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Abstract. In the context of an over-dispersed count time series data on dis-
ease incidences, we consider the Geometric integer-valued autoregressive
process of order 1 or GINAR(1), which was first introduced by McKenzie
(Adv. Appl. Probab. 18 (1986) 679–705) as an analogue of continuous AR(1)
process with exponential margin (Adv. Appl. Probab. 12 (1980) 727–745) on
the positive support (R+). A strong enthusiasm still persists as it is appar-
ent from Ristić et al. (J. Stat. Plann. Inf. 139 (2009) 2218–2226). Coherent
forecasting of Poisson INAR(1) process due to Al-Osh and Alzaid (J. Time
Ser. Anal. 8 (1987) 261–275) was studied by Freeland and McCabe (Int. J.
Forecast. 20 (2004) 427–434). Here, we study the h-step ahead forecasting
distribution corresponding to GINAR(1) process in details using probabil-
ity generating function. Large sample distributions of the conditional least
squares estimates of the model parameters are derived. Some numerical study
is performed to illustrate the theoretical results.

1 Introduction

1.1 Motivating data examples

1.1.1 Poliomyelitis data. Consider a disease incidence data over a period of four-
teen years (see Zeger, 1988). The data consisting of 168 observations, lists the
monthly number of cases of poliomyelitis reported by the US Centers for Dis-
ease Control for the years 1970 to 1983. Figure 1 displays the data with its auto-
correlation function (a.c.f.) and partial a.c.f. (p.a.c.f.) plots. From the a.c.f. and
p.a.c.f. plots, it seems that the data has a good fit for the AR(1) process. The data
seems to be over-dispersed since its marginal mean is 1.333 whereas its variance
is 3.505. Also from the observed frequency distribution of the data presented in
Table 4, it is clearly seen that the data has some observations with moderate fre-
quency toward the tail part. This fact motivates us to consider some suitable time
series process for count over-dispersed data.

1.1.2 Skin-lesions data. Consider a data set giving the monthly number of sub-
missions with skin-lesions from a region in New Zealand reported in animal health

Key words and phrases. Coherent forecasting, geometric distribution, probability generating
function.

Received October 2013; accepted April 2014.

747

http://imstat.org/bjps/
http://dx.doi.org/10.1214/14-BJPS244
http://www.redeabe.org.br/


748 R. Maiti and A. Biswas

Figure 1 Poliomyelitis data with its a.c.f. and p.a.c.f. (a) Polio incidence data. (b) Acf plot of polio
incidence data. (c) Pacf plot of polio incidence data.

laboratories during the period 2003 to 2009 (see Jazi et al., 2012). The marginal
mean and the marginal variance are derived as 1.256 and 2.168, respectively.
Hence, it is another example of over-dispersed time series data. The data with
its a.c.f. and p.a.c.f. plots are displayed in Figure 2. In p.a.c.f. plot, the first lag
appears to be significant, and hence an AR(1) process would be a good fit to the
data also.

1.2 Models

Integer-valued times series process based on binomial thinning operator (due to
Steutel and van Harn, 1979) was first introduced by McKenzie (1985). Thereafter,
it was well developed and took a general shape called integer-valued ARMA(p,q)
process or INARMA(p,q) process. Poisson integer-valued AR(1) process or
PINAR(1), introduced by McKenzie (1985) and Al-Osh and Alzaid (1987), has
a wide application in modeling integer-valued time series data. However, when an
integer-valued time series is over dispersed, Poisson time series model may not be
a good choice. McKenzie (1986) proposed the INAR(1) processes with geometric
and negative binomial distributions as the marginals, which are discrete analogues
of Box-Jenkins AR(1) processes with exponential and gamma margins (Gaver and
Lewis, 1980), respectively, on R

+. When the count time series data has some large
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Figure 2 Monthly cases of submission of skin lesions data with its a.c.f. and p.a.c.f. (a) Skin lesions
data. (b) Acf plot of skin lesions data. (c) Pacf plot of skin lesions data.

observations in the tail part, the geometric INAR(1) [denoted by GINAR(1)] pro-
cess and negative binomial INAR(1) [denoted by NBINAR(1)] process may be
some suitable alternatives. Ristic et al. (2009) introduced a new GINAR(1) process
based on negative binomial thinning operator which added a new way in modeling
low count over-dispersed time series. Estimation of the model parameters for the
process is also discussed by Ristic et al. (2009).

Coherent forecasting, which is an integral part of count time series analysis,
has got very little attention in the context of integer-valued time series analysis.
Here, the coherent forecasting means forecasting values are to be integer. So far
very few works on coherent forecasting have been done in the count time series
context. Freeland and McCabe (2004) possibly be the first authors who used the
concept of h-step ahead coherent forecasting of Yn+h given the available data
Yn,Yn−1, . . . , Y1 of the time series process {Yt } by using the median and mode
of the h-step ahead forecasting distribution. Note that, although the mean of a
discrete distribution may not be an integer, median and mode are always so. More-
over, median has optimizing properties like it minimizes the expected absolute er-
ror E{|Yn+h − Ŷn+h||Yn} (discussed more details in Section 3). On the other hand,
mode has properties like h-step ahead forecasting distribution attains its maxi-
mum value at it. Silva et al. (2009) carried out Bayesian forecasting in the context
of Poisson INAR(1) process. But a major problem with the Poisson INAR(1) pro-
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cess is that its mean and variance are equal. However, in practice some data may
be over-dispersed. See, for example, the Poliomyelitis data and Skin lesions data
discussed in Sections 1.1.1 and 1.1.2 where marginal variances are much higher
than the marginal means.

In this article, we consider the geometric INAR(1) process and study its coher-
ent forecasting with some extensive simulation study. In addition, we derive the
asymptotic distribution of the conditional least squares (CLS) estimators which
is used in finding the asymptotic distribution of the h-step ahead forecasting dis-
tribution using the delta method. This result helps us in understanding the point
that when we incorporate the CLS estimates into the forecasting distribution, the
estimated forecasting distribution becomes a consistent estimate of the true fore-
casting distribution. A detailed simulation study along with the analysis of two
data sets are carried out to illustrate the results.

1.3 Structure of the paper

In this present article, in Section 2, we discuss the GINAR(1) process, originally
introduced by McKenzie (1986), with its conditional distribution. In Section 3, we
investigate the h-step ahead coherent forecasting corresponding to the GINAR(1)
process using the probability generating function (PGF). In practice when a low
count time series is over-dispersed due to its fat tail part, the GINAR(1) process
appears to be a viable alternative to the PINAR(1) process. Coherent forecasting
due to the PINAR(1) process was well studied by Freeland and McCabe (2004). In
this present paper, we study the coherent forecasting related to the GINAR(1) pro-
cess. In Section 4, we use the conditional least squares (CLS) estimates for model
parameters and derive the explicit large sample distributions of the CLS estimators
of the GINAR(1) process and the 100(1 − γ )% confidence intervals. Some simu-
lation studies are presented in Section 5. In Section 6, two over-dispersed disease
incidence data sets are analyzed. Section 7 concludes.

2 GINAR(1) process

2.1 Model

Integer-valued auto-regressive process of order 1 with geometric margin [denoted
by GINAR(1)] was introduced by McKenzie (1986), and is defined as

Yt = α ◦ Yt−1 + εt , α ∈ (0,1), (2.1)

where {Ys, s < t} is independent of εt . Here, α ◦ Yt−1 = ∑Yt−1
i=1 Bti , where Bti’s

are independent Bernoulli(α) random variables, and consequently α ◦Yt−1|Yt−1 ∼
Bin(Yt−1, α). Thus, if the marginal distribution of Yt is

PYt (y) = (1 − θ)θy, θ ∈ (0,1);y = 0,1,2, . . . ,
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the PGF of the distribution is given by

�Yt (s) = E
(
(1 − s)Y

) = 1 − θ

1 − θ + sθ
= 1

1 + μs
,

where μ = θ
1−θ

.
If this is to be the marginal distribution of the above process, then the innovation

process εt must have the PGF

�εt (s) = 1 + μαs

1 + μs
= α + (1 − α)

1

1 + μs
,

that is,

εt =
{

0, with probability α,
Yt , with probability 1 − α.

Consequently, the marginal distribution is given by

P(εt = i) =
{

α + (1 − α)(1 − θ), i = 0,
(1 − α)θi(1 − θ), i = 1,2, . . .

and hence με = (1 − α)μ and σ 2
ε = (1 − α) θ

(1−θ)2 + α(1 − α)( θ
1−θ

)2. Thus, the
discrete AR(1) process can be rewritten in this case in the form

Yt = α ◦ Yt−1 + UtWt,

where {Ut } are independently and identically distributed (i.i.d.) binary random
variables with P(Ut = 0) = α, independent of {Wt }, which is a geometric process
with mean μ.

2.2 Conditional distribution

Under the above set up, conditional mean and conditional variance can be derived
as

E(Yt |Yt−1) = αYt−1 + (1 − α)μ

and

Var(Yt |Yt−1) = α(1 − α)Yt−1 + (1 − α)
θ

(1 − θ)2 + α(1 − α)
θ2

(1 − θ)2 .

Joint PGF of two consecutive observations in this process is given by

�Yt ,Yt−1(u, v) = 1 + αμu

(1 + μu)(1 + αμu + μv)
.
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Therefore, the conditional distribution of the above process is given by

p(i|j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)(1 − θ)θ i−j
i∑

k=0

(
j

k

)
αk{(1 − α)θ

}j−k

+
(
j

i

)
αi+1(1 − α)j−i; i = 0,1, . . . , j ,

(1 − α)(1 − θ)θ i−j
{
α + (1 − α)θ

}j ; i = j + 1, j = 2, . . . ,

(2.2)

where p(i|j) = P(Yt = i|Yt−1 = j). Again we can rewrite (2.2) as

p(i|j) =
min(j,i)∑

k=0

(
j

k

)
αk(1 − α)j−k{(α + (1 − α)(1 − θ)

)
I(i−k=0)

(2.3)
+ (1 − α)(1 − θ)θ i−kI(i−k �=0)

}
,

where I(·) is the indicator function.

3 Coherent forecasting

The study of the h-step ahead coherent forecasting is essential from the point of
low count time series. We know that h-step ahead forecasting mean, E(Yn+h|Yn),
is widely used in making the h-step ahead forecasting in continuous time series
since it has some optimal properties like it minimizes the prediction mean squared
error, that is, E(Yn+h|Yn) = arg minc∈R+ E{(Yn+h − c)2|Yn}. But it may not be
an integer for count time series and hence is not coherent. One may of course
use some rounding operators to make the forecasting mean an integer, and hence
make it coherent. Other ways of making the h-step ahead coherent forecasting are
used the median and mode predictors of the forecasting distribution Yn+h|Yn which
always belong to the support space, and hence are coherent. In addition median
has some optimal properties like it minimizes the prediction mean absolute error
E{|Yn+h − c||Yn}. However, the predictive probability attains the maximum value
at its mode. It is important to note that through some simulated results (discussed
in Section 5) we observe that the median and mode predictors have much higher
accuracy over mean predictor in making the h-step ahead forecasting for low count
time series with respect to a descriptive measure defined in (3.6) (see Table 2).
One possible explanation of such observation is that the forecasting distributions
are skewed to the right and unimodal. Therefore, the mean predictor has lower
accuracy compared to other two predictors, namely the median predictor and the
mode predictor.

For the process {Yt } in (2.1), the h-step ahead conditional mean can easily be fig-
ured out (which is done in the next section) without knowing the exact expression
of the probability distribution. However, to find the median or mode, one needs to
have the exact expression of the probability distribution. Therefore, the problem is
to find the h-step ahead forecasting distribution of the process given by (2.1).
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3.1 h-step ahead forecasting distribution

Now to find the h-step ahead forecasting distribution, we use the following recur-
sive method:

Yn+h = α ◦ Yn+h−1 + εn+h

= α ◦ {α ◦ Yn+h−2 + εn+h−1} + εn+h

...

= αh ◦ Yn +
h∑

i=1

αh−i ◦ εn+i .

Hence, the h-step ahead conditional mean is given as

E(Yn+h|Yn) = αhYn + 1 − αh

1 − α
(1 − α)μ,

and limh→∞ E(Yn+h|Yn) = E(Yn) = μ. On the other hand, the h-step ahead con-
ditional variance is given by

Var(Yn+h|Yn) = αh(
1 − αh)

Yn +
h∑

i=1

Var
(
αh−i ◦ εn+i

)

= αh(
1 − αh)

Yn + σ 2
ε

h∑
i=1

α2(h−i) + με

h∑
i=1

αh−i(1 − αh−i)

= αh(
1 − αh)

Yn + 1 − α2h

1 − α2

(
σ 2

ε − με

) + 1 − αh

1 − α
με

and limh→∞ V (Yn+h|Yn) = V (Yn) = θ
(1−θ)2 .

In case of Poisson INAR(1) process, the h-step ahead forecasting distribution
was derived by Freeland and McCabe (2004) using the properties of binomial thin-
ning operator discussed by Al-Osh and Alzaid (1987). It came out as a convolution
of binomial and Poisson distributions. But the method discussed in Freeland and
McCabe (2004) cannot be used to derive the h-step ahead forecasting distribution
for the geometric INAR(1) process. On the other hand, using the property of prob-
ability generating function (PGF), which determines the probability distribution
uniquely, we can derive the exact forecasting distribution. It is nice to see that the
method not only helps us in finding the exact forecasting distribution but also helps
us in interpreting the model.

Theorem 1. The conditional PGF of Yn+h given Yn is given by

�Yn+h|Yn(s) = (
1 − sαh)Yn

(
1 − θ + θαhs

1 − θ + θs

)
.
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Proof.

�Yn+h|Yn(s) = E
(
(1 − s)Yn+h |Yn

)
= E

((
(1 − s)α

h◦Yn+∑h−1
i=0 αi◦εn+h−i

)|Yn

)

= E
(
(1 − s)α

h◦Yn |Yn

) h−1∏
i=0

E
(
(1 − s)α

i◦εn+h−i
)

since αh ◦ Yn|Yn ∼ Bin(Yn,α
h), E((1 − s)α

h◦Yn |Yn) = (1 − sαh)Yn and
h−1∏
i=0

E
(
(1 − s)α

i◦εn
) =

h−1∏
i=0

EεnE
(
(1 − s)α

i◦εn |εn

)

=
h−1∏
i=0

E
(
1 − sαi)εn

=
h−1∏
i=0

{
α + (1 − α)(1 − θ)

(1 − θ + θαis)

}

=
h−1∏
i=0

(
1 − θ + θαi+1s

1 − θ + θαis

)

=
(

1 − θ + θαhs

1 − θ + θs

)
.

Hence, the result. �

Corollary 1. As h → ∞, the h-step ahead conditional PGF �Yn+h|Yn(s) con-
verges to the marginal PGF of the process {Yt }, that is, limh→∞ �Yn+h|Yn(s) =

1−θ
1−θ+θs

= �Yn(s). Since the PGF uniquely determines the probability mass func-
tion, the h-step ahead forecasting distribution of Yn+h given Yn converges to the
marginal distribution of Yn.

Corollary 2. From Theorem 1, the h-step ahead prediction distribution of Yn+h

given Yn is nothing but convolution of Bin(Yn,α
h) and some random variable

Wn+h having the PGF of the form (1−θ+θαhs
1−θ+θs

) = {αh + (1 − αh) 1−θ
1−θ+θs

}. There-

fore, Wn+h can be interpreted as Wn+h = 0 with probability αh and geometric
distribution with mean μ with probability (1 − αh), that is,

P(Wn+h = i) =
{

αh + (
1 − αh

)
(1 − θ), i = 0,(

1 − αh
)
θi(1 − θ), i = 1,2, . . . .

In short, the prediction distribution can be presented as

Yn+h|Yn
d= Bin

(
Yn,α

h) ∗ Wn+h,
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where “∗” is called the convolution between two distributions.

Corollary 3. Using Theorem 1 and Corollary 2, the h-step ahead forecasting dis-
tribution of Yn+h given Yn is given by

ph(i|j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − αh

)
(1 − θ)θ i−j

i∑
k=0

(
j

k

)
αhk{(1 − αh)

θ
}j−k

+
(
j

i

)
αh(i+1)(1 − αh)j−i

, i = 0,1, . . . , j ,

(
1 − αh

)
(1 − θ)θ i−j

{
αh + (

1 − αh
)
θ
}j

, i = j + 1, j + 2, . . . ,

(3.1)

where ph(i|j) = P(Yn+h = i|Yn = j). An alternate way of representation of the
above forecasting distribution (3.1) is

ph(i|j) =
min(j,i)∑

k=0

(
j

k

)
αhk(1 − αh)j−k{(

αh + (
1 − αh)

(1 − θ)
)
I(i−k=0)

(3.2)
+ (

1 − αh)
(1 − θ)θ i−kI(i−k �=0)

}
.

Again, it can be written after reparameterizing μ = θ
1−θ

in the following form:

ph(i|j) =
min(j,i)∑

k=0

(
j

k

)
αhk(1 − αh)j−k

{(
αh + 1 − αh

1 + μ

)
I(i−k=0)

(3.3)

+ (
1 − αh) μi−k

(1 + μ)i−k+1 I(i−k �=0)

}
.

3.2 100(1 − γ )% prediction interval

Since we have observed the true form of the h-step ahead predictive probability
distribution given by (3.3), we can easily find the 100(1 − γ )% prediction interval
for Yn+h. The problem with the standard prediction intervals is that it assumes the
predictive probability distribution to be symmetrically distributed. But simulation
study shows that the derived predictive distributions in this case are positively
skewed and unimodal. See Figure 3 in this regard. Hence, we find the 100(1 −
γ )% highest predictive probability (HPP) interval for Yn+h which is defined as the
following.

Definition. A 100(1 − γ )% highest predictive probability (HPP) interval Ch =
(YL,YU) for Yn+h given Yn is defined as

Ch = {
i :ph(i|yn) ≥ kγ

}
,

where kγ is the largest number such that

P(YL ≤ Yn+h ≤ YU |Yn = yn) =
YU∑

i=YL

ph(i|yn) ≥ (1 − γ ).
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Figure 3 h-step ahead predictive probability distribution for GINAR(1) process for different sets of
parameters.

Here, ph(i|yn) is defined in (3.3).

3.3 Some descriptive measures of forecasting accuracy

Given an observed data set Y1, . . . , Yn, Yn+1, . . . , Yn+m of size (n + m), we parti-
tion the data into two sets. The training set containing first n observations is used
to estimate the parameters of the process and based on the rest m observations
called the test set, we define the following three descriptive measures of forecast-
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ing accuracy. First measure is the prediction root mean squared error [denoted by
PRMSE], and defined as

PRMSE =
√√√√ 1

m

m∑
h=1

(
Yt+h − Ŷ me

t+h

)2
, (3.4)

where predictions are made through predictive mean. Second measure is the pre-
diction mean absolute error [denoted by PMAE], defined as

PMAE = 1

m

m∑
h=1

∣∣Yt+h − Ŷ med
t+h

∣∣, (3.5)

where predictions are made through predictive median. The third measure is the
percentage of true predictions [denoted by PTP], which is defined as

PTP = 1

m

m∑
h=1

I (Yt+h = Ŷt+h)100%, (3.6)

where I (·) is an indicator function and here predictions can be made through pre-
dictive mean, median and mode. This measure gives us the number of true forecasts
among 100 forecasts.

All these measures can be used to investigate the forecasting accuracy of the
models considered for comparison study. Some simulation results based on these
forecasting measures are presented in Section 5 where we take average of these
measures obtained in 100 simulations.

4 Estimation

4.1 Conditional least squares estimation

Conditional least squares estimation is usually used for estimating model parame-
ters in the context of time series process. Freeland and McCabe (2004, 2005) used
this approach for Poisson INAR(1) process.

In conditional least squares estimation, we minimize Q∗(α,μ) = ∑n
t=2{Yt −

E(Yt |Yt−1)}2 instead of minimizing Q(α,μ) = ∑n
t=1(Yt − E(Yt ))

2 with respect
to model parameters α and μ. The conditional mean of the above process is
E(Yt |Yt−1) = αYt−1 + (1 − α)μ. After taking the derivative of Q∗(α,μ), we get
the following estimating equation:⎛

⎜⎜⎜⎜⎝

n∑
t=2

(
Yt − αYt−1 − (1 − α)μ

)
Yt−1

n∑
t=2

(
Yt − αYt−1 − (1 − α)μ

)

⎞
⎟⎟⎟⎟⎠ =

(
0
0

)
. (4.1)
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Solving the above estimating equation (4.1), we get the parameter estimators as

α̂cls = (n − 1)
∑n

t=2 Yt−1Yt − ∑n
t=2 Yt−1

∑n
t=2 Yt

(n − 1)
∑n

t=2 Y 2
t−1 − (

∑n
t=2 Yt−1)2

(4.2)

and

μ̂cls = (1 − α̂cls)
−1 1

(n − 1)

(
n∑

t=2

Yt − α̂cls

n∑
t=2

Yt−1

)
. (4.3)

Theorem 2. Under the above set up, the conditional least squares estimators have

asymptotic normal distribution, that is,
√

n
( α̂cls−α
μ̂cls−μ

) d−→ N(0,�α,μ) where �α,μ =
(S−1)V (S−1)T with

S−1 =
⎛
⎜⎝− 1

μ(1 + μ)

1

1 + μ

0 − 1

1 − α

⎞
⎟⎠ (4.4)

and

V = (
(vij )

)
, i, j = 1,2, (4.5)

where

v11 = 2(1 − α)(1 + 3α)μ3 + (1 − α)(1 + 6α)μ2 + α(1 − α)μ,

v12 = (
1 − α2)

μ3 + (1 − α)(1 + 2α)μ2 + α(1 − α)μ,

v22 = (
1 − α2)

μ.

Proof. Al-Osh and Alzaid (1987) showed that INAR(1) process with marginal
distribution belonging to discrete self-decomposable (DSD) class is stationary and
ergodic. All distributions which are discrete self-decomposable in the sense of
Steutel and Van Harn (1979), have marginal distributions for the stationary solu-
tion to equation (2.1). This includes many of the commonest distributions on the
non-negative integers, for example, Poisson, geometric and negative binomial, but
none defined on bounded sets, so that the binomial distribution is excluded and
alternative model forms must be sought. The conditions of the asymptotic normal-
ity of conditional least squares estimators are due to Klimko and Nelson (1978)
for such class. Using this result, Freeland and McCabe (2005) explicitly derived
the asymptotic normal distribution of the conditional least squares estimators of
Poisson INAR(1) process. The result for GINAR(1) process (2.1) with variance
covariance matrix �α,μ is similar. �

Corollary 4. Since the process (2.1) is a stationary and ergodic,
( α̂cls−α̂yw

μ̂cls−μ̂yw

) =
op(n−1/2) (see the proof in Freeland and McCabe, 2005) and hence as a con-
sequence YW and CLS estimators have the same asymptotic distribution.
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Corollary 5. Using the delta method and Theorem 2, we have the following
asymptotic normal distribution of the estimated h-step ahead conditional prob-
ability ph(y|Yn, α̂cls, μ̂cls) defined in (3.3):

√
n
(
ph(y|Yn, α̂cls, μ̂cls) − ph(y|Yn,α,μ)

) d−→ N
(
0, (∇ph)

T �α,μ(∇ph)
)
,

where

∇ph =
⎛
⎜⎝

∂

∂α
ph

∂

∂μ
ph

⎞
⎟⎠

with ph refers to ph(y|Yn,α,μ) and p̂h to ph(y|Yn, α̂cls, μ̂cls). Consequently the
95% asymptotic confidence interval of the conditional probability ph(y|Yn,α,μ)

is given by (ph(y|Yn, α̂cls, μ̂cls) ∓ 1.96 σ̂h√
n
), where σ̂ 2

h = (∇p̂h)
T �̂α,μ(∇p̂h).

The requirement of Corollary 5 is that some times median forecasts are not very
informative for the entire distribution. Consider the two cases—(a) P(X = 0) =
0.5 = 1 − P(X = 1) and (b) P(X = 0) = 0.1 = 1 − P(X = 1). For both the cases
median is 0. But the probability distributions are entirely different on the support
{0,1} (see Freeland and McCabe, 2004). Hence, it is suggested that point mass
with its confidence interval helps one to visualize the real scenario.

5 Simulation study

In this section, we perform a simulation study to investigate the h-step ahead coher-
ent forecasting pattern of the GINAR(1) process. For that, we simulated data from
the GINAR(1) process with four sets of parameter values—(a) α = 0.6,μ = 1.5,
(b) α = 0.6,μ = 1, (c) α = 0.4,μ = 1.5 and (d) α = 0.4,μ = 1. It has been ob-
served that when a count time series data is over-dispersed, that is, the variance
is larger than the mean or a time series having some observations toward the tail
part resulting in an heavy tailed or fat tailed pattern, the geometric marginal is an
alternative to the Poisson marginal. Hence, here we take the PINAR(1) process as
a competitor of the GINAR(1) process to visualize the difference in h-step ahead
forecasting with respect to the measures PRMSE and PMAE defined in (3.4) and
(3.5), respectively.

Simulations were done with data of size 700 with 100 trials for the sets of pa-
rameter combinations mentioned in the above paragraph. We divided the data into
two parts. The training set containing first 400 observations was used for param-
eter estimation and the test set consisting rest 300 observations was used to find
all the descriptive measures. Table 1 presents the average PRMSE and the aver-
age PMAE for h = 1,2, . . . ,5. As one can see, both the measures increase with
h which means the simulated results behave as it is expected. That is as one goes
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Table 1 Some estimated PRMSE and PMAE values for four sets of parameters for simulated GI-
NAR(1) process

GINAR(1) PINAR(1) GINAR(1) PINAR(1)

h-step PRMSE PMAE PRMSE PMAE PRMSE PMAE PRMSE PMAE

(a) α = 0.6,μ = 1.5 (b) α = 0.6,μ = 1
1 1.5763 0.8508 1.5887 1.0011 1.1188 0.5813 1.1229 0.5861
2 1.8395 1.1378 1.8534 1.2430 1.3101 0.7809 1.3132 0.8758
3 1.9231 1.2661 1.9328 1.3113 1.3669 0.8778 1.3682 0.9652
4 1.9544 1.3126 1.9595 1.3399 1.3823 0.9217 1.3831 0.9773
5 1.9663 1.3184 1.9693 1.3577 1.3874 0.9461 1.3885 0.9780

(c) α = 0.4,μ = 1.5 (d) α = 0.4,μ = 1
1 1.7972 1.0784 1.8111 1.2084 1.3207 0.7691 1.3270 0.8530
2 1.9373 1.2927 1.9452 1.3119 1.4282 0.9283 1.4314 1.0138
3 1.9637 1.3058 1.9668 1.3316 1.4458 0.9842 1.4470 1.0151
4 1.9703 1.3069 1.9716 1.3381 1.4481 1.0035 1.4486 1.0148
5 1.9726 1.3075 1.9736 1.3425 1.4488 1.0086 1.4492 1.0149

far ahead from the present, the chance of making true forecasting based on the
present observations decreases. On the other hand, both the measures have lower
values corresponding to the GINAR(1) process as compared to the PINAR(1) pro-
cess. Thus, when the actual process is the GINAR(1), it provides better fit than the
PINAR(1) process.

Another simulation has been performed to illustrate the advantage of using the
median predictor and mode predictor over the mean predictor based on the descrip-
tive measure PTP defined in (3.6). Here also, we repeated the same simulation ex-
ercise discussed in the preceding paragraph for all the four sets of parameters, and
used the training and test samples of size 400 and 300, respectively, and the results
are reported in Table 2 based on a total of 100 trials. We observe that the median
and mode predictors outperform the mean predictor in predicting the h-step ahead
true observations for h = 1,2, . . . ,5.

In an another simulation study, we used training and test samples of size 200
and 5, respectively, for different sets of parameters. Based on the training samples
we observed the 100(1 − γ )% HPP intervals. The test sets are used to observe the
prediction values through the mean, median and mode predictors over varying h

and the results are reported in Table 3 based on the total of 500 replications. As one
can see, the length of the HPP intervals increases over varying h which indicates
that to retain the same percentage of true forecasting values over h, the interval
lengths have to be increased.
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Table 2 Estimated PTP values through mean, median and mode for four sets of parameters for
simulated GINAR(1) process

PTP PTP

h-step Mean Median Mode Mean Median Mode

(a) α = 0.6,μ = 1.5 (b) α = 0.6,μ = 1
1 28.35 53.77 53.76 59.48 62.25 62.39
2 26.76 52.45 46.52 29.02 61.40 55.20
3 24.65 48.09 41.78 26.87 60.16 51.43
4 22.42 28.08 39.73 26.15 58.65 50.05
5 20.55 23.97 39.24 25.93 55.81 49.72

(c) α = 0.4,μ = 1.5 (d) α = 0.4,μ = 1
1 22.16 44.72 46.19 25.15 52.97 53.96
2 21.47 32.77 42.49 25.05 52.93 51.35
3 20.25 23.94 40.46 24.76 51.08 50.26
4 19.43 23.92 40.25 24.73 44.75 50.21
5 19.06 23.91 40.26 24.72 40.99 50.18

Table 3 100(1 − γ )% HPP intervals for the GINAR(1) simulated data with average forecasting
values for different sets of parameters where γ = 0.2

h (YL,YU ) Mean Median Mode (YL,YU ) Mean Median Mode

α = 0.4,μ = 1 α = 0.4,μ = 1.5
1 (0.01, 1.73) 0.966 0.552 0.342 (0.04, 2.63) 1.501 0.867 0.621
2 (0, 2.04) 0.990 0.423 0.068 (0, 2.86) 1.486 0.881 0.171
3 (0, 2.05) 1.012 0.438 0 (0, 2.89) 1.485 0.982 0.033
4 (0, 2.05) 1.014 0.454 0 (0, 2.91) 1.487 0.988 0.010
5 (0, 2.05) 1.023 0.462 0 (0, 2.92) 1.489 0.984 0

α = 0.6,μ = 1 α = 0.6,μ = 1.5
1 (0.05, 1.42) 0.991 0.744 0.724 (0.19, 2.27) 1.588 1.160 1.100
2 (0, 1.80) 0.987 0.594 0.306 (0.03, 2.76) 1.547 0.912 0.566
3 (0, 1.93) 0.987 0.476 0.122 (0, 2.87) 1.525 0.834 0.302
4 (0, 1.99) 0.988 0.432 0.040 (0, 2.90) 1.514 0.948 0.138
5 (0, 1.99) 0.989 0.428 0.010 (0, 2.92) 1.508 0.952 0.060

6 Data analysis

6.1 Poliomyelitis data

Consider the poliomyelitis incidence data described in Section 1. We fitted the
above two processes, PINAR(1) and GINAR(1), to the poliomyelitis data set.
The estimates of the parameters of the GINAR(1) process by CLS method are

α̂cls = 0.294 and θ̂cls = 0.587, and hence μ̂cls = θ̂cls

1−θ̂cls
= 1.333 with a 95% asymp-
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Table 4 Frequency distribution of observed and expected number of the monthly cases of Po-
liomyelitis during the year 1970 to 1983

Number of cases Observed GINAR(1) PINAR(1)

0 64 69 41
1 55 40 56
2 22 28 47
3 12 14 17
4 6 7 5

≥ 5 9 10 3

AIC 471.71 504.43

totic confidence intervals (0.269,0.333) and (1.095,1.572) for α and μ, respec-
tively (using Theorem 2). Since the confidence interval corresponding to α does
not include “0,” we may conclude that there is significant dependence in the data.
After fitting the two models to the data set, we presented the observed frequency
with the expected frequency determined by the above fitted models in Table 4. As
one can see, the expected frequencies by the GINAR(1) process are much closer to
the observed frequency compared to the PINAR(1) process, not only in the tail part
but in lower part as well. Also, the AIC corresponding to the GINAR(1) process
for the data set is 471.71, which is much lower compared to that of the PINAR(1)
process, which is 504.43.

In this part, we divided the data into two sets for carrying out a h-step ahead
forecasting analysis based on the three measures defined in (3.4), (3.5) and (3.6).
The training set consisting first 138 observations is used for fitting the GINAR(1)
and PINAR(1) processes. The test set consisting rest 30 observations is used to
determine all the three measures. The results are reported in Table 5. There was no
visible difference in the performance of the processes considered for comparison
based on the PRMSE and PMAE measures. Here, we have reported only the PTP
based on the mean and mode predictors. As one can see, there is a remarkable
difference in the performance of the GINAR(1) process over PINAR(1) process
in capturing the true forecasting values based on the mode predictor. On the other
hand, the PTP values for the GINAR(1) process through mean predictor for vary-
ing h are reported which clearly indicates that the mode predictor preforms much
better than the mean predictor. In Table 6, the forecasting values for various values
of h by mean, median and mode predictors are reported with the HPP intervals.
A residual plot is presented in Figure 4.

6.2 Skin-lesions data

Consider the skin-lesions data. In Table 7, we presented the observed frequency
with the expected frequency determined by the two fitted models—PINAR(1) and
GINAR(1). Here also, the expected frequencies by the GINAR(1) method are
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Table 5 Estimated parameters, AIC and the PTP values for the Poliomyelitis data

Model Estimated values AIC h-step PTP[mean] PTP[mode]

PINAR(1) α̂cls = 0.294 504.43 1 30.00 20.00
λ̂cls = 0.969 2 31.58 31.58

3 33.33 33.33

GINAR(1) α̂cls = 0.294 471.71 1 30.00 40.00
μ̂cls = 1.333 2 31.58 47.37

3 33.33 50.00

Table 6 100(1 −γ )% prediction intervals with actual values and forecasting values through mean,
median and mode for the Poliomyelitis data where γ = 0.2

GINAR(1) PINAR(1)

h Actual (YL,YU ) Mean Median Mode (YL,YU ) Mean Median Mode

1 1 (0, 3) 1.51 1 1 (0, 3) 1.51 1 1
2 0 (0, 3) 1.37 1 1 (0, 2) 1.36 1 1
3 1 (0, 3) 1.32 1 1 (0, 2) 1.32 1 1
4 3 (0, 3) 1.31 1 1 (0, 2) 1.31 1 1
5 6 (0, 3) 1.30 1 1 (0, 2) 1.30 1 1

Figure 4 Residual plot for mean predictor for the poliomyelitis data.

much closer to the observed frequency compared to the PINAR(1) model and the
AIC corresponding to the GINAR(1) model is much lower compared to that of the
PINAR(1) model. The estimates are given in Table 8. As one can see, the median
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Table 7 Frequency distribution of observed and expected number of the monthly cases of submis-
sion of skin lesions in New Zealand during the year 2003 to 2009

Number of cases Observed GINAR(1) PINAR(1)

0 34 37.19 21.19
1 21 20.46 25.32
2 10 11.04 15.21
3 11 6.11 5.97
4 3 3.47 1.85

≥ 5 3 3.01 0.44

AIC 214.77 223.04

Table 8 Estimated parameters, AIC and the PTP values for the skin-lesions data

Model Estimated values AIC h-step PMAE PTP[median] PTP[mode]

PINAR(1) α̂cls = 0.1542 223.04 1 1.3076 15.38 15.38
λ̂cls = 1.0175 2 1.4167 16.66 16.66

3 1.3636 18.18 18.18

GINAR(1) α̂cls = 0.1542 214.77 1 1.1538 30.77 38.46
μ̂cls = 1.2031 2 1.4167 16.67 33.33

3 1.3636 18.18 27.27

Table 9 100(1 −γ )% prediction intervals with actual values and forecasting values through mean,
median and mode for the skin-lesions data where γ = 0.2

GINAR(1) PINAR(1)

h Actual (YL,YU ) Mean Median Mode (YL,YU ) Mean Median Mode

1 0 (0, 2) 1.04 0 0 (0, 2) 1.04 1 1
2 1 (0, 3) 1.26 1 0 (0, 2) 1.26 1 1
3 0 (0, 3) 1.31 1 0 (0, 2) 1.31 1 1
4 0 (0, 3) 1.32 1 0 (0, 2) 1.32 1 1
5 0 (0, 3) 1.32 1 0 (0, 2) 1.32 1 1

and mode predictors for the GINAR(1) process give much higher accuracy in pre-
dicting the actual forecasting values compared to that of the PINAR(1) process.
In Table 9, we reported the forecasting values for various h by mean, median and
mode predictors with the HPP intervals. A residual plot for the data is given in
Figure 5.
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Figure 5 Residual plot for the mean predictor for the skin lesions data.

7 Conclusion

In this article, we developed and investigated the h-step ahead coherent forecasting
for the GINAR(1) process as an alternate of the PINAR(1) process. There are many
practical incidents where data are over-dispersed. In those cases, it is not wise
to apply such Poisson time series processes. It is observed that in application to
the over-dispersed independent and identically distributed count data, geometric,
negative binomial and some other heavy tailed distributions are widely used. The
same idea was incorporated by McKenzie (1986) toward modeling low count time
series.

Through some simulation studies and two practical data sets on disease inci-
dences, we established that a detailed study of the h-step ahead forecasting for
over-dispersed time series processes like the GINAR(1) process is required for the
sake of completeness. The coherent forecasting in that context might be an useful
addition in that direction.
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