ϕ1(β̃). Thus, (1) is established.
To prove (2), first note that, for any β > 0,

1

θ2

∫ ∞

0

[

H(x)−HZ(x)
]2

dx =

∫ ∞

0

[

e−x/β − (1 − x)1[0,1](x)
]2

dx

= β/2− 2

∫ 1

0

e−x/β(1 − x) dx+ 1/3

= −3β/2 + 2β2(1− e−1/β) + 1/3.



A novel single-gamma approximation 925

Let
ϕ2(β) = −3β/2 + 2β2(1− e−1/β).

Then,
ϕ′
2(β) = −3/2 + 4β(1− e−1/β)− 2e−1/β. (A.4)

It holds limβ↓0 ϕ
′
2(β) = −3/2 and limβ→∞ ϕ′

2(β) = 1/2. Further, ϕ′
2(β) is

strictly increasing for β > 0. Indeed,

ϕ′′
2(β) = 4

[

1− e−1/β
2

∑

k=0

(1/β)k

k!

]

> 4

[

1− e−1/β
∞
∑

k=0

(1/β)k

k!

]

= 0.

It follows that ϕ2 has a unique global minimum at the solution of ϕ′
2(β) = 0.

Thus ϕ′
2(β∗,2) = 0, and so (A.4) yields statement (2) of the proposition (the

analytical solution is readily evaluated numerically).
To prove (3), assume first that 0 < β < 1 and note that, thus,

d∞ :=
1

θ
max
x>0

∣

∣H(x)−HZ(x)
∣

∣

= max
x>0

∣

∣e−x/β − (1− x)1[0,1](x)
∣

∣

= max
(

max
0<x<x(β)

[

(1− x) − e−x/β
]

, max
x(β)<x≤1

[

e−x/β − (1− x)
]

)

= max
(

max
0<x<x(β)

[

(1− x) − e−x/β
]

, e−1/β
)

,

where, as in (1), x(β) is the solution 0 < x < 1 of e−x/β = 1− x. Let

ϑβ(x) = (1− x)− e−x/β,

for 0 < x < x(β). Noting that ϑ′β(x) = 0 ⇔ x = −β log(β), it follows that

max
0<x<x(β)

ϑβ(x) = 1 + β log(β)− β.

Thus,
d∞ = max

(

1 + β log(β)− β, e−1/β
)

.

It is readily verified that the right-hand side has a unique global minimum at the
solution (0 < β < 1) of 1 + β log(β)− β = e−1/β, where its value is (obviously)
smaller than e−1. On the other hand, if β ≥ 1, then θ−1

∣

∣H(1) − HZ(1)
∣

∣ =

e−1/β ≥ e−1. Thus, (3) is established.
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