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Two-sample Bayesian Nonparametric
Hypothesis Testing

Chris C. Holmes∗, François Caron†, Jim E. Griffin‡, and David A. Stephens§

Abstract. In this article we describe Bayesian nonparametric procedures for two-
sample hypothesis testing. Namely, given two sets of samples y(1) iid∼ F (1) and
y(2) iid∼ F (2), with F (1), F (2) unknown, we wish to evaluate the evidence for the null
hypothesis H0 : F (1) ≡ F (2) versus the alternative H1 : F (1) �= F (2). Our method is
based upon a nonparametric Pólya tree prior centered either subjectively or using
an empirical procedure. We show that the Pólya tree prior leads to an analytic
expression for the marginal likelihood under the two hypotheses and hence an
explicit measure of the probability of the null Pr(H0|{y(1),y(2)}).

Keywords: Bayesian nonparametrics, Pólya tree, hypothesis testing.

1 Introduction

Nonparametric hypothesis testing is an important branch of statistics with wide appli-
cability. For example we often wish to evaluate the evidence for systematic differences
between real-valued responses under two different treatments without specifying an un-
derlying distribution for the data. That is, given two sets of samples y(1) iid∼ F (1) and
y(2) iid∼ F (2), with F (1), F (2) unknown, we wish to evaluate the evidence for the competing
hypotheses

H0 : F (1) ≡ F (2) versus H1 : F (1) �= F (2).

In this article we describe a nonparametric Bayesian procedure for this scenario. Our
Bayesian method quantifies the weight of evidence in favour of H0 in terms of an ex-
plicit probability measure Pr(H0|y(1,2)), where y(1,2) denotes the pooled data y(1,2) =
{y(1),y(2)}. To perform the test we use a Pólya tree prior (Lavine, 1992; Mauldin
et al., 1992; Lavine, 1994) centered on some distribution G where under H0 we have
F (1,2) = F (1) = F (2) and under H1, F

(1) �= F (2) are modelled as independent draws from
the Pólya tree prior. In this way we frame the test as a model comparison problem
and evaluate the Bayes Factor for the two competing models. The Pólya tree is a well
known nonparametric prior distribution for random probability measures F on Ω where
Ω denotes the domain of Y (Ferguson, 1974).

Bayesian nonparametrics is a fast developing discipline, but while there has been
considerable interest in nonparametric inference there has somewhat surprisingly been
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little written on nonparametric hypothesis testing. Bayesian parametric hypothesis test-
ing where F (1) and F (2) are of known form is well developed in the Bayesian literature,
see e.g. Bernardo and Smith (2000), and most nonparametric work has concentrated
on testing a parametric model versus a nonparametric alternative (the Goodness of Fit
problem). Initial work on the Goodness of Fit problem (Florens et al., 1996; Carota
and Parmigiani, 1996) used a Dirichlet process prior for the alternative distribution
and compared to a parametric model. In this case, the nonparametric distributions will
be almost surely discrete, and the Bayes factor will include a penalty term for ties.
The method can lead to misleading results if the data is absolutely continuous, and
has motivated the development of methods using nonparametric priors that guarantee
almost surely continuous distributions. Dirichlet process mixture models are one such
class. The calculation of Bayes factors for Dirichlet process-based models is discussed by
Basu and Chib (2003). Goodness of fit testing using mixtures of triangular distributions
is considered by McVinish et al. (2009). An alternative form of prior, the Pólya tree,
was considered by Berger and Guglielmi (2001). Simple conditions on the prior lead to
absolutely continuous distributions. Berger and Guglielmi (2001) develop a default ap-
proach and consider its properties as a conditional frequentist method. Hanson (2006)
discusses the use of Savage-Dickey density ratios to calculate Bayes factors in favour
of the centering distribution (see also Branscum and Hanson (2008)). Consistency is-
sues are discussed by Dass and Lee (2004), Rousseau (2007), Ghosal et al. (2008) and
McVinish et al. (2009). There has been some work on testing the hypothesis that two
distributions are the same; Dunson and Peddada (2008) consider hypothesis testing of
stochastic ordering using restricted Dirichlet process mixtures, but their methods could
be modified to allow two-sided hypotheses. They consider an interval null hypothesis
and rely on Gibbs sampling for posterior computation. Pennell and Dunson (2008) de-
velop a Mixture of Dependent Dirichlet Processes approach to testing changes in an
ordered sequence of distributions using a tolerance measure. Bhattacharya and Dunson
(2012) develop an approach for nonparametric Bayesian testing of differences between
groups, with the data within each group constrained to lie on a compact metric space
or Riemannian manifold.

Recently, following work presented here (originally posted on arXiv in Holmes et al.
(2009)), Ma and Wong (2011) propose to allow the two random distributions under the
alternative to randomly couple on different parts of the sample space, thereby achieving
borrowing of information. Moreover, Chen and Hanson (2014) propose to use Lavine’s
(1992) partition for each F (j) centered at the normal distribution. Their approach en-
ables generalization to more than two samples, but contrary to our approach requires
a truncation level to be set. They also follow Berger and Guglielmi (2001) by choosing
the parameter c that maximizes the Bayes factor in favor of the alternative.

The rest of the paper is as follows. In Section 2 we discuss the Pólya tree prior and
derive the marginal probability distributions that result from such a prior. In Section
3 we describe our method and algorithm for calculating Pr(H0|y(1,2)) based on a sub-
jective partition. In Section 4 we discuss an empirical Bayes procedure where the Pólya
tree priors are centered on the empirical cdf of the joint data. Section 5 discusses the
sensibility of the procedures to tuning parameters. Section 6 provides a discussion of
related approaches and Section 7 concludes with a discussion of potential extensions.
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Figure 1: Construction of a Pólya tree distribution. Each of the θεm is independently
drawn from Beta(αεm0, αεm1). Adapted from Ferguson (1974).

2 Pólya tree priors

Pólya trees form a class of distributions for random probability measures F on some
domain Ω (Lavine, 1992; Mauldin et al., 1992; Lavine, 1994). Consider a recursive dyadic
(binary) partition of Ω into disjoint measurable sets. Denote the kth level of the partition
{B(k)

j , j = 0, . . . , 2k − 1}, where B(k)

i ∩B(k)

j = ∅ for all i �= j. The recursive partition is

constructed such that B(k)

j ≡ B(k+1)

2j ∪B(k+1)

2j+1 for k = 1, 2, . . . , j = 0, . . . , 2k − 1. Figure 1
illustrates a bifurcating tree navigating the partition down to level three for Ω = [0, 1).
It will be convenient to index the partition elements using base 2 subscript and drop
the superscript so that, for example, B000 indicates the first set in level 3, B0011 the
fourth set in level 4 and so on.

To define a random measure on Ω we construct random measures on the sets Bj . It
is instructive to imagine a particle cascading down through the tree such that at the
jth junction the probability of turning left or right is θj and (1 − θj) respectively. In
addition we consider θj to be a random variable with some appropriate distribution
θj ∼ πj . The sample path of the particle down to level k will be recorded in a vector
εk = {εk1, εk2, . . . , εkk} with elements εki ∈ {0, 1}, such that εki = 0 if the particle went
left at level i, εki = 1 if it went right. Hence Bεk denotes which partition the particle
belongs to at level k. By convention, set ε0 = ∅. Given a set of θjs it is clear that the
probability of the particle falling into the set Bεk is just

P (Bεk) =

k∏
i=1

(θεi−1)
(1−εii)(1− θεi−1)

εii ,

which is just the product of the probabilities of falling left or right at each junction that
the particle passes through. This defines a random measure on the partitioning sets.

Let Π denote the collection of sets {B0, B1, B00, . . .} and let A denote the collection
of parameters that determine the distribution at each junction, A = (α00, α01, α000, . . .).

Definition 2.1. Lavine (1992) A random probability measure F on Ω is said to have
a Pólya tree distribution, or a Pólya tree prior, with parameters (Π,A), written F ∼
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PT (Π,A), if there exists nonnegative numbers A = (α0, α1, α00, . . .) and random vari-
ables Θ = (θ, θ0, θ1, θ00, . . .) such that the following hold:

1. the random variables in Θ are mutually independent;

2. for every k = 1, 2, . . . and every εk ∈ {0, 1}k,

θεk ∼ Beta(αεk0, αεk1);

3. for every k = 1, 2, . . . and every εk ∈ {0, 1}k,

F (Bεk |Θ) =

k∏
i=1

(θεi−1
)(1−εii)(1− θεi−1

)εii . (1)

A random probability measure F ∼ PT (Π,A) is realized by sampling the θjs from
the Beta distributions. Θ is countably infinite as the tree extends indefinitely, and hence
for most practical applications the tree is specified only to a depth m. Lavine (1994)
refers to this as a “partially specified” Pólya tree. It is worth noting that we will not need
to make this truncation in what follows: our test will be fully specified with analytic
expressions for the marginal likelihood.1

By defining Π and A, the Pólya tree can be centered on some chosen distribution G
so that E[F ] = G where F ∼ PT (Π,A). Perhaps the simplest way to achieve this is to
place the partitions in Π at the quantiles ofG and then set αεk0 = αεj1 for all k = 1, 2, . . .
and all εk ∈ {0, 1}k. (Lavine, 1992). For Ω ≡ R this leads to B0 = (−∞, G−1(0.5)),
B1 = [G−1(0.5),∞) and, at level k,

Bεk = [G−1{(k∗ − 1)/2k}, G−1(k∗/2k)), (2)

where k∗ is the decimal representation of the binary number εk.

It is usual to set the α’s to be constant in a level αεm0 = αεm1 = cm for some
constant cm. The setting of cm governs the underlying continuity of the resulting F ’s.
For example, setting cm = cm2, c > 0, implies that F is absolutely continuous with
probability 1 while cm = c/2m defines a Dirichlet process which makes F discrete with
probability 1 (Lavine, 1992; Ferguson, 1974). We will follow the approach of Walker and
Mallick (1999) and define cm = cm2. The choice of c is discussed in Section 5.

2.1 Conditioning and marginal likelihood

An attractive feature of the Pólya tree prior is the ease with which we can condition on
data. Pólya trees exhibit conjugacy: given a Pólya tree prior F ∼ PT (Π,A) and data
y drawn independently from F , then a posteriori F also has a Pólya tree distribution,
F |y ∼PT (Π,A∗) where A∗ is the set of updated parameters, A∗ = {α∗

00, α
∗
01, α

∗
000, . . .}

α∗
εi |y =αεi + nεi , (3)

1Note however that consistency results only hold for a truncated version of the proposed test.
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where nεi denotes the number of observations in y that lie in the partition Bεi . The
corresponding random variables θ∗j are therefore distributed a posteriori as

θ∗j |y =Beta(αj0 + nj0, αj1 + nj1) (4)

where nj0 and nj1 are the numbers of observations falling left and right at the junction
in the tree indicated by j. This conjugacy allows for a straightforward calculation of the
marginal likelihood for any set of observations, as

Pr(y|Θ,Π,A) =
∏
j

θ
nj0

j (1− θj)
nj1 (5)

where θj |A ∼ Be(αj0, αj1) and where the product in (5) is over the set of all parti-
tions, j ∈ {0, 1, 00, . . . , }, though clearly for many partitions we have nj0 = nj1 = 0.
Equation (5) has the form of a product of independent Binomial-Beta trials hence the
marginal likelihood is,

Pr(y|Π,A) =
∏
j

(
Γ(αj0 + αj1)

Γ(αj0)Γ(αj1)

Γ(αj0 + nj0)Γ(αj1 + nj1)

Γ(αj0 + nj0 + αj1 + nj1)

)
(6)

where j ∈ {0, 1, 00, . . . , }. This marginal probability will form the basis of our test for
H0 which we describe in the next section.

3 A procedure for Bayesian nonparametric hypothesis
testing

We are interested in providing a weight of evidence in favour of H0 given the observed
data. From Bayes theorem,

Pr(H0|y(1,2)) ∝ Pr(y(1,2)|H0)Pr(H0). (7)

Under the null hypothesis H0, y
(1) and y(2) are samples from some common distribu-

tion F (1,2) with F (1,2) unknown. We specify our uncertainty in F (1,2) via a Pólya tree
prior, F (1,2) ∼ PT (Π,A). Under H1, we assume y(1) ∼ F (1), y(2) ∼ F (2) with F (1), F (2)

unknown. Again we adopt a Pólya tree prior for F (1) and F (2) with the same prior
parameterization as for F (1,2) so that

F (1), F (2), F (1,2) iid∼ PT (Π,A) (8)

The logic for adopting a common prior distribution is that we regard the F s as random
draws from some universe of distributions that we describe probabilistically through the
Pólya tree distribution. Π is constructed from the quantiles of some a priori centering
distribution. Following the approach of Walker and Mallick (1999); Mallick and Walker
(2003) we take common values for the αjs at each level as αj0 = αj1 = cm2 for an α
parameter at level m.
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The posterior odds on H0 is

Pr(H0|y(1,2))

Pr(H1|y(1),y(2))
=

Pr(y(1,2)|H0)

Pr(y(1),y(2)|H1)

Pr(H0)

Pr(H1)
(9)

where the first term is just the ratio of marginal likelihoods, the Bayes Factor, which
from (6) and conditional on our specification of Π and A, is

P (y(1,2)|H0)

P (y(1),y(2)|H1)
=
∏
j

bj (10)

where

bj =
Γ(αj0)Γ(αj1)

Γ(αj0 + αj1)

Γ(αj0 + n(1)

j0 + n(2)

j0 )Γ(αj1 + n(1)

j1 + n(2)

j1 )

Γ(αj0 + n(1)

j0 + n(2)

j0 + αj1 + n(1)

j1 + n(2)

j1 )

×
Γ(αj0 + n(1)

j0 + αj1 + n(1)

j1 )

Γ(αj0 + n(1)

j0 )Γ(αj1 + n(1)

j1 )

Γ(αj0 + n(2)

j0 + αj1 + n(2)

j1 )

Γ(αj0 + n(2)

j0 )Γ(αj1 + n(2)

j1 )
(11)

and the product in (10) is over all partitions, j ∈ {∅, 0, 1, 00, . . . , }, n(1)

j0 and n(1)

j1 represent

the numbers of observations in y(1) falling right and left at each junction and n(2)

j0

and n(2)

j1 are the equivalent quantities for y(2). We can see from (10) that the overall
Bayes Factor has the form of a product of Beta-Binomial tests at each junction in the
tree to be interpreted as “does the data support one θj or two, {θ(1)

j , θ(2)

j }, in order
to model the distribution of the observations going left and right at each junction?”,
where for each j, θj ∼ Beta(αj , αj). The product in (10) is defined over the infinite set
of partitions. However, for each branch j, bj = 1 if n(1)

j0 + n(1)

j1 = 0 or n(2)

j0 + n(2)

j1 = 0;
hence to calculate (10) for the infinite partition structure we just have to multiply
terms from junctions which contain at least some data from the two sets of samples.
Hence, we only need specify Π to the quantile level where partitions contain observations
from both samples. Note also that in the complete absence of data (that is, when
n(1)

j0 + n(2)

j0 = n(1)

j1 + n(2)

j1 = 0)

bj =
Γ(αj0)Γ(αj1)

Γ(αj0 + αj1)

Γ(αj0)Γ(αj1)

Γ(αj0 + αj1)

Γ(αj0 + αj1)

Γ(αj0)Γ(αj1)

Γ(αj0 + αj1)

Γ(αj0)Γ(αj1)
= 1

for all j, so the Bayes Factor is 1.

The test procedure is described in Algorithm 1.

3.1 Prior specification

The Bayesian procedure requires the specification of {Π,A} in the Pólya tree. While
there are good guidelines for setting A the setting of Π is more problem specific, and
the results will be quite sensitive to this choice. Our current, default, guideline is to
first standardise the joint data y(1,2) with the median and interquantile range of y(1,2)

and then set the partition on the quantiles of a standard normal density, Π = Φ(·)−1.
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Algorithm 1 Bayesian nonparametric test

1. Fix the binary tree on the quantiles of some centering distribution G.
2. For level m = 1, 2, . . . , for each j set αj = cm2 for some c.
3. Add the log of the contributions of terms in (10) for each junction in the tree that

has non-zero numbers of observations in y(1,2) going both right and left.
4. Report Pr(H0|y(1,2)) as Pr(H0|y(1,2)) = 1

1+exp(−LOR) , where LOR denotes the log

odd ratio calculated at step 3.

We have found this to work well as a default in most situations, though of course the
reader is encouraged to set Π according to their subjective beliefs.

In our algorithm, parameter c is treated as a fixed hyperparameter. As we demon-
strate in Section 3.2, a truncated version of our test with a subjective partition is con-
sistent under null and alternative hypotheses irrespective of the choice of c. However,
c does have an impact on finite sample properties, that is, the finite sample posterior
probabilities. This is always the case for Bayesian model selection/hypothesis testing
based on the marginal likelihood, which is effectively a measure of how well the prior
predicts the observed data, and not a feature restricted to our nonparametric procedure.
In Section 5 we provide some guidelines on the sensitivity of the testing procedure to
the value of this parameter, and discuss empirical Bayes estimation of c.

3.2 Consistency

Conditions for the consistency of the procedure under the null hypothesis and alternative
hypothesis are developed for a related test based on a truncation of the Bayes factor
(9). Let n = n(1)

∅ +n(2)

∅ be the total sample size for both samples. Let l(ε) be the length
of the vector ε. This also indicates that Bε forms part of the partition at level l(ε), and
in our construction there are 2l(ε) partition elements at level l(ε). We consider the test
statistics based on the truncated Bayes factor

BFκ0 =
∏

{j|l(j)≤κ0}
bj (12)

where κ0 ∈ N defines the level of truncation and can be set arbitrarily large. We also
consider a truncated version of the hypothesis test:

H0,κ0 : ∀ε|l(ε) ≤ κ0, F (1)(Bε) = F (2)(Bε)

versus

H1,κ0 : ∃ε|l(ε) ≤ κ0 and F (1)(Bε) �= F (2)(Bε).

First, assume H0,κ0 is true and let F0 denote the true distribution. To prove consis-
tency under H0,κ0 , it is sufficient to show that

lim
n→∞

logBFκ0 = ∞

as n → ∞ if both samples are drawn from the same distribution.



304 Two-sample BNP Hypothesis Testing

Theorem 3.1. Suppose that the limiting proportion of observations in the first sample
exists and is β∅:

β∅ = lim
n→∞

n(1)

∅
n(1)

∅ + n(2)

∅
. (13)

If 0 < β∅ < 1 then, under H0,κ0 ,

lim
n→∞

logBFκ0 = ∞

and the test defined by Algorithm 1, truncated at level κ0, is consistent under the null.

Proof. See Appendix.

We now consider consistency under H1,κ0 for the truncated version of the test.

Theorem 3.2. Assume that 0 < β∅ < 1, and that exists Bε, l(ε) ≤ κ0, such that

F (1)(Bε)F
(2)(Bε) > 0 and F (1)(Bε0)

F (1)(Bε)
�= F (2)(Bε0)

F (2)(Bε)
. Then

lim
n→∞

BFκ0 = 0

and the test defined by Algorithm 1, truncated at level κ0, is consistent under the alter-
native.

Proof. See Appendix.

The proofs for consistency for the non-truncated test are much more challenging, as
one needs to bound terms at each level of the Pólya tree. In the next section, we provide
numerical experiments on the evolution of the Bayes factor with respect to the sample
size under both H0 and H1, suggesting consistency for the non-truncated test.

3.3 Simulations

To examine the operating performance of the method we consider the following exper-
iments designed to explore various canonical departures from the null.

a) Mean shift: Y (1) ∼ N (0, 1), Y (2) ∼ N (θ, 1), θ = 0, . . . , 3.

b) Variance shift: Y (1) ∼ N (0, 1), Y (2) ∼ N (0, θ2), θ = 1, . . . , 3.

c) Mixture: Y (1) ∼ N (0, 1), Y (2) ∼ 1
2N (θ, 1) + 1

2N (−θ, 1), θ = 0, . . . , 3.

d) Tails: Y (1) ∼ N (0, 1), Y (2) ∼ t(θ−1), θ = 10−3, . . . , 10 where t(ν) denotes the
standard Student t distribution with ν degrees of freedom.

e) Lognormal mean shift: log Y (1) ∼ N (0, 1), log Y (2) ∼ N (θ, 1), θ = 0, . . . , 3.

f) Lognormal variance shift: log Y (1) ∼ N (0, 1), log Y (2) ∼ N (0, θ2), θ = 1, . . . , 3.
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The default mean distribution F (1,2)

0 = N (0, 1) was used in the Pólya tree to construct
the partition Π and α = m2. Data are standardized. Comparisons are performed with
n0 = n1 = 50 against the two-sample Kolmogorov-Smirnov and Wilcoxon rank test. To
compare the models we explore the “power to detect the alternative”. As a test statistic
for the Bayesian model we simulate data under the null and then take the empirical
0.95 quantile of the distribution of Bayes Factors as a threshold to declare H1. This is
known as “the Bayes, non-Bayes compromise” by Good (1992). Results, based on 1000
replications, are reported in Figure 2. As a general rule we can see that the KS test is
more sensitive to changes in central location while the Bayes test is more sensitive to
changes to tails or higher moments.

The dyadic partition structure of the Pólya Tree allows us to breakdown the contri-
bution to the Bayes Factor by levels. That is, we can explore the contribution, in the
log of equation (10), by level. This is shown in Figure 3 as boxplots of the distribution
of log BF statistics across the levels for the simulations generated for Figure 2. This
is a strength of the Pólya tree test in that it provides a qualitative and quantitative
decomposition of the contribution to the evidence against the null from differing levels
of the tree.

It is also of interest to investigate the behavior of the Bayes factor as a function of
the sample size, both under the null and various alternatives. Under the alternative, we
consider in particular the following cases:

a) Mean shift: Y (1) ∼ N (0, 1), Y (2) ∼ N (1, 1).

b) Variance shift: Y (1) ∼ N (0, 1), Y (2) ∼ N (0, 4).

c) Tails: Y (1) ∼ N (0, 1), Y (2) ∼ t(1).

The results are reported in Figure 4 for sample size n = 10, 50, 100, 200 with 500 repli-
cations, and seem to suggest that the non-truncated test is consistent under the null
and alternative.

4 A conditional procedure

The Bayesian procedure above requires the subjective specification of the partition
structure Π. This subjective setting may make some users uneasy regarding the sensi-
tivity to specification. In this section we explore an empirical procedure whereby the
partition Π is centered on the data via the empirical cdf of the joint data Π̂ = [F̂ (1,2)]−1.

Let Π̂ be the partition constructed with the quantiles of the empirical distribution
F̂ (1,2) of y(1,2). Under H0, there are now no free parameters and only one degree of
freedom in the random variables {n(1)

j0 , n
(1)

j1 , n
(2)

j0 , n
(2)

j1 } as conditional on the partition
centered on the empirical cdf of the joint, once one of the variables has been specified
the others are then known. We consider, arbitrarily, the marginal distribution of {n(1)

j0 }
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Figure 2: Power of Bayes test with αj = m2 on simulations from Section 3.3., with
x-axis measuring θ, the parameter in the alternative. Legend: K-S (dashed), Wilcoxon
(dot-dashed), Bayesian test (solid).
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Figure 3: Contribution to Bayes Factors from different levels of the Pólya Tree under
the alternative. Gaussian distribution with varying (a) mean (b) variance (c) mixture
(d) tails; log-normal distribution with varying (e) mean (f) variance, from Section 3.2.
Parameters of H1 were set to the mid-points of the x-axis in Figure 2.



308 Two-sample BNP Hypothesis Testing

Figure 4: Mean Bayes factor and 90% confidence interval with respect to the sample
size n under (a) the null and (b-c) two Gaussian distributions with different (b) means,
(c) variances and (d) a Gaussian and a Student t.

which is now a product of hypergeometric distributions (we only consider levels where

n(1,2)

j > 1)

Pr({n(1)

j0 }|H0, Π̂,A) ∝
∏
j

(
n(1)

j

n(1)

j0

)(
n(1,2)

j − n(1)

j

n(1,2)

j0 − n(1)

j0

)/(
n(1,2)

j

n(1,2)

j0

)
(14)

=
∏
j

HG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)
(15)

if max(0, n(1,2)

j0 + n(1)

j − n(1,2)

j ) ≤ n(1)

j0 ≤ min(n(1)

j , n(1,2)

j0 ), and zero otherwise.

Under H1, the marginal distribution of {n(1)

j0 } is a product of the conditional distri-
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bution of independent binomial variates, conditional on their sum,

Pr
({

n(1)

j0

}∣∣H1, Π̂,A
)
∝
∏
j

g
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , θ(1)

j , θ(2)

j

)∑
x
g
(
x;n(1,2)

j , n(1)

j , n(1,2)

j0 , θ(1)

j , θ(2)

j

) (16)

if max(0, n(1,2)

j0 + n(1)

j − n(1,2)

j ) ≤ n(1)

j ≤ min(n(1)

j , n(1,2)

j0 ), zero otherwise, and where

g
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , θ(1)

j , θ(2)

j

)
= Binomial

(
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j0 ;n
(1)

j , θ(1)

j

)
× . . .

Binomial
(
n(1,2)

j0 − n(1)

j0 ;n
(1,2)

j − n(1)

j , θ(2)

j

)
and

θ(1)

j |A ∼ Beta(αj0, αj1) θ(2)

j |A ∼ Beta(αj0, αj1).

Now, consider the odds ratio ωj =
θ(1)

j (1− θ(2)

j )

θ(2)

j (1− θ(1)

j )
and let

EHG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ωj

)
=

g(n(1)

j0 ;n
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j , n(1)
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j0 , θ(1)

j , θ(2)

j )∑
x
g(x;n(1,2)

j , n(1)

j , n(1,2)

j0 , θ(1)

j , θ(2)

j )
.

Then it can been seen that EHG(x;N,m, n, ω) is the extended hypergeometric distri-
bution (Harkness, 1965) whose pdf is proportional to

HG(x;N,m, n)ωx, a ≤ x ≤ b,

where a = max(0, n + m − N), b = min(m,n). Note there are C++ and R routines
to evaluate the pdf. The extended hypergeometric distribution models a biased urn
sampling scheme whereby there is a different likelihood of drawing one type of ball over
another at each draw. The Bayes factor is now given by

BF =
∏
j

HG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)∫ ∞

0

EHG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ωj

)
p(ωj)dωj

(17)

where the marginal likelihood in the denominator can be evaluated using importance
sampling or one-dimensional quadrature.

The conditional Bayes two-sample test can then be given in a similar way to Algo-
rithm 1 but now using (17) for the contribution at each junction. Conditions for the
consistency of the procedure under the null hypothesis are developed for a related test
based on a truncation of the Bayes factor (17) although we have been unable to show
consistency under the alternative.

Theorem 4.1. Consider the Bayes factor (17) truncated at level κ0

BFκ0 =
∏

j : l(j)≤κ0

HG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)∫ ∞

0

EHG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ωj

)
p(ωj)dωj

. (18)
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Suppose that β∅ is as defined in Equation (13). If 0 < β∅ < 1 then, under H0,κ0 ,

lim
n→∞

logBFκ0 = ∞

and the test is consistent under the null.

Proof. See Appendix.

We repeated the simulations from Section 3.3 with α = m2. The results are shown
in Figures 5 and 6. We observe similar behaviour to the test with subjective partition
but importantly we see that the problem in detecting the difference between normal
and t-distribution is corrected. Note that no standardisation of the data is required for
this test.

5 Sensitivity to the parameter c

The parameter c acts as a precision parameter in the Pólya tree and consequently can
have an effect on the hypothesis testing procedures previously described. In principle,
the parameter can be chosen subjectively as with precision parameters in other models
(such as the linear model). Its effect is perhaps most easily understood through the
prior variance of P (Bεk) which has the form (Hanson, 2006)

Var [P (Bεk)] = 4−k

⎡⎣ k∏
j=1

2cj2 + 2

2cj2 + 1
− 1

⎤⎦ .

The prior variance tends to zero as c → ∞ and so the nonparametric prior places mass
on distributions which more closely resemble the centering distribution as c increases.
Another consequence of this is that, under H1, c determines the a priori expected
squared Euclidean distance between F (1)(Bεk) and F (2)(Bεk), where F (1) and F (2) are
presumed independently drawn from PT (Π,A); this distance diminishes as c increases:

E[(F (1)(Bεk)− F (2)(Bεk))
2] = Var

[
F (1)(Bεk)

]
+Var

[
F (2)(Bεk)

]
= 4−k+ 1

2

⎡⎣ k∏
j=1

2cj2 + 2

2cj2 + 1
− 1

⎤⎦ .

The value of c can be chosen to control the rate at which the variances decreases.
We have found values of c between 1 and 10 work well in practice. Figures 7 and 8 show
results for different values of c. As with any Bayesian testing procedure, we recommend
checking the sensitivity of their results to the chosen value of the hyperparameter c.

An alternative approach to the choice of c in hypothesis testing is given by Berger
and Guglielmi (2001) in the context of testing a parametric model against a nonpara-
metric alternative. They argue that the minimum of the Bayes factor in favour of the
parametric model is useful since the parametric model can be considered satisfactory
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Figure 5: As in Figure 2 but now using conditional Bayes Test with αj = m2.
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Figure 6: Contribution to the Bayes Factor for different levels of the conditional Pólya
tree prior for Gaussian distribution with varying (a) mean (b) variance (c) mixture (d)
tails; log-normal distribution with varying (e) mean (f) variance.
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Figure 7: Subjective test with empirical Bayes estimation of the parameter c for (a)
mean shift (b) variance shift. Point estimates of c are obtained by maximizing both
the marginal likelihood under the null and alternative over the grid of values 10i for
i = −2,−1, . . . , 3.

if the “minimum is not too small”. It is the Bayes factor calculated using the empir-
ical Bayes (Type II maximum likelihood) estimate of c. We suggest taking a similar
approach if c cannot be subjectively chosen. In the test with subjective partition, the
empirical Bayes estimates ĉ are calculated under H0 and under H1. Using these values,
the Bayes factor can be interpreted as a likelihood ratio statistic for the comparison of
the two hypotheses. In the conditional test, the empirical Bayes estimate is calculated
only under H1 (since the marginal likelihood under H0 does not depend on c). Figures 7
and 8 provide results for mean and variance shifts with c estimated over a fixed grid
using this procedure.

We also performed experiments to test the sensitivity of the procedure to the parti-
tion. Experiments (not reported here) with a partition centered on a standard Student
t distribution showed little difference compared to a partition centered on a standard
Gaussian distribution.

6 Discussion and related work

There have been several other approaches to testing the difference between two distri-
butions using Pólya tree based approaches. Ma and Wong (2011) propose the Coupling
Optional Pólya tree (co-opt) prior which extends their previous work on Optional Pólya
tree priors (Wong and Ma, 2010). The Optional Pólya tree defines a prior for a single
distribution. A prior is defined on the sequence of partitions used to construct the Pólya
tree. This allows the partition to be concentrated on areas of the sample space which
have the largest difference from the base measure (which is the uniform in their case).
The co-opt prior is suitable for two distributions with a partition defined for each distri-
bution. The prior allows coupling of two partitions so that if a set A (which is member
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Figure 8: Conditional test with empirical Bayes estimation of the parameter c for (a)
mean shift (b) variance shift. Point estimate of c is obtained by maximizing the marginal
likelihood under the alternative over the grid of values 10i for i = −2,−1, . . . , 3.

of the partition at level m) is coupled then all subsequent partitions of A will be the
same for the two distributions. This allows the posterior to concentrate these couplings
on parts of the support of the two distributions where they are similar and so allows
the borrowing of strength between the two distributions. The prior is conjugate and
can be used to both test for differences between two distributions and to infer where
these differences occur in the posterior. The prior is particularly suited to multivariate
problems due to its ability to efficiently learn the partition of the data. The posterior is
available in closed form but can be computationally expensive to calculate in practice
with computational time scaling exponentially with sample size.

Chen and Hanson (2014) propose a method for comparing k-samples of data which
may be censored. They test the null hypothesis that the distribution of each sample is
the same against the alternative that the samples arise from at least two different distri-
butions. Under the null hypothesis, the common distribution is given a Pólya tree prior
whereas, under the alternative hypothesis, each distribution is given an independent
Pólya tree prior. All Pólya tree priors are centered over a normal distribution whose
parameters are estimated using maximum likelihood to define an empirical Bayes pro-
cedure. Different partitions are used for the Pólya tree distributions under the null and
the alternative hypotheses and so the partition must be truncated in order to compute
the Bayes factor, contrary to our simpler approach which involves no truncation.

7 Conclusions

We have described a Bayesian nonparametric hypothesis test for real valued data which
provides an explicit measure of Pr(H0|y(1,2)). The test is based on a fully specified Pólya
tree prior for which we are able to derive an explicit form for the Bayes Factor.
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Conditioning on a particular partition can lead to a predictive distribution that
exhibits jumps at the partition boundary points. This is a well-known phenomenon of
Pólya tree priors and some interesting directions to mitigate its effects can be found
in Hanson and Johnson (2002); Paddock et al. (2003); Hanson (2006). We do not consider
these approaches here as mixing over partitions would lose the analytic tractability of
our approach, but it is an interesting area for future study and is considered by Chen
and Hanson (2014).
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Appendix: Proofs

Proof of Theorem 1

Clearly the log Bayes factor is

logBFκ0 =
∑

{j|l(j)≤κ0}
log b

(n)
j .

Stirling’s approximation of the Gamma function allows us to write

b
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where
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(k)
j0 =

n
(k)
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n
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The term
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is a likelihood ratio for testing composite hypotheses

Hj0 : p(1)

j0 = p(2)

j0 = p(1,2)

j0 vs Hj1 :
(
p(1)

j0 , p
(2)

j0

)
∈ [0, 1]2
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with n(1)

j0 ∼ Binomial
(
n(1)

j , p(1)

j0

)
and n(2)

j0 ∼ Binomial
(
n(2)

j , p(2)

j0

)
. Clearly p̂(1,2)

j0 and(
p̂(1)

j0 , p̂
(2)

j0

)
are the maximum likelihood estimators under Hj0 and Hj1 respectively. It

follows that, underHj0,−2 logLj asymptotically follows a χ2 distribution (Wilks, 1938).

Finally, if β∅(1− β∅) > 0 and using Equation (20), then Theorem 1 follows.

Proof of Theorem 2

If F (1)(Bj) = 0 or F (2)(Bj) = 0, then we have trivially log(bj) = 0. We assume that

F (1)(Bj)F
(2)(Bj) > 0 (22)

0 < β∅ < 1. (23)

If p(1)
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j0 then, from the previous section, log(bj) goes to ∞ in o(log(n)). We consider
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(2)(Bj). Under assumptions (22) and (23), we
have 0 < βj < 1. Let Lj be defined as in Equation (21). We have
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and the function Hp : x ∈ (0, 1) → R+ is defined for p ∈ (0, 1) by
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Consider first the term ζj . We have
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As the function Hp is convex, it follows that ζj tends to a positive constant if p(1)

j0 �= p(2)

j0 .

Hence n(1,2)

j ζj tends to ∞ in o (n).



C. C. Holmes et al. 319

Consider now ηj which is approximately equal to
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We have asymptotically
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We have a quadratic form
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which is independent of the sample size, and it follows that Yj asymptotically follows
a scaled χ2 distribution and logLj goes to −∞ in o(n). To conclude, we have that in
Equation (19) √
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j n(2)

j

n(1,2)

j

�
√
n
√
F (1,2)(Bj)βj(1− βj).

It follows that

• If F (1)(Bj)F
(2)(Bj) = 0, log(bj) = 0.

• If F (1)(Bj)F
(2)(Bj) > 0

– If p(1)

j0 �= p(2)

j0 , the log-contribution log(bj) goes to −∞ at a rate of o(n).

– If p(1)

j0 = p(2)

j0 , the log-contribution log(bj) goes to +∞ at a rate of o(log n).

Proof of Theorem 3

The condition β∅(1− β∅) implies that βj(1− βj) > 0 for all j. Let

b
(n)
j =

HG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)∫ ∞

0

exp {u(ωj)} dωj

(24)

where u(ωj) = log EHG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ωj

)
+ log p(ωj). Then

logBFκ0 =
∑

{j|l(j)≤κ0}
log b

(n)
j .

Under the conditions βj(1 − βj) > 0, the maximum likelihood estimate ω̂j of the pa-
rameter ωj in the extended hypergeometric distribution converges in probability to the
true parameter (Harkness, 1965, p. 944). We can therefore use a Laplace approxima-
tion (Kass and Raftery, 1995) of the denominator in (24), we obtain for n(1)

j0 large

b
(n)
j �

HG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)
√
2π|Σ̂j |1/2 EHG

(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ω̂j

)
p (ω̂j)

where ω̂j = argmaxωj
u(ωj) and Σ̂−1

j = −D2uj(ω̂j), where D2uj(ω̂j) is the Hessian
matrix of second derivatives. The ratio

rj =
HG

(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0

)
EHG

(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ω̂j

) =
EHG

(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , 1
)

EHG
(
n(1)

j0 ;n
(1,2)

j , n(1)

j , n(1,2)

j0 , ω̂j

)
is a likelihood ratio for testing the composite hypotheses

Hj0 : ωj = 1 vs Hj1 : ωj > 0,

hence −2 log rj is asymptotically χ2-distributed (Wilks, 1938). And as |Σ̂j | → 0 as

n → ∞, then b
(n)
j → ∞ for all j as n → ∞.
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