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Restricted Covariance Priors with Applications
in Spatial Statistics

Theresa R. Smith∗, Jon Wakefield†, and Adrian Dobra‡

Abstract. We present a Bayesian model for area-level count data that uses Gaus-
sian random effects with a novel type of G-Wishart prior on the inverse variance–
covariance matrix. Specifically, we introduce a new distribution called the trun-
cated G-Wishart distribution that has support over precision matrices that lead to
positive associations between the random effects of neighboring regions while pre-
serving conditional independence of non-neighboring regions. We describe Markov
chain Monte Carlo sampling algorithms for the truncated G-Wishart prior in a
disease mapping context and compare our results to Bayesian hierarchical models
based on intrinsic autoregression priors. A simulation study illustrates that using
the truncated G-Wishart prior improves over the intrinsic autoregressive priors
when there are discontinuities in the disease risk surface. The new model is applied
to an analysis of cancer incidence data in Washington State.

Keywords: G-Wishart distribution, Markov chain Monte Carlo (MCMC), spatial
statistics, disease mapping.

1 Introduction

Spatial data arise when outcomes and predictors of interest are observed at particular
points or regions inside a defined study area. Spatial data sets are common in many
fields including environmental science, economics, and epidemiology. In epidemiology,
understanding the underlying spatial patterns of a disease is an important starting
point for further investigations. The risk of disease inherently varies in space because
the risk factors are non-uniformly distributed in space. Such risk factors may include
lifestyle variables such as alcohol and tobacco use or exposure levels of environmental
causes of disease such as air pollution or UV radiation. We expect that these risk factors
are positively correlated in space meaning that nearby areas will have similar exposure
levels or underlying characteristics. That is, we assume risk factors obey Tobler’s first
law of geography: “everything is related to everything else, but near things are more
related than distant things” (Tobler, 1970).

In many studies, underlying disease risk factors are unknown or unmeasured. Bayes-
ian models account for unknown or unmeasured risk factors using priors chosen to mimic
their correlation structure. The most common Bayesian framework for area-level spa-
tial data uses Gaussian random effects with a covariance structure that imposes positive
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spatial dependence between random effects of neighboring or near-by areas (Besag et al.,
1991; Diggle et al., 1998; Banerjee et al., 2004). The non-Gaussian spatial clustering and
Potts model based priors also impose positive dependence in the relative risks of neigh-
boring areas (Knorr-Held and Best, 2001; Green and Richardson, 2002). More recently,
several authors have developed modifications to existing models, specifically to preserve
positive dependence for spatial statistics applications (Wang and Pillai, 2013; Hughes
and Haran, 2013). Further, positive spatial dependence is usually imposed in geosta-
tistical models for data observed point-wise rather than area-wise. For example, the
Matérn family of marginal covariance functions for Gaussian random fields yields pos-
itive correlations between observations at two locations locations, with the magnitude
of the correlation decreasing with distance (Stein, 1999; Diggle and Ribeiro, 2007).

We present a Bayesian model for area-level count data that uses Gaussian random
effects with a novel type of G-Wishart prior on the inverse variance–covariance matrix.
The usual G-Wishart or hyper inverse Wishart prior restricts off-diagonal elements of
the precision matrix to 0 according to the edges in an undirected graph (Dawid and
Lauritzen, 1993; Roverato, 2002). Dobra et al. (2011) use the G-Wishart prior to ana-
lyze mortality counts for ten cancers in the United States using a Bayesian hierarchical
model incorporating Gaussian random effects with a separable covariance structure.
Their comparisons show that allowing different strengths of association between paris
of neighboring states can have advantages over traditional conditional autoregressive
priors that assume the same strength of conditional association across the study re-
gion. However, the G-Wishart prior allows for both positive and negative conditional
associations between neighboring areas.

The truncated G-Wishart distribution that we introduce only has support over pre-
cision matrices that lead to positive conditional associations. We describe Markov chain
Monte Carlo (MCMC) algorithms for this new prior and construct a Bayesian hier-
archical model for areal count data that uses the truncated G-Wishart prior for the
precision matrix of Gaussian random effects. We show via simulation studies that risk
estimates based on a model using the truncated G-Wishart prior are better than those
based on conditional autoregression when the outcome is rare and the risk surface is
not smooth. For univariate data, there is little information to identify the parameters
of the spatial precision matrix; however, we can share information across outcomes in
a multivariate model by assuming a separable covariance structure. We illustrate the
improvement of using the truncated G-Wishart prior in a separable model (measured
via cross-validation) using cancer incidence data from the Washington State Cancer
Registry.

The structure of this paper is as follows. In Section 2, we present our modeling
framework and give a brief overview of conditional autoregressive models. In Section 3,
we define the truncated G-Wishart distribution and give the details of an MCMC sam-
pler for estimating relative risks in a spatial statistics context. In Section 4, we present
a simulation study based on univariate disease mapping using the geography of the
counties of Washington State. Finally, in Section 5, we extend the univariate truncated
G-Wishart model to multivariate disease mapping using the separable Gaussian graph-
ical model framework of Dobra et al. (2011).
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2 Background

2.1 Notation

Let A = {A1, . . . An} be a set of non-overlapping geographical areas, and let y =
{y1, . . . , yn} represent the set of counts of the observed number of health events in these
areas. Possible health events include deaths from a disease, incident cases of a disease,
or hospital admissions with specific symptoms of a disease. Next, let E = {E1, . . . , En}
be the set of expected counts and X = {x1 . . .xn} be a matrix where xi is a vector of
suspected risk factors measured in area i. The expected counts account for differences
in known demographic risk factors. If the population in each area is stratified into J
groups (e.g., gender and 5 year age-band combinations), then the expected count for
each area is

Ei =

J∑
j=1

qjPij ,

where Pij is the population in area i in demographic group j and qj is the rate of
disease in group j. The rates qj may be estimated from the data if the disease counts
are available by strata (internal standardization) or they may be previously published
estimates for the rates of disease (external standardization).

A generic Bayesian hierarchical model for data of this type is:

yi | y−i, Ei, θi ∼ Poi(Eiθi),

log(θi) = xT
i β + ui,

π(u) = H,

where y−i is the vector of counts with area i excluded and H is a probability distri-
bution with spatial structure. Most choices of H encode the belief that the residual
spatial random effects, u, of nearby areas have similar values. This restriction follows
from the interpretation of the random effects as surrogates for unmeasured risk factors,
which are generally assumed to be positively correlated in space. The inclusion ofH pro-
duces smoother (though biased) estimates of the vector of relative risks, θ, with reduced

variability compared to the maximum likelihood estimates θ̂ = y/E. These maximum
likelihood estimates, called standardized incidence ratios (SIRs) or standardized mortal-
ity/morbidity ratios (SMRs), have large sampling variances when the expected counts
are small. A key task in modeling areal count data is to choose a prior H that is flexible
enough to adapt to the smoothness of the risk surface.

2.2 Existing Models for Areal Count Data

The most common choice for H is the Gaussian conditional autoregression or CAR
prior (Besag, 1974; Rue and Held, 2005), which is a type of Gaussian Markov random
field. The CAR model for a vector of Gaussian random variables is defined by a set
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of conditional distributions. The conditional distribution for the random variable, ui,
given the other variables, u−i, is

ui | u−i ∼ N

⎛⎝∑
j:j �=i

bijuj , τ
2
i

⎞⎠ .

The joint distribution of the vector u is a mean-zero multivariate normal distribution
with precision D−1(I − B), where Bij = bij , Bii = 0, and Dii = τ2i . This is a proper
joint distribution if D−1(I−B) is a symmetric, positive definite matrix (Banerjee et al.,
2004).

The intrinsic conditional autoregression or ICAR prior is the most commonly used
prior for spatial random effects within the class of CAR priors. Under the ICAR prior,
the conditional mean for a given random effect is the weighted average of the neighboring
random effects, and the conditional variance is inversely proportion to the sum of these
weights:

ui | u−i ∼ N

⎛⎝ 1

ωi+

∑
j:j �=i

ωijuj ,
τ2u
ωi+

⎞⎠ . (1)

Here ωij is nonzero if regions i and j are neighbors (i.e., share a border) and 0 oth-
erwise; ωi+ is the sum of all of the weights for a specific area. A binary specification
for W = {ωij ; i, j = 1, . . . , n} is frequently used, though other weights that incorporate
the distance between areas can also be used (White and Ghosh, 2009). In the binary
case, ωij = 1 for neighboring regions and ωi+ = ni, the number of regions that border
area i. Under this specification, the conditional mean for a particular random effect is
the average value of the random effects for the neighboring regions, and the conditional
variance is inversely proportional to the number of neighbors of the area.

Besag et al. (1991) use a CAR prior for spatial random effects in a disease mapping
context in what has become known as the convolution model :

log(θi) = xT
i β + vi + ui.

Here vi is a non-spatial random effect and ui is a spatial random effect. The prior for v
is N(0, σ2

vI), and the prior for u is the ICAR prior.

Though popular, the convolution model has several drawbacks. First, there are only
two parameters (σ2

v and τ2u) to control the level of smoothing with only one of these
(τ2u) contributing to the spatial portion of the model. This parsimony is ideal for es-
timating a smooth risk surface in the presence of large sampling variably, which is
a common issue for rare diseases or for small area estimation. However, using ICAR
random effects can lead to over-smoothing, which masks interesting features of the
risk surface, including sharp changes. Several authors have addressed this issue by in-
corporating flexibility in the conditional independence structure of the relative risks
(Knorr-Held and Raßer, 2000; Green and Richardson, 2002; Lee and Mitchell, 2013;
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Lee et al., 2014). These approaches are fairly parsimonious, but estimating the param-
eters requires careful reversible jump MCMC or access to data from previous years.
In contrast, we develop a locally-adaptive approach with a separate parameter for the
strength of spatial association between each pair of neighboring areas while preserving
the conditional independence structure.

A second drawback is that the ICAR prior is improper. The joint distribution implied
by the conditional specification in (1) is a singular multivariate normal distribution with
precision matrix τ2u(Dω −W), where Dω is a diagonal matrix with elements Dii = ωi+.
Since each row of Dω −W sums to 0, this precision matrix does not have full rank, and
the joint prior for u is improper. One way to alleviate both the over smoothing and the
singularity issues is through the addition of a spatial autocorrelation parameter ρ:

ui | u−i ∼ N

⎛⎝ ρ

ωi+

∑
j:j �=i

ωijuj ,
σ2
u

wi+

⎞⎠ .

This specification is called the proper CAR because it gives rise to a proper joint distri-
bution as long as ρ is between the reciprocals of the largest and smallest eigenvalues of

D
−1/2
ω WD

−1/2
ω (Banerjee et al., 2004). For the binary specification of W, this always

includes ρ ∈ [0, 1). The relationship between ρ and the overall level of spatial smooth-
ing in the proper CAR prior is complex. The prior marginal correlations between the
random effects of neighboring areas increase very slowly as ρ increases, with substan-
tial correlation obtained only when ρ is very close to 1 (Besag and Kooperberg, 1995).
Further, as ρ increases, the ordering of these marginal correlations is not fixed (Wall,
2004).

Nonetheless, the ICAR prior remains a popular choice for spatially correlated errors
in many applied settings. The conditional specification in (1) is parsimonious, and one
only needs to specify a single prior for the precision of the spatial random effects. Prior
specification has received some attention in the literature (Fong et al., 2009; Sørbye
and Rue, 2014). Further, off-the-shelf MCMC routines for the ICAR and convolution
models are available in WinBUGS (Lunn et al., 2000) and various R packages. Fast
computation of approximate marginal posterior summaries is available using integrated
nested Laplace approximation (INLA) (Rue et al., 2009).

3 Methodology

An alternative to specifying the prior for spatial random effects based on a set of condi-
tional distributions is to work directly with the joint distribution. A Gaussian graphical
model or covariance selection model is a set of joint multivariate normal distributions
that obey the pairwise conditional independence properties encoded by an undirected
graph, G (Dempster, 1972; Lauritzen, 1996). This graph has two elements: the vertex
set V and the edge list E. The absence of an edge between two vertices corresponds
to conditional independence and implies a specific structure for the precision matrix
of the joint distribution. If u follows a multivariate normal distribution with precision
matrix K, then u follows a Gaussian graphical model if ui ⊥⊥ uj | uV \(i,j) ⇐⇒ (i, j) �∈



970 Restricted Covariance Priors with Applications in Spatial Statistics

E =⇒ Kij = 0 for any pairs i and j. Here uV \(i,j) is the vector u excluding the ith
and jth elements.

The conjugate prior for the precision matrix in the Gaussian setting is the Wishart
distribution, which is a distribution over all symmetric, positive definite matrices of a
fixed dimension. TheWishart distribution has two parameters. The first is a scaler δ > 2,
which controls the spread of the distribution. The second is an n×n matrix D, which is
related to the location of the distribution. For K ∼ Wis(δ,D), E(K) = (δ + n− 1)D−1

and mode(K) = (δ − 2)D−1. The G-Wishart distribution is the conjugate prior for the
precision matrix in a Gaussian graphical model (Dawid and Lauritzen, 1993; Roverato,
2002). The G-Wishart distribution is a distribution over P+(G), the set of all symmetric,
positive definite matrices with zeros in the off-diagonal elements that correspond to
missing edges in G. The density of the G-Wishart distribution for a matrix K is

Pr(K | δ,D, G) =
1

I1(G, δ,D)
|K|(δ−2)/2 exp

(
−1

2
〈K,D〉

)
1K∈P+(G), (2)

where 〈A,B〉 is the trace of ATB. The normalizing constant I1(G, δ,D) has a closed
form when G is a decomposable graph and can be estimated for general graphs using
the Monte Carlo method proposed by Atay-Kayis and Massam (2005).

3.1 Truncated G-Wishart Distribution

We propose a new G-Wishart distribution called the truncated G-Wishart distribution
that imposes additional constraints on K. This is a distribution over positive definite
matrices where the off-diagonal elements that correspond to (non-missing) edges inE are
less than 0. This restriction means that all pairwise conditional (or partial) correlations
are positive because

cor
(
ui, uj | uV \{i,j}

)
=

−Kij√
KiiKjj

.

This restriction is attractive in a spatial statistics context where we believe neighboring
areal units are likely to be similar to each other, given the other areas.

If K follows a truncated G-Wishart distribution, then

Pr(K | G, δ,D) =
1

I2(G, δ,D)
|K|(δ−2)/2 exp

(
−1

2
〈K,D〉

)
1K∈P+(G)∩S0 . (3)

Here I2(G, δ,D) is the unknown normalizing constant, and S0 is the set of matrices
with negative off-diagonal elements. The normalizing constant in (2) is finite as long as
δ > 2 and D−1 ∈ P+(G) (Atay-Kayis and Massam, 2005). The normalizing constant in
(3) is finite under the same conditions because the support of the truncated G-Wishart
is a subset of the support of the G-Wishart distribution. The mode of the truncated
G-Wishart is again (δ−2)D−1, and for this reason we only consider D−1 ∈ P+(G)∩S0.
In this paper, we write TWisG for the truncated G-Wishart distribution and WisG for
the G-Wishart distribution.
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Atay-Kayis and Massam (2005) and Dobra et al. (2011) transformK to the Cholesky
square root, which we callΦ, because it is easier to handle the positive definite constraint
in the transformed space. In the G-Wishart case, the elements of Φ are either variation
independent or are deterministic functions of other elements. We call the off-diagonal
elements of Φ that correspond to missing edges in the graph G “non-free.” These are
deterministic functions of the “free” elements: the diagonal elements and the off-diagonal
elements corresponding to edges in G. If we restrict K to the space P+(G)∩S0, we have
the following constraints on the off-diagonal elements of the Cholesky square root Φ:

Φii > 0 for i = 1, . . . , n, (4)

Φij = − 1

Φii

i−1∑
d=1

ΦdiΦdj for (i, j) �∈ E, (5)

Φij < − 1

Φii

i−1∑
d=1

ΦdiΦdj for (i, j) ∈ E. (6)

The first two conditions guarantee that ΦTΦ ∈ P+(G). The addition of the third
inequality guarantees that ΦTΦ ∈ S0; however, this restriction comes at the cost of
losing variation independence (i.e., the parameters space of Φ is no longer rectangular).

3.2 Sampling from the Truncated G-Wishart Distribution

We sample from the truncated G-Wishart distribution using a random walk Metropolis–
Hastings algorithm similar to the sampler proposed by Dobra et al. (2011). We sequen-
tially perturb one free element Φi0j0 at a time, holding the other free elements constant.
In doing so, we must find the support of the conditional distribution of Φi0j0 given
the other elements. The support of this conditional distribution is the set of Φi0j0 that
satisfy inequalities (4)–(6) when the free elements, the left-hand sides of (4) and (6),
are fixed.

For each specific graph and fixed pair (i0, j0), we can write the inequalities in (6) as

Φij < gij
(
Φi0j0 ,F−(i,j)

)
for (i, j) ∈ E,

where F−(i,j) is the set of fixed, free elements ofΦ excluding Φij and Φi0j0 . We construct
gij by substituting the equalities from (5) for all of the non-free elements that depend
on Φi0j0 . Each g is (at worst) a quadratic function of Φi0j0 . When g is a linear function,
solving g for Φi0j0 gives a solution set of the form g−1

ij (Φij ,F−(i,j)) = {Φi0,j0 ∈ (Lij ,∞)},
where Lij < 0. When g is quadratic, the solution set is g−1

ij (Φij ,F−(i,j)) = {Φi0j0 ∈
(Lij , Uij)}, where Lij is again negative.

If (i, j) ≺ (i0, j0) in lexicographical order, then the upper bound for Φij cannot
depend on Φi0j0 . Depending on the graphical structure, there are pairs (i, j)  (i0, j0)
such that the bound for Φij does not depend on Φi0j0 . In these cases g−1

ij (Φij ,F−(i,j)) =
(−∞,∞).
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Theorem 1. The conditional distribution of a free element Φi0j0 , i0 �= j0 given all
other free elements is a continuous distribution over an open subinterval of R− given by

⋂
(i,j)∈E

g−1
ij

(
Φij ,F−(i,j)

)
∩
(
−∞,

−1

Φi0i0

i0−1∑
d=1

Φdi0Φdj0

)
.

We now give the analogous theorem for free, diagonal elements:

Theorem 2. The conditional distribution of a free element Φi0i0 given other free ele-
ments is a continuous distribution over a subinterval of R+ given by

Φi0i0 ∈
(

max
i0<k≤p,(i0,k)∈E

{
−
∑i0−1

d=1 Φdi0Φdk

Φi0k

}
,∞

)
for 1 < i0 < n,

Φi0i0 ∈ (0,∞) for i0 = 1, n.

For proofs, see the supplementary material (Smith et al., 2015).

We use these bounds to construct a Markov chain with stationary distribution equal
to the truncated G-Wishart distribution. Suppose Φt is an upper-triangular matrix at
iteration t such that (Φt)TΦt ∈ P+(G) ∩ S0. For each free element in Φt

i0j0
do the

following:

1. Calculate the upper and lower limits for Φt
i0j0

as described above.

2. Sample from a truncated normal with these limits, mean Φt
i0j0

, and standard
deviation σm.

3. Update the non-free elements in lexicographical order. These steps give a proposal
K′ = (Φ′)TΦ′ where the free elements inΦ′ equal to the free elements ofΦt except
in the (i0, j0) entry.

4. Accept according to the acceptance probability α = min(1, Rm), where

Rm =
π(K′ | D, δ, G)q(Kt | K′)

π(Kt | D, δ, G)q(K′ | Kt)

=

(
Φ′

i0i0

Φt
i0i0

)δ+νi(G)−1

exp

(
−1

2

〈
K′ −Kt,D

〉)
×

TNorm(Φt
i0j0

; Φ′
i0j0

, σm, li0j0 , ui0j0)

TNorm(Φ′
i0j0

; Φt
i0j0

, σm, li0j0 , ui0j0)
.

TNorm(·;μ, σ, l, u) is the density of a normal distribution with mean μ and standard de-
viation σ truncated to the interval (l, u), and νi(G) is the number of areas that are neigh-
bors of area i but have larger index numbers, that is, νi(G) = #{j : ωij = 1 and i < j}.

The speed of this sampler depends on both the number of areas and on the number
of edges in the adjacency graph. These determine the number of non-zero elements in K
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and the number of non-zero elements in Φ. The elements of K can be reordered to form
a banded matrix. The size of the bandwidth depends on the proportion of non-missing
edges (i.e., the edge density), and the bandwidth of Φ is the same as K (Rue and Held,
2005). Thus reordering the elements of K can create sparsity in Φ, which reduces the
number of nonzero terms in (6). Figure 1 shows the time to one thousand iterations for
graphs with different numbers of nodes and edges, averaging over 50 simulated networks
for each size-density combination. For each simulation, we randomly sample networks
with a given size and density and reorder the elements using a bandwidth-decreasing
algorithm (the reverse Cuthill–McKee algorithm, available in the spam package). The
sampler scales well for very sparse networks, but the time to 1000 iterations grows
quickly when the edge density is over 20%. The edge densities of the counties in Wash-
ington State and the states in the continental US are 0.123 and 0.093, respectively.

Figure 1: Time to 1000 iterations by edge density and number of nodes. For reference,
the edge density of the counties in Washington State is 0.123, and the edge density of
the continental US and the District of Columbia is 0.093.

3.3 Using the Truncated G-Wishart in a Hierarchical Model

We use truncated G-Wishart prior within the generic Bayesian hierarchical model for
areal counts given in Section 2:

log(θi) = xT
i β + ui,

π(u | α, τu,K) = N
(
α1, (τ2uK)−1

)
,

π(α) = N(0, σ2
α),

π(β) = N(0, σ2
βI),

π(τ2u | a, b) = Gam(a, b),

π (K | G, δ,D) = TWisG (δ, (δ − 2)D(ρ)) with K11 = W1+,

D−1(ρ) = DW − ρW,

π(ρ) = Unif(0, 0.05, 0.1, . . . ,

0.8, 0.82, . . . , 0.90, 0.91, . . . , 0.99).
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We suggest choosing the hyper parameters for the priors on α and τ2 by first specifying a
reasonable range for the average relative risk and then finding values of σ2

α and (a, b) that
match this range for a fixed value of K. For fixed K, the distribution of u = 1/n

∑n
i=1 ui

is a univariate normal distribution depending on α and τ2. Using the adjacency matrix
of Washington State as an example and letting K = D−1(0.99), 95% of the prior on
exp(u) is between (1/8, 8) when σ2

α = 1 and (a, b) = (0.5, 0.0015). For a more informative
prior, setting σ2

α = 1/4 gives a range of (1/2, 2). More details of this prior specification
framework are in the supplementary material.

The prior on the spatial autocorrelation parameter ρ was introduced by Gelfand and
Vounatsou (2003) for computational convenience and to reflect the fact that large values
of ρ are needed to achieve non-negligible spatial dependence in the proper CAR prior.
Jin et al. (2007) use a continuous uniform prior on (0, 1) and a Beta(18, 2) prior in a
similar multivariate context. For our purposes, using a discrete prior for ρ is essential for
carrying out MCMC because ρ appears in the normalizing constant of the prior on K.
That is, the normalizing constant in (3) becomes I2(G, δ,D(ρ)). As will be shown below,
we pre calculate ratios of these normalizing constants in advance. It is not practical to
repeat this process at each step of the MCMC.

We estimate the posterior distribution of the relative risks, θ, using MCMC. Most
of the transitions are standard Metropolis or Gibbs updates (see supplementary ma-
terial) except for the updates on the precision matrix K and the autocorrelation pa-
rameter ρ. We update K as described in Section 3.3, skipping over Φ11 to preserve
the restriction on K11. We update ρ by choosing the next smallest or largest value in
{0, 0.05, 0.1, . . . , 0.8, 0.82, . . . , 0.90, 0.91, . . . , 0.99}, each with probability 1/2. If ρt and ρ′

are not on the boundary of this list, then the acceptance probability is αρ = min(1, Rm)
where

log(Rm) = −1/2tr
[
(δ − 2)K

{
(Dw − ρ′W)−1 − (Dw − ρtW)−1

}]
(7)

+ log [I2 (G, δ, (δ − 2)D(ρt))]− log [I2 (δ, (δ − 2)D(ρ′))] .

If either ρt or ρ
′ is on the boundary, there is an extra factor of 2 because the proposal

is not symmetric: if ρt = 0, we propose ρ′ = 0.05 with probability 1. Because the graph
G is constant, the normalizing constants in (7) only depend on ρ. We estimate the
necessary ratios of normalizing constants and store them in a table prior to running the
full MCMC.

For two densities of the form π1(η) = c1q1(η) and π2(η) = c2q2(η) with normal-
izing constants c1 and c2, the ratio of normalizing constants is given by r = c1/c2 =
E2[q1(η)/q2(η)] when the support of the two distributions are the same (Chen et al.,
2000). Here E2 is the expectation under the second density. We estimate this expectation
for each consecutive pair ρ1 > ρ2 using MCMC. Here we give the details for estimating
the normalizing constants of a set of G-Wishart distributions without restrictions on
the K11 element and with δ = 3. However, the same process will work for the truncated
G-Wishart and with the restriction that K11 = W1+.

• Generate a Markov chain K1, K2, . . . ,KS with stationary distribution
WisG(3, (Dw − ρ2W)−1).
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• For each state, let Zi = −1/2tr[Ki((Dw − ρ1W)−1 − (Dw − ρ2W)−1)].

• Estimate log[I1(G, 3,D(ρ1))]− log[I1(G, 3,D(ρ2))] by log[ 1S
∑S

i=1 exp(Zi)].

For each pair (ρ1, ρ2), we average over the estimates from 10 parallel chains of 100,000
iterations. Figure 6 in the supplementary material shows the evolution of the estimates
of log[I1(G, 3, (Dw − 0.99W)−1)]− log[I1(G, 3, (Dw − 0.98W)−1)] using the adjacency
graph of the counties in Washington State.

3.4 Multivariate Disease Mapping

In Section 5, we use the truncated G-Wishart prior to analyze incidence data from the
Washington State Cancer Registry. In doing so, we adopt the same framework as Dobra
et al. (2011) and assign a matrix normal prior with a separable covariance structure
to the log relative risks. This means we assume that the covariance in the log relative
risks factors into a purely spatial portion and a purely between-outcomes portion. This
assumption is common for modeling two-way data including multivariate spatial data
(Gelfand and Vounatsou, 2003; Carlin and Banerjee, 2003; Jin et al., 2007) and spatio-
temporal data (Knorr-Held, 2000; Stein, 2005; Quick et al., 2013) as well as multi-way
data (Mardia and Goodall, 1993; Fosdick and Hoff, 2014).

Here we assume that there are n areas with counts for C cancer sites (site of primary
origin of the cancer) observed in each area. If Y = {yic : i = 1, . . . , n, c = 1, . . . , C} is
a matrix of observed counts and E = {Eic : i = 1, . . . , n, c = 1, . . . , C} is a matrix of
expected counts, then we have

yic|Eic, θic ∼ Poi (Eicθic) ,

log(Θ) = U,

U ∼ MN
(
M,K−1

C ,K−1
R

)
,

Mc ∼ N
(
0, σ2

M

)
for c = 1, . . . , C,

KC ∼ Wis (δC , (δC − 2)I) or WisGC
(δC , (δC − 2)I) ,

KR ∼ TWisGR

(
δR, (δR − 2)D−1

R

)
.

We use MN(M,ΣC ,ΣR) to denote the matrix normal distribution with separable co-
variance structure (Dawid, 1981). That is vec(U) | M,ΣR,ΣC ∼ N(vec{M},ΣC⊗ΣR),
where “⊗” is the Kronecker product. In the absence of any information on cancer risk
factors such as smoking rate or a socioeconomic summary measure, we only include an
overall rate for each cancer in the mean model, that is, Mic = Mc. The row covari-
ance ΣR describes the spatial covariance structure of the log relative risks. The column
covariance matrix ΣC describes the covariance between the cancers.

We incorporate the truncated G-Wishart distribution as the prior for the spatial
precision matrix Σ−1

R = KR, and we use a G-Wishart or Wishart prior with mode equal
to the identity matrix for Σ−1

C = KC . When the prior on KC is a G-Wishart prior,
we incorporate uncertainty in the between-cancer conditional independence graph GC
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using a uniform prior over all graphs. For both priors, we restrict (KC)11 = 1 for
identifiability. Finally, we use an independent normal prior on each Mc. We estimate
the relative risks under this model using an MCMC sampler identical to that in Dobra
et al. (2011), substituting in the sampler from Section 3.2 for the update on KR.

The assumption of separability yields a more parsimonious covariance structure and
can yield more stable estimation than with a full, unstructured covariance matrix. Con-
ditioning on one precision matrix forms ‘replicates’ for estimating the other:

vec(U) ∼ N(0,K−1
C ⊗K−1

R ) =⇒ (IC ⊗ΦR) · vec(U) ∼ N(0,K−1
C ⊗ IR).

Thus, if KC is known, then the sample size for estimating KR is equal to the number
of rows, and similarly, if KR is known, the sample size for estimating KC (and GC) is
equal to the number of columns. This factorization appears in the iterative algorithm for
finding the maximum likelihood estimates of the matrix normal distribution (Dutilleul,
1999) as well as in the Gibbs sampler when using the conjugate Wishart prior with
matrix or array normal data (Hoff, 2011).

4 Simulation Study

We compare the univariate disease mapping model using the truncated G-Wishart prior
to three other models in a simulation study based on a similar study in Lee et al. (2014).
The purpose of this simulation study is to investigate the potential of the truncated
G-wishart prior in a Bayesian hierarchical model for a single realization of a disease
outcome in each area. We also directly compare the G-Wishart to the standard Gaussian
Markov random field formulation in a univariate context, which has not previously
been done in the literature. We find that the more flexible G-Wishart priors can be
advantageous when the underlying disease risk surface has sharp changes, but there
are serious concerns related to estimating a large number of covariance parameters
(39 + 93 = 132 for our example). We illustrate a more realistic example relying on the
assumption of separability in Section 5.

4.1 Data Generation

We use the 39 counties in Washington State as our study region and generate expected
counts based on the age-gender structure of these counties in the 2010 Census and
published rates for larynx, ovarian, and lung cancer in the United Kingdom in 2008
(Cancer Research UK, 2013). These three cancers are chosen to represent a range of
disease incidence from rare to common. A map of the counties with the underlying
undirected graph is shown in Figure 2, and the distributions of expected counts for each
cancer are shown on the log scale in Figure 3.

We generate the risk surface as the combination of a globally-smooth surface and a
locally-constant surface. We label each area −1, 0 or 1 using a Potts model (Green and
Richardson, 2002) so that neighboring areas are more likely to have the same label. The
label allocation for this simulation study is shown in Figure 4. For each simulation, we
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Figure 2: Washington counties and adjacency graph: 39 areas, 93 edges, 648 missing
edges.

Figure 3: Distribution of the log expected counts. Expected counts are based on the
2010 population in each county and published rates for larynx, ovarian, and lung cancer
in the UK. These three cancers represent a range of disease incidence from rare to
common.

generate

yi = Poi(Eiθi),

log(θi) = 0.1xi + (M × Li + ui),

where Li is the label assigned to county i. We simulate xi and ui independently from
multivariate normal distributions with Matérn covariance function with smoothness
parameter 2.5 and range chosen so that the median marginal correlation is 0.5. Thus,
each of the vectors x and u are realizations of a smooth spatial process observed at a
finite set of points. In different simulations, we set M to 0.5, 1, or 1.5. Larger values
of M lead to a risk surface with more discontinuities. We generate 50 realizations from
each combination of M and the three sets of expected counts.
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Figure 4: Labels (Li) for simulation study.

For the simulation results described below, we run each chain for 100,000 itera-
tions, discarding the first half as burn in. We set the prior parameters for the model
in Section 3.3 to σα = 1, σβ = 10, (a, b) = (0.5, 0.0015), and δ = 3. Figure 3 in the
supplementary material shows the evolution of the posterior mean for 10 different chains
for two elements of the Cholesky square root and two random effects. In all cases, we
reach convergence in about 10,000 iterations.

4.2 Results

We compare the model using the truncated G-Wishart prior to three other models. The
model using the G-Wishart prior is identical to the model from Section 3.3 except that
the prior on the precision matrix K is the G-Wishart prior instead of the truncated
G-Wishart prior. We also compare against the convolution model from Section 2.2 and
a similar model that includes only spatial random effects with an ICAR prior. In the
convolution and ICAR models, we estimate the posterior mean and variance of the
relative risks using INLA. For the models using truncated G-Wishart and G-Wishart
priors, we explore the posterior distributions using MCMC.

In Figure 5, we compare the true spatial random effects u against the posterior
estimates of the random effects for the truncated G-Wishart model and the G-Wishart
models from one simulation for each set of expected counts. The estimates of the random
effects are similar to the true values when the expected counts are high, but there is
substantial shrinkage toward the prior mean of zero when the expected counts are small.
This reflects the fact that there is much more information about the relative risks when
the counts y are larger, and we see the same relationship in other disease mapping
models.

We compare the four methods using the root-averaged mean squared error (RAMSE)
of the posterior mean of each relative risk θi. This is the square root of the mean squared
error averaged over all simulations and all areas. For S simulations and B iterations of
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Figure 5: Simulated versus estimated spatial random effects for one simulation from
each of set of expected counts with M = 0.5. The estimates are the posterior means of
u under the truncated G-Wishart (TGW) and G-Wishart (GW) models. The posterior
estimates shrink toward the prior mean of zero as the expected counts decrease.

the MCMC sampler, the RAMSE is

RAMSE =

√√√√ 1

39× S ×B

39∑
i=1

S∑
s=1

B∑
b=1

(θ
(b)
is − θis)2,

where θis it the true relative risk for area i in simulation s and θ
(b)
is is the corresponding

value at iteration b of the MCMC. The results of this simulation are shown in Figure 6,
and the triangle indicates the lowest RAMSE within each scenario.

In general, the RAMSE decreases for all four models when the expected counts
increase, and the RAMSE increases when the level of smoothing decreases (i.e., M in-
creases). The model using the truncated G-Wishart prior performs the best in six out
of nine scenarios, and we see the greatest benefit in the larynx, M = 1.5 simulation
when the expected counts are low and the local discontinuities in the risk surface are
most prominent.

While the truncated G-Wishart and G-Wishart priors for the spatial covariance
appear advantageous in this simulation study, there is little information in a single
sample for estimating the full covariance matrix. Figure 7 shows that the posterior
distributions of the elements of the Chokesly square root are nearly identical to the
prior distributions. This suggests that prior parameter choice plays a substantial role in
the results from the TGW and GW models. Furthermore, the TGW and GW models
should struggle when the risk surface is smoothly varying and the degree of smoothness
is common across the study region. Table 2 in the supplementary material shows that
the convolution model outperforms the TGW and GW models when there is no spatial
association (the log relative risks are generated independently) and when the underlying
risk surface is smooth (the log relative risks are generated directly from the ICAR prior).
In general, the TGW and GW results are comparable with the convolution model when
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Figure 6: Root average mean squared error (RAMSE) for relative risks θ. The triangle
signifies the smallest value for each experiment. The four models are: TGW, truncated
G-Wishart prior on the precision matrix for the spatial random effects; GW, G-Wishart
prior on the precision matrix for the spatial random effects; BYM, convolution model
with independent and ICAR random effects; ICAR, only ICAR random effects. All
models show increased RAMSE with increased spatial discontinuities (large M) and
increased RAMSE with smaller expected counts. The TGW prior performs the best in
six out of nine scenarios with the greatest benefit in the larynx, M = 1.5 experiment.
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Figure 7: Comparison of the prior versus the posterior distribution of the elements of
the Cholesky square root for one realization of the univariate simulation study with the
TGW model.

the expected counts were larger and there was some spatial structure in the risk surface.
However, with large expected counts (e.g., the lung cancer scenario), most reasonable
methods will perform adequately.

5 Multiway Disease Mapping

In this section, we use the truncated G-Wishart prior in a multivariate disease mapping
context using cancer incidence data from the Washington State Cancer Registry. Let
Y = {yic : i = 1, . . . , 39, c = 1, . . . , 10} be a 39× 10 matrix of incidence for 10 cancers
in each county in Washington State in 2010. These 10 cancers have the largest incidence
across the state in 2010. The expected counts Eic are calculated separately for each can-
cer using internal standardization based on sex and 5-year age bands. The standardized
incidence ratios (SIRs = Y/E) for these data are between 0 and 3.91, and the range
of the empirical correlations between the SIRs of the different cancers (not taking into
account spatial dependence) is (−0.203, 0.477). Just over 20% of the counts are under 5,
but we do not treat small counts as missing in this analysis.

We use cross-validation to compare the model in Section 3.4 to models using the
G-Wishart prior (Dobra et al., 2011) and using the proper CAR form for KR (Gelfand
and Vounatsou, 2003). We compare 3 different choices for the prior on KR and two
choices for the prior on KC . For the truncated G-Wishart and G-Wishart priors on
KR, we set δR = 3 and DR = D(ρ) = (Dω − ρW)−1, where the prior on ρ is the
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×105 BIAS2 VAR MSE π(KC) π(KR)
GGM 2.18 1.06 3.23 G-Wis G-Wis

TGGM 1.25 0.73 1.98 G-Wis NG-Wis
FULL 2.40 0.99 3.39 Wis G-Wis

TFULL 1.61 0.69 2.29 Wis NG-Wis
MCAR 1.31 0.82 2.13 Wis CAR

Table 1: Ten-fold cross-validation results for the Washington State cancer incidence
data. The five models use the matrix normal random effects model from Section 3.4.
The priors on the precision matrices are: GGM, G-Wishart priors on KR and KC ;
TGGM, truncated G-Wishart prior on KR and G-Wishart prior on KC ; FULL, G-
Wishart prior on KR and Wishart prior on KC ; TFULL, truncated G-Wishart prior on
KR and Wishart prior on KC ; MCAR, proper CAR prior on KR and Wishart prior on
KC . In the GGM and TGGM models, the cancer conditional independence graph GC

is random. In the other three models, GC is a complete graph.

same as in Section 3.3. The MCAR prior on KR is simply KR = D(ρ)−1. For both the
Wishart and the G-Wishart priors on KC , we set δC = 3 and DC = I.

We randomly split all observations into 10 bins and create 10 data sets, each with one
bin of counts held out. We impute the missing counts as part of the MCMC and compare
the models based on average predictive squared bias (BIAS2) and average predictive
variance (VAR). Let EM(Yic) be the predicted value under model M, varM(Yic) be the
variance of the posterior predictive distribution, and Yic be the observed count. The
comparison criteria are

BIAS2M =
1

39× 10

∑
Yic

(EM(Yic)− Yic)
2
,

VARM =
1

39× 10

∑
Yic

varM(Yic).

The results (based on running each MCMC for 200,000 iterations) are given in
Table 1. The truncated G-Wishart model with a G-Wishart prior on KC performs best
in terms of bias, and the truncated G-Wishart model with a Wishart prior on KC

performs best in terms of predictive variance. Using the truncated G-Wishart prior for
the spatial precision matrix improves over the G-Wishart prior for both choices of prior
for KC . The MCAR model is the second best model in terms of MSE (the sum of BIAS2

and VAR).

Figure 8 shows the estimated posterior distribution of the spatial autocorrelation
parameter ρ for the five models. Under the G-Wishart prior on KR, the posterior for ρ
is much more concentrated near zero than with a truncated G-Wishart prior (regardless
of the prior on KC). The posterior median for ρ when using CAR prior on KR is
between the estimates from the G-Wishart and truncated G-Wishart priors. Figure 9
shows the estimated posterior probabilities of including edges in GC for two different
priors on KR. The upper and lower triangles are quite similar, indicating that inference
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Figure 8: Posterior distribution of the spatial autocorrelation parameter ρ under the
five models considered.

on the between-cancer conditional independence graph is not sensitive to the choice of

prior onKR. The Lung–Leukemia, Bladder–Non-Hodgkin lymphoma, and Colon–Breast

cancer edges have the biggest posterior edge inclusion probabilities.

Finally, we compare the GGM, TGGM, and MCAR models using within-sample fit

for the complete data. Table 2 shows the average coverage and length of 95% posterior

predictive intervals as well as two measures of the effective number of parameters: pDIC

(Spiegelhalter et al., 2002) and pWAIC (Gelman et al., 2013):
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Figure 9: Pairwise edge inclusion probabilities for GC when the prior on KR is G-
Wishart (upper triangle) or truncated G-Wishart (lower triangle). The abbreviations
are: BL, Bladder; BR, Breast; CO, Colorectal; EN, Endometrial; KI, Kidney; LE,
Leukemia; LU, Lung; ME, Melanoma of the skin; NH, Non-Hodgkin lymphoma; PR,
Prostate. The Lung–Leukemia, Bladder–Non-Hodgkin lymphoma, and Colon–Breast
cancer edges have the biggest posterior edge inclusion probabilities in both models.

pDIC = 2
(
log p(Y | θ̂post)− Epost log p(Y | Θ)

)
,

pWAIC =

n∑
i=1

C∑
c=1

VAR log p(Yic | θ).

While all models have approximately the correct coverage, the posterior predictive inter-
vals from the truncated G-Wishart model are slightly smaller. This remains true when
averaging over the predictive intervals for small counts (≤ 5) or larger counts (≥ 20).
The MCAR model has the fewest number of effective parameters by both measures,
which is consistent with the parsimonious form of the spatial covariance in the MCAR
model. The G-Wishart model has the largest number of effective parameters under pDIC

but the truncated G-Wishart has the largest number under pWAIC. This inconsistency
in the ordering is likely a result of differences in the shapes of the posterior predictive
distributions under the GGM and TGGM models. Both pDIC and pWAIC measure the
spread in the log posterior predictive density, but the estimators are affected differently
by features such as longer tails.

The cross-validation results are somewhat sensitive to the choice of prior on ρ. We
investigated fixing ρ to 0.99 or 0.9 (the mean of the Beta(18, 2) prior used in Jin et al.
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COV LEN LEN≤5 LEN≥20 pDIC pWAIC

GGM 0.959 31.33 7.47 51.82 184.1 133.1
TGGM 0.954 31.27 7.36 51.79 182.2 135.3
MCAR 0.956 31.31 7.41 51.85 181.3 131.3

Table 2: Coverage rates (COV) and mean length (LEN) of the in-sample 95% credible
intervals. Mean lengths are also give by ranges of observed counts. pDIC and pWAIC are
two measures of the effective number of parameters.

(2007)) as well as using a discrete uniform prior on {0.05, 0.1, . . . , 0.9, 0.95, 0.99}. In
some cases, the predictive variance is substantially smaller than the variance in Table 1,
but this comes at the cost of greater bias. The best method in terms of overall MSE is
still the TGGM model where the prior on ρ is discrete uniform with additional values
closer to 1. Full cross-validation results for the three additional priors on ρ are in the
supplementary material.

6 Discussion

This article presents a novel extension of the G-Wishart prior for the precision matrix of
spatial random effects. In a simulation study, the truncated G-Wishart prior is able to
better estimate the relative risks when the outcomes are rare (i.e., the expected counts
are small) and when the risk surface is not smooth. However, we found that there is not
enough information in a single outcome to estimate the spatial correlation structure.
The restriction of the G-Wishart prior was shown to be advantageous when used in a
multivariate disease mapping context with incidence data from the Washington State
Cancer Registry.

The multivariate model relies on the assumption of separability to estimate the
rich correlation structure by pooling information across outcomes. The validity of the
separability assumption has been carefully considered for spatiotemporal applications
(Stein, 2005; Fuentes, 2006), and alternative, non-separable space–time covariance mod-
els have been proposed for Gaussian processes (Gneiting, 2002; Gneiting and Guttorp,
2010) and Gaussian Markov random fields (Knorr-Held, 2000). Gelfand and Vounatsou
(2003) extend the MCAR to allow for different spatial autocorrelation parameters for
each outcome, yielding non-separable model that is still relatively parsimonious, and Jin
et al. (2005, 2007) further extend the MCAR paradigm by including parameters that
a directly represent the correlation between different outcomes in neighboring areas.
Ultimately, these MCAR extensions still make an assumption similar to separability
in that the correlation between outcomes within a single areas is the same for all ar-
eas.

As mentioned in Section 2.1, others have approached this problem by directly al-
tering the conditional independence structure (Knorr-Held and Raßer, 2000; Green and
Richardson, 2002; Lee and Mitchell, 2013; Lee et al., 2014). Given that these models
have been shown to outperform the traditional convolution model in some scenarios and
are fairly parsimonious, these methods may be better for univariate outcomes than our



986 Restricted Covariance Priors with Applications in Spatial Statistics

TGW model. One direction for future research is to incorporate the locally adaptive
CAR (Lee and Mitchell, 2013) in the matrix variate random effect framework of Sections
3.4 and 5.

There are a number of computation issues when using the truncated G-Wishart and
G-Wishart priors. Each MCMC run for the univariate truncated G-Wishart model in
Section 4 takes approximately 1.5 hours to complete on a 2.5 GHz Intel Xeon E5-2640
processor, and, with the exception of the MCAR model, the MCMC for each model in
Section 5 takes about 6.5 hours to complete. In contrast, estimating the convolution and
ICAR models from Section 4 takes a matter of seconds in INLA. We have found that
the proposal variance for updates of the Cholesky square (Section 3.3) and the random
effects (see supplementary material) must be chosen carefully to avoid poor convergence.
In both Sections 4 and 5, we used s = 2 for updating Φ and s = 0.1 for updating u.
While the computation time for the models detailed here are not prohibitive, they may
pose a challenge as we extend to more complicated datasets, such as those including
multiple diseases in time and space.

R code for the simulation in Section 4 and C++ code for the analysis in Section
5 are available at http://www.lancaster.ac.uk/staff/smithtr/NGWSource.zip. In-
cluded here are the expected counts and labeling scheme for Section 4 and prototypical
data for Section 5. A censored version of the data used in Section 5 is available from
https://fortress.wa.gov/doh/wscr/WSCR/Query.mvc/Query.

Supplementary Material

Supplementary Material for “Restricted Covariance Priors with Applications in Spatial
Statistics” (DOI: 10.1214/14-BA927SUPP; .pdf).
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