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Abstract. This paper address the problem of identifying pairs of interacting
sites from a finite sample of independent realizations of the Ising model. We
consider Ising models in a infinite countable set of sites under Dobrushin
uniqueness condition. The observed sample contains only the values assigned
by the Ising model to a finite set of sites. Our main result is an upperbound
for the probability of misidentification of the pairs of interacting sites in this
finite set.

1 Introduction

In this article, we address the statistical problem of identifying the pairs of inter-
acting sites of an Ising model on a countable set of sites (possibly infinite) when
we only observe the values assigned on a finite subset of sites (partially observed).
Our sample consists of a finite number of independent realizations of the Ising
model observed at this finite set. We introduce a statistical procedure to identify
the interacting pair of sites given the observations. Our main result is an upper
bound for the probability of misidentifying the pairs of interacting sites.

Originally introduced in statistical mechanics as a mathematical model for fer-
romagnetism, the Ising model has been extensively used, for instance, in computer
vision (Woods, 1978, Besag, 1986), image processing (Cross and Jain, 1983), neu-
roscience (Schneidman et al., 2006), and as a general model in spatial statistics
(Ripley, 1981). The references given above are just starting points of a huge liter-
ature. For a recent statistical physics oriented survey of rigorous mathematical re-
sults on Gibbs distributions, including Ising models, we refer the reader to Presutti
(2009).

When the set of sites is not finite, the Ising model is supported by a continuous
set of infinite configurations. However, from an applied statistics point of view, we
cannot observe more than the projection of the Ising model on a finite subset of
sites. We introduce an estimator for the set of interacting pairs of sites belonging
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to the finite set we observe. This estimator can be informally described as follows.
For each site i in the observed finite set, we estimate the conditional probability
of the model in i, given the remaining sites in the finite set. Then we compare
this empirical conditional probability with the empirical conditional probability
on the same site i given the remaining sites with the exception of another site j,
with j # i. If the difference between the conditional probabilities are small, we
conclude that interacting weight between the sites is null.

The proof of the main theorem has two ingredients, which are interesting by
themselves. The first ingredient is an upperbound for the probability of misidenti-
fication for the Ising model on a finite set of sites. This is the content of Theorem 2.
The second ingredient is a coupling result given in Theorem 3. It says that we can
couple together an Ising model in which each site directly interacts with possibly
an infinite number of sites and an Ising model in which each site interacts only
with a finite subset of sites, in such a way that the probability of a discrepancy
at a fixed site vanishes as the set of interacting sites increases. As a consequence
of this result, we are able to bound above the probability of misidentification due
to the fact that we are able to observe only a finite set of sites, not the entire set
of interacting sites. The proof of this result uses a constructive version of classical
Dobrushin’s contraction method. For a nice presentation of the contraction method
in its original framework, we refer the reader to Presutti (2009).

It is important to note that we do not need to assign a metric to the set of sites
to state and prove our results. It turns out that in several applied contexts, a pre-
defined metric is unwarranted. For instance, for the problem of inferring the pres-
ence/absence of interactions between pairs of neurons, it is not clear a priori that
there is any consistent relationship between the strength of the interaction and the
physical distance (or any other metric) between the neurons. Moreover, in several
situations, the experimenter does not know if the recorded neurons are physically
close or far. This justifies the approach taken here.

Let conclude this section with short comments on the recent related literature.
The case of random field on a finite set of sites, which is entirely observed was
considered in Ravikumar et al. (2010), Bento and Montanari (2009), Bresler et al.
(2008). The infinite case was also considered in Locherbach and Orlandi (2011),
Csiszar and Talata (2006), Lerasle and Takahashi (2015, 2011). The first two use
a BIC like approach for an homogeneous random field using a single observation
and the last two use an oracle approach, which solves a problem that is different
from the identification problem considered in this article.

This paper is organized as follows. Notation, definitions and main results are
presented in Section 2. The proofs of the theorems are presented in Section 3.

2 Notation, definitions, and main results

Let S be a countable set of sites.
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Definition 1. A pairwise potential is a family J = {J (i, j): (i, j) € § x S} of real
numbers which satisfy the conditions

J(i,i)=0, JG, ) =J(, i), guSpZ|J(i,j){<oo. (1)
4S] jes

Let X = {—1, 1}5 be the set of configurations on the set of sites S. A fixed
configurations will be denoted by lower case letter x whereas the capital letter X
will denote a random configuration taking values on X and probability measure P.
For any i € S, x(i) will denote the value of the configuration x at site i. Given a
subset F' of S, we shall also denote x(F) = {x(i):i € F} and similarly for X.

Definition 2. The Ising model with pairwise potential J is a random configuration
X with values on X', which probability satisfies

o 1
PX® =xOIX() =x(). ] 1) = ooy

foralli € S and for P-a.e. x € X.

In the above definition, the left-hand side of the above equality denotes a regular
version of the conditional probability of X (i) given that X (j) = x(j) for j #i.

Let F be a finite subset of S. We use the shorthand notation p(x(F)) and
p(x(@)|x(F)) to denote, respectively, the probability P(X (F) = x(F)) and the
conditional probability P(X (i) = x(i)| X (F) = x(F)).

Definition 3. For any site i € S, the interaction neighborhood G (i) is defined as
Gi)={j €S:JG,Jj)#0}.

In general, we cannot observe the entire random configuration on S, but only
the values on some finite subset F C S. Moreover, we observe only a finite number
of samples, that is, the observations are i.i.d. samples X{(F), ..., X,(F). In this
situation, we do not expect to recover G (i), but we might be able to identify G(i) N
F. In this article, we show how we can do it. The following family of sets will be
useful for the rest of the article.

Definition 4. A family F of finite subsets F; C S indexed by i € § is called a
truncation class if for any i, j € S we have that (a)i € F; and (b) j € F; <= i €
F;.

Using a truncation class, we can introduce the following truncated version of
the Ising model.
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Definition 5. Given a truncation class 7, we denote by J7 the truncated potential
defined as follows

J@G j), ifjekF,

J]: ) = 2
@ J) {0, otherwise. 2)

We also denote by X7 the corresponding Ising model with pairwise potential J- .

From now on, F will always denote a truncation class and F; will be an ele-
ment of F with index i. Let F be a finite subset of S. As before, we use the short-
hand notation pJT (x(F)) and pf (x(i)|x (F)) to denote, respectively, the probabil-
ity (X7 (F) = x(F)) and the conditional probability P(X” (i) = x(i)| X7 (F) =
x(F)).

Given asitei € S,aset F; € F,and x € X, let

D(x, Fi i, j)=|p" (x@)Ix(Fi \ {i})) = p” (x@Ix(F; \ (i, j})) | p” (x(Fi \ {i})).-

Definition 6. Given a truncation class F, and a positive ¢, for each i € §, the
interaction neighborhood V7 (i) is defined as

V‘F(i)z[jeFi:maxD(x,E,i,j)>28}, 3)
x(Fp)
where F; € F.

We prove the following lowerbound.

Proposition 1. Let sup;cs > jes|J (G, j)| = v. Given a truncation class F, for
eachi € S and j € F;, where F; € F, we have that
o~ IFil+2,2y

max D(x, F;,i, j) >

max mw(i,j)l- “4)

Observe that if j € G(i) N F;, we have |J(i, j)| > 0, therefore for small
enough ¢, we will have V7 (i) = G(i) N F;.
Let us introduce, for any finite set F, the empirical probability measure

1 n
m@wwzgiﬂuumzmnh

k=1

where 1 denotes the indicator function. Given any site j € S, we will also define
the empirical conditional probability

_ hax(FU{j))
Pa(x(FA (D)
if pu (e (F\ () > 0 and p(x(j)Ix(F \ {j})) = 0, otherwise.

Pn(x(DIx(F\{j}))
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For any i € S, F; € F, any configuration x(F;), and j € F; we define the em-
pirical weighted distance between the conditional probabilities as follows

Dy(x, Fi, i, )
L e o A
= [Pn(x @ Ix (Fi \ {i})) = pn(x @ |x(Fi \ {i, j}))| Pn (x (F; \ {i})).
Note that l§n (x, Fj, i, j) is a function of the sample X1, ..., X, and is therefore a

random variable.
We can now define our estimator.

Definition 7. Given a truncation class F, for each i € S, the interaction neighbor-
hood estimator is defined as
Vn(i) = {j eF; :maxﬁn(x, Fii,j) > 8],
x(Fy)
where F; € F and the threshold ¢ is the same as in Definition 6.

‘We can now state our main result.

Theorem 1. Given a truncation class F and i € S, let X1(F}), ..., X, (F;), where
F; € F, be the local projections of independent realizations of an Ising model
whose pairwise potential satisfies

supZ!J(k,j)|=r<1. (6)
keSjES

Then, for any threshold value ¢ > 0, we have

P(Va (i) # VT ()
) (7
<4exp(—L +2|Fl~|> + LnIF,-l(sup Z |J (k, j) ),
- 8v + (4/3)¢e 1—r keS i,
where
v=sup sup (1 — p” (x()Ix(F; \ {i. j})) p” (x(FD)). (8)
x(F;) JEF;

The condition (6) is known as Dobrushin uniqueness condition in the statistical
physics literature (Presutti, 2009).

The first ingredient in the proof of Theorem 1 is an upperbound for the probabil-
ity of misidentification of interacting pairs in the case of a finite range interaction.
This is given in the next theorem.

Theorem 2. Given a truncation class F, and i € S, let Xf(Fi),...,X,]l:(F[),
where F; € F, be the projections of independent realizations of an Ising model
with pairwise potential J” .
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Then for any site i € S and any threshold value € > 0, we have
2

A, F,. _ ne
P(V, (i) # V (z))s4exp( ST

+ 2|F,-|),
where

v=sup sup(l — p” (x()Ix(F; \ {i, j})) p” (x(F))).
x(F;) jeF;

The second ingredient in the proof of Theorem 1 is a coupling result. To state
it, we first need to introduce the definition of coupling.

Definition 8. Given a truncation class F, let X and X7 be Ising models with
pairwise potentials J and J 7, respectively. A coupling between X and X7 is a
random element (X, X7) taking values on S x § such that:

1. ):( has the same law as X;
2. X7 has the same law as X7 .

The following theorem says that we can sample together X and X7 and gives
an upper bound for the probability of discrepancy between X (i) and X7 (i).

Theorem 3. If J is pairwise potential which satisfies condition (6), that is,

supZ\J(k,j)|=r<1 9
kESjGS

and J7 is defined as in (2), then there exists a coupling (X, XT) such that for any
i € S the following inequality holds

P(X (i) # X7 (i) <

T > Ik, ) (10)
€S jeS\Fy

Remark. To exemplify the application of the above theorem, let d > 1, and X be
an Ising model with S = 74 and potential J such that |J (k, j)| < C|lk — j|| =9,
where || - || is the £°° norm and C is sufficiently small so that the potential
satisfies (9). For each k € Z¢ and positive integer n, we define Fr(n) = {j €
Z: |k — j|l <n} and F(n) = {Fi(n) C Z¢:k € Z¢}. Using Theorem 3, it is clear
that for sufficiently large n, X will be a good approximation to X. In prac-
tice, the exact metric structure is rarely known to the experimenter and the choice
of F is usually given by experimental constraints. For example, in neuroscience,
the size of the sets in F can be decided by the number of electrodes that the ex-
perimenter can measure simultaneously in the brain. Thus Theorem 3 gives us a
simple guideline, showing that if the size of the observed sites is limited, as it is
always the case in practice, the experimenter, if possible, has to choose the sites
with strongest interaction, that is, largest |J (i, j)| to obtain a good approximation.
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3 Proofs of the results

Proof of Proposition 1

Leti, j € F, x(Fi \ {i}) € {—=1, +1}!Fil=1 and y(F; \ {i}) € {—1, +1}/Fil=1 with

v(j) = —x(Jj). Using the mean value theorem, we have
2y
7@ (F ) = @I (FN )] 2 )
Hence, for any j € F; such that J (i, j) # 0 we have
P (@1 (F \ i})) = p7 (x@Ix(F \ (i, /1))
2¢%
2 e/ GO min P () (F\ G 1)).
Also
Rk TEOREN G D) 2 T4e2’

We observe that for any i € F

max F\{i > o~ Ifil+L
o(hax P Fx(Fi\ i) =

Combining the above inequalities, we have

—|Fi|+2,2y
max D(x, F;,i,j) > ————
©(Fy) (. Fir b, 1) (14 e2)

as we wanted to show.

Proof of Theorem 1

Let F be a truncation class. Let (f( 1L )?f ) U (f(n, X nf ) be n independent copies
of the pair (X, X7) which existence is guaranteed by Theorem 3. The random
elements X1, ..., X, are independent copies of the Ising model X with pairwise
potential J. The random elements X7 , ..., X nf are independent copies of the Ising
model X7 with truncated pairwise potential J7 defined as in (2).

Let us indicate explicitly the sample in all the statistics and events appear-

ipg in Thgorem 1 as functions either of the sample X Ly eves f(n or of the sample
X lf s, X nf . We start with notation of the empirical probability measures p,, as
follows

~ ~ ~
X (FO)IX1, ., Xl =~ > Y X (F) =x(F},

k=1

~ ~ 1 & ~
Pu(ED[XT - X =~ 3 XL (F) = x(F}.
k=1
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To simplify the writing, we shall use the short notation

=X1,....,X,) and X7 =(X{,....X7).

n

Now using either the empirical probability measures Dn (x(F DI 1 or
D (x (F; ))[X]E ] we define the neighborhood estimators V (z)[X] and V]E HIX].
Now we are ready to conclude the proof. An upperbound for the probablhty of

misidentification for the sample X1, ..., X, is given by

P(V, ())[X] # V()

P({Vnu)[ilaévf(i)}m N ﬂ{i{(j)z;zk(j)})
ke{l,...,n} jEF;
]P’( U U{J?i”(j)ﬂkm}).
ke{l,...,n} jeF;
By Theorem 3
IP( U U{)?[<j)¢)?k<j>})sn|ﬂ-|sup > k-
ke{l,...n} jeF; keS jes\Fy

Now, we observe that in the set

N NI{XFG) =X}

kell,...,n} jeF
the following holds
Vo (D[X] = V() [XT].
Hence,
P(I%OKI£VZ Ol () (X7 () =Ru(F))

ke{l,...n}

=P({Vn(i)[if];éVf(i)}ﬂ N {X[(Fi)=5fk(Fi)}> (11)

ke{l,...n)
<P(V,()[XT] £ V7).
Since Theorem 2 provides an upperbound for the last term in (11), we have

N (X =ffk<F,->})

kell,...n)
ne(Fi, n)?
§4exp(— +2|Fi|>-
8v + (4/3)e(Fi, n)

This concludes the proof of Theorem 1.

B(1%OX1 2 V7 () 0
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Proof of Theorem 2

For convenience of the reader, before the proof let us recall the classical inequality
of Bernstein which will be used in the sequence.

Bernstein inequality. Let &1, ..., &, be i.i.d. random variables with |§;| <b a.s.
and E[Slz] < v < 00. Then the following inequality holds

1 n nez
PO;§:@-4ma]ze)f2mm(‘2517ﬁ555>

k=1
For a proof of this inequality, we refer the reader to Massart (2003).
To begin the proof of Theorem 2, let us denote

OFiy={jeVri):je F\VT () (12)

the event of false positive identification.
The event of false negative identification is defined as

U iy=1{je F;\V,(i):j e VI ()). (13)
We observe that
(Va() £ VE (D)) = O0F (yuu? ).

We will first obtain an upperbound for the probability of event false positive
identification. Observe that

PO )< > Y P(Dux,Fii, j)>e). (14)

X(Fi) jeF\VF (i)

Letusfix j € F; \ V7 (i) and x(F;) € {—1, +1}Fi. To obtain an upperbound for
the right-hand side of (14), we first observe that

Du(x, Fi, i, J)
< |pn(x(FD)) — pT (x @ 1x (F; \ {i, j1)) pu (x (F; \ i) (15)

P (EAUY)  rp
iy~ P OB ) e (F\ 1),

This inequality was obtained by adding and subtracting
p7 (e @)1x(Fi \ (i, j})) Bux (Fi \ (i)

in expression (5).
Since
PaCr(F\ (i) _
T o (Fi\{i, D) T

’
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we finally obtain the upperbound
Dy (x, Fi, i, j)
< [Pa(x(FD) = p” (x@x(Fi \ i, j1) pa(x(Fi \ 1)) (16)
+ [P (F \ 1) = p7 (@l (Fi \ (i, 1)) Palx (Fi \ (i, ).

Therefore,

1
< P(!ﬁn (x(F) = p7 (@ x(Fi \ (i, j}) u(x (Fi \ (0))] > 58)

1
+P(|ﬁn(X(Fi \ 7)) = T (x@Ix(Fi \ i, j)) P (2 (Fi \ (i, )| > 58)'

The classical Bernstein inequality provides the following upperbounds for the
terms in the right-hand side of the above equation

P(!ﬁn (x(F)) — p” (x@)|x(Fi \ {i, j})) Pn (x (Fi \ {i}))] > %e)

) (17
ne
= zeXp(_ 8+ (4/3)s>’
where
v=sup sup (1 — p” (x@)Ix(F; \ {i, j})) p” (x(FD)). (18)
x(F;) jeF;
Also
1
P(\ﬁn(x(F,- VD) = 7 (O (Fi \ {7 1) o (x (i \ i )] > 58)
19
. o (19)
= exp(‘sv/ + (4/3>e>’
where
v' = sup sup (1 — p7 (x(@)|x(F; \ {i, j})) p”" (x(F; \ {j})))- (20)

x(Fy) jeFi

Summing up inequalities (17) and (19) for all configurations x (F;) and all sites
j € F;\ V7 (i), we obtain the following upperbound for the probability of false
positive identification

P(O7 (i)
2
N vF __ne
S4(|Fl| |V (l)DeXp( 8v+(4/3)£) @h
n82

<4(IFil - |Vf(i)|)eXP<—m '
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We will now obtain an upperbound for the probability of false negative identifi-
cation. For any j € V7 (i), we have

2 ¢ V) =B( () [Batr. Finiv ) <e) ). 22)
x(F)
To obtain an upperbound for (22), it is enough to obtain an upperbound for
P(D(x, Fi,i, j) <), (23)

where x (F;) is any fixed configuration. In particular, we can take a configuration
which maximizes

\p" (xDIx(F \ (i) — p7 (x@Ix(Fi \ (i, j}) | p(x(Fi \ {i})). (24

To do this, we first obtain a lower bound for ﬁn (x, Fj, i, j) in the same way we
obtained the upperbound in (16).

Du(x, Fi,i, j)
> | pu(x(F) — p” (x @) |x (Fi \ (i, j})) pu (x (Fi \ {i}))]
—Pu(x(F \ {J})) — p7 (xD)Ix(F: \ (i, j}) P (x (Fi \ (i, )]
SACIGAN )
Pn(x(Fi\ {i, j})’
Observing again that

Pn(x(Fi \ {i}))
T o (F\{i, jD) T
we finally obtain the lower bound
Dy (x, Fi. i, j)
> | pu(x(FD) — p (x @) x (F; \ {i, j})) pu (x (F; \ {i}))] (25)
— [ pn(x(Fi \ 1j}) = P (x @ 1x (Fi \ {i, j})) Pu (x (Fi \ {0, 1)) .
To make formulas shorter, let us call for the moment

W = pn(x(F)) — p7 (x@)|x (F; \ (i, j})) n(x (Fi \ {i}))

and
R = pu(x(Fi \ {j})) = p” (x@)1x(Fi \ {i, j})) B (x (F: \ (i, j})).
With this new notation, using inequalities (16) and (25) we obtain
|Du(x, Fivi j) = IWI| < |RI. (26)
A straightforward computation shows that

E[W] = p(x(F)) — p” (x()Ix(F; \ {i, 1)) p” (x (F: \ {i})).
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Assuming that j € V7 (i) and that configuration x (F) maximizes (24), we have

that

|[E[W]| > 2e.

Therefore to bound (23) for j € V7 (i), it is enough to have an upperbound for

P(|Du(x, Fi, i, j) — [E[W]|| > ¢).

To do this, we observe that

|Dn(x, Fi, i, j) — |[EIW]|| < |Dn(x, Fi, i, j) — |W||+ [|W] — |E[W]||.

Then, using inequality (26) we have

|D,(x, Fi i, j) — |E[W]|| < |R| + |W — E[W]|.

Now, by (27)

P(|Du(x, F, i, j) — [E[W]|| > ¢)

5]P><|R| > %s) +IP’<|W —E[W]| > %s)

Note that E[ R] = 0, thus by Bernstein inequality

1 3ne?
P<|R| > —8) < 2exp(——),
2 4(6v +¢)

where v is the same in (20). By Bernstein inequality also we have

3ne?

1

where v is the same in (18).
Combining (30) and (31), we have for j € V7 (i)

; <4exp| ————— ).
J & Vnlt P\T 80+ @/3)e
From this, it follows that
2
PUT () <4 VF G (———lf;——>.
(U ) =4[V= Ol exp| —g =

Adding (22) and (32) we conclude the proof of Theorem 2.

)

27

(28)

29)

(30)

3D

(32)
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Proof of Theorem 3

Let 2,7/ € {—1,+1}S be two fixed configurations. For i € §, F; € F, let

(Y7, Y,Z,’F) be a discrete time Markov chain taking values on {—1, +1}f with
the following features:

(1) The Ising model on {—1, 41} with pairwise potential J and boundary
condition z(FY) is reversible with respect to the first marginal Y.
(2) The Ising model on {—1, +1}%7 with pairwise potential /7 and boundary

condition z'(FY) is reversible with respect to the second marginal Y, o

(3) The coupling chain (Y}, Yf/’f) is irreducible and aperiodic, and has an
unique invariant probability measure. Taking into the account items (1) and (2),
this unique invariant probability measure is a coupling between the Ising mod-
els on {—1, +1}7 with interaction potentials J and J* and boundary conditions
z(Ff) and 7/ (Ff), respectively.

We now construct (Y/, Y,Z/’f) with ¢ € N. This can be done as follows. Let
(It);>1 be an independent sequence of random variables uniformly distributed
on F;. Forany j € F; and y € {—1, 41}, let also the probabilities pj(-ly) and
pjf(-ly) on {—1, +1} be defined as follows

2 ker; JGRY(R)=2 Yhgr, T (i h)z(h) y —
p](+1|y): {1+e ZkEFJ (] )y() Zngj (] )Z( )} 1’

-2 IT Gy (k)2 IF GG
pT (1) = {1 4 ¢ 25ery 7 UOYO 20k, ITG0 B 1

For any pair (y, y') € {—1, +1}fi x {—1, +1}77, let (5}”),21, be an i.i.d. se-
quence of random variables taking values on {—1, +1}? with distribution

P( lj’y’y/ — (S, S)) = mln{p](sb’)’ p'/F(Sly/)},

P/ = (s, —s)) = max{p;(s|y) — Pf(S|y/), 0},
for any s € {—1, +1}.
Finally, let us assume that the sequences (I;),>1 and (&/”7 ),;>1, with (y,y) €

{—1,+1}?*F and J € F; are all independent. The Markov chain (Y7, le/’}-) 1S con-
structed as follows. For any # > 1 and any j € F;

(Y, Y37 () = (Yo, (D, YT ()) it j#1

(33)

and

(s F Ny j’Ytzfl’YtZi’I}— R
(Y. Y77 () =§_"4 if j=1,. (34)

We stress the fact that the probabilities p;(-|y) and pf (-]y) depend on the
fixed configurations z(F}) € {—1, +1}F and Z(Ff) e {—1, +1}57, respectively.
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As a consequence, the law of the Markov chain (Y/, Ytz,’JT ) depends on the
pair of fixed configurations (z(F), z/(Ff)). Therefore, a more explicit notation
should mention all these details. This would produce cumbersome things like
pisly(Fi\ J), z(Ff)), P; F(s|y(Fi\ j), z '(Ff)). Hence, we decided to use a sim-
plified notation p;(-|y) and p; Z(-|y), respectively.

Let us assume that the initial value (Y¢, Y, z, f) of the chain is chosen according

to its unique invariant probability measure. For every integer t > 1, we have

P(YZG) # Y77 (1) = P(YEG) # Y77 (). 1, #1)

, (35)
+P(YF @) # Y0, L =i).
For the first term in the left-hand side of the above equation we have
, ' N LR =1 .
P(YF () # Y@, 1 #i) = ———P(Y2, 0 # YT 1), (36)

| Fil
Substituting (36) in (35), and using the fact that the Markov chain is stationary, we
obtain

P(YF () # YF 7 @) =P(YF () # Y77 @), L =i). 37

| Fil

Now, we have
P(YF() # YT G), I =)

=P(YF () £ Y T (0), I =i, Y7 1(])—YZ : (])for aljeF,)  (38)

PV # YT ). 0 =i, Y7 () # Y () for some j € F).
Using (33) and (34), the first term in the right-hand side of (38) is bounded
above by

2 sup (piGsly)— pl (s1y))P(I =i, Y2 (j) = Y] (j) forall j € F;). (39)
ye{—1,1}Fi

Using the mean value theorem, we have
1 :
sup  (piCsly) — p} (sly)) < 3 D ola. D). (40)
ye{—1,1}fi I¢F;

Therefore an upperbound for expression (39) is given by

7 i D|P(YZ,(j) = Y27 (j) forall j € F)

LD =P(Y () #Y, 1(j)forsomejeF)]
|F|1¢F
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Let now study the second term of the right-hand side of (38). We first rewrite it
as

) IP’(Yf(i) £V T, 0 =i D) # YT ),
o v

N v, =v2T (j)}).
jeF\U

Therefore, proceeding as in (39) and (40), we obtain the following upperbound
for the second term in the right-hand side of (38)

1 , /
a3 S GO EGD AT DL () 7,0 =1 ®))
Y UCF, I¢F; jeu ke F;\U
U#2
1 /
g 2 Z|J(i»l)|ﬁ”<ﬂ{Yf_l(j)aéYf_’f(j)}, (42)
Y"UcFleU jeu
U#D

N e =¥ w)).

ke F;\U

The first part of (42) can be rewritten as
1

| Fi

Z|J(i, DIP(Y,(j) # leﬁl]:(j) for some j € F;). (43)
I¢F;

The second part of (42) can be rewritten as

1 /
XY GRG0 £ O

| il leF; UCF;:leU jeu

N v, =v"7 <k)})

keF\U

and this is equal to
1

i 2V EDIPI 0 # Y2 T ). (44)

leF;
Collecting together (38), (41), (43), (44), we finally get the upperbound

PYF@) #YS 7)) < Y |G D]+ S IGDIPYE, ) # YT D). @5)

I¢F; IeF;

To conclude the proof of the theorem, let Z and Z’ be two independent copies of
the Ising models on {—1, 41} with potentials J and J, respectively. For a fixed
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realization of the pair Z and Z’, construct as before the coupled chains (Y,Z , YtZ /’F)
taking values on {—1, +1}2fi, and having Z(Ff) and Z'(Ff) as boundary condi-
tions.

Using inequality (45) and taking the expectation with respect to (Z, Z’), we
have

E[P(YZ () # Y77 ()]

< Y GD|+ Y IGDIERYZ @) # YE T 1))

I¢F; IeF;

(46)

Now observe that
E[P(YZ(j) # Y27 ()] =P(Y (j) # Y7 (j)),

for any j € F, where Y (j) and Y7 (j) are the projections on site j of realiza-
tions of the Ising model with pairwise potential J and J*, respectively. From this
identity and inequality (46), it follows that

P(Y@) Y7 @)<Y _[JG.D|+ Y [JGDPYd) Y7 1).

I¢F; I€F;

Finally, taking the supremum for all i € S we have

supP(Y (i) # Y7 (i) < sup ) |7 G, D +rsupP(Y Q) # Y7 (),
ieS ieS I¢F; ieS

which concludes the proof.
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