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Abstract. Our purpose is to recommend a change in the paradigm of testing
by generalizing a very natural idea, originated perhaps in Jeffreys [Proceed-
ings of the Cambridge Philosophy Society 31 (1935) 203–222; The Theory

of Probability (1961) Oxford Univ. Press] and clearly exposed by DeGroot
[Probability and Statistics (1975) Addison-Wesley], with the aim of devel-
oping an approach that is attractive to all schools of statistics, resulting in a
procedure better suited to the needs of science. The essential idea is to base
testing statistical hypotheses on minimizing a weighted sum of type I and
type II error probabilities instead of the prevailing paradigm, which is fixing
type I error probability and minimizing type II error probability. For simple
vs simple hypotheses, the optimal criterion is to reject the null using the like-
lihood ratio as the evidence (ordering) statistic, with a fixed threshold value
instead of a fixed tail probability. By defining expected type I and type II error
probabilities, we generalize the weighting approach and find that the optimal
region is defined by the evidence ratio, that is, a ratio of averaged likelihoods
(with respect to a prior measure) and a fixed threshold. This approach yields
an optimal theory in complete generality, which the classical theory of testing
does not. This can be seen as a Bayesian/non-Bayesian compromise: using a
weighted sum of type I and type II error probabilities is Frequentist, but bas-
ing the test criterion on a ratio of marginalized likelihoods is Bayesian. We
give arguments to push the theory still further, so that the weighting measures
(priors) of the likelihoods do not have to be proper and highly informative,
but just “well calibrated.” That is, priors that give rise to the same evidence
(marginal likelihoods) using minimal (smallest) training samples.

The theory that emerges, similar to the theories based on objective
Bayesian approaches, is a powerful response to criticisms of the prevailing
approach of hypothesis testing. For criticisms see, for example, Ioannidis
[PLoS Medicine 2 (2005) e124] and Siegfried [Science News 177 (2010)
26–29], among many others.
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1 Changing the paradigm of hypothesis testing and revisiting Bayes
factors and likelihood ratios

1.1 Introduction

Classical significance testing, as developed by Neyman and Pearson, is suited to
and was designed to perform very specific comparisons, under well designed stud-
ies for which the probability of a type I error (false rejection) has been fixed be-
forehand to some specific value α, and a most powerful statistic is found so that
the probability of type II error β is minimized. The sample sizes are chosen so
that β is bigger than, or at least of the same order as, α. But the vast majority of
studies do not conform to this standard. Even when individual studies conform to
the standard, merged studies no longer do. Fixing the probability of type I error,
for whatever amount of evidence, as well as fixed tables of p-values, are not justi-
fiable (at least when there is an explicit or implicit alternative hypothesis, as shown
in Pereira and Wechsler (1993) and references within), since then the type II error
is completely outside the statistician’s control, with the possibility that type I error
probability may be enormous as compared with type II error probability.

There is a need for an alternative to the prevailing paradigm, which is: (i) Fix
type I error probability at α and Minimize type II error probability, or (ii) Calcu-
late p-value and interpret it as the minimum α for which you will reject the null
hypothesis, using a fixed table of values like {0.1,0.05,0.01}.

Alternatives to this approach date back to at least Jeffreys (1935, 1961). In
our view, Morris DeGroot, in his authoritative book Probability and Statistics,
2nd edition (DeGroot, 1975), perhaps the best bridge between schools of statistics
ever written, states in a didactic manner, that it is more reasonable to minimize a
weighted sum of probabilities of type I and type II errors than to specify a type
I error probability and then minimize the probability of type II error. DeGroot
proves this, but only in the very restrictive scenario of simple-vs-simple hypothe-
ses. We propose here a very natural generalization for composite hypotheses, by
using general weight functions in the parameter space. This was also the position
taken by Pereira (1985) and Berger and Pericchi (1996, 2001). Recent propos-
als for adaptive significance levels are in Varuzza and Pereira (2010) and Perez
and Pericchi (2014). The developments in the present paper, provide a general
Decision-Theoretic framework to justify alternatives to traditional hypothesis test-
ing. We show, in a parallel manner to DeGroot’s proof and Pereira’s discussion,
that the optimal test statistics are Bayes factors when the weighting functions are
priors with mass on the whole parameter space and loss functions that are constant
under each hypothesis. When there are areas of indifference (i.e., areas of no prac-
tical importance, like “the new drug is less than 10%, say, more effective than the
current ‘gold standard’ ”), then loss functions that are equal to zero in the indif-
ference region (i.e., 0 to 10%) achieve the goal of practical significance instead of
statistical significance.
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Hypothesis testing of precise hypotheses is the most contentious aspect of statis-
tics. There is no agreement between the Bayesian and Frequentist schools of statis-
tics, nor even within those schools. It seems timely to shift to weighting paradigms
in order to meet the needs of science. We call weighting paradigms those which
minimize weighted types of errors, and weight nuisance parameters. We show here
that the alternative theory yields general optimal tests, unlike the traditional theory,
in which the existence of an optimal test is the exception rather than the rule.

We present only very simple examples, for the sake of clarity of a general argu-
ment.

1.2 The disagreement is not about the mathematics, it is about the statistical
implementation

To fix ideas let us suppose a simple hypothesis H0 : f (x|θ0) vs H1 : f (x|θ1). All
schools of Statistics agree that rejection of H0 should take place when the Likeli-
hood Ratio is small, that is

f (x|θ0)

f (x|θ1)
< r.

The justification for such a rule, comes from different versions of the Fundamental
Neyman–Pearson lemma. However, how to choose r is the crux of the matter. For
example two ways to assign r are the pure Bayesian and the pure Frequentist.
In the former, r = (1−P(H0))·L0)

P (H0)·L1
, where P(H0) is the prior probability of the Null

Hypothesis, and Li the loss for accepting Hi when Hj is true, i, j = 0,1; i �= j (see
Section 1.7). On the other hand, for the latter r should be chosen indirectly, such
that P(

f (x|θ0)
f (x|θ1)

< r|H0) = α. See, for example, DeGroot (1975, Chapter 8). Thus in
the former there is one choice r, while in the latter the choice is α. This seemingly
small detail makes an enormous difference. In the sequel, we will propose a mixed
way to choose the threshold.

1.3 Why do significance tests work for carefully designed studies, but not
otherwise?

Designed studies for testing hypotheses following classical significance testing are
based on a careful balance between controlling the probability of type I error and
minimizing type II error.

Consider the following example motivated by DeGroot (1975, Section 8.2).

Example 1. Suppose we have Normal data with scale σ0 = 3, and we are inter-
ested in comparing two possible means:

H0 : θ = θ0 = −1 vs H1 : θ = θ1 = 1.

It is desired to design an experiment (the observations are costly) so that the prob-
ability of an error of type I (False Rejection of H0) is 0.05 and the probability
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of a type II error (False Acceptance of H0) is 0.1. Application of the Classical
Neyman–Pearson lemma yields an optimal criterion based on the likelihood ratio:

Reject H0 if
x̄ − (−1)

σ0/
√

n
≥ Cα.

Now the constant Cα is chosen as to have a type I error probability equal 0.05, that
is:

Pr
(

X̄ − (−1)

σ0/
√

n
≥ Cα|H0

)
= α,

which is immediately recognized as the familiar Cα=0.05 = 1.645. Turning to the
type II requirement then,

β = Pr
(

X̄ − (−1)

σ0/
√

n
< 1.645|H1

)
= 0.1,

which gives n = 19.25, so we settle for n = 20 as our designed experiment, result-
ing in β = 0.091. This implies that H0 is rejected if x̄ > 0.1. Notice that in this
situation α/β = 0.55, or a ratio of about 1 to 2 between the probabilities of type I
and type II errors.

1.4 The conundrum of “an approach bothered by good information”

Example 1 (Continued). After you give the researchers your design, they come
back to you and proudly give you n = 100 data, since it cost the same to produce
n = 100 as n = 20, a situation that is not that unusual. The researchers are very
satisfied with their prolific experiment, but the statistician is disturbed. As usual,
type I error probability is kept fixed and equal to α = 0.05, but. . . what is the new
type II error probability? The statistician makes a calculation and obtains that the
new type II error probability is β = 0.00000026, or α/β = 195,217, quite dif-
ferent from 1 to 2 as designed. In fact, the rejection region becomes x̄ > −0.51.
Thus, if, for example, the observed sample mean is x̄ = −0.5, the null hypothesis
H0 : θ = −1 is rejected in favor of an alternative much further away from the ob-
served value. This leads to a conundrum: why is more information a bad thing for
the traditional approach to hypothesis testing? Incidentally, in the perhaps more
frequent situation in which information is lost, the type I and type II error proba-
bilities can be unbalanced in the opposite direction. For example, if the real sample
size delivered by the researchers were n = 10, then type II error probability would
be inflated to β = 0.32 if α were kept fixed, yielding a ratio of 0.05/0.32 = 0.156,
noticeably lower than the ratio of 0.55 in the designed experiment.

Example 1 illustrates why significance testing is inadequate for measuring the
evidence in favor of or against a hypothesis in general. This is motivation to go
back to the essentials.
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Among others, DeGroot (1975) argues that instead of fixing type I error proba-
bility (or computing a p-value with a scale held fixed) and minimizing type II error
probability, a better hypothesis testing paradigm is to choose the test to minimize
a weighted sum of the error probabilities, namely

Minδ

[
a · αθ0(δ) + b · βθ1(δ)

]
, (1)

where δ denotes the test: δ(x) = IR(x), where R is the rejection region of H0, IS(y)

is the indicator function, equal to 1 if y ∈ S and 0 otherwise. Notice the appar-
ently slight difference between the expression denoted by (1) and the traditional
approach of significance testing at a fixed significance level α0:

Restricting to those tests δ on which type I error:
(2)

αθ0(δ) ≤ α0, Minδ βθ1(δ).

This difference is far-reaching, as we will see. In the following, the superiority of
the weighting approach becomes distinctly apparent.

Example 1 (Continued). For simple-vs-simple hypotheses DeGroot proves that
the optimal test is, for a and b defined in (1):

Reject H0 if
f (x|θ0)

f (x|θ1)
<

b

a
. (3)

This approach can handle effectively any sample size, as long as we are prepared
to select a and b, or more precisely b/a. This has been perhaps the most important
contention, the reason given not to embrace a more balanced and sensible combi-
nation of the two types of error. The point we make here is that the choice of b/a

has already been made! To see this, we go back to the design situation in which
the sample size was chosen to be n = 20. Now for α = 0.05 and β = 0.091, the
weighted rejection region (3) is equivalent, after some algebra, to

Reject if exp
(

n

σ 2
0

(θ1 − θ0)
[
(θ0 + θ1)/2 − x̄

])
<

b

a
, (4)

and since the rejection region is x̄ > 0.1034, that is equivalent in our particular

example to − 3
2
√

20
· log( b

a
) + √

20/3 = 1.645, obtaining b
a

= 0.63. Thus if we

set a = 1, the implicit value of b is 0.63. Now the weighted approach leads to a
criterion that makes sense for any sample size, n

The Optimal Rejection Region R is: x̄ >
9

2 · n × 0.46,

with a cutoff point that is always positive but approaches zero, as is intuitively rea-
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sonable for θ0 = −1 and θ1 = 1, and a > b. Furthermore, now the ratio between
α = 1 − �(3 · 0.23/

√
(n) + √

n/3) and β = �(3 · 0.23/
√

(n) − √
n/3), as a func-

tion of n, is extremely stable, ranging from 0.55 at n = 20 to 0.61 at n = 100.
Thus, we have found that an α of 0.05 for n = 20, is equivalent to an α of 0.00033
for n = 100. This shows the extent to which the usual method of leaving α un-
changed, whatever the information available, is unbalanced. Notice that not even
changing to α = 0.01 would have been an effective remedy for n = 100, since the
equivalent α is about thirty times smaller.

Note: The previous analysis provides an interesting method to “decrease α

with n.” Notice that from the formula for α above, using Mill’s ratio, we get the
following simple approximation:

αn ∼ 1 − �(
√

n/σ0) ≈ φ(
√

n/σ0)√
n/σ0

, (5)

giving clear guidance on how to decrease the scale of p-values with increasing
sample size. Notice how fast the p-values ought to decrease with the sample size
to give a comparable amount of surprise against the model. In Section 7, we will
see that the rate of decrease is different (much slower) for more complex tests.

1.5 The Lindley Paradox is not necessarily a difference between Bayesian
and non-Bayesian, but between fixed significance levels and minimizing
the weighted sum of error probabilities

Lindley’s Paradox (Lindley, 1957) has been understood as the increasing diver-
gence (as information accumulates) between the evidence measures of Classi-
cal hypothesis testing and Bayesian testing. There is also a divergence between
Weighting’s and Classical testing, even when there are no prior densities.

To see this, we go back to the motivating example of a simple hypothesis against
a simple alternative as the simplest setting in which it becomes clear that the dis-
crepancy is due to differences in what is to be minimized. If one relinquishes fixed
significance levels and adopts the weighting approach of minimizing the weighted
sum of error probabilities, then there is a one-to-one relationship with Bayesian
posterior model probabilities (as it is with testing based on the likelihood ratio).

To see this, recall that in the approach recommended by DeGroot, the minimiza-
tion condition is given by equation (1).

Example 1 (Continued). In this example, the optimal rejection region given by
the weighting approach can be written as

Reject if
x̄ + 1

σ0/
√

n
≥ 2.07

σ0
√

n
+

√
n

σ0
, (6)
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to be compared to the traditional rejection rule with fixed significance levels

Reject if
x̄ + 1

σ0/
√

n
≥ 1.645. (7)

This is the divergence, or Lindley’s Paradox, but between two Frequentist rejection
rules. Notice the striking difference in behavior of the two right-hand sides: the fact
is that under the weighting criterion as n grows the type I error probability goes
to zero (as does that of type II error, and so consistency is achieved), but in the
traditional approach the type I error probability is kept fixed and consistency fails
(there is a positive probability of false rejection no matter how large n is).

On the other hand, a general one-to-one relationship can be established between
the probability of the null hypothesis and the criteria obtained by minimizing the
weighted sum of error probabilities. For any simple-vs-simple comparison, if π0
and π1 are, respectively, the prior probabilities of the null and the alternative, then
Bayes’s theorem yields as the posterior probability of the null

P(H0|x) = π0f (x|θ0)

π0f (x|θ0) + π1f (x|θ1)
=

[
1 + π1f (x|θ1)

π0f (x|θ0)

]−1

. (8)

Therefore, if the ratio b/a is interpreted as π1/π0 (assuming equal losses
L0 = L1), then the rejection region obtained by the weighting method is equiv-
alent to the region in which rejection of the null occurs if P(H0|x) < 0.5. There is
no divergence between schools of statistical inference here; on the contrary, there
is a perfect correspondence.

1.6 A more general setting

Suppose now that we are testing the following two general hypotheses:

H0 : θ ∈ 
0 vs H1 : θ ∈ 
1. (9)

We define, in the Neyman–Pearson tradition, type I and type II error probabilities
for the test δ at the parameter value θ as

αθ(δ) = Pr(Rejecting H0|θ ∈ 
0), (10)

βθ(δ) = Pr(Accepting H0|θ ∈ 
1). (11)

Definition. The weighted (or expected) type I and type II error probabilities are
defined respectively, as:

α(δ) =
∫

0

αθ(δ)π0(θ) dθ (12)

and

β(δ) =
∫

1

βθ(δ)π1(θ) dθ, (13)
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where πj (θ) ≥ 0 are such that
∫

j

πj (θ) = 1, j ∈ {0,1} (this condition will be
relaxed in Section 1.8). Why the expectation? It is important to notice that the
error probabilities depend on θ , which is obviously unknown. How to deal with
this?

In Berger (2008), it is stated that: “There are many situations in which it has
been argued that a Frequentist (statistician) should use an average coverage crite-
rion; see Bayarri and Berger (2004) for examples and references.” Similarly, we
argue here that both Bayesians and Frequentists should average error probabilities.
Among the main reasons we have: (i) averaging error probabilities permits a com-
pletely general theory of optimality, as we will see; (ii) averaging is natural (from
a probabilistic point of view, it is the marginal error probability) and flexible in the
choice of weight functions; (iii) the methodologies for assessing weighings have
advanced (see, e.g., Pereira (1985), or Berger and Pericchi (1996)); and (iv) it is a
natural mix of Frequentist error probabilities and Bayesian averaging.

1.6.1 Interpretations of the weight (prior) measures. We pause here to discuss
interpretations, because there are multiple possible interpretations of the weight
measures πj (θ), j = 0,1:

1. Prior Measures: The most obvious interpretation of these measures is that they
are the assumed prior densities of the parameter values conditional on each
hypothesis, which is the natural interpretation under a Bayesian framework.
Notice that this interpretation does not necessarily lead to a subjective approach.
If a general method for generating conventional priors, like the Intrinsic Prior
method, is used, then this can be considered an objective approach. There is
room for other conventional priors.

2. Regions of Statistical Importance: In order to state “statistical importance”
rather than “statistical significance,” the weight function can be combined with
a loss structure to define “indifference regions” on which the difference between
the null and alternative is of no practical importance. See the examples.

It turns out that under the prior measure interpretation, we obtain a Frequentist
Decision Theory justification of Bayes Factors. For the second interpretation, the
decisions are based on posterior probabilities of sets that actually embody rules
based on “statistical importance.”

Note: It is tempting, because it is so simple, to use weight functions that are
point masses in the null and the point where statistical importance starts. These are
point masses signalling specific points for which the error probabilities ought to be
controlled by design. For example, if for a particular value of θ1 ∈ 
1, where there
is “practical significance,” such as a novel medical treatment improvement of 20%,
then the weight function may be set as a point mass on 20% improvement (this
typically would work only for monotone likelihood ratio families). We consider
these point masses (i) for simplicity and (ii) to compare to frequentist solutions
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of the problem of “too much power,” that is, when there is statistical significance
but not practical significance (Bickel and Doksum (1977)). However, this simple
solution is not based on the most reasonable prior.

1.7 A general optimality result

Define the weighted likelihoods, which we may call the evidence measures for the
data y under each hypothesis, as

�0(y) =
∫

0

f (y|θ)π0(θ) dθ, (14)

and

�1(y) =
∫

1

f (y|θ)π1(θ) dθ. (15)

Lemma 1. It is desired to find a test function δ that minimizes, for specified a > 0
and b > 0:

SERRORS(δ) = a · α(δ) + b · β(δ). (16)

The test δ∗ is defined as

accept H0 if
�0(y)

�1(y)
>

b

a
, (17)

accept H1 if
�0(y)

�1(y)
<

b

a
, (18)

and accept any if a · �0(y) = b · �1(y). Then for any other test function δ:

SERRORS
(
δ∗) = a · α(

δ∗) + b · β(
δ∗) ≤ SERRORS(δ). (19)

In words, rejecting the null when the ratio of evidences is smaller than b/a is
globally optimal.

Proof. Denote by R the rejection region of the test δ, that is, those data points on
which H0 is rejected. Then, under the mild assumptions of Fubini’s theorem that
allows interchanging the order of the integrals, for any test function δ,

aα(δ) + bβ(δ)

= a

∫

0

[∫
R

f (y|θ) dy
]
π0(θ) dθ + b

∫

1

[∫
RC

f (y|θ) dy
]
π1(θ) dθ

= a

∫

0

∫
R

f (y|θ)π0(θ) dydθ + b

∫

1

∫
RC

f (y|θ)π1(θ) dydθ

= a

∫

0

∫
R

f (y|θ)π0(θ) dydθ + b

[
1 −

∫

1

∫
R

f (y|θ)π1(θ) dydθ

]
(20)
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= b +
∫

R

[
a

∫

0

f (y|θ)π0(θ) dθ − b

∫

1

f (y|θ)π1(θ) dθ

]
dy

= b +
∫

R

[
a�0(y) − b�1(y)

]
dy.

The result follows from application of the definition of δ∗ in expressions (17)
and (18), since every point on which a · �0(y) − b · �1(y) < 0 is in R, but no
point on which a · �0(y) − b · �1(y) > 0 is included. Therefore, δ∗ minimizes the
last term in the sum, and the first does not depend on the test. The result has been
established. �

Regarding the assessment of the constants a and b, notice that it suffices to spec-
ify the ratio r := a/b. This can be done in multiple ways: (i) by finding the implicit
a and b of a carefully designed experiment, as in Example 1; (ii) by using a con-
ventional table of ratio of evidences, like the Jeffreys evidence ratio scale table,
and Kass and Raftery modification of it (see Tables 4 and 5 in the Appendix); or
(iii) using a ratio of prior probabilities of H0 times the loss incurred by false re-
jection of H0 over the product of the prior probability of H1 and the loss incurred
by false acceptance of H0. In symbols, calling L0 the loss for false rejection of H1
and L1 the loss for false rejection of H0:

r = b

a
= P(H1) · L0

P(H0) · L1
.

To see this, notice that the risk function can be written as R(θ, δ) = L1αθ(δ) if
θ ∈ 
0, and as R(θ, δ) = L0βθ(δ) if θ ∈ 
1. Assuming a priori that the proba-
bility of the null hypothesis is P(H0), then the average (Bayesian) risk, taking
expectations with respect to (P (H0),π0) and ((1 − p(H0)),π1), we get the aver-
aged risk

r(δ) = P(H0) · L1 · α(δ) + (
1 − P(H0)

) · L0 · β(δ), (21)

and we see that the correspondence with expression (16) is: a 
→ P(H0) · L1 and
b 
→ (1−P(H0)) ·L0, assuming that the loss is constant on each of the hypotheses.

The Rejection Region R in (18) takes two different shapes under interpretations
1 and 2.

• For interpretation 1, R is defined by

�0(y)

�1(y)
<

b

a
. (22)

That is, the null hypothesis is rejected if the Bayes factor of H0 over H1 is small
enough.

• For interpretation 2, R is defined as the region in which

Pr(H0 ∪ H ∗
0 |y)

Pr(H1|y)
= Pr(HC

1 |y)

Pr(H1|y)
<

b

a
, (23)
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where H0 is the null hypothesis, H ∗
0 the indifference region, where it is not

worthwhile to abandon the null because the gain from doing so is insufficient,
and H1 the alternative of practical significance. This assumes that the loss of
rejecting H0 under H0 and H ∗

0 is the same, and that the loss for accepting H0,
both under H0 and H ∗

0 , is zero.
We suggest that (23) is more reasonable than rejecting the null when, say,

Pr(H0|y)

Pr(H1|y)
<

1

3
,

an approach popular in medical statistics, since it may happen that, for example,
P(H0|y) = 0.1ε and P(H1|y) = 0.9ε, and ε can be minute, like ε = 0.001. If
both posterior probabilities are minute, one should not abandon H0 in favor
of H1.

Finally, for the simple and simplistic point masses at θ0 and θ1, the optimal
rule becomes

f (y|θ0)

f (y|θ1)
<

b

a
. (24)

1.8 Relaxing the assumptions: “Well calibrated” priors

In the proof of Lemma 1, it was assumed that the weights were proper, that is∫

j

πj (θ) dθ = 1. This may be seen as too heavy an assumption. Fortunately, the
assumption can be relaxed, at least for weights that are improper but well cali-
brated. See Pericchi (2005) for a discussion of well calibrated priors. We give two
illustrations of well calibrated priors:

1. Illustration 1: Let us consider the priors Jeffreys suggested for the Normal mean
testing problem: H0 : μ = μ0 vs H1 : μ �= μ0 and the variances are unknown.
The Jeffreys priors for this problem are:

πJ
0 (σ0) = 1

σ0

and

πJ
1 (μ,σ1) = 1

σ1
· 1

πσ1(1 + μ2/σ 2
1 )

.

Notice that the priors are not proper. We define a training sample of minimal
size x(l) as a sub-sample of x such that both πJ

0 (σ0|x(l)) and πJ
1 (μ,σ1|x(l))

are proper, that is, the priors integrate to 1, but any sub-sample of x(l) will not.
In this illustration case the minimal training size is one, that is x(l) = xl . It turns
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out that Jeffreys priors are well calibrated (Pericchi (2005)), that is, for any xl ,∫
f (xl|σ0)π

J
0 (σ0) dσ0 =

∫
f (xl|μ,σ1)π

J
1 (μ,σ1) dμdσ1,

or m0(xl) = m1(xl).
2. Illustration 2: Suppose one wishes to compare a Normal model with a Cauchy

model, both with location μ and scale σ unknown. For location-scale models,
the objective prior is usually chosen to be π(μ,σ) = 1/σ . It turns out (see
Berger et al. (1998)) that for any location-scale likelihood, the minimal training
sample size is 2, that is, x(l) = (xl1, xl2). It follows that

∫ 1

σ 3 · f
(

xl1 − μ

σ

)
f

(
xl2 − μ

σ

)
dμdσ = 1

2|xl2 − xl1 |
,

that is, the marginal for any two different data points is the same for any
location-scale family, and so, if the prior is 1/σ , is well calibrated between
any location-scale family for the minimal training sample of two observations.

Corollary 1. For priors that do not integrate to 1, but are well calibrated,
Lemma 1 still holds.

Proof. Take an arbitrary minimal training sample x(l), so that the remaining sam-
ple is denoted by x(−l). Now use the priors π0(θ0|x(l)) and π1(θ1|x(l)), and the
corresponding likelihoods f0(x(−l)|θ0) and f1(x(−l)|θ1) in Lemma 1. Assuming
we have a sample bigger than the minimal training sample, then Lemma 1 follows
with the priors and likelihoods above. Now the result follows from the following
identity, for well calibrated priors:∫

f0(x(−l)|θ0)π0(θ0|x(l)) dθ0∫
f1(x(−l)|θ1)π1(θ1|x(l)) dθ1

=
∫

f0(x|θ0)π0(θ0) dθ0∫
f1(x|θ1)π1(θ1) dθ1

.

This corollary substantially expands the applicability of Lemma 1 and highlights
the usefulness of well calibrated priors. �

2 Two-sided alternatives

Example 2. Consider a univariate normal distribution with known variance σ 2
0

and the following hypotheses about the value of the mean θ :

H0 : θ = θ0 vs H1 : θ �= θ0.

2.1 Bayesian intrinsic prior

One “objective Bayesian” approach is the intrinsic prior approach. For this ex-
ample, it turns out that the intrinsic prior is (Pericchi (2005), Berger and Pericchi
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(1996)): π1(θ) = N(θ |θ0,2σ 2
0 ) and π0 is a Dirac delta at point θ0. Calculation

yields that the optimal test δ∗ is

Reject H0 if
f (ȳ|θ0)

�1(ȳ)
= N(ȳ|θ0, σ

2
0 /n)

N(ȳ|θ0, σ
2
0 (2 + 1/n))

< r, (25)

where n is the sample size.

2.2 Practical significance

Assume that the test is meant to detect a difference if θ1 = θ0 ± 
. Then the sim-
plistic prior weight is a Dirac delta centered at the two points θ0 ± 
 with weight
equal to 1/2 on each point. The test now becomes

Reject H0 if
(26)

f (ȳ|θ0)

� ∗
1 (ȳ)

= N(ȳ|θ0, σ
2
0 /n)

(1/2)N(ȳ|θ0 − 
,σ 2
0 /n) + (1/2)N(ȳ|θ0 + 
,σ 2

0 /n)
< r,

which can be written as

Reject H0 if exp
(
− n


2σ 2
0

[

 − 2(ȳ − θ0)

]) + exp
(
− n


2σ 2
0

[

 + 2(ȳ − θ0)

])
>

2

r
.

This is a reasonable criterion that can be compared to the usual significance test,
which is extremely biased against H0 for sample sizes larger than those that were
carefully chosen to achieve specified type I and type II error probabilities.

A more careful analysis of indifference regions using the same Intrinsic prior as
above leads us to the following rejection region:

Pr(H0,
|y)

1 − Pr(H0
|y)
<

b

a
, (27)

where H0,
 = [θ0 − 
,θ0 + 
]. This criterion is extremely simple, based on the
ratio of two normal probabilities, and takes specific account of the indifference
region. It can be verified that the tests (25), (26) and (27) are all consistent as the
sample size n grows. That is, both type I and type II errors go to zero as the sample
size grows.

The alternative testing paradigm enjoys several desirable properties, some of
which we describe here.

3 Hypothesis testing under the new paradigm obeys the Likelihood
Principle

One of the usual criticisms of significance testing is that it does not obey the Likeli-
hood Principle, a principle that is of importance not only to Bayesians, given that it
was actually enunciated and defended by eminent non-Bayesians. Loosely speak-
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ing, the Likelihood Principle establishes that if two likelihoods are proportional to
each other, the information about the parameter vector θ is the same. The following
example is eloquent.

3.1 The Lindley and Phillips (1976) example revisited

Example 3. It is desired to test whether a coin is balanced, because it is suspected
that it is more prone to “heads.”

H0 : θ = 1/2, vs H1 : θ > 1/2.

It is known that the number of Heads is S = 9 and the number of tails is n−S = 3.
It is desired to conduct a test with α = 0.05. However, significance testing (in
its two current versions, based on p-values or fixed significance) cannot decide
whether to accept or reject the null hypothesis. How was the sample size deter-
mined? Was it fixed beforehand? Or it was decided that the experiment would
stop at the third occurrence of “tails”? The results are not the same for these two
situations.

Suppose n = 12 was decided beforehand. In that case, we have a binomial like-
lihood:

fB(S|θ) = 12!
9!3!θ

9(1 − θ)3 = 220θ9(1 − θ)3. (28)

However, if the experiment was stopped at the third occurrence of “tails,” then we
have a negative binomial experiment, with likelihood function

fNB(S|θ) = 11!
9!2!θ

9(1 − θ)3 = 55θ9(1 − θ)3. (29)

That is, we have two proportional likelihood functions, so according to the Like-
lihood Principle, we should have the same inference. However, the observed
p-values differ:

αB = Pr(S ≥ 9|θ = 0.5,Binom) =
12∑

S=9

fB(S|θ = 0.5) = 0.073,

while

αNB = Pr(S ≥ 9|θ = 0.5,NegBinom) =
∞∑

S=9

fNB(S|θ = 0.5) = 0.0327.

Therefore, the result is considered statistically significant in the second scenario
but not in the first.

Examples like these seem to have convinced many that frequentist hypothesis
testing is bound to violate the Likelihood Principle. The good news, which we
would guess is surprising to many, is that the violation of the Likelihood Principle
can be avoided by using the weighting method, minimizing a weighted sum of
(averaged) type I and type II error probabilities.
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Corollary 2. Testing by minimizing a weighted sum of errors automatically obeys
the Likelihood Principle.

Proof. From Lemma 1, the optimal test is

Reject H0 if
�0(y)

�1(y)
=

∫

0

f (y|θ)π0(θ) dθ∫

1

f (y|θ)π1(θ) dθ
<

b

a
,

and in the ratio on the left-hand side, the constant in the likelihood cancels out.
�

Example 3 (Continued). In this example we assume the uniform prior on (0.5,1):
π(θ) = 2×1(0.5,1)(θ). We assume this prior for simplicity, and although we do not
think it is “optimal” in any sense, it is not unreasonable and does not influence the
outcome heavily. The evidence ratio is easily found numerically.

f (S|θ = 0.5)∫ 1
0.5 f (S|θ) · 2dθ

= (1/2)12

(1 − pbeta(0.5|10,4) × Beta(10,4) × 2)
= 0.366,

where pbeta(x|a, b) is a probability of obtaining a value between zero and x

when drawing from a beta distribution with parameters a and b, and Beta(a, b) =
�(a)·�(b)
�(a+b)

, a > 0, b > 0, is the beta function with parameters a and b.

Thus, according to the Jeffreys table of evidence ratios (see Table 4 in the Ap-
pendix), the ratio is less than 1 but greater that 1/

√
10 = 0.32, so there is mild

evidence against H0, which agrees with the modified table by Kass and Raftery
(see Table 5 in the Appendix).

Procedures that depend on ratios of probabilities rather than tail probabilities
are more realistic and more flexible.

4 When statistical significance meets practical significance

One of the most criticized points of the current significance testing approach is the
lack of correspondence between practical significance and statistical significance.
One such example is found in Freeman (1993).

4.1 Freeman’s example

Example 4. Consider four hypothetical studies in which equal numbers of pa-
tients are given treatments A and B and are asked which of the two they prefer.
The results are given in Table 1.

An objective (and proper) prior weight function for the parameter θ is the Jef-
freys prior

πJ (θ) = 1

π
θ−1/2(1 − θ)−1/2 for 0 < θ < 1.
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Table 1 Freeman’s example

Number of patients Number of patients Percentage Two-sided Evidence
receiving A and B preferring A : B preferring A p-value ratio

20 15 : 5 75.00 0.04 0.42
200 115 : 86 57.50 0.04 1.85

2000 1046 : 954 52.30 0.04 6.75
2,000,000 1,001,445 : 998,555 50.07 0.04 219.66

Computation yields the evidence ratio

f (s|θ = 1/2)

�(s)
= π · 0.5N

Beta(s + 1/2,N − s + 1/2)
.

The results are shown in the fifth column of Table 1, and are consistent with the
conclusions put forward by Freeman on intuitive grounds: the first trial is too small
to permit reliable conclusions, while the last trial would be considered evidence
for, rather than against, equivalence, because from any practical perspective, the
two treatments are equivalent. In fact, the ratio gives, according to Table 4 in the
Appendix, “decisive,” or “grade 5” evidence in favor of the null hypothesis for a
sample of two million patients, or “very strong” in the modified Table 5.

5 Is there extrasensory perception (ESP), or are there just extremely
large numbers?

In one of their books, Wonnacott and Wonnacott declared: “Do you want to reject
a hypothesis? Take a large enough sample!”

5.1 ESP example

The so-called “extrasensory experiment” found in Good (1992) is an excellent ex-
ample of how p-values are increasingly misleading with extremely large samples.

Example 5 (Extrasensory perception—ESP or not ESP?). Here the question
is whether a “gifted” individual can change the proportion of 0’s and 1’s emitted
with “perfectly” balanced proportions. The null hypothesis is “no change in the
proportion” against the alternative hypothesis “some change.” That is, H0 : θ =
1/2 vs H1 : θ �= 1/2. We have a huge sample: N = 104,490,000; Successes: S =
52,263,471; Ratio: S/N = 0.5001768.

The p-value against the null is minute: pval = 0.0003, leading to a compelling
rejection of H0.

On the other hand, there exists an objective (proper) prior that can be used as
a weight function here. Specifically, the Jeffreys prior πJ (θ) = 1

π×√
θ(1−θ)

. Then
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Table 2 Table for different values of 



 0.0002 0.0003 0.0004 0.0005
r 2.15 169 397,877 51,369,319,698

the Bayes Factor, or evidence ratio, is

BH0,H1 = f (data|θ = 1/2)∫
f (data|θ)πJ (θ) dθ

= π · (1/2)N

Beta(S + 0.5,N − S + 0.5)

= BH0,H1 = exp(2.93) = 18.7.

This is strong support for the null hypothesis. The Bayes Factor is equal to 12 for
the uniform prior, still strong support for the null.

Taking the second route, setting the a priori points of practical significance, we
may agree that a value of θ that is, say, 
 above or below the value given in the
null hypothesis (here 0.5) can be acceptable as practical significance.

The criterion now reads

Pr(0.5 − 
 < θ < 0.5 + 
|data)

(1 − Pr(0.5 − 
 < θ < 0.5 + 
|data))
< r = b

a
. (30)

In Table 2, we present the values of r for values of 
 running from 0.0002
(or 0.02%) to 0.0005 (or 0.05%) in increments of 0.0001 (or 0.01%). Even for
the smallest 
 considered, the ratio of likelihoods is greater than 1, and for

 = 0.0005, the ratio indicates compelling evidence against H1. This is in sharp
contrast to the p-value of 0.0003 we obtained above for the same example.

6 A general inequality: The discrepancy between tests at fixed
significance levels and tests that minimize a weighted sum of error
probabilities is general

Even though the discrepancies between tests at fixed significance levels and those
based on minimizing a weighted sum of error probabilities have been illustrated
here with specific examples, this phenomenon is more general, as shown in the
following result (see also Birnbaum (1969); Dempster (1997), for related results).

Lemma 2. For the optimal test δ∗ of Lemma 1, it turns out that:

α(δ∗)
1 − β(δ∗)

≤ b

a
.
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Proof. First, notice that the rejection region for the test δ∗ can be written as: R=
{y : �1(y)·b

�0(y)·a ≥ 1}. Denote by S the set S⊂ R where �0(y) > 0. Then

α
(
δ∗) =

∫
R

∫

0

f0(y|θ)π0(θ) dθ dy =
∫
S
�0(y) dy

≤
∫
S

�1(y)b

�0(y)a
�0(y) dy

= b

a

∫
S
�1(y) dy ≤ b

a

∫
R
�1(y) dy = b

a

(
1 − β

(
δ∗))

. �

Corollary 3.

α
(
δ∗) ≤ b

a
.

Thus, for example, if b/a = 20, �1(y
∗)/�0(y

∗) is considered equivalent to
α(δ∗) = 0.05, and if the power is 0.8, then

�1(y
∗)

�0(y∗)
≤ 1 − β

α
= 0.8

0.05
= 16,

and by Corollary 3, we have �1(y
∗)

�0(y
∗) ≤ 20, so weighted tests rejects less often.

7 A formula for decreasing the p-value (or α) as the sample size
increases

The previous analysis of Example 2 and other related examples suggests an inter-
esting method to “decrease α with n” in such a way to give an “asymptotically
equivalent” result, as in (25). In other words, can we find a formula for the level
of the test as a function of the sample size such that it produces approximately the
same decisions as rejecting the null when the data obey (25)? In Perez and Pericchi
(2014), the following asymptotic approximation is obtained in the simplest case of
one parameter, as in Example 2. It is called the square root n × log(n) formula:

α(n) = α ∗
√

n0 × (log(n0) + χ2
α(1))√

n × (log(n) + χ2
α(1))

, (31)

where n0 is the sample size of a well designed experiment (as in Example 1
n0 = 20), α the initial significance level designed for n0 and χ2

α(1) is the chi-
squared quantile with one degree of freedom.

Versions of this approximate rule have appeared in Cox and Hinkley (1974)
and in Good (1992), both with unfortunate typographical errors. The square root
of n × log(n) formula above, gives clear guidance on how to decrease the scale
of p-values with the sample size. The value n0 is the “origin” of the “planned”
experiment (e.g., n0 = 20 in Example 1). See Table 3 for specific values.
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Table 3 Table of adaptive significance level

Sample size α

20 0.05
50 0.03

100 0.02
250 0.012
500 0.008

1000 0.006

7.1 Table for decreasing the significance level

Assume n0 = 20 and α = 0.05.
Notice that the equivalent α in Example 1 (simple-vs-simple hypotheses) given

by equation (5) and the
√

n · (log(n) + χ2
α(1)) formula (for two-sided hypotheses)

have different speeds, (5) being much faster than the “square root of n log(n)”
formula.

8 Conclusions

What emerges in the implementation of the weighted approach to testing statistical
hypotheses is a practical implementation of the ideas of decision theory, with a
bridge between Bayesian and Frequentist philosophies. This implementation, we
argue along with DeGroot, is superior to the two implementations dominant in
practice: (i) The use of p-values with fixed cut points, like the ubiquitous α-set
{0.1,0.05,0.01}; and (ii) the use of fixed type I error probabilities in the α-set, and
then choosing a criterion to minimize type II error.

By doing (i) or (ii), a statistician is in danger of having a minute effective type II
error probability and a relatively enormous type I error probability. Furthermore,
fixing the type I error probability leads to inconsistency “by design”: no matter
how informative the experiment is, one forces the method to have a type I error
probability no smaller than one of the numbers in the α-set. In contrast, minimizing
the weighted sum or error probabilities, a method that is more balanced between
the two error types emerges, and consistency flows as an automatic consequence:
by minimizing the sum of error probabilities as evidence grows, one is letting both
error probabilities converge to zero, so the method is consistent. As virtues of the
approach we have a general theory of optimal testing that obeys the Likelihood
Principle, reconciles the disagreement between schools of statistics, and is more in
line with the demands of the scientific method.

Finally, to achieve the benefits of the general theory, is not necessary to assume
fully proper priors: well calibrated improper priors suffices.
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Table 4 Jeffreys scale of evidence

Grade 0 r ≥ 1 Null supported
Grade 1 1 > r > 10−1/2 Mild evidence against H0
Grade 2 10−1/2 > r > 10−1 Substantial evidence against H0
Grade 4 10−1 > r > 10−3/2 Strong evidence against H0
Grade 5 10−3/2 > r > 10−2 Very strong evidence against H0
Grade 6 10−2 > r Decisive evidence against H0

Table 5 Kass–Raftery scale of evidence

−2 loge(r)
1
r Evidence against the null H0

0 to 2 1 to 3 Mild
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
Bigger than 10 Bigger than 150 Very strong

Appendix: Jeffreys table of evidence ratios and, Kass and Raftery’s
(1995) modification of it, respectively

Here r = b/a. See Tables 4 and 5.
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