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1. Introduction

Let X be a random vector with distribution µ on R
d having density f . The

support of µ is defined as

S =
⋂

C⊂Rd closed set:µ(C)=1

C. (1)

(We also call S the support of the density f .) Let X1, . . . , Xn be independent
random vectors drawn from the distribution µ. In this paper we investigate the
problem of testing whether the support S is a convex set or not. In other words,
we consider the hypothesis testing problem in which the null and alternative
hypotheses are

{

H0 : S is a convex set,
H1 : S is not a convex set.

We are interested in finding tests—or, perhaps more adequately, decision rules—
that decide correctly when the sample size is large. Formally, a decision rule is a
sequence of functions Tn : (Rd)n → {0, 1}. Tn(X1, . . . , Xn) = 1 is interpreted as
a guess that f has a convex support while if Tn(X1, . . . , Xn) = 0, the decision
rule suggests that the support is non-convex. A decision rule is consistent for a
density f if it is correct eventually almost surely, that is, if

P
{

Tn(X1, . . . , Xn) 6= 1{f has convex support} for finitely many n
}

= 1.

Estimating the support (and other level sets) of a density from an i.i.d. sample
has received considerable attention (see Báıllo, Cuevas and Justel (2000), Báıllo
and Cuevas (2001), Cadre (2006), Biau, Cadre and Pelletier (2008), Cuevas
and Fraiman (1997), Cuevas and Rodŕıguez-Casal (2004), Cuevas and Fraiman
(2009), Cuevas (2009), Rodŕıguez-Casal (2007), Pateiro-López and Rodŕıguez-
Casal (2009), Mason and Polonik (2009), Polonik (1995), Rigollet and Vert
(2009), Scott and Nowak (2006), Steinwart, Hush and Scovel (2006), Tsybakov
(1997), Vert and Vert (2006), Willett and Nowak (2007) for an incomplete but
representative list of recent papers). However, as far as we know, no test has
been proposed to decide whether the support of a density is convex or not. Apart
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from its intrinsic interest, such a test has applications in the automatic choice
of the tuning parameters of isomap (isometric feature mapping; Tenenbaum,
de Silva and Langford (2000)), a celebrated nonlinear dimensionality reduction
method, as described in Section 5. In fact, it is this application that motivated
our interest in the problem.

The main objective of this paper is to investigate the possibility of con-
structing consistent decision rules for the convexity of the support. We show
that consistent decision rules (i.e., rules that decide correctly eventually almost
surely) exist whenever f is bounded away from zero on its support and some
other mild regularity conditions are satisfied. The rule, proposed in Section 2,
is based on a statistic which is the average, over all pairs of points (Xi, Xj), of
the distance of the closest data point to the mid-point (Xi +Xj)/2. We show
that under the null hypothesis this average value converges to zero, in probabil-
ity, while under the alternative, it stays bounded away from zero. This makes
it possible to define a consistent decision rule. The difficulty of the analysis is
that the proposed statistic is not a U -statistic since every summand depends
not only on Xi and Xj but on all other data.

In Section 3 it is shown that it is impossible (in a well-defined sense described
below) to design a decision rule that behaves asymptotically correctly for all
bounded densities of bounded support. This shows that an assumption like the
density being bounded away from zero on its support is necessary for consistent
decision rules.

In Section 4, using the terminology of hypothesis testing, we describe some
heuristics to approximate the distribution of the proposed statistic under the
hypothesis of convexity of the support. Such approximations are essential in
practice when the threshold for accepting or rejecting the null hypothesis needs
to be adjusted for a given problem at a fixed sample size. We present numerical
examples for illustration. Finally Section 5 illustrates by a numerical example
how the decision rule is applied successfully in the automatic choice of the tuning
parameter of ISOMAP.

2. A decision rule for the convexity of the support of a distribution

Let X1, . . . , Xn be i.i.d. vectors drawn from the probability distribution µ on
R

d. We assume that µ is absolutely continuous with respect to the Lebesgue
measure, with density f . Suppose that f has a support S ⊂ R

d and that there
exists a constant c > 0 such that for every x ∈ S, f(x) ≥ c. In this section we
propose a test for the convexity of S. The main result of the section is that the
decision rule is consistent, that is, regardless of whether S is convex or not, the
rule decides correctly for sufficiently large sample sizes. For this we also need
some mild regularity conditions detailed below.

The basic idea of the proposed test is the fact that a closed set S ⊆ R
d is

convex if and only if for all x, y ∈ S, the mid-point (x+ y)/2 is also in S. Thus,
if the support S of f is convex, it is reasonable to expect that for each pair of
observations (Xi, Xj), there is some other data point Xh close to the mid-point
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(Xi+Xj)/2. On the other hand, if the support is not convex then we expect to
have a large number of pairs (Xi, Xj) such that the closest point to (Xi+Xj)/2
is far away. Based on this intuition, we introduce the statistic

Un =
1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

min
h=1,...,n

γ(Xi, Xj, Xh) =
1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

γ(Xi, Xj , Xh(1)(i,j))

where γ(Xi, Xj, Xh) = ‖Xh−(Xi+Xj)/2‖d and h(1)(i, j) denotes the index h for

which ‖Xh − (Xi +Xj)/2‖ is smallest. Observe that γ(Xi, Xj , Xh(1)(i,j)) ≤ ∆d
S ,

where ∆S denotes the diameter of S.
Un resembles a U -statistic (see, e.g., Serfling (1980), Chapter 6) as it is a

sum, over all pairs of points, of a function depending on the pair. However, Un

is not a U -statistic because the kernel γ(Xi, Xj , Xh(1)(i,j)) depends not only
on (Xi, Xj) but also on the rest of points Xh, which makes its analysis more
complex. U -statistics with a random kernel were investigated by Schick (1997),
but these results are not applicable to Un as Schick deals with random kernels
k̂n(Xi, Xj;X1, . . . , Xn) that converge (as n → ∞) in some sense to a non-
random kernel kn(Xi, Xj) for which the standard results on U -statistics apply.
This is not the case for the kernel γ defining Un.

In Propositions 1 and 2 below we show that, under a certain regularity con-
dition, if the support is not convex, Un stays bounded away from zero almost
surely, while for convex S, its expectation converges to zero at a rate (log n/n)1/d

and it is concentrated around its mean. Thus, it makes sense to define the fol-
lowing rule:

accept H0 if and only if Un ≤ τn

where τn → 0 but slower than (logn)/
√
n. Indeed, this test is guaranteed to

make the correct decision eventually, almost surely, whenever f is bounded from
above and from below on its support. The regularity condition we require is the
following.

Assumption 1. Assume that the topological boundary ∂S of S has zero
Lebesgue measure.

Since the density f is supposed to be bounded away from zero on its support,
the assumption is equivalent to saying that f is such that for almost every
x ∈ S there exists ǫ > 0 such that essinfy:‖y−x‖<ǫ f(y) > 0, see Lemma 4 in the

appendix for the proof of this simple fact. Note that Assumption 1 is equivalent
to the fact that S is Jordan measurable. If S is convex, the assumption is always
satisfied, see Lang (1986).

The regularity assumption, together with the assumption that f is bounded
away from zero on its support, exclude some pathological cases in which the
statistical problem of deciding whether the support is convex is not only difficult,
but also of questionable meaning. For example, Assumption 1 excludes cases
such as a uniform density on a Cantor set of positive measure. As another
illustration, consider the following example of a density over the real line. Let
r1, r2, . . . be an enumeration of all rational numbers. Then the set A = ∪n≥1(rn−
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2−(n+2), rn + 2−(n+2)) has Lebesgue measure at most 1/2 and we may define µ
as the uniform distribution over A. Then the support S of µ is R (in particular,
S is convex), yet the density vanishes everywhere except for a set of measure
1/2. Our regularity assumptions exclude such pathological cases.

The next performance guarantee is the main result of this section:

Theorem 1. Suppose that the support of f satisfies Assumption 1 and that
there exist constants 0 < c < C such that c ≤ f(x) ≤ C for all x ∈ S. Consider
the test which accepts H0 if and only if Un ≤ τn and suppose that τn is chosen
such that

lim
n→∞

τn = 0 and lim
n→∞

τnn
1/2

logn
= ∞.

Then regardless of whether S is convex or not, with probability one, there exists
an index N such that for all n > N the test always decides correctly.

Remark 1. Of course, the density f is not uniquely defined as its value can
be changed on a set of zero Lebesgue measure. The boundedness condition for
f in the theorem should be interpreted such that f has a version that satis-
fies this condition. More precisely, we assume that esssupx∈S f(x) ≤ C and
essinfx∈S f(x) ≥ c. This comment applies throughout the whole paper.

The theorem is an immediate consequence of Propositions 1 and 2 below. As
it is shown in Section 3, the condition of f being bounded away from zero cannot
be dropped. However, we conjecture that the condition that f is bounded from
above is not necessary.

Note that our choice of the function γ is far from being the only possibility
that gives rise to a consistent decision rule. In particular, the d-th power of
the norm may be replaced by any other positive power. However, the proposed
choice has some advantages that we exploit in Section 4 in defining a bootstrap
approximation of the distribution of Un under the null hypothesis.

First we establish the asymptotic behavior of Un under both the null and
alternative hypotheses. We treat the simpler case, when S is not convex, first:

Proposition 1 (Asymptotic properties of Un underH1). Suppose that Assump-
tion 1 is satisfied and that f is bounded away from zero on its support S. If S
is not convex, then lim infn→∞ Un > 0 almost surely.

Proof. For z ∈ R
d and r > 0, denote by N(z, r) the open ball of radius r

centered at z.
Suppose that S is not convex. Then there exist x, y ∈S such that (x+y)/2 /∈S.

(The fact that we may take the mid-point of x and y follows from closedness
of S.) Since S is closed, (x + y)/2 has a neighborhood entirely outside of S.
Also, by Assumption 1, S equals the closure of the set A = {x : ∃δ > 0 :
essinfy∈N(x,δ) f(y) > 0} (see Lemma 5 in the appendix). This implies that there
exist x′, y′ ∈ A and ǫ > 0 such that N(x′, ǫ) ∪ N(y′, ǫ) ⊂ A and N((x′ +
y′)/2, 2ǫ) ∩ S = ∅. (Indeed, if x ∈ A then we may take x′ = x otherwise any
x′ ∈ A sufficiently close to x will do. y′ is chosen similarly.) By assumption,
there exists a constant c > 0 such that for every x ∈ A, f(x) ≥ c. By the law of
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large numbers, with probability one, there exists an index N such that for all
n > N ,

1

n

n
∑

i=1

1{Xi∈N(x′,ǫ)} ≥ c

2
ǫdvd and

1

n

n
∑

i=1

1{Xi∈N(y′,ǫ)} ≥ c

2
ǫdvd,

where vd is the volume of the d-dimensional unit Euclidean ball. On the other
hand, clearly, if Xi ∈ N(x′, ǫ) and Xj ∈ N(y′, ǫ), γ(Xi, Xj , h

(1)(i, j)) ≥ ǫd. Since
N(x′, ǫ) and N(y′, ǫ) are disjoint, if n ≥ N , the number of such pairs (Xi, Xj)
is at least (ncǫdvd)

2/4 and therefore

lim inf
n→∞

Un ≥ (cǫdvd)
2ǫd

2
> 0 almost surely.

The next result shows that under the null hypothesis, the expected value of Un

goes to zero at a rate (log n/n)1/d and it is very unlikely to exceed its expectation
by more than logn/

√
n. This result, combined with the Borel-Cantelli lemma,

implies that for any sequence τn such that τnn
1/d/ logn → ∞, with probability

one, Un < τn for all sufficiently large n.

Proposition 2 (Asymptotic properties of Un under H0). Suppose that As-
sumption 1 is satisfied and that there exist constants 0 < c < C such that
c ≤ f(x) ≤ C for all x ∈ S. If S is convex, then there exists a constant K
depending on c, C, and S such that, for all n and q ≥ 2,

EUn ≤ K

(

log n

n

)1/d

and E
[

(Un − EUn)
q
+

]

≤
(

Kq3/2
logn√

n

)q

,

where (·)+ denotes positive part.

Proof. Note first that convexity of S implies that Assumption 1 holds and there-
fore the open set A = {x : ∃δ > 0 : essinfy∈N(x,δ) f(y) > 0} ⊂ S is also convex.
(To see this, consider x, y ∈ A and λ ∈ (0, 1). Since A is open and S is convex,
λx+(1−λ)y has a neighborhood entirely included in S. Since f is at least c at
every point of S, this implies that λx + (1− λ)y ∈ A.)

Since A is open, there exists an x ∈ A and δ > 0 such thatN(x, δ) is contained
in A.

Since f is assumed to be bounded away from zero on A which is convex,
A must also be bounded. To see this, note that since A contains an open ball
N(x, δ), if A was unbounded, for all n > 0 there would exist xn ∈ A with
‖x − xn‖ > n. Since A is convex, it contains the convex hull of N(x, δ) and
xn whose volume is bounded from below by a positive constant (depending on
δ and d) times n which contradicts the fact that A has a bounded Lebesgue
measure.

Since S equals the closure of A (again by Lemma 5 in the appendix), S is
compact.
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By translating S if necessary, we may assume, without loss of generality, that
N(0, δ) ⊂ A. We may also assume, without loss of generality, that ∆A, the
diameter of A (and S), is equal to 1.

For all ǫ > 0, define the ǫ-interior of A by

Aǫ = {x ∈ A : B(x, ǫ) ⊂ A}

where B(x, ǫ) is the closed ball of radius ǫ centered at x. Note that Aǫ is non-
empty, open, and convex whenever ǫ ≤ δ.

The reason we introduce Aǫ is because to bound the expectation of Un, we
assume that both X1 and X2 are in the ǫ-interior of A and also show that the
probability the assumption is not satisfied is small. More precisely, to bound the
expected value, note first that for all ǫ ≤ δ,

EUn = E

[

min
h=1,...,n

γ(X1, X2, Xh)

]

= E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]1{X1 or X2∈A\Aǫ}

]

+ E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]1{X1,X2∈Aǫ}

]

. (2)

Since γ(X1, X2, Xh) ≤ 1, the first term on the right-hand side may be bounded
by

P {X1 or X2 ∈ A \Aǫ} ≤ 2P {X1 ∈ A \Aǫ} ≤ 2C Vol (A \Aǫ)

where Vol denotes the d-dimensional Lebesgue measure. To bound the volume of
the boundary region, first observe that since S is the closure of A, Vol(A\Aǫ) =
Vol(S \ Aǫ). Next we show that there exists a constant κS > 0, depending on
S, such that for all ǫ < δ/4, S ⊂ Aǫ ⊕ N(0, κSǫ) where ⊕ denotes Minkowski
sum. This may be seen as follows: since N(0, δ) ⊂ A, every x ∈ S \Aǫ is not in
N(0, δ/2). Let

θ(x) = inf {θ > 0 : N(0, δ/2) ⊂ x+ C(−x, θ)}

denote the infimum of the angle of any cone centered at x that includesN(0, δ/2)
where for x ∈ R

d, a cone of angle θ is defined as

C(x, θ) =

{

y ∈ R
d :

xT y

‖x‖‖y‖ ≥ cos(θ)

}

(see Figure 1). Since S is compact and θ(x) is positive and continuous, θ =
infx∈S\Aǫ

θ(x) > 0. Let x ∈ A \Aǫ and define y = ax where a = sup{α ∈ (0, 1) :
N(αx, ǫ) ⊂ x + C(−x, θ(x))}. In words, y is the point on the segment joining
x and 0 such that N(y, ǫ) “just fits” in the cone x+ C(−x, θ(x)), see Figure 2.
(Such a point exists by the definition of θ(x) and since ǫ < δ/4.) Note that
N(y, ǫ) lies in the convex hull of {x} ∪ N(0, δ) and therefore, by convexity of
A, N(y, ǫ) ⊂ A. Since A is open, this implies that B(y, ǫ) ⊂ A and therefore
y ∈ Aǫ.
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0

θ

θ

x

C(x,θ)

Fig 1. A cone of angle θ.

S

0

δ/2

x

θ(x)y

z

ǫ

Fig 2. The point y in the proof of Proposition 2.

Consider now any straight line containing x and tangent to N(y, ǫ) at, say,
point z. The right-angle triangle formed by x, y, and z is such that its hypotenuse
is the segment [x, y], and its leg [y, z] has length ǫ. Since the angle of the tri-
angle at vertex x equals θ(x), we have that ‖x − y‖ ≤ ǫ/ sin(θ(x)) ≤ ǫ/ sin(θ).
Therefore, we may take κS = 1/ sin(θ). Therefore, for all ǫ < δ/κS ,

Vol(S) = Vol(A) ≤ Vol(Aǫ ⊕N(0, κSǫ))

≤ Vol

(

Aǫ ⊕
κSǫ

δ − κSǫ
Aǫ

)

(since N(0, δ − κSǫ) ⊂ Aǫ)

= Vol

((

1 +
κSǫ

δ − κSǫ

)

Aǫ

)

(since Aǫ is convex)

= Vol(Aǫ)

(

1 +
κSǫ

δ − κSǫ

)d

≤ Vol(Aǫ)

(

1 +
4dκS

δ
ǫ

)

if ǫ ≤ min

(

δ

2κS
,

2δ

d2d−2

)

,
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where the last inequality follows from Taylor’s theorem. Thus,

Vol (A \Aǫ) = Vol(A)−Vol(Aǫ) ≤ Vol(Aǫ)
4dκS

δ
ǫ ≤ Vol(S)

4dκS

δ
ǫ

Hence, we have shown that the first term on the right-hand side of (2) may be
bounded as

E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]1{X1 or X2∈A\Aǫ}

]

≤ K1ǫ

where K1 = 2C Vol(S)4dκS

δ is a constant depending on S and C only.
It remains to bound the second term on the right-hand side of (2). To this

end, suppose ǫ ≤ δ. In the event that X1, X2 ∈ Aǫ,

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]

=

∫ 1

0

P

{

min
h=1,...,n

γ(X1, X2, Xh) > t | X1, X2

}

dt

=

∫ 1

0

P {γ(X1, X2, X3) > t | X1, X2}n−2
dt

≤ ǫ+
(

1− cvdǫ
d
)n−2

(since P {γ(X1, X2, X3) ≤ t | X1, X2} ≥ cvdǫ
d when t ≥ ǫ and X1, X2 ∈ Aǫ)

≤ ǫ+ e−cvdǫ(n−2).

Summarizing, we have proved that, for all ǫ ≤ min( δ2 ,
2δ

d2d−2 ),

EUn ≤ (K1 + 1)ǫ+ e−cvdǫ
d(n−2).

Choosing ǫ = (logn/((n − 2)cvd))
1/d completes the proof of the bound for the

expected value of Un.
To bound the higher moments of Un, we apply a general moment inequal-

ity for functions of independent random variables of Boucheron et al. (2005,
Theorem 3) which states that, for every q ≥ 2,

E
[

(Un − EUn)
q
+

]

≤ (κq)q/2E





(

n
∑

k=1

(Un − Un,k)
2

)q/2




where κ =
√
e/(2

√
e− 2) < 1.271 and

Un,k =
1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

γ(Xi, Xj, Xhk
(1)

(i,j))

with hk
(1)(i, j) ∈ {1, . . . , n} \ {k} defined as h(1)(i, j) but with Xk omitted from

the sample.
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Thus, we need to study the effect of removing the point Xk from the sample
on the value of Un. Clearly,

Un − Un,k =
1
(

n
2

)

∑

j:j 6=k

γ(Xk, Xj , Xh(1)(k,j))

+
1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

(

γ(Xi, Xj, Xh(1)(i,j))− γ(Xi, Xj , Xhk
(1)

(i,j))
)

The first term on the right-hand side is non-negative and bounded by 2/n. At
the same time, every term in the second sum on the right-hand is in [−1, 0] and
is not zero only if h(1)(i, j) = k. This implies that

(Un − Un,k)
2 ≤ max







4

n2
,





1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

1{h(1)(i,j)=k}





2





.

Thus, denoting by Nk =
∑

(i,j):i<j,i6=k,j 6=k 1{h(1)(i,j)=k} the number of pairs

(Xi, Xj) of points in the sample for which Xk is the closest point to (Xi+Xj)/2,
we have

E
[

(Un − EUn)
q
+

]

≤ (κq)q/2





(

4

n

)q/2

+
1
(

n
2

)q E





(

n
∑

k=1

N2
k

)q/2








≤ (κq)q/2

(

(

4

n

)q/2

+
nq/2

(

n
2

)q E

[

max
k=1,...,n

N q
k

]

)

.

Thus, it suffices to find suitable upper bounds for the moments of maxk Nk. To
this end, note that since Nk ≤

(

n−1
2

)

, for all t > 0,

E

[

max
k=1,...,n

N q
k

]

≤
(

n− 1

2

)q

P

{

max
k=1,...,n

N q
k > (nt)q

}

+ (nt)q

≤ n2q+1
P {N1 > nt}+ (nt)q.

Next we write

N1 =
1

2

n
∑

i=2

N1,i

where N1,i =
∑n

j:j 6=i 1{h(1)(i,j)=1} is the number of points j 6= i such that
h(1)(i, j) = 1. Then

P {N1 > nt} ≤ nmax
i>1

P {N1,i > t}

It remains to bound P{N1,i > t}. In Lemma 1 below we show that there exists
a constant K depending on c and the set S such that, for all n and t > 0,

P{N1,i > t} ≤ Ke−Knǫdn .
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Putting everything together, we obtain that there exists a constant K (possibly
different from the one above) such that

E
[

(Un − EUn)
q
+

]

≤ Kqqq/2
(

n−q/2 + nq/2+2e−Knǫdn + nq/2ǫdqn

)

.

Choosing ǫn = K ′((q logn)/n)1/d for a sufficiently large K ′, the upper bound
becomes

E
[

(Un − EUn)
q
+

]

≤ Kqq3q/2
logq n

nq/2

as desired.

In the proof above we have used the following auxiliary result:

Lemma 1. For i = 2, 3, . . . , n, define N1,i =
∑n

j:j 6=i 1{h(1)(i,j)=1}. Then there
exists a constant K depending on c and the set S such that, for all n and t > 0,

P{N1,i > t} ≤ Ke−Knǫdn .

Proof. In the proof we condition on the value of X1 = x1 and consider two
different cases: the first, somewhat simpler, case is when x1 falls in the ǫn-
interior of A (with ǫn defined below). The case when X1 is closer than ǫn to the
boundary can be handled by a similar argument, though one should proceed
with some care.

Let ǫn = ((K2q logn)/n)
1/d for some constantK2 specified below. Recall that

Aǫn denotes the ǫn-interior of A.

Case 1. x1 ∈ Aǫn .

By Lemma 5.5 in Devroye, Györfi and Lugosi (1996), Rd can be covered by

ρd = ⌈(1 + 2/
√

2−
√
3)d⌉ cones of angle π/6, that is, there exist ρd points

z1, . . . , zρd
such that ∪ρd

i=1C(zi, π/6) = R
d.

Now consider ρd cones C1, . . . , Cρd
of angle π/6 centered at x1 that cov-

er R
d. Consider the data points falling in each cone and mark the nearest

neighbor of x1. Let X
(1)
NN , . . . , X

(ρd)
NN denote these nearest neighbors. Let R =

maxj=1,...,ρd
‖x1−X

(j)
NN‖ be the distance of x1 and the farthest of these nearest

neighbors and define, for each j = 1, . . . , ρd,

Z
(j)
NN = x1 +R

X
(j)
NN − x1

∥

∥

∥X
(j)
NN − x1

∥

∥

∥

as the projection of X
(j)
NN to the surface of the ball centered at x1, of radius R.

Now for each j = 1, . . . , ρd, let

Hj =
{

x ∈ R
d : ‖x− x1‖ ≤ ‖x− Z

(j)
NN‖

}

be the half-space containing x1 defined by the bisecting hyperplane between

x1 and Z
(j)
NN . The intersection P = ∩ρd

j=1Hj defines a convex polytope with
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X1

X
(NN)
j

Z
(NN)
j

Fig 3. Nearest neighbors X
(j)
NN

in each cone, their projection Z
(j)
NN

to the sphere of radius R,
and the convex polytope P defined by the bisecting hyperplanes.

ρd facets, see Figure 3. The key observation is that if h(1)(i, j) = 1 for a pair

(Xi, Xj), then (Xi +Xj)/2 ∈ P , otherwise one of the X
(j)
NN would be closer to

(Xi +Xj)/2 than x1.

It is easy to see (and this is the second key observation) that P ⊂ B(x1, R)
where B(x1, R) is the closed ball of radius R centered at x1. Thus, for every j 6= i
such that h(1)(i, j) = 1, we have (Xi +Xj)/2 ∈ B(x1, R) which is equivalent to
saying that

Xj ∈ B(Xi + 2(x1 −Xi), 2R).

Thus,

N1,i ≤
∑

j≥2:j 6=i

1{Xj∈B(Xi+2(x1−Xi),2R)}. (3)

We use the decomposition

P{N1,i > t | X1 = x1} ≤ P {N1,i > t | R < ǫn, X1 = x1}+P {R ≥ ǫn | X1 = x1}

Note that given R < ǫn, by (3), N1,i is dominated by a binomial random variable
with parameters n − 1 and µ(B(Xi + 2(x1 − Xi), 2ǫn)) ≥ cvd(2ǫn)

d where vd
is the volume of the d-dimensional unit Euclidean ball. Therefore, choosing
t = 2(n−1)cvd(2ǫn)

d, and setting c1 = log(4/e)cvd2
d+1, by a standard estimate

for the tail of the binomial distribution,

P
{

N1,i > 2(n− 1)cvd(2ǫn)
d | R < ǫn, X1 = x1

}

≤ e−c1(n−1)ǫdn .
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It remains to bound P{R ≥ ǫn | X1 = x1}. Clearly,

P{R ≥ ǫn | X1 = x1} = P

{

max
j=1,...,ρd

‖x1 −X
(j)
NN‖ ≥ ǫn | X1 = x1

}

≤
ρd
∑

j=1

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn | X1 = x1

}

.

Since x1 ∈ Aǫn , we have infx/∈A ‖x1 − x‖ > ǫn, and therefore

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn | X1 = x1

}

= E

[

(1− µ(B(x1, ǫn) ∩ Cj))
n−1
]

Since x1 is at least ǫn away from the complement of A and the density f is
bounded from below by c on A,

µ(B(x1, ǫn) ∩ Cj) ≥
cvd
ρd

ǫdn

Therefore,

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn | X1 = x1

}

≤
(

1− c2ǫ
d
n

)n−1 ≤ e−c2(n−1)ǫdn

where c2 = cvd/ρd.
Putting everything together, we have

P{R ≥ ǫn | X1 = x1} ≤ ρde
−c2(n−1)ǫdn

and therefore

P{N1,i > t | X1 = x1} ≤ e−c1(n−1)ǫdn + ρde
−c2(n−1)ǫdn .

Case 2. x1 /∈ Aǫn .

It remains to handle the case when x1 is not in the ǫn-interior of A. Suppose
that n is so large that ǫn < δ/2. The key observation is that there exists α ∈
(0, π/12] such that for all x1 ∈ A, there exists a cone C1 centered at x1, of angle
α such that C1 ∩ B(x1, ǫn) ⊂ A. (This follows by a similar argument that we
have used earlier: first note that every x1 ∈ A \ Aǫn is not in B(0, δ/2)—recall
that B(0, δ) ⊂ A. By convexity, the smallest cone centered at x1 that includes
B(0, δ/2) satisfies the required property. The smallest angle of all such cones
over x1 ∈ A \Aǫn is bounded away from zero by compactness of S.)

Now fix x1 ∈ A ∩ Ac
ǫn . Cover R

d by a minimal number of cones C1, . . . , CNα

centered at x1 of angle α such that one of the cones C1 is such that C1 ∩
B(x1, ǫn) ⊂ A. (Note that Nα ≤ (1 + 1/(sin(α/2)))d − 1.) Observe that if each
cone Ci with Ci ∩B(x1, ǫn) ⊂ A contains at least one data point then for every
pair (Xi, Xj) such that h(1)(i, j) = 1, (Xi+Xj)/2 ∈ B(x1, ǫn)∩A (see Figure 4).
Then the same argument as in the case of x1 ∈ Aǫn carries over with the only
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x1

S

Cj

Fig 4. When Cj ∩B(x1, ǫn) is contained in S then it is very likely to contain a data point. If
the angle of the cones is less than π/12, the convex set defined by the intersection of S with
the bisecting half-spaces is contained in B(x1, ǫn).

difference that instead of cones of angle π/6 now we have cones of angle α and
we obtain that there exists a constant K, depending on c and α such that

P{N1,i > t | X1 = x1} ≤ Ke−Knǫdn .

Since the above estimate holds independently of what x1 is, we have established
that

P{N1,i > t} ≤ Ke−Knǫdn .

3. On the non-discernibility of support convexity

The purpose of this section is to show that without the assumption that the
density is bounded away from zero on its support, Theorem 1 is not true. With-
out further assumptions, it is impossible to decide whether the support of a
density is convex. In order to formalize this statement, we recall the notion
of discernibility introduced by Dembo and Peres (1994) (see also Devroye and
Lugosi (2002)).

Let F and G be two disjoint sets of densities on R
d. Let X1, . . . , Xn be

independent random vectors drawn according to a density f ∈ F ∪G. Based on
these data, one tries to decide whether f ∈ F or not. Recall from Section 1 that a
decision rule is a sequence of functions Tn : (Rd)n → {0, 1}. Tn(X1, . . . , Xn) = 1
means that the rule guesses that f ∈ F while if Tn(X1, . . . , Xn) = 0, the decision
rule thinks that f ∈ G. A decision rule is consistent if, for every f ∈ F ∪ G it is
correct eventually almost surely, that is, if

P
{

Tn(X1, . . . , Xn) 6= 1{f∈F} for finitely many n
}

= 1.

We say that the pair (F ,G) is discernible if there exists a consistent decision rule.
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Theorem 1 shows that if F is the class of densities that are bounded, bounded
away from zero, and have convex support and G is the class of bounded densi-
ties, bounded away from zero with non-convex support (in both cases satisfying
Assumption 1), then the pair (F ,G) is discernible.

The main result of this section implies that the sets of all uniformly bounded
densities with convex and non-convex support are not discernible. In other
words, every decision rule must fail infinitely often for some density. Thus, the
assumption of boundedness (from below) of the densities is necessary in Theo-
rem 1 or at least needs to be replaced by another assumption. This is true even
if we only consider densities on R with support in [0, 1]:

Theorem 2. Let F be the class of all densities on R bounded by 2 with support
[0, 1], and let G be the class of all densities on R bounded by 2, satisfying As-
sumption 1, whose support is a non-convex subset of [0, 1]. Then the pair (F ,G)
is not discernible.

A general impossibility theorem that gives sufficient conditions for a pair
(F ,G) to be non-discernible was given by Devroye and Lugosi (2002, Theo-
rem 8). However, their theorem does not seem to apply here and we need a sep-
arate proof. We crucially use the following basic and well-known fact (see, e.g.,
Devroye and Györfi (2002)): if X and Y are real random variables with density
f and g, respectively, then there exists a coupling (i.e., a joint distribution of
(X,Y ) with marginal densities f, g) such that P{X 6= Y } = (1/2)

∫

|f − g|.
Proof of Theorem 2. To prove the theorem, we assume that the pair (F ,G) is
discernible, that is, there exists a consistent decision rule Tn. We construct sub-
classes A ⊂ F and B ⊂ G such that for any consistent decision rule Tn, there is
a density φ in the L1-closure of A∪B such that if X1, X2, . . . are distributed as
φ then, with probability at least 1/2, Tn changes decision infinitely many times,
thus arriving at a contradiction.

Consider the following subclasses: let B = {gk : k = 1, 2, . . .} be the set of
densities on [0, 1] with non-convex support defined by

gk(x) =















2 if x ∈
(

∑k
i=1 2

−i,
∑k

i=1 2
−i + 2−(k+2)

)

0 if x ∈
(

∑k
i=1 2

−i + 2−(k+2),
∑k

i=1 2
−i + 2−(k+1)

)

1 otherwise.

We also define the set A = {fj,k : j, k = 1, 2, . . .} of densities with full support
[0, 1] by

fk,j(x) =















2− 2−j if x ∈
(

∑k
i=1 2

−i,
∑k

i=1 2
−i + 2−(k+2)

)

2−j if x ∈
(

∑k
i=1 2

−i + 2−(k+2),
∑k

i=1 2
−i + 2−(k+1)

)

1 otherwise.

Assume that there exists a consistent decision rule Tn. Then for any density
f ∈ A, and almost all ω, there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 1 if n > N(ω)
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and for any density f ∈ B, and almost all ω there exists an integer N(ω) such
that

Tn(X1, . . . , Xn) = 0 if n > N(ω).

Let δk = 2−k−2, k = 1, 2, . . . . Let φ1 ∈ A be arbitrary. For concreteness, we

may take φ1 = f1,1. Let X
(1)
1 , X

(1)
2 , . . . be independent random variables with

density φ1. Since Tn is consistent, there exists an integer N1 such that

P

{

Tn(X
(1)
1 , . . . , X(1)

n ) = 1 for all n ≥ N1

}

> 1− δ1

(see, e.g., Royden (1968, p. 70, Problem 23.a)). Choose ǫ1 > 0 such that (1 −
ǫ1)

N1 > 1− δ1, and choose a density φ2 ∈ B with non-convex support such that
φ2(x) = φ1(x) for all x ≤ 1 − ǫ1. For example, φ2 = gk2 with k2 ≥ log2(1/ǫ1)
will do. Then

∫

|φ1 − φ2| ≤ 2ǫ1.

Now let X
(2)
1 , X

(2)
2 , . . . be independent random variables with density φ2.

Since φ2 ∈ B, there exists an integer N2 > N1 such that

P

{

Tn(X
(2)
1 , . . . , X(2)

n ) = 0 for all n ≥ N2

}

> 1− δ2.

Next we choose ǫ2 > 0 such that (1 − ǫ2)
N2 > 1 − δ2, and consider a convex-

support density φ3 ∈ A which agrees with φ2 = gk2 for all x ≤ ∑k2

i=1 2
−i

and
∫

|φ2 − φ3| ≤ 2ǫ2. We may take φ3 = fk2,j3 for any j3 such that j3 ≥
log2(2

−(k2+2)/ǫ2).
We may continue this procedure such that φm ∈ A for all odd m and φm ∈ B

for all even m, and N1 < N2 < · · · are chosen such that

P

{

Tn(X
(m)
1 , . . . , X(m)

n ) = 1{m is odd} for all n ≥ Nm

}

> 1− δm.

The sequence of densities φm converges in L1 to a density φ such that
∫

|φm −
φ| < 2ǫm and φ agrees with φm for all x ≤∑km−1

i=1 2−i (which converges to 1 as
m → ∞).

Now let X1, X2, . . . be independent random variables drawn according to the
density φ. Then, according to the coupling mentioned before the proof, there
exist random variables

X
(1)
1 , . . . , X

(1)
N1

, X
(2)
1 , . . . , X

(2)
N2

, X
(3)
1 , . . . , X

(3)
N3

, . . .

such that X
(m)
i is distributed according to φm,

X
(1)
1 , . . . , X

(1)
N1

, X
(2)
N1+1, . . . , X

(2)
N2

, X
(3)
N2+1, . . . , X

(3)
N3

, . . .

are independent, and P{Xi 6= X
(m)
i } < ǫm for all i ≤ Nm.

Then

P

{

X1 = X
(1)
1 , . . . , XN1 = X

(1)
N1

}

≥ (1− ǫ1)
N1 > 1− δ1,
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and therefore
P {TN1(X1, . . . , XN1) = 1} > 1− 2δ1.

Similarly, for each m,

P

{

X1 = X
(m)
1 , . . . , XNm

= X
(m)
Nm

}

≥ (1− ǫ1)
Nm−1 > 1− δm−1,

and therefore

P
{

TNm
(X1, . . . , XNm

)) = 1{m is odd} for all m = 1, 2, . . .
}

> 1−
∞
∑

m=1

2δm =
1

2
.

Hence, with probability 1/2, the decision rule changes its decision infinitely
often, concluding the proof.

4. Data-based heuristics for calibrating the decision rule

Theorem 1 shows consistency of the rule that decides that the support is convex
if and only if Un ≤ τn and it provides an asymptotic criterion to select τn.
Nevertheless this result is not directly applicable in practice: if the sequence τn
verifies the assumptions in Theorem 1 then so does τ∗n = kτn for any positive k,
but it can be the case that Un ≤ τn whereas Un > τ∗n for a fixed n. In order to
address this question, we find it convenient to use the standard terminology of
hypothesis testing where the null hypothesis is that the underlying distribution
has convex support.

An objective way of selecting τn is needed so that it is possible to control the
probability of either of the two possible errors: Deciding that the support is not
a convex set when indeed it is (type I error), and deciding that the support is
convex when it is not the case (type II error).

The main difficulty is that the optimal value of the threshold τn depends on
the unknown set S and the distribution µ. Therefore a mechanism is required
to obtain a value for τn = τn(S, µ) that should be valid for any S and µ in
a large class of distributions. The situation is similar to that appearing in the
usual practice in bootstrap methods, where the distribution of a given statistic
T is unknown and moreover it depends on the specific distribution of the data
under study. In this context bootstrap methods are used to approach the specific
distribution of T for every particular case.

We present a bootstrap-type approximation of the distribution of Un under
the hypothesis of support convexity (this procedure is also referred as calibra-
tion of the null distribution of Un). We provide a heuristic justification that
this approximation is valid both when the support is actually convex and when
it is not (Lemmas 2 and 3). This approximation allows us to control the sig-
nificance level (the probability of type I error), to give approximate values of
power (1 minus the probability of type II error, when the significance level is
fixed) and to define approximate p-values (the probability that the distribution
approximating that of Un under the null hypothesis gives to values greater than
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or equal to the observed value of Un). The approximate p-value acts as a score
of how plausible the support convexity hypothesis is. Our proposal has been
empirically validated with a simulation study shown throughout the section.
A rigorous proof that the proposed bootstrap-type approximation works (that
is, it provides a sequence of probability distributions converging weakly to the
same limit distribution as Un, when n goes to infinity) is beyond the scope of
this paper and it probably deserves a separate contribution.

Lemma 2. Let µ be a probability distribution on R
d with density f and compact

support S ⊂ R
d. Assume that there exist constants 0 < c < C such that c ≤

f(x) ≤ C for all x ∈ S. Let X1, . . . , Xn be i.i.d. vectors drawn from µ. Fix a
pair of observations Xi and Xj such that a = (Xi +Xj)/2 is in the interior of
the support S. Let h(1)(i, j) be defined as above, h(1)(i, j) = argminh ‖Xh − a‖,
and introduce

h(2)(i, j) = argmin
h 6=h(1)(i,j)

‖Xh − a‖.

Let G(k) = γ(Xi, Xj, Xh(k)(i,j)), k = 1, 2, be the two smallest elements of the
ordered sample of Gh = γ(Xi, Xj , Xh), h = 1, . . . , n. Assume that f is con-
tinuous at a. Then, conditioning on (Xi, Xj), nG(1) and n(G(2) − G(1)) con-
verge in distribution, as n → ∞, to an exponential distribution with expected
value (f(a)vd)

−1, where vd is the volume of the d-dimensional unit Euclidean
ball. Moreover nG(1) and n(G(2) −G(1)) are asymptotically independent, given
(Xi, Xj).

Proof. Let D(1) = ‖a−Xh(1)(i,j)‖ = G
1/d
(1) . For 0 < s < ‖Xi −Xj‖/2 such that

B(a, s) ⊆ S,

P{D(1) > s|Xi, Xj} = P{‖Xh − a‖ > s : h = 1, . . . , n|Xi, Xj}
= (1− µ(B(a, s)))

n−2

=
(

1− f(a)vds
d + o(sd)

)n−2
,

as s goes to zero where the continuity of f at a is used in the last step. Observe
that f(a) < ∞ because a ∈ S. Therefore, for 0 < t < n‖Xi −Xj‖d/2d,

P{nG(1) > t|Xi, Xj} = P
{

nDd
(1) > t|Xi, Xj

}

= P{D(1) > (t/n)1/d|Xi, Xj}

=

(

1− (f(a)vdt+ o(1))
1

n

)n−2

→ e−f(a)vdt as n → ∞,

and the first part of the lemma is proved.

We prove now the result for k = 2. Let D(2) = ‖a−Xh(2)(i,j)‖ = G
1/d
(2) . Then,

reasoning as before, for 0 < s+ d1 < ‖Xi −Xj‖/2 such that B(a, s+ d1) ⊆ S,

P{D(2) > s+ d1|D(1) = d1, Xi, Xj}
= P{‖Xh − a‖ > s+ d1 : h = 1, . . . , n, h 6= h(1)(i, j)|Xi, Xj}
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= (1− µ(B(a, s+ d1) \B(a, d1)))
n−3

= (1− f(a)vd( (s+ d1)
d − dd1

)

+o(sd)
)n−3

,

as s goes to zero. Then, for 0 < t < n‖Xi−Xj‖d/2d−ndd1 and defining d1 = g
1/d
1 ,

P
{

n(G(2) −G(1)) > t|G(1) = g1, Xi, Xj

}

= P
{

n(G(2) − dd1) > t|D(1) = d1, Xi, Xj

}

= P
{

G(2) > dd1 + t/n|D(1) = d1, Xi, Xj

}

= P

{

Dd
(2) > dd1 + t/n|D(1) = d1, Xi, Xj

}

= P

{

D(2) >
(

dd1 + t/n
)1/d

∣

∣

∣D(1) = d1, Xi, Xj

}

= P

{

D(2) > d1 +
[

(

dd1 + t/n
)1/d − d1

]∣

∣

∣D(1) = d1, Xi, Xj

}

= (1− f(a)vdt/n+ o(t/n))n−3

=

(

1− (f(a)vdt+ o(1))
1

n

)n−3

→ e−f(a)vdt as n → ∞,

as it was stated. The asymptotic independence between G(2) and G(1) follows
from the observation that the conditional distribution of G(2) given that G(1) =
g1 does not depend on the value g1.

Motivated by Lemma 2, we may define the statistic

U (2)
n =

1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

(

γ(Xi, Xj, Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

.

Lemma 2 establishes that, under the hypothesis of support convexity, each term

in the sum defining U
(2)
n ,

G(2) −G(1) =
(

γ(Xi, Xj , Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

,

has the same asymptotic conditional distribution as the corresponding term in
the sum defining Un,

G(1) = γ(Xi, Xj, Xh(1)(i,j)).

Therefore it is reasonable to expect that the asymptotic distributions of Un

and U
(2)
n coincide. However, we have not proved that the joint distributions of

{γ(Xi, Xj, Xh(1)(i,j)), 1 ≤ i < j ≤ n} and

{(

γ(Xi, Xj , Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

, 1 ≤ i < j ≤ n
}

asymptotically coincide, as Lemma 2 states this result only for marginals. This

is sufficient to conclude that the expectations of Un and U
(2)
n asymptotically

coincide but we cannot make such a statement about the distributions of these
statistics.
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Fig 5. Example of a convex and 5 non-convex configurations of points: Different two-
dimensional S-shaped patterns, with different sharpness. These patterns consist of two circu-
lar arches of radius R, with R = 1, 1.5, 3, 6, 24,∞, with a constant length equal to 3π/2. The
bigger the value of R the closer the configuration to convexity, that is achieved for R = ∞.

We have carried out some simulations to compile evidence that, under the hy-

pothesis of support convexity, the statistics nUn and nU
(2)
n have similar asymp-

totic distributions. Consider the different two-dimensional noisy S-shape data
sets plotted in Figure 5. They are obtained as follows. Consider two adjacent
circumferences both with radius R > 3/4. Take an arch of length 1.5π in each
of them in such a way that their union forms a differentiable one-dimensional
curve of length 3π. Smaller values of the radius R correspond to sharper curves.
A flat segment with length 3π corresponds to R = ∞. To generate a random
point around such a S-shape curve, we generate a random position uniformly
distributed over the curve. Then we add an orthogonal deviation from this posi-
tion, distributed as a truncated normal with zero mean and standard deviation
σ = 0.15, truncated at [−4σ, 4σ].

Consider now data following a noisy S-shaped pattern with radius R = ∞
(that is, a line segment) so that support is a convex set. For sample sizes n ∈
{100, 250, 500, 1000}, we have generated 500 data sets. The statistics nUn and

nU
(2)
n have been calculated for each sample. The first row of Table 1 shows the

p-values of the two-sample Kolmogorov-Smirnov test comparing distributions

of nUn and nU
(2)
n (see, for instance, Hollander and Wolfe (1999, Chapter 5)).

For large sample sizes the null hypothesis that both statistics have the same
distribution can not be rejected. We also have tested the normality of nUn and

nU
(2)
n using the Lilliefors normality test (see, for instance, Hollander and Wolfe

(1999, Chapter 11)). The corresponding p-values are shown in Table 1. It seems
that asymptotic normality is admissible even if U -statistic theory is not directly
applicable to these statistics.

In order to establish results under the hypothesis of non-convexity, we need
an additional regularity assumption for the support. Given a ∈ R

d \ S let

πS(a) = {x ∈ S : ‖x− a‖ = min
y∈S

‖y − a‖}
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Table 1

p-values of the two-sample Kolmogorov-Smirnov test and the Lilliefors normality test for

500 pairs of observations of statistics nUn and nU
(2)
n

Test Statistics n = 100 n = 250 n = 500 n = 1000

2-sample KS Un and U
(2)
n <1e-10 .0038 .4131 .0587

Normality Un <1e-10 .0504 .1529 .1729

Normality U
(2)
n <1e-4 .0676 .0010 .6275

be the set of closest points in S to a. When πS(a) has a unique point, we call it
aS . Erdős (1945) proved that the set of points a ∈ R

d − S with more than one
point in πS(a) has null Lebesgue measure. The required regularity condition is
as follows:

(A) For any a ∈ R
d \ S such that πS(a) = {aS} there exist constants η > 0

and ν ≥ 1, both depending on a and S, such that, when s → 0, s > 0,

Vol (B(a, ‖a− aS‖+ s) ∩ S) = ηsν + o(sν).

Condition (A) is satisfied for many regular sets S, convex or not. For instance,
let S = [−1, 1]3 ⊂ R

3 and a = (1 + δ, 0, 0). Then aS = (1, 0, 0), ‖a − aS‖ = δ
and, for small δ and s (such that s+ δ ≤ ‖a− (1, 1, 0)‖), the solid B(a, δ+s)∩S
is a spherical cap (portion of a sphere cut off by a plane) and its volume is (see,
e.g., Li (2011))

Vol (B(a, δ + s) ∩ S) =
π

3
s2(3δ + 2s) = πδs2 + o(s2),

and (A) is verified with η = πδ and ν = 2. For the volume Vd(δ, s) of the
corresponding d-dimensional hyperspherical cap, Li (2011) gives the following
formula:

Vd(δ, s) =
1

2
vd(δ + s)dI1−{δ/(δ+s)}2

(

d+ 1

2
,
1

2

)

,

where Ix(a, b) is the regularized incomplete beta function, defined for 0 ≤ x ≤ 1,
a > 0, b > 0, as

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt,

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the beta function. It is easy to check
that Ix(a, b) = xa/(aB(a, b)) + o(xa), when a → 0, and that 1− {δ/(δ+ s)}2 =
2s/δ + o(s), when s → 0. Therefore, when s → 0,

Vd(δ, s) =
1

2
vd(δ + s)d

(

2(2/δ)(d+1)/2

(d+ 1)B((d+ 1)/2, 1/2)
s(d+1)/2 + o(s(d+1)/2)

)

=
2vd(2δ)

(d−1)/2

(d+ 1)B((d+ 1)/2, 1/2)
s(d+1)/2 + o(s(d+1)/2).

So ν = (d+ 1)/2 in this case.
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In the following example in R
2 the value of η depends on the shape of S.

Consider S = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1,−xα ≤ y ≤ xα}, for α > 1/2. For δ > 0,

let a = (−δ, 0). Then aS = (0, 0), ‖a− aS‖ = δ and

2

α+ 1
sα+1
0 ≤ Vol (B(a, δ + s) ∩ S) ≤ 2

α+ 1
sα+1,

where s0 > 0 is such that (δ + s)2 = (δ + s0)
2 + s2α0 . For α > 1/2 it can be

proved that lims→0(s/s0) = 1. Then

Vol (B(a, δ + s) ∩ S) =
2

α+ 1
sα+1 + o(sα+1).

Now we state the result analogous to Lemma 2 when the support S is not
convex and the middle point a = (Xi +Xj)/2 is not in S.

Lemma 3. Let µ be a probability distribution on R
d with density f and compact

support S ⊂ R
d. Assume that there exist constants 0 < c < C such that c ≤

f(x) ≤ C for all x ∈ S. Let X1, . . . , Xn be i.i.d. vectors drawn from µ. Assume
that S is not convex and fix a pair of observations Xi and Xj such that a =
(Xi +Xj)/2 6∈ S. Then, with probability one, there is only one closest point in
S to a. Let aS be such a point and assume that f is continuous at aS.

Assume additionally that condition (A) is verified. Let G(1) and G(2) be de-
fined as in Lemma 2. Then, conditioning on (Xi, Xj), as n → ∞, G(1) converges

in probability to ‖a − aS‖d and n(G(2) − G(1)) converges in distribution to an
exponential distribution with expected value

d‖a− aS‖d−ν

f(aS)ην
.

Proof. Given Erdős’ result on the null Lebesgue measure of the set of points
with more than one closest point in S, this set has zero probability because
(Xi +Xj)/2 is absolutely continuous.

Now, let D(1) = ‖a −Xh(1)(i,j)‖ = G
1/d
(1) and s > 0. Then, arguing as in the

proof of Lemma 2 and using (A),

P{|D(1) − ‖a− aS‖| > s} = P{D(1) > ‖a− aS‖+ s}
= (1− µ(B(a, ‖a− aS‖+ s) ∩ S))

n

= (1− f(aS)ηs
ν + o(sν))

n

as s goes to zero. Therefore, for t > 0

P{n1/ν(D(1) − ‖a− aS‖) > t} = P

{

D(1) > ‖a− aS‖+ t/n1/ν
}

=
(

1− f(aS)η
(

t/n1/ν
)ν

+ o(1/n)
)n

→ e−f(aS)ηtν as n → ∞.



118 P. Delicado et al.

It follows that n1/ν(D(1) − ‖a − aS‖) converges in distribution to a Weibull
distribution with shape parameter ν. It follows thatD(1) converges in probability

to ‖a−aS‖ and, by continuity of g(x) = xd/ν , that G(1) converges in probability

to ‖a− aS‖d and the first part of the lemma is proved.

Defining D(2) = ‖a−Xh(2)(i,j)‖ = G
1/d
(2) , proceeding again as in the proof of

Lemma 2 and using (A), for s > 0

P{D(2) > s+ d1|D(1) = d1}
= (1− µ {(B(a, s+ d1) \B(a, d1)) ∩ S})n−1

= (1− f(aS)η( (s+ d1)
ν − dν1 )+o(sν))

n−1

as s goes to zero. Then, for t > 0

P

{

n(Dν
(2) −Dν

(1)) > t|D(1) = d1

}

= P

{

Dν
(2) > dν1 + t/n|D(1) = d1

}

= P

{

D(2) > {(dν1 + t/n)1/ν − d1}+ d1|D(1) = d1

}

= (1− f(aS)ηt/n+ o(1/n))n−1

→ e−f(aS)ηt as n → ∞.

In the last equality we have used that

s =
(

(dν1 + t/n)1/ν − d1

)

=
1

ν
d
1−1/ν
1 t/n+ o(1/n)

as n goes to ∞. Then

sν =
(

(dν1 + t/n)1/ν − d1

)ν

= O(1/nν),

as n goes to ∞. Therefore o(sν) = o(1/n) because ν ≥ 1.
It follows that n(Dν

(2) − Dν
(1)), given D(1) = d1, converges in distribution

to D, an exponential random variable with expectation (f(aS)η)
−1. Observe

that n(Dν
(2)−Dν

(1)) and D(1) are asymptotically independent, given (Xi, Xj). It

follows that n(Dν
(2) −Dν

(1)) also converges to D without conditioning on D(1).

To prove the asymptotic distribution of n(G(2) − G(1)) we need a minor
variation of the proof of Cramér Delta Theorem provided in Arnold (1990).
Consider g(x) = xd/ν . Then n(G(2) −G(1)) = n(g(Dν

(2))− g(Dν
(1))). By Taylor’s

theorem,

n(G(2) −G(1))

= n
{

g(Dν
(1)) + g′(Dν

(1))(D
ν
(2) −Dν

(1)) + (Dν
(2) −Dν

(1))R(Dν
(2) −Dν

(1))− g(Dν
(1))
}

= g′(Dν
(1))

{

n(Dν
(2) −Dν

(1))
}

+
{

n(Dν
(2)−Dν

(1))
}

R(Dν
(2) −Dν

(1)),
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where R(x) → R(0) = 0 as x → 0 (and then R(x) is continuous at 0). Observe
that

Dν
(2) −Dν

(1) =
1

n

(

n(Dν
(2) −Dν

(1))
)

→ 0 in probability as n → ∞

because n(Dν
(2) − Dν

(1)) → D weakly. Then the continuity of R(x) at 0 and

Slutzky’s theorem (see, for instance, Arnold 1990, Theorem 6.8) give
{

n(Dν
(2) −Dν

(1))
}

R(Dν
(2) −Dν

(2)) → 0

in probability as n → ∞. Moreover g′(Dν
(1)) → g′(‖a−aS‖ν) by the continuity of

g′(x) = (d/ν)x(d/ν)−1 at (0,∞). It follows (again by the Slutzky’s theorem) that
n(G(2) −G(1)) has the same limit distribution as g′(‖a− aS‖ν)n(Dν

(2) −Dν
(1)),

but

g′(‖a− aS‖ν)n(Dν
(2) −Dν

(1)) → g′(‖a− aS‖ν)D =
d

ν
‖a− aS‖d−νD weakly,

the limit distribution being an exponential distribution with expected value
d‖a− aS‖d−ν(f(aS)ην)

−1, and the proof concludes.

It follows from Lemma 3 that, given (Xi, Xj) with a = (Xi +Xj)/2 6∈ S,

nG(1) = nDd
(1)

=
{

n
1
d
− 1

ν

[

n
1
ν (D(1) − ‖a− aS‖)

]

+ n
1
d ‖a− aS‖

}d

=
{

n
1
d
− 1

ν Op(1) + n
1
d ‖a− aS‖

}d

= n‖a− aS‖d +Op(n
1
d
− 1

ν ).

Therefore, nG(1) goes to infinity (in probability) at rate n.

Lemma 3 suggests that for a non-convex support S and assuming (A), nU
(2)
n

should be bounded in probability (because nU
(2)
n is the average of n(n − 1)/2

random variables that are bounded in probability) but nUn should not be (be-
cause it is the average of n(n − 1)/2 random variables that go to infinity at
rate n). In fact, from Proposition 1 it follows that limn nUn = ∞ almost surely
when the support S is not convex.

To understand the intuitive meaning of Lemmas 2 and 3, let F conv
nUn

and F conv

nU
(2)
n

be the distributions of the two statistics under consideration, nUn and

nU
(2)
n , respectively, when the support S is convex. For the case of non-convex

support, we call F non-conv
nUn

and F non-conv

nU
(2)
n

the distributions of the two corre-

sponding statistics. Lemma 2 establishes that F conv
nUn

and F conv

nU
(2)
n

are similar and

Lemma 3 indicates that F non-conv

nU
(2)
n

looks more like F conv
nUn

than F non-conv
nUn

. There-

fore we propose to use the distribution of the statistic nU
(2)
n to approximate

that of nUn under the support convexity hypothesis, whether the support is
indeed convex or not.
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Fig 6. Up: Density estimation of 500 observed values of the statistic lognUn for each of the
six noisy S-shaped configurations (see Figure 5) for sample size n = 500. Down: Densities of

500 values of the statistic lognU
(2)
n generated from data according to each of the six noisy

S-shaped configurations for sample size n = 500.

Some simulation have been conducted to support the use of the distribution of

U
(2)
n to approximate that of Un. The upper panel of Figure 6 shows the estimated

density of the statistic log nUn calculated on 500 samples (of size n = 500)
generated according to each of the six S-shaped supports shown in Figure 5. It
can be clearly seen how the distribution of nUn changes in a considerable way
with the data pattern and how its values get closer to 0 as the support gets
closer to convexity.

The lower panel of Figure 6 shows estimated densities (from 500 values) of

lognU
(2)
n calculated over 500 samples (of size n = 500) generated according to

each of the six S-shaped configurations shown in Figure 5. The scale of upper

panel has been kept in order to clearly show how the distributions of log(nU
(2)
n )

under non-convexity are closer to 0 than those of log(nUn). This is the main
conclusion of the simulations.

Observe that most of the estimated densities of log(nU
(2)
n ) corresponding to

non-convex S do not overlap the density of log(nUn) corresponding to convex
S (i.e., R = ∞). This fact does not necessarily contradict our belief that the

null distribution of nUn can always be approximated with that of nU
(2)
n : the

asymptotic distribution of n(G(2) − G(1)) depends on whether the data follow
the null distribution or not (see Lemmas 2 and 3).
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Table 2

Empirical significance levels for three nominal significance levels α. Those being
significantly different from the nominal ones (95% confidence) have been written in italics

α n = 100 n = 250 n = 500 n = 1000
.01 .006 .004 .016 .012
.05 .022 .020 .068 .058
.1 .026 .044 .134 .134

The use of the distribution of the statistic nU
(2)
n as an approximation for that

of nUn under the null hypothesis entails a problem: only one observation of nU
(2)
n

is available from each sample X1, . . . , Xn. Therefore a resampling procedure is

required to provide a set of pseudo-observations of nU
(2)
n .

The standard bootstrap is not adequate in this context because at each boot-
strap sample there would be some repeated observations, sayX∗

i = X∗
j = Xl, for

i 6= j, and therefore we would have minh=1...n γ(X
∗
i , X

∗
j , X

∗
h) = 0, thus reducing

the effective number of summands defining U∗
n.

We propose to perform subsampling bootstrap, that is, resampling without
replacement from the original sample at smaller than the original sample size
(see Politis and Romano (1994); Politis, Romano and Wolf (1999)). Then the
procedure to compute p-values for the support convexity decision rule is as fol-
lows. Let nUObs

n be the observed values of nUn for the sample X1, . . . , Xn at

hand. We take B subsamples of size m < n and compute the statistic mU
(2)
m for

each subsample. Let mU
(2)∗
m,b , b = 1, . . . , B, be the B values of mU

(2)
m obtained

this way. Let µ∗
m and s∗m be the sample mean and standard deviation, respec-

tively, of mU
(2)∗
m,b , b = 1, . . . , B. We approximate the distribution of nUn (under

support convexity) by a normal distribution centered at µ∗
m and having stan-

dard deviation equal to s∗m. Let Φ be the distribution function of the standard
normal distribution. The p-value is therefore defined as

p− value = 1− Φ

(

nUObs
n − µ∗

m

s∗m

)

. (4)

Table 2 illustrates the performance of the proposed procedure for deciding
about support convexity when this is true. For each different sample size, 500
samples have been generated according to the hypothesis of support convexity
(S-shape pattern with R = ∞). For each sample, B = 100 bootstrap subsamples
have been drawn, with sizes m = n/2 (for n ∈ {100, 250, 500}) or m = n/4
(for n = 1000). The empirical significance levels are calculated as the proportion
of samples for which the computed p-value is lower than the nominal one. We see
that the nominal significance level is well reproduced for α = 0.01 and α = 0.05
(when n ≥ 500 in this case), but the case α = 0.1 is unsatisfactory.

The empirical power of the convexity decision rule has been calculated (for a
nominal significance value α = 0.05) for sample sizes n ∈ {100, 250, 500, 1000}
as the proportion of samples for which the computed p-value is lower than α.
Figure 7 shows the estimated powers. It can be seen how patterns which are
distant from convexity are perfectly detected. For a sample size of n = 100 the
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Fig 7. Empirical power functions (for nominal significance level α = 0.05) estimated from
500 samples (n ∈ {100, 250, 500, 1000}). The parameter R indicates the radius of the cir-
cumferences used to produce the six noisy S-shaped configurations in Figure 5: the bigger the
value of R, the closer the support is to convexity, which is achieved at R = ∞. Horizontal
lines mark acceptance intervals of the null hypothesis that the observed powers equal to the
nominal significance level α = 0.05.

case closest to convexity (R = 24) is not detected as non-convex while it is
detected when n ∈ {250, 500, 1000}.

5. Choice of the tuning parameter in ISOMAP

In this section we present a statistical application of the rule introduced in Sec-
tion 2. We use this decision rule for choosing automatically the tuning parameter
of ISOMAP, a nonlinear dimensionality reduction method due to Tenenbaum,
de Silva and Langford (2000).

Given n points x1, . . . , xn ∈ R
p in a high-dimensional space, equipped with

metric d, the object of nonlinear dimensionality reduction (also known as mani-
fold learning) is to find a low dimensional configuration, that is, an n×d matrix,
with d ≪ p, with rows yi, i = 1, . . . , n, and a nonlinear function ρ : Rd → R

p

such that ρ(yi) is close (in some sense) to the observed xi, for i = 1, . . . , n.
Principal Component Analysis (PCA) is without doubt the most used dimen-
sionality reduction technique, but it is not able to detect nonlinear structures.
See Lee and Verleysen (2007) or Gorban et al. (2007) for a broad coverage of
nonlinear dimensionality reduction.

We focus on ISOMAP transformation. The underlying implicit assumption is
that the high-dimensional data lie on, or close to, a low-dimensional nonlinear
manifold and the geodesic distance of the manifold represents a meaningful
metric. ISOMAP tries to recover this hidden information.
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The algorithm takes as its starting point the distance matrixD = (d(xi, xj))i,j
between all pairs of points in the original space of high dimension. The available
distance d(xi, xj) is a good approximation of the geodesic distances only for
those pairs of points xi and xj that are close enough.

The ISOMAP algorithm can be briefly described as a three-step process:

1. First step determines that points xi and xj are neighbors in the original
space if d(xi, xj) ≤ ǫ, for a ǫ > 0. (Another version declares that two
points are neighbors if one of them is one of the k nearest neighbors of the
other). A weighted graph Gǫ is built with vertices being the data points
and edges of weight d(xi, xj) between neighboring points.

2. In the second step, the matrix of geodesic distances dǫG(xi, xj) between all
pairs of points is estimated by computing shortest path distances in the
graph Gǫ. The matrix Dǫ

G = (dǫG(xi, xj))i,j is obtained.
3. In the third step, classical multidimensional scaling (MDS) is applied to

the matrix of distances Dǫ
G in order to obtain coordinates for the points

in R
d, with d < p.

For the sake of completeness, we recall that MDS is the generic name of a
variety of techniques for the analysis of dissimilarities (or distances) on a set
of n objects. The main objective of MDS (see, for instance, Borg and Groe-
nen (2005) for more details) is to provide a representation of the objects as
points in a geometric space in such a way that the matrix of Euclidean dis-
tances in this space is as close as possible to the dissimilarity matrix. One of
the first models used for MDS was classical MDS (Borg and Groenen (2005,
Chapter 12)). It is based on the assumption that a representation exists such
that the Euclidean distance equals the dissimilarity matrix. Then it is possible
to find this Euclidean representation algebraically without an iterative algo-
rithm.

One of the advantages of the ISOMAP algorithm is that only one parameter,
ǫ, is required in step 1. However, the performance of the algorithm crucially
depends on the choice of this parameter. If the neighborhood is too large, local
neighbors will include data points from other branches of the manifold and
short-circuits will appear: faraway points according to geodesic distances would
turn up to be close according to the Euclidean distance. On the other hand,
if the neighborhood is too small, the manifold will fragment into disconnected
clusters and the algorithm will not be able to assign distances between every
pair of points.

In the original work (Tenenbaum, de Silva and Langford (2000)) this pa-
rameter was chosen manually. There have been other methods for selecting
the optimal parameter value. See Shao, Huang and Wan (2007) and references
therein.

Our proposal for the selection of the tuning parameter ǫ is motivated by the
following observation. The original distance d(xi, xj) between points xi and xj

is similar to their geodesic distance dǫG(xi, xj) when either xi and xj are within
distance ǫ or when xi and xj can be connected through a path that contains
points h0 = xi, h1, . . . , hr, hr+1 = xj in such a way that for all k = 0, . . . , r, hk
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and hk+1 are within distance ǫ and also

r
∑

k=0

d(hk, hk+1) ≈ d(xi, xj). (5)

If this happens for all pairs of points, there is no need to modify the distance
matrix (steps 1 and 2 of ISOMAP) and MDS can be applied directly. Therefore,
the full ISOMAP algorithm should be applied with a tuning parameter ǫ such
that in the final configuration a condition similar to (5) holds:

r
∑

k=0

dǫG(hk, hk+1) ≈ dǫG(xi, xj). (6)

Note that in the space Rd only Euclidean distance is applied, and also that con-
dition (6) for Euclidean spaces is equivalent to stating that around the segment
[xi, xj ] joining points xi and xj , there are other sample points, that is, this seg-
ment crosses completely the support of the underlying probability distribution.
In other words, roughly, the Euclidean distance between xi and xj is substan-
tially different from their geodesic distance if and only if the segment [xi, xj ] is
not completely included in the support of the distribution. Therefore, it is pos-
sible to find pairs of points (xi, xj) with this property if and only if the support
of the underlying probability distribution is not a convex set. As a consequence,
the tuning parameter in ISOMAP should be chosen in order to guarantee that
the final configuration is compatible with an underlying probability distribution
with a convex support.

Based on the intuitive argument described above, our proposal is based on
applying to distance matrix Dǫ

G the support convexity decision rule. This de-
cision rule is used to assign, to any possible value of ǫ, a score according to
the plausibility of the support convexity hypothesis for the corresponding con-
figuration generated by ISOMAP. The selected parameter is the one achieving
the maximum score. We implicitly assume that the embedded low dimensional
distribution has convex support and that the possible non-convexity in the high
dimensional space is due only to the embedding being non-linear. Our proposal
would not work in situations as, for instance, that of a two-dimensional distri-
bution whose support is a circle with two holes that is non-linearly embedded
in a three-dimensional space.

Let (ǫmin, ǫmax) be an interval of candidate values for parameter ǫ. Given
ǫ ∈ (ǫmin, ǫmax), the ǫ-ISOMAP algorithm is applied to D, the starting distance
matrix. Let Dǫ

G be the output distance matrix (that is, the matrix containing
Euclidean distances between points in the low-dimensional space). Then the
support convexity decision rule is performed from Dǫ

G. Let p(ǫ) be the p-value
defined in (4). We use p(ǫ) as the score value for ǫ.

We propose to choose parameter ǫ as

ǫ∗ = argmax{p(ǫ) : ǫ ∈ (ǫmin, ǫmax)}.
Therefore ǫ∗ is the value in (ǫmin, ǫmax) for which the highest compatibility with
the hypothesis of support convexity is achieved. A remark on the meaningful
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Fig 8. Choosing ǫ for the sharpest S-shaped configuration (see Figure 5) with sample size
n = 100. Low dimensional configurations obtained as output of the ǫ-ISOMAP algorithm for
six values of ǫ, and the corresponding p-values obtained when deciding about support convexity.

choice of ǫmin and ǫmax can be found in the Appendix. There you can also find
a proposal to avoid disconnected graphs (even if we take ǫ = 0).

We have applied the proposed procedure for the choice of ǫ to a bi-dimensional
synthetic data set, corresponding to the sharpest S in Figure 5, that with radius
R = 1. The sample size is n = 100 and B = 200 bootstrap samples are obtained.
We have used values ǫ equal to seven evenly spaced values ǫ1, . . . , ǫ7, with ǫ1 = 0
and ǫ7 = median{d(xi, xj)}. The resulting p-values are shown in Figure 8 (only
for ǫ1 to ǫ6; the result for ǫ7 is very similar to that of ǫ6).

The two panels in the first row of Figure 8 show that when ǫ is too small,
a linear representation is adequate for many points in the sample, but there
appear some points that are too far from the common linear structure, making
the support convexity hypothesis hard to be accepted. For moderate values of ǫ
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(second row of Figure 8) a compromise is achieved between a common linear
structure and the absence of outliers. When ǫ = 1.26 (lower left panel) a short-
circuit appears (leading to a misleading bi-dimensional configuration). It could
be said that the short-circuit is also present (but not so clearly) for ǫ = 0.94. For
ǫ = 1.57 (lower right panel) there are two short-circuits. Following our proposal,
the chosen value for ǫ is ǫ∗ = 0.63. Observe that the p-value corresponding to
this best choice of ǫ is 0.0281, indicating a moderate evidence against the null
hypothesis of support convexity. This happens because the ISOMAP procedure
is not able to fully linearize the data configuration even for the most favorable
value of parameter ǫ.

6. Conclusions

In this paper we investigated the possibilities and limitations of constructing
data-based procedures to decide whether the support of the underlying density
generating the data points is convex or nor. We defined a decision rule, based
on a U -statistic with a random kernel, which decides correctly for sufficiently
large n, with probability 1, whenever the density is bounded away from zero in
its compact support and the support has a boundary of zero Lebesgue measure.

We also show that such asymptotically correct decision rules are impossible
to define if one only assumes boundedness of the density.

Moreover, we suggest a bootstrap-like procedure for approximating the dis-
tribution of the proposed test statistic under the hypothesis of convexity of the
support. The performance of the proposed method is illustrated on simulated
data sets.

To illustrate potential applications, the decision rule is used to automatically
choose the tuning parameter of ISOMAP, a nonlinear dimensionality reduction
method.
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Appendix

Some simple lemmas

Lemma 4. Let f be a density on R
d with support S and assume that there

exists c > 0 such that f(x) ≥ c for all x ∈ S. Then Vol(∂S) = 0 if and only if
for almost every x ∈ S there exists ǫ > 0 such that essinfy:‖y−x‖<ǫ f(y) > 0.

Proof. First note that every x ∈ S \ ∂S is an interior point of S. Since f is
bounded away from zero on its support, for all such points there exists ǫ > 0
such that essinfy:‖y−x‖<ǫ f(y) ≥ c. Thus if Vol(∂S) = 0, the Lebesgue measure
of x ∈ S with essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0 equals zero.
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On the other hand, for every x ∈ ∂S, essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0.
To see this, suppose that this is not true and for some x ∈ ∂S, there exists ǫ > 0
such that essinfy:‖y−x‖<ǫ f(y) > 0. But since x is on the boundary of S, there
exists z /∈ S such that ‖z−x‖ < ǫ/2. Since S is closed, there exists δ < ǫ/2 such
that the ball N(z, δ) is entirely outside of S. But then essinfy∈N(z,δ) f(y) > 0,
which contradicts the definition of the support.

This implies that if Vol(∂S) > 0, then the Lebesgue measure of the set of
points x ∈ S with essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0 is positive.

Lemma 5. Let f be a density with support S. Suppose that Vol(∂S) = 0
and f(x) ≥ c for all x ∈ S where c > 0. Define the set A = {x : ∃δ > 0 :
essinfy∈N(x,δ) f(y) > 0}. Then S is the closure of A.

Proof. Since A ⊂ S and S is closed, A ⊆ S (where A stands for the closure of A).
Suppose S 6= A. Then there exists x ∈ S and ǫ > 0 such that N(x, ǫ) ∩ A = ∅.
Observe that since f(x) ≥ c on S, for every point y ∈ N(x, ǫ), either y /∈ S or
y ∈ ∂S. Thus, by assumption, Vol(S ∩ N(x, ǫ)) = 0. But then the closed set
S ∩ N(x, ǫ)c has f -measure 1 which contradicts the definition of S (since the
support is defined as the smallest closed set of f -measure 1).

Some technical details on the choice of ǫ
∗

A remark on the meaningful choice of ǫmin and ǫmax follows. Very low values of
ǫ produce disconnected graphs Gǫ in the first step of the ǫ-ISOMAP algorithm.
Then the usual way to circumvent the problem is to analyze only the largest
connected component of Gǫ. Then different samples are used for different values
ǫ < ǫconn, being that value the lowest one assuring the connectivity of Gǫ. So
it may seem plausible to take ǫmin = ǫconn. Unfortunately, the value of ǫconn is
extremely sensitive to outliers, because ǫconn ≥ maxi minj d(xi, xj).

Our proposal to avoid disconnected graphsGǫ for small ǫ is based on the Min-
imum Spanning Tree associated to distance matrix D. Let G0

MST be the graph
representing this Minimum Spanning Tree, which is connected by definition. We
propose to replace always the graph G in the first step of ǫ-ISOMAP algorithm
by the union graph Gǫ

MST = Gǫ ∪ G0
MST, and proceed to further steps in the

usual way. Observe that GMST is connected for all ǫ ≥ 0, being GMST = G0
MST

for ǫ = 0. Therefore we may choose ǫmin = 0.
An easy way to fix ǫmax is taking

ǫmax = max
i,j

d(xi, xj).

This choice allows one the possibility of having observed a distance matrix D
compatible with a convex support probability distribution. In practice a lower
value may be chosen such as ǫmax = median{d(xi, xj)}. Then a fine regular grid
ǫ1 = ǫmin < · · · < ǫE = ǫmax is used and p-values are computed: p(ǫe), e =
1, . . . , E.
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Cuevas, A. and Rodŕıguez-Casal, A. (2004). On boundary estimation. Adv.
in Appl. Probab. 36 340–354. MR2058139

Dembo, A. and Peres, Y. (1994). A topological criterion for hypothesis test-
ing. The Annals of Statistics 22 106–117. MR1272078

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of
Pattern Recognition. Springer, New York. MR1383093

Devroye, L. and Györfi, L. (2002). Distribution and density estimation. In
Principles of Nonparametric Learning; CISM Courses and Lectures No. 434
(L. Györfi, ed.) 211–270. Springer Verlag, Vienna. MR1987660

Devroye, L. and Lugosi, G. (2002). Almost sure classification of densities.
Journal of Nonparametric Statistics 14 675–698. MR1941709
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tions. Ann. Inst. H. Poincaré Probab. Statist. 43 763–774.

Royden, H. L. (1968). Real Analysis. Macmillan, New York. MR0151555
Schick, A. (1997). On U-statistics with random kernels. Statistics and Proba-
bility Letters 34 275–283. MR1458022

Scott, C. D. and Nowak, R. D. (2006). Learning minimum volume sets.
Journal of Machine Learning Research 7 665–704. MR2274383

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics.
John Wiley & Sons. MR0595165

Shao, C., Huang, H. and Wan, C. (2007). Selection of the suitable neighbor-
hood size for the ISOMAP algorithm. In Proceedings of International Con-
ference on Neural Networks 300–305.

Steinwart, I., Hush, D. and Scovel, C. (2006). A classification frame-
work for anomaly detection. Journal of Machine Learning Research 6 211.
MR2249820

Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geo-
metric framework for nonlinear dimensionality reduction. Science 290 2319–
2323.

Tsybakov, A. B. (1997). On nonparametric estimation of density level sets.
The Annals of Statistics 25 948–969. MR1447735

Vert, R. and Vert, J. P. (2006). Consistency and convergence rates of one-
class SVMs and related algorithms. Journal of Machine Learning Research 7
817–854. MR2274388

Willett, R. M. and Nowak, R. D. (2007). Minimax optimal level-set esti-
mation. IEEE Transactions on Image Processing 16 2965–2979. MR2472804

http://www.ams.org/mathscinet-getitem?mr=2813331
http://www.ams.org/mathscinet-getitem?mr=2537201
http://www.ams.org/mathscinet-getitem?mr=1329181
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=1345204
http://www.ams.org/mathscinet-getitem?mr=2597587
http://www.ams.org/mathscinet-getitem?mr=0151555
http://www.ams.org/mathscinet-getitem?mr=1458022
http://www.ams.org/mathscinet-getitem?mr=2274383
http://www.ams.org/mathscinet-getitem?mr=0595165
http://www.ams.org/mathscinet-getitem?mr=2249820
http://www.ams.org/mathscinet-getitem?mr=1447735
http://www.ams.org/mathscinet-getitem?mr=2274388
http://www.ams.org/mathscinet-getitem?mr=2472804

	Introduction
	A decision rule for the convexity of the support of a distribution
	On the non-discernibility of support convexity
	Data-based heuristics for calibrating the decision rule
	Choice of the tuning parameter in ISOMAP
	Conclusions
	Acknowledgments
	Appendix
	References

