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Abstract. We derive maximum likelihood estimators for the parameters of
the Laplace distribution for interval censored data. Existence and uniqueness
of the estimators are proved. Simulations and real data applications show that
the Laplace distribution can be a better model for interval censored data than
competing models in spite of being simpler.

1 Introduction

In standard survival analysis, lifetimes are usually censored by the end of the
period of study (see, e.g., Lawless (2003)). In this situation, we have right-
censored lifetime data. If data are either observed exactly or right-censored (the
most common situation in clinical trial settings), there are many parametric, semi-
parametric, non-parametric methods available for estimating survival curves.

In some situations, however, events of interest are only known to have occurred
within an interval of time, say [L,U ]. This, can occur in a clinical trial, when
patients are assessed only at pre-scheduled visits. If the event has not occurred at
one visit, say at time L, but has by the following visit, say at time U , then the event
must belong to the interval [L,U ]. These data are known as interval censored data.

Lindsey (1998) suggests various parametric models for interval censored data.
There are also non-parametric models for interval censored data. But Lindsey
(1998) argues: “In the context of heavily interval censored data, the conclusions
from parametric models are remarkably robust with changing distributional as-
sumptions and generally more informative than the corresponding non-parametric
models.” Similar arguments are expressed by Sparling et al. (2006): “Parametric
regression models in the presence of heavily interval censored data are robust and
are generally more informative than the corresponding non-parametric models.”
A robust statistic is one that “is resistant to errors in the results, produced by de-
viations from assumptions (e.g., of normality). This means that if the assumptions
are only approximately met, the estimators of the robust model will still have a
reasonable efficiency, and reasonably small bias, as well as being asymptotically
unbiased, meaning having a bias tending toward 0 as the sample size tends to-
ward infinity” (Wikipedia). In Lindsey (1998) and Sparling et al. (2006), “robust”
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might have meant that different parametric assumptions lead to similar estimates
for quantities of interest like the probability of survival beyond 90 years.

Two prominent parametric models suggested by Lindsey (1998) are the log-
logistic and log-Laplace distributions. Maximum likelihood (ML) estimation for
interval censored data for the former has been considered by Zhou et al. (2007).
But we are not aware of any work with respect to the log-Laplace distribution. In
fact, we are not aware of any paper discussing any kind of estimation for any kind
of censored data for the log-Laplace distribution.

However, estimation for interval censored data has been considered for many
other models based on the Weibull distribution (Scallan, 1999; Tse et al., 2008;
Ng and Wang, 2009; Ding et al., 2010), exponential distribution (Tse et al., 2002),
lognormal distribution (Amin, 2008; Lin et al., 2009), gamma distribution (Lu and
Tsai, 2009), generalized exponential distribution (Chen and Lio, 2010), exponen-
tiated Weibull distribution (Hashimoto et al., 2010), geometric distribution (Patel
and Gajjar, 2010), generalized Rayleigh distribution (Lio et al., 2011), and the
Gompertz–Makeham distribution (Teimouri and Gupta, 2012). For a most excel-
lent account of the statistical analysis of interval censored data, we refer the readers
to Sun (2006).

The Laplace and log-Laplace distributions are mathematically simpler than the
logistic and log-logistic distributions, in spite of the former being not differen-
tiable at their location parameters. The Laplace and log-Laplace distributions have
received wide ranging applications: low doses in dose response curves (Uppu-
luri, 1981); generalized nonlinear models for pharmacokinetic data (Lindsey et al.,
2000); models of financial returns (Hürlimann, 2001); frequency of high microbial
counts in commercial food products (Corradini et al., 2001; Peleg, 2002); stock
price models and the approximation of currency exchange data (Kozubowski and
Podgórski, 2003a); to mention just a few. For a comprehensive account of known
applications, we refer the readers to Kozubowski and Podgórski (2003b).

The aim of this paper is to derive ML estimation of the parameters of the
Laplace distribution for interval censored data. The contents are organized as fol-
lows. In Section 2, existence and uniqueness of the ML estimators are proved for
the parameters of the Laplace distribution with interval censored data. In Section 3,
a simulation study is conducted to assess the performance of the ML estimators for
interval censored data. Comparisons are made to the ML estimators of the param-
eters of the logistic distribution (Zhou et al., 2007). These comparisons establish
superior performance of the ML estimators of the parameters of the Laplace distri-
bution. In Section 4, a real data application in Zhou et al. (2007) is revisited. The
Laplace model is shown to provide a better fit to the data. Some possible future
works are discussed in Section 5.
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2 ML estimation

Supposed X1,X2, . . . ,Xn is a random sample grouped into k + 1 intervals,
[τi−1, τi], i = 1,2, . . . , k + 1, where −∞ = τ0 < τ1 < τ2 < · · · < τk+1 = ∞ are
predetermined constants. Let τ = {τ0, τ1, τ2, . . . , τk+1} denote the set of parti-
tioned points. Let ni denote the number of observations falling into the interval
[τi−1, τi], i = 1,2, . . . , k + 1. Then the log-likelihood function is

logL(μ,σ) = const +
k+1∑
i=1

ni log
[
F(τi;μ,σ) − F(τi−1;μ,σ)

]
, (2.1)

where F( · ;μ,σ) denotes the common cumulative distribution function (c.d.f.) of
X1,X2, . . . ,Xn parameterized by μ (−∞ < μ < ∞), a location parameter, and σ

(σ > 0), a scale parameter.
Consider the re-parameterization θ1 = μ/σ and θ2 = 1/σ . There is a one-to-one

correspondence between (μ,σ ) and (θ1, θ2) for −∞ < θ1 < ∞ and θ2 > 0. The
log-likelihood function in (2.1) can be rewritten as

logL(θ1, θ2) = const +
k+1∑
i=1

ni log
[
F0(θ2τi − θ1) − F0(θ2τi−1 − θ1)

]
. (2.2)

Here, F0(x) = F(x;0,1) denotes the standard form of F( · ;μ,σ).
Now take F0(·) to be the standard Laplace c.d.f., that is,

F0(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

2
exp(−y), y ≥ 0,

1

2
exp(y), y < 0.

The corresponding probability density function (p.d.f.) is

f0(y) = 1

2
exp

(−|y|). (2.3)

Theorem 2.1 shows that the ML estimators of (θ1, θ2), obtained by maximiz-
ing (2.2), exist and are unique.

Theorem 2.1. Suppose that the grouped data n1, n2, . . . , nk+1 satisfy n1 +nk+1 <

n, nj−1 + nj < n, 2 ≤ j ≤ k + 1. Then the ML estimators of (θ1, θ2), and conse-
quently the ML estimators of (μ,σ ), exist and are unique.

Proof. In order to show existence and uniqueness of the ML estimators of (θ1, θ2),
it is sufficient to:

• verify that the Hessian matrix is semi-negative definite at every point (θ1, θ2) ∈
(−∞,∞) × (0,∞) and that it is negative definite at least at the points corre-
sponding to the ML estimators. This is true from Lemma 2.1, Lemma 2.2 and
Lemma 2.3;



680 V. L. D. Tomazella and S. Nadarajah

• verify that for any given η > 0, there exists a compact subset K ≡ K(η) ⊂
(−∞,∞)× (0,∞) such that {(θ1, θ2): logL(θ1, θ2) ≥ −η} ⊂ K . This is shown
in Lemma 2.4.

The proof is complete. �

Lemma 2.1. Let H1 and Hk+1 be defined by

H1(θ1, θ2) =

⎡
⎢⎢⎢⎣

∂2

∂θ2
1

logF0(θ2τ1 − θ1)
∂2

∂θ1 ∂θ2
logF0(θ2τ1 − θ1)

∂2

∂θ1 ∂θ2
logF0(θ2τ1 − θ1)

∂2

∂θ2
2

logF0(θ2τ1 − θ1)

⎤
⎥⎥⎥⎦

and

Hk+1(θ1, θ2) =

⎡
⎢⎢⎢⎣

∂2

∂θ2
1

logF 0(θ2τk − θ1)
∂2

∂θ1 ∂θ2
logF 0(θ2τk − θ1)

∂2

∂θ1 ∂θ2
logF 0(θ2τk − θ1)

∂2

∂θ2
2

logF 0(θ2τk − θ1)

⎤
⎥⎥⎥⎦ ,

respectively, where F 0(x) = 1 − F0(x). Then, they are semi-negative definite.

Proof. Let g1(x) = logF0(x). If x ≥ 0 then d2g1(x)/dx2 = −2 exp(x)(2 exp(x)−
1)−2 < 0 and

H1(θ1, θ2) =

⎡
⎢⎢⎣

− 2 exp(θ2τ1 − θ1)

[2 exp(θ2τ1 − θ1) − 1]2

2τ1 exp(θ2τ1 − θ1)

[2 exp(θ2τ1 − θ1) − 1]2

2τ1 exp(θ2τ1 − θ1)

[2 exp(θ2τ1 − θ1) − 1]2 − 2τ 2
1 exp(θ2τ1 − θ1)

[2 exp(θ2τ1 − θ1) − 1]2

⎤
⎥⎥⎦ ,

where we have

H1(θ1, θ2) =
[

d2g1(x)

dx2

]
x=θ2τ1−θ1

·
(

1 −τ1
−τ1 τ 2

1

)
.

If x < 0, then d2g1(x)/dx2 = 0 and H1 is the zero matrix. In both cases,
det(H1(θ1, θ2)) = 0 and trace (H1) ≤ 0, so H1 is semi-negative definite. Similarly,
Hk+1 is also semi-negative definite. �

Lemma 2.2. Let v < u and g(u, v) = log[F0(u) − F0(v)]. Then the Hessian

H(u, v) =

⎡
⎢⎢⎣

∂2g(u, v)

∂u2

∂2g(u, v)

∂u∂v

∂2g(u, v)

∂u∂v

∂2g(u, v)

∂v2

⎤
⎥⎥⎦

is semi-negative definite.
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Proof. In order to prove that H(u, v) is semi-negative definite, it is sufficient to
prove that the following two conditions are satisfied:

(a) ∂2g(u, v)/∂u2 < 0 and ∂2g(u, v)/∂v2 < 0;
(b) the determinant of H(u, v) is non-negative.

Note that

g(u, v) = log
[
F0(u) − F0(v)

]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log
[

1

2
exp(−v) − 1

2
exp(−u)

]
, u ≥ 0, v ≥ 0,

log
[
1 − 1

2
exp(−u) − 1

2
exp(v)

]
, u ≥ 0, v < 0,

log
[

1

2
exp(u) − 1

2
exp(v)

]
, u < 0, v < 0.

In the case u ≥ 0, v ≥ 0,

H(u, v) =

⎡
⎢⎢⎣

− exp(−u − v)

[exp(−v) − exp(−u)]2

exp(−u − v)

[exp(−v) − exp(−u)]2

exp(−u − v)

[exp(−v) − exp(−u)]2 − exp(−u − v)

[exp(−v) − exp(−u)]2

⎤
⎥⎥⎦ = H2(u, v)

say. We see that ∂2g(u, v)/∂u2 < 0, ∂2g(u, v)/∂v2 < 0 and det(H2(u, v)) = 0. In
the case u ≥ 0, v < 0,

H(u, v) =

⎡
⎢⎢⎣

exp(u)[−2 + exp(v)]
{1 + exp(u)[−2 + exp(v)]}2

exp(u + v)

{1 + exp(u)[−2 + exp(v)]}2

exp(u + v)

{1 + exp(u)[−2 + exp(v)]}2

exp(u + v)[1 − 2 exp(u)]
{1 + exp(u)[−2 + exp(v)]}2

⎤
⎥⎥⎦

= H3(u, v)

say. We see that ∂2g(u, v)/∂u2 < 0, ∂2g(u, v)/∂v2 < 0 and det(H3(u, v)) > 0. In
the case u < 0, v < 0,

H(u, v) =

⎡
⎢⎢⎣

− exp(u + v)

[exp(v) − exp(u)]2

exp(u + v)

[exp(v) − exp(u)]2

exp(u + v)

[exp(v) − exp(u)]2 − exp(u + v)

[exp(v) − exp(u)]2

⎤
⎥⎥⎦ = H4(u, v)

say. We see that ∂2g(u, v)/∂u2 < 0, ∂2g(u, v)/∂v2 < 0 and det(H4(u, v)) = 0.
The proof is complete. �

It is not difficult to see that g(u, v) for u ≥ 0, v < 0 is greater than g(u, v) for
u ≥ 0, v ≥ 0 and g(u, v) for u < 0, v < 0. So, the Hessian matrix corresponding
to the ML estimators will be negative definite.

Lemma 2.3. Let gi(θ1, θ2) = log[F0(θ2τi − θ1) − F0(θ2τi−1 − θ1)] and let Hi be
its associated Hessian matrix, 2 ≤ i ≤ k. Then, Hi is semi-negative definite.
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Proof. Let u = θ2τi − θ1 and v = θ2τi−1 − θ1. It is easy to see that Hi (u, v) ≡
A′H(u, v)A, where

A =
(−1 τi

−1 τi−1

)
.

By Lemma 2.2, Hi is semi-negative definite. �

Lemma 2.4. Assume that n1 + nk+1 < n, nj−1 + nj < n, 2 ≤ j ≤ k + 1. For any
given η > 0, there exists a compact subset K ≡ K(η) ⊂ (−∞,∞) × (0,∞) such
that {

(θ1, θ2): logL(θ1, θ2) ≥ −η
} ⊂ K.

Proof. This follows from Lemmas 2.5 and 2.6. �

Lemma 2.5. Assume that n1 + nk+1 < n. Then

lim
θ2→0+ sup

−∞<θ1<∞
logL(θ1, θ2) = −∞. (2.4)

Proof. From the assumption n1 + nk+1 < n, there exists an index 2 ≤ i ≤ k + 1
such that ni > 0. From (2.3), we have that f0(t) ≤ 1/2 < 1 for all t ∈ (−∞,∞).
So, for θ2 → 0+ and θ1 → ∞, we have

log
[∫ θ2τi−θ1

θ2τi−1−θ1

f0(t)dt

]
= log

[
1

2
exp(θ2τi−1 − θ1) − 1

2
exp(θ2τi − θ1)

]

and

logL(θ1, θ2) ≤ ni log
∫ θ2τi−θ1

θ2τi−1−θ1

f0(t)dt

≤ ni log
[

1

2
exp(θ2τi−1 − θ1) − 1

2
exp(θ2τi − θ1)

]
.

So,

sup
θ1→∞

logL(θ1, θ2) ≤ sup
θ1→∞

ni log
[

1

2
exp(θ2τi−1 − θ1) − 1

2
exp(θ2τi − θ1)

]

≤ sup
θ1→∞

(−niθ1) + ni log
[

1

2
exp(θ2τi−1) − 1

2
exp(θ2τi)

]

and similarly, for θ2 → 0+ and θ1 → −∞. Hence, (2.4) holds. �

Lemma 2.6. Assume that n1 +nk+1 < n and nj−1 +nj < n for all 2 ≤ j ≤ k + 1.
Then

lim
θ2→∞ sup

−∞<θ1<∞
logL(θ1, θ2) = −∞ (2.5)
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and

lim|θ1|→∞ sup
θ2>0

logL(θ1, θ2) = −∞. (2.6)

Proof. Let I = {1 ≤ j ≤ k + 1: nj > 0}. For every fixed θ2 > 0, it is evident that

logL(θ1, θ2) ≤ ni log
∫ θ2τi−θ1

θ2τi−1−θ1

f0(t)dt ≡ M(θ1).

So, sup−∞<θ1<∞ logL(θ1, θ2) = sup−∞<θ1<∞ M(θ1) = −∞ by Lemma 2.5. As
a result, for every fixed θ2, there is a θ∗

1 = θ∗
1 (θ2) such that

sup
−∞<θ1<∞

logL(θ1, θ2) = logL
(
θ∗

1 , θ2
) = ∑

i∈I

ni log
∫ θ2τi−θ∗

1

θ2τi−1−θ∗
1

f0(t)dt.

Let 2C = min1≤j≤k+1(τj − τj−1) > 0 and let A > 0 be given. For any θ2A, there
exists at least one index i in I such that

(a) θ2τi−1 − θ∗
1 = θ2(τi−1 − θ∗

1 /θ2) and θ2τi − θ∗
1 = θ2(τi − θ∗

1 /θ2) have the same
sign;

(b) |τi−1 − θ∗
1 /θ2| ≥ C and |τi − θ∗

1 /θ2| ≥ C.

Note that if i ∈ I with both θ2τi−1 − θ∗
1 > 0 and θ2τi − θ∗

1 > 0 then one has∫ θ2τi−θ∗
1

θ2τi−1−θ∗
1

f0(t)dt =
[

1

2
exp(θ2τi) − θ∗

1 − 1

2
exp(θ2τi−1) − θ∗

1

]

and ∫ θ2τi−θ∗
1

θ2τi−1−θ∗
1

exp(−t)dt = exp
[−(

θ2τi−1 − θ∗
1
)] − exp

[−(
θ2τi − θ∗

1
)]

.

So, ∫ θ2τi−θ∗
1

θ2τi−1−θ∗
1

f0(t)dt <

∫ θ2τi−θ∗
1

θ2τi−1−θ∗
1

exp(−t)dt < exp
[−(

θ2τi−1 − θ∗
1
)]

.

For any given A > 0 and for all θ2 > A/C, we have −(θ2τi−1 − θ∗
1 ) < −CA/C =

−A and ni log
∫ θ2τi−θ∗

1
θ2τi−1−θ∗

1
f0(t)dt < −niA ≤ A. So,

logL
(
θ∗

1 , θ2
) = ni log

∫ θ2τi−θ∗
1

θ2τi−1−θ∗
1

f0(t)dt < −A (2.7)

for all θ2 > A/C. The inequality (2.7) can be shown in a similar way in the cases
of both θ2τi−1 − θ∗

1 < −C and θ2τi − θ∗
1 < −C. So, we see that for every given

large number A > 0 and for all θ2 > A/C, sup−∞<θ1<∞ logL(θ1, θ2) = logL(θ∗
1 ,

θ2) < −A. Due to the arbitrariness of A, we conclude that (2.5) holds.
By a similar approach, one can show that supθ2>0 logL(θ1, θ2) < −A for large

A > 0 and large |θ1|. Again the arbitrariness of A implies (2.6) holds. �
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3 Simulation study

Here, we perform a simulation study to see how the ML estimators of μ and σ : (1)
vary with respect to n; (2) vary with respect to different values of τ ; (3) compare
between the Laplace and logistic models. Our simulation study is more informative
than the one in Zhou et al. (2007). We use the following scheme:

• simulate ten thousand random samples of size n from the Laplace distribution
with μ = 0 and σ = 1;

• for each of the ten thousand samples, compute the ML estimates of μ and σ for
the Laplace model and the associated 95 percent confidence intervals based on
normal approximation;

• compute the biases, the mean squared errors, the skewness, the kurtosis, the cov-
erage probabilities and the coverage lengths for μ̂ and σ̂ over the ten thousand
replications;

• simulate ten thousand random samples of size n from the logistic distribution
with μ = 0 and σ = √

6/π ;
• for each of the ten thousand samples, compute the ML estimates of μ and σ for

the logistic model and the associated 95 percent confidence intervals based on
normal approximation;

• compute the biases, the mean squared errors, the skewness, the kurtosis, the cov-
erage probabilities and the coverage lengths for μ̂ and σ̂ over the ten thousand
replications.

We took n to vary from 20,21, . . . ,100. We took τ to be one of (−∞,0,0.5,1,

1.5,2,∞), (−∞,−0.5,0.25,1,1.75,2.5,∞), (−∞,−0.25,0,1,2,2.5,∞), or
(−∞,−2,−1,0.5,1,3,∞). The parameters of the Laplace and logistic distribu-
tions were taken in such a way that they have equal means and equal variances. The
coverage probabilities were computed as the proportion of the ten thousand con-
fidence intervals containing the true parameter value. The coverage lengths were
computed as the mean length of the ten thousand confidence intervals.

The ML estimates were obtained numerically by maximizing (2.2). The numer-
ical maximization was performed by using optimize in the R statistical package (R
Development Core Team, 2014). Our numerical calculations showed that the sur-
face of (2.2) was smooth. The optimize was executed for a wide range of starting
values. The solution was unique all the time, as suggested by the theory.

Plots of the biases, the mean squared errors, the skewness, the kurtosis, the
coverage probabilities and the coverage lengths versus n for μ̂ and σ̂ are shown
in Figures 1–6. The actual values plotted are the lowess (Cleveland, 1979, 1981)
smoothed versions versus n for n = 20,21, . . . ,100. While lowess smoothing, we
used the default options. These are: a smoothing span of 2/3, three ‘robustifying’
iterations and the speed of computations determined by 0.01th of the range of the
n values.

We can observe the following from Figures 1–6:
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Figure 1 Biases (left) and mean squared errors (right) of μ̂ versus n for τ = (−∞,0,0.5,1,1.5,

2,∞) (square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞)

(triangle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the
logistic model (filled symbol).

Figure 2 Biases (left) and mean squared errors (right) of σ̂ versus n for τ = (−∞,0,0.5,1,1.5,

2,∞) (square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞)

(triangle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the
logistic model (filled symbol).
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Figure 3 Skewness of the distributions of μ̂ (left) and σ̂ (right) versus n for τ = (−∞,0,0.5,1,1.5,

2,∞) (square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞)

(triangle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the
logistic model (filled symbol).

Figure 4 Kurtosis of the distributions of μ̂ (left) and σ̂ (right) versus n for τ = (−∞,0,0.5,1,1.5,

2,∞) (square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞)

(triangle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the
logistic model (filled symbol).
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Figure 5 Coverage probabilities for μ̂ (left) and σ̂ (right) versus n for τ = (−∞,0,0.5,1,1.5,

2,∞) (square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞)

(triangle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the
logistic model (filled symbol).

Figure 6 Coverage lengths for μ̂ (left) and σ̂ (right) versus n for τ = (−∞,0,0.5,1,1.5,2,∞)

(square), τ = (−∞,−0.5,0.25,1,1.75,2.5,∞) (circle), τ = (−∞,−0.25,0,1,2,2.5,∞) (trian-
gle), τ = (−∞,−2,−1,0.5,1,3,∞) (diamond), the Laplace model (open symbol) and the logistic
model (filled symbol).
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• biases and mean squared errors of μ̂ and σ̂ are generally smaller for the Laplace
model;

• variation of the biases and mean squared errors of μ̂ and σ̂ with respect to τ is
generally smaller for the Laplace model;

• biases are generally negative for both μ̂ and σ̂ and for both the models;
• the magnitude of the biases generally decreases as n increases;
• mean squared errors generally decrease as n increases;
• skewness of the distributions of μ̂ and σ̂ are generally closer to zero, the skew-

ness for the normal distribution, for the Laplace model;
• skewness is generally negative for μ̂;
• skewness is generally positive for σ̂ ;
• skewness generally approaches zero, the skewness for the normal distribution,

as n increases;
• kurtosis of the distributions of μ̂ and σ̂ are generally closer to three, the kurtosis

for the normal distribution, for the Laplace model;
• kurtosis generally decreases to three, the kurtosis for the normal distribution, as

n increases;
• coverage probabilities for μ̂ and σ̂ are generally closer to the nominal level for

the Laplace model;
• variation of the coverage probabilities for μ̂ and σ̂ with respect to τ is generally

smaller for the Laplace model;
• coverage probabilities generally approach the nominal level as n increases;
• coverage lengths for μ̂ and σ̂ are generally smaller for the Laplace model;
• coverage lengths generally decrease as n increases.

These observations suggest that the fitted distribution is closer to the true distri-
bution of interval censored observations (as measured by biases, mean squared
errors, coverage probabilities and coverage lengths) when the uncensored obser-
vations are from the Laplace distribution. The observations also suggest that the
distribution of the ML estimators is closer to the normal distribution (as measured
by skewness and kurtosis) when the uncensored observations are from the Laplace
distribution.

Obviously, biases, mean squared errors, coverage probabilities and coverage
lengths are not the ultimate measures of closeness. More objective measures are the
chi-square statistics, Kolmogorov–Smirnov statistics and the Cramér–von Mises
statistics. When the computations were repeated for these measures, the results
were similar to those reported. The corresponding figures are not shown here for
space concerns and to avoid repetitive discussion.

The figures presented in Zhou et al. (2007) only showed how the estimates,
μ̂ and σ̂ , varied with respect to n and τ . Zhou et al. (2007) did not consider
biases, mean squared errors, coverage probabilities, coverage lengths, skewness,
kurtosis, chi-square statistics, Kolmogorov–Smirnov statistics or the Cramér–von
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Mises statistics. Furthermore, Zhou et al. (2007) drew different figures for differ-
ent τ . This did not allow for a fair comparison of the estimators with respect to
different τ .

We also performed a simulation study comparing the estimators for the log-
Laplace and log-logistic distributions. As in Zhou et al. (2007), we considered
estimators of the mode of the p.d.f. and the mode of the failure rate function for
each distribution. The results were similar to those reported.

4 Data application

Here, we consider the data set used in Section 4 of Zhou et al. (2007), a data set
from a life test study of locomotive controls. The data set and its original reference
can be found in Lawless (2003). According to Zhou et al. (2007), the data results
from a study that “recorded the mileage at which 96 different locomotive controls
failed. The test was terminated after 135,000 miles, by which time 37 failures had
occurred. In addition, there are 59 censoring times, all equal to 135,000 miles”.

Zhou et al. (2007) partitioned the data into twelve groups and recorded the num-
ber of observations falling within each group. The partitioned intervals and the
observed frequencies are given in Table 1. In order to make the data suitable for
models defined over the entire real line, a log-transformation was applied to the
intervals. The logged intervals are shown in the third column of Table 1.

We fitted the Laplace and logistic models to the data in Table 1 by the method
of ML. For the Laplace model, we obtained the estimates μ̂ = 5.031, σ̂ = 0.482,
Var(μ̂) = 0.004, Var(σ̂ ) = 0.007, Cov(μ̂, σ̂ ) = 0.002 with logL = 151.5. For the
logistic model, we obtained the estimates μ̂ = 5.080, σ̂ = 0.380, Var(μ̂) = 0.008,

Table 1 Estimates of parameters and goodness of fit statistics

Observed
frequency

Expected frequency

No Interval log (interval) Logistic model Laplace model

1 <35 (−∞,3.555] 1 2.25453 1.713705
2 35–45 (3.555,3.807] 1 1.546345 1.55515
3 45–55 (3.807,4.007] 5 1.952273 2.133774
4 55–65 (4.007,4.174] 1 2.379348 2.725425
5 65–75 (4.174,4.317] 3 2.805545 3.268483
6 75–85 (4.317,4.443] 8 3.264085 3.767965
7 85–95 (4.443,4.554] 2 3.673676 4.10645
8 95–105 (4.554,4.654] 1 4.116794 4.367169
9 105–115 (4.654,4.745] 4 4.56486 4.514625

10 115–125 (4.745,4.828] 7 4.985005 4.527251
11 125–135 (4.828,4.905] 4 5.457734 4.492645
12 >135 (4.905,∞) 59 58.9998 58.82736
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Figure 7 Non-parametric estimate of the survival function as well as those obtained from the fitted
Laplace (curve of dashes) and fitted logistic (curve of dots) models.

Var(σ̂ ) = 0.003, Cov(μ̂, σ̂ ) = 0.003 with logL = 150.9. The expected frequencies
computed using these estimates are shown in the last two columns of Table 1. The
chi-squared statistics computed using the observed and expected frequencies are
6.413 × 10−10 and 5.066 × 10−4 for the Laplace and logistic models, respectively.
The Kolmogorov–Smirnov statistics computed are 1.429 × 10−11 and 4.945 ×
10−3 for the Laplace and logistic models, respectively. The Cramér–von Mises
statistics computed are 7.246×10−9 and 1.083×10−5 for the Laplace and logistic
models, respectively. The Kolmogorov–Smirnov and Cramér–von Mises statistics
were computed by comparing the empirical and fitted c.d.f.s.

Hence, we see that the Laplace model is better in that it has smaller Var(μ̂),
smaller Cov(μ̂, σ̂ ), larger log-likelihood, much smaller chi-square statistic, much
smaller Kolmogorov–Smirnov statistic and much smaller Cramér–von Mises
statistic. The parameter estimates are not too different between the two models.

Although the Laplace and logistic models are not nested, their likelihood values
can be compared since they have the same number of parameters. In fact, criteria
like the Akaike information criterion (Akaike, 1974), a commonly used criterion
for comparing non-nested models, reduce to the standard likelihood ratio statistic
for models having the same number of parameters.

As a final check, we have plotted the non-parametric ML estimate of the inter-
val censored survival function in Figure 7. This estimate was computed using the
function icfit in the R contributed package interval (Fay and Shaw, 2010; R De-
velopment Core Team, 2014). Superimposed in the figure are the estimates of the
survival function from the fitted Laplace and logistic models. We can see that the
Laplace model provides a better fit. As a quantitative evidence, Table 2 gives non-
parametric estimates of the cell probabilities as well as those obtained from the
fitted Laplace and logistic models. We can see that the sum of the absolute devi-
ations between the second and third columns of Table 2 is 0.208. The sum of the
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Table 2 Estimates of cell probabilities

Cell probabilities

log (interval) Non-parametric Logistic Laplace

(−∞,3.555) 0.01041667 0.02348469 0.01785109
(3.555,3.807) 0.01041667 0.01610777 0.01619948
(3.807,4.007) 0.05208333 0.02033617 0.02222681
(4.007,4.174) 0.01041667 0.02478488 0.02838984
(4.174,4.317) 0.03125 0.02922442 0.0340467
(4.317,4.443) 0.08333333 0.03400088 0.03924964
(4.443,4.554) 0.02083333 0.03826746 0.04277552
(4.554,4.654) 0.01041667 0.04288327 0.04549134
(4.654,4.745) 0.04166667 0.04755063 0.04702734
(4.745,4.828) 0.07291667 0.05192713 0.04715886
(4.828,4.905) 0.04166667 0.0568514 0.04679839
(4.905,∞) 0.6145833 0.6145813 0.612785

absolute deviations between the second and fourth columns of Table 2 is 0.203.
This is the final evidence that the Laplace model provides a better fit.

For this particular data set, we see that the Laplace model gives a better fit.
This does not mean that the Laplace model will always give a better fit for every
real data set. Of course, there will be many data sets where the logistic model
will provide a better fit. The message of Section 3 is that the parameter estimates
are likely to have smaller biases, smaller mean squared errors, better coverage
properties, skewness closer to zero and kurtosis closer to three if the best fitting
model was the Laplace distribution. In other words, the parameter estimates are
likely to have larger biases, larger mean squared errors, worse coverage properties,
skewness more distant from zero and kurtosis more distant from three if the best
fitting model was the logistic distribution.

5 Conclusions and future work

We have derived ML estimators of the parameters of the Laplace distribution by as-
suming an interval censored data. We have proved existence and uniqueness of the
ML estimators. Simulations and real data applications have shown that the Laplace
distribution can be a better model for interval censored data than the logistic dis-
tribution in terms of: biases of the ML estimates, variation of the biases of the ML
estimates, mean squared errors of the ML estimates, variation of the mean squared
errors of the ML estimates, skewness of the distribution of the ML estimates, kur-
tosis of the distribution of the ML estimates, coverage probabilities for the ML
estimates, variation of the coverage probabilities for the ML estimates, coverage
lengths for the ML estimates, variance of the ML estimates, covariance of the



692 V. L. D. Tomazella and S. Nadarajah

ML estimates, log-likelihood values, chi-square statistics, Kolmogorov–Smirnov
statistics, Cramér–von Mises statistics and the deviation between the fitted and
non-parametric estimates of the interval censored survival function.

In Sections 3 and 4, we have assumed asymptotic normality of the ML esti-
mators of μ and σ . For asymptotic normality, certain regularity conditions must
be satisfied; see, for example, Ferguson (1996), page 121. However, these condi-
tions are hardly checked in published papers (even in theoretical journals) and in
practical data analysis. But it could be a possible future work.

Another future work is to extend the results of this paper for asymmetric Laplace
distributions as well as for generalized Laplace distributions. A comprehensive ac-
count of known generalizations of the Laplace distribution is given in Kozubowski
and Nadarajah (2010).
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