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Rejoinder

Michael Finegold ∗ and Mathias Drton †

In a nutshell, our paper treats the problem of how to extract information from
partially corrupted observations in multivariate statistical problems—specifically, we
focused on the problem of graphical model selection. Our approach considers differ-
ent versions of multivariate distributions with t-marginals that are obtained by using,
to varying extent, distinct Gamma-divisors for the different coordinates of a random
vector. As described in the contributions to this discussion, there are a lot of ways
one could modify or generalize the models we used, and related ideas have appeared or
might be useful in contexts other than graphical modeling. There is also a vast litera-
ture on the general themes our paper touches upon, and the discussants have provided
many additional references giving a far more comprehensive description of the existing
literature than our own paper.

In this rejoinder we try to summarize and comment on the ideas we see emerge from
the discussion.

Directions of multivariate tails. Figure 2 in our paper contrasts different versions
of t-distributions in a bivariate setting. The figure shows a ‘spherical’ case, that is,
the dispersion matrix Ψ is the identity. Anthony O’Hagan’s Figure 1 shows a case
where Ψ exhibits strong correlation. His figure illustrates nicely that the alternative
t-distribution has heavy tails along the coordinate directions, which also underlies the
bounds on correlations we mention in our Section 4.2. O’Hagan’s Figure 2 shows an
example of a different type of t-distribution with heavy tails following principal compo-
nent directions. We primarily thought of applications in which the latent dependence
pattern captured by Ψ and the pattern of outliers are not tied together, the former be-
ing of say biological nature and the latter a matter of experimental technology. In this
case focusing on the coordinate directions seems natural to us, but principal component
directions or another coordinate system could be of interest in other applications.

Inference on the degrees of freedom. Our numerical work was based on the default
choice of ν = 3 degrees of freedom. Abel Rodriguez raised the point of inference
on the degrees of freedom. Sticking with the precise setup of our paper, we expect
that the message regarding the relative merits of the different t-distributions remains
the same under inference on ν. However, one would certainly be able to decrease the
gap that is visible in the ROC curve for normal data in Figure 3 of our paper. The
work of Besag and Higdon (1999) is one example of Bayesian inference on the degrees
of freedom. The two used a finite set of values for ν and suggested marginalization of
the Gamma-divisors for a block Gibbs step, which poses no problems in their setup of
independence (Ψ diagonal, in our setting). For non-diagonal Ψ, their blocking strategy
might prove useful for what we called the classical t-distribution but it seems more
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difficult to implement for the other versions of t-distributions.

Different degrees of freedom and related suggestions. Several discussants suggested
refined models allowing for possibly different degrees of freedom in different coordinates
of an observation or more direct ways to model ‘good’ components of a multivariate
observation as (more or less) Gaussian while using heavier-tailed distributions only for
‘bad’ components; see the comments of Franccois Caron & Luke Bornn, Anthony
O’Hagan, Juhee Lee and Abel Rodriguez. We agree that this an interesting avenue
to explore in future work. Modeling the degrees of freedom in these ways would offer
opportunities for gain in statistical efficiency when a considerable portion of the data
is roughly Gaussian. It would also alleviate further the conflict between modeling of
multivariate outliers and shrinkage of correlations that becomes more pronounced with
smaller degrees of freedom. In contrast to our t-distribution models, which place a
particular measurement model on top of the entire Gaussian model, refined models
might also be more appealing to those that would like see a stronger reference to an
underlying Gaussian model—we interpret the question of Jayanta Ghosh as going
in that direction. However, in either case any conditional independence interpretation
of the edge pattern in graphical modeling would have to make reference to the latent
Gaussian vector.

If we write νij for the degrees of freedom for divisor τij then the approach most closely
in line with our Dirichlet t setup would let the Dirichlet process clustering pertain to
the pairs (τi1, νi1), . . . , (τip, νip), as mentioned by Rodriguez. This could also be viewed
as yet another version of more general scale mixing, as discussed below. The second
approach of Caron & Bornn, which to us looks like one possible implementation of the
ideas outlined by Lee, seems just as promising. A comparison would get at the question
raised at the end of Luis Pericchi’s comment.

Borrowing strength across the sample. Figure 6 in our paper shows small divisors for
four genes across a group of 11 experiments. For this and similar examples, it could thus
be of interest to explore shared structure in the Dirichlet clustering across the sample.
Franccois Caron & Luke Bornn, Steve MacEachern, Alejandro Jara and Abel
Rodriguez commented and provided references to different work that would be relevant
for such extensions, and we agree that constructions involving hierarchical Dirichlet
processes would be natural. In fact, the Ph.D. thesis of the first author (Finegold 2010)
discusses this in more detail than the possibly misleading comments in the conclusion of
our paper. The thesis also spells out the full conditionals needed for a Gibbs sampler,
following the setup of Teh et al. (2006). It would be nice to see a full exploration of the
idea in a future paper.

Beyond t-distributions. While our focus was solely on t-distributions for modeling
of heavy tails/downweighting of outliers, our work could be repeated for many other
similar constructions, and the discussants suggest interesting examples. The figures in
Babak Shahbaba’s comment illustrate some popular distributional choices in scale
mixtures of normals, and Stefano Peluso shows how skewness could be generated.
Skewness is mentioned by Franccois Caron & Luke Bornn as well. Moreover, the
two point out nice properties of the family of Generalized Inverse Gaussian distributions.
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Again we look forward to development and applications of these ideas. In particular,
the Generalized Inverse Gaussian distributions could be of interest to the problems
involving scale parameters mentioned by Luis Pericchi.

Moving away from t-distributions in a rather different way, Abdolreza Moham-
madi & Ernst Wit consider copula Gaussian graphical models and give pointers to
recent literature on Bayesian inference. This is an area that has indeed seen much ac-
tivity in the last few years (see also Liu et al. 2009, 2012; Xue and Zou 2012; Harris and
Drton 2013). We agree that these semiparametric models would likely do quite well in
handling the problems we discuss in our paper. However, Gaussian copula models do
not overlap with our t-distribution models. In fact, one could consider a copula con-
struction based on our t-distributions instead of the Gaussian; compare, for instance,
Han and Liu (2014) and also the comment of Caron & Bornn.

Refinements in inference for graphical models. In our treatment of graphical mod-
els, we stuck to a computationally convenient setting, using rather simple priors and
restricting to decomposable graphs. While this was sufficient to make our main point
about the properties of the different t-distributions, one would expect serious applica-
tions to call for refinements. Guido Consonni & Luca La Rocca outline a number
of possible improvements in prior choice that would indeed be worth pursuing. In par-
ticular, in higher-dimensional settings with sparsity, the prior distribution on graphs
they suggest can drastically improve model selection. This was also shown recently for
Bayesian information criteria for graphical models by Foygel and Drton (2010, 2014)
and Gao et al. (2012) who build on the work of Bogdan et al. (2004), Chen and Chen
(2008) and Chen and Chen (2012). The last paragraph of the comment of Franccois
Caron & Luke Bornn points out another interesting possibility for priors over graphs.

The restriction to decomposable graphs was made merely for computational conve-
nience as the associated Hyper Inverse Wishart distributions have a normalizing con-
stant in simple closed form. Traversing the space of decomposable graphs is not as
involved as the comments of Abdolreza Mohammadi & Ernst Wit suggest, in par-
ticular, one does not need to invoke the max-cardinality algorithm at each step. How-
ever, we share the view of Mohammadi & Wit that it would be preferable to consider all
graphs in applications. In fact, the ‘statistical cost’ of using only decomposable models
has been studied recently by Fitch and Jones (2012). The main difficulty in working
with non-decomposable graphs is the fact that the normalizing constant for the Hyper
Inverse Wishart distribution no longer has the same simple form as in the decomposable
case. To address the issue, different approximation methods have been considered in
the literature. All references that come to our mind in this regard are mentioned in the
recent manuscript of Uhler et al. (2014) who provide some new mathematical insight in
the normalizing constants.

Throughout our paper we treat the case of independent and identically distributed
observations. However, this can be somewhat of a stretch for applications such as
gene expression, where different observations might be obtained under rather different
experimental conditions as emphasized in the comment of Adrian Dobra. Different
approaches might be useful to address this issue depending on how much is known about
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how experimental interventions affect the system under observation. With little prior
knowledge, building mixture models could be appealing. If more detailed information
on the effects of interventions is available, then we would find it more appropriate to
work with directed graphical models at the latent Gaussian level and leverage their
causal interpretation; see Pearl (2009); Spirtes et al. (2000) for an introduction to this
area.

Other areas of application. As Jayanta Ghosh comments, our work could prove
useful in contexts other than graphical modeling. We agree that the application to
graphical modeling is in no way specific to the robustness issues we aimed to address.
Any other multivariate statistical problem could have been the base problem. Being
more specific, Michele Guindani discusses possible applications in multiple testing,
Babak Shahbaba mentions closely related work in the context of genome-wide asso-
ciation studies, and Pablo Verde suggests meta-analysis as a further interesting field
of application.

Computation. As commented on by some of the discussants, our work involves a
considerable amount of Markov chain Monte Carlo computation. Steve MacEachern
provides a nice review of the sampling strategies that have been used to handle Dirichlet
process-based models. Based on our numerical work, our methods can definitely handle
problems with a few hundred variables and samples, but this is of course somewhat
reliant on the data. For larger scale problems, it will be necessary to take computational
shortcuts. For instance, we might opt for simpler clustering schemes for the divisors τij
instead of our fully Bayesian treatment of the Dirichlet t model, and we might consider
subsampling methods to cope with large sample size. Scaling up Bayesian methods is
an area of great recent activity, and we expect others to be able to propose less naive
approaches to speed up computations.

To conclude, we are very grateful to all of the discussants for their comments, with
special thanks going to Franccois Caron and Babak Shahbaba for taking on the role
of oral discussants at the 2014 ISBA meeting. The discussion offers a wide range of
ideas beyond what is mentioned in our paper, and we look forward to seeing some of
the suggested ideas in full development.
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