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QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD
VIA RAYLEIGH QUOTIENT OPTIMIZATION

BY JIANQING FAN∗,1, ZHENG TRACY KE†,1, HAN LIU∗,2 AND LUCY XIA∗,1

Princeton University∗ and University of Chicago†

We propose a novel Rayleigh quotient based sparse quadratic dimension
reduction method—named QUADRO (Quadratic Dimension Reduction via
Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the
linear setting where Rayleigh quotient optimization coincides with classifica-
tion, these two problems are very different under nonlinear settings. In this
paper, we clarify this difference and show that Rayleigh quotient optimization
may be of independent scientific interests. One major challenge of Rayleigh
quotient optimization is that the variance of quadratic statistics involves all
fourth cross-moments of predictors, which are infeasible to compute for high-
dimensional applications and may accumulate too many stochastic errors.
This issue is resolved by considering a family of elliptical models. Moreover,
for heavy-tail distributions, robust estimates of mean vectors and covariance
matrices are employed to guarantee uniform convergence in estimating non-
polynomially many parameters, even though only the fourth moments are
assumed. Methodologically, QUADRO is based on elliptical models which
allow us to formulate the Rayleigh quotient maximization as a convex opti-
mization problem. Computationally, we propose an efficient linearized aug-
mented Lagrangian method to solve the constrained optimization problem.
Theoretically, we provide explicit rates of convergence in terms of Rayleigh
quotient under both Gaussian and general elliptical models. Thorough numer-
ical results on both synthetic and real datasets are also provided to back up
our theoretical results.

1. Introduction. Rapid developments of imaging technology, microarray
data studies and many other applications call for the analysis of high-dimensional
binary-labeled data. We consider the problem of finding a “nice” projection
f :Rd → R that embeds all data into the real line. A projection such as f has
applications in many statistical problems for analyzing high-dimensional binary-
labeled data, including:
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• Dimension reduction: f provides a data reduction tool for people to visualize
the high-dimensional data in a one-dimensional space.

• Classification: f can be used to construct classification rules. With a carefully
chosen set A ⊂ R, we can classify a new data point x ∈ R

d by checking whether
or not f (x) ∈ A.

• Feature selection: when f (x) only depends on a small number of coordinates
of x, this projection selects just a few features from numerous observed ones.

A natural question is what kind of f is a “nice” projection? It depends on the
goal of statistical analysis. For classification, a good f should yield to a small
classification error. In feature selection, different criteria select distinct features,
and they may suit different real problems. In this paper, we propose using the
following criterion for finding f :

Under the mapping f , the data are as “separable” as possible between two classes, and
as “coherent” as possible within each class.

It can be formulated as to maximize the Rayleigh quotient of f . Suppose all data
are drawn independently from a joint distribution of (X, Y ), where X ∈ R

d , and
Y ∈ {0,1} is the label. The Rayleigh quotient of f is defined as

Rq(f ) ≡ var{E[f (X)|Y ]}
var{f (X) −E[f (X)|Y ]} .(1)

Here, the numerator is the variance of X explained by the class label, and the de-
nominator is the remaining variance of X. Simple calculation shows that Rq(f ) =
π(1 − π)R(f ), where π ≡ P(Y = 0) and

R(f ) ≡ {E[f (X)|Y = 0] −E[f (X)|Y = 1]}2

π var[f (X)|Y = 0] + (1 − π)var[f (X)|Y = 1] .(2)

Our goal is to develop a data-driven procedure to find f̂ such that Rq(f̂ ) is large,
and f̂ is sparse in the sense that it depends on few coordinates of X.

The Rayleigh quotient, as a criterion for finding a projection f , serves different
purposes. First, for dimension reduction, it takes care of both variance explanation
and label explanation. In contrast, methods such as principal component analysis
(PCA) only consider variance explanation. Second, when the data are normally
distributed, a monotone transform of the Rayleigh quotient approximates the clas-
sification error; see Section 6. Therefore, an f with a large Rayleigh quotient
enables us to construct nice classification rules. In addition, it is a convex opti-
mization to maximize the Rayleigh quotient among linear and quadratic f (see
Section 3), while minimizing the classification error is not. Third, with appropriate
regularization, this criterion provides a new feature selection tool for data analysis.

The criterion (1), initially introduced by Fisher (1936) for classification, is
known as Fisher’s linear discriminant analysis (LDA). In the literature of sufficient
dimension reduction, the sliced inverse regression (SIR) proposed by Li (1991) can
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also be formulated as maximizing (1), where Y can be any variable not necessar-
ily binary. In both LDA and SIR, f is restricted to be a linear function, and the
dimension d cannot be larger than n. In this sense, our work compares directly
to various versions of LDA and SIR generalized to nonlinear, high-dimensional
settings. We provide a more detailed comparison to the literature in Section 8, but
preview here the uniqueness of our work. First, we consider a setting where X|Y
has an elliptical distribution and f is a quadratic function, which allows us to de-
rive a simplified version of (1) and gain extra statistical efficiency; see Section 2 for
details. This simplified version of (1) was never considered before. Furthermore,
the assumption of conditional elliptical distribution does not satisfy the require-
ment of SIR and many other dimension reduction methods [Cook and Weisberg
(1991), Li (1991)]. In Section 1.2, we explain the motivation of the current setting.
Second, we utilize robust estimators of mean and covariance matrix, while many
generalizations of LDA and SIR are based on sample mean and sample covari-
ance matrix. As shown in Section 4, the robust estimators adapt better to heavy
tails on the data. It is worth noting that QUADRO only considers the projection to
a one-dimensional subspace. In contrast, more sophisticated dimension reduction
methods (e.g., the kernel SIR) are able to find multiple projections f1, . . . , fm for
m > 1. This reflects a tradeoff between modeling tractability and flexibility. More
specifically, QUADRO achieves better computational and theoretical properties at
the cost of sacrificing some flexibility.

1.1. Rayleigh quotient and classification error. Many popular statistical meth-
ods for analyzing high-dimensional binary-labeled data are based on classification
error minimization, which is closely related to the Rayleigh quotient maximiza-
tion. We summarize their connections and differences as follows:

(a) In an “ideal” setting where two classes follow multivariate normal distribu-
tions with a common covariance matrix and the class of linear functions f is con-
sidered, the two criteria are exactly the same, with one being a monotone transform
of the other.

(b) In a “relaxed” setting where two classes follow multivariate normal distri-
butions but with nonequal covariance matrices and the class of quadratic func-
tions f (including linear functions as special cases) is considered, the two criteria
are closely related in the sense that a monotone transform of the Rayleigh quotient
is an approximation of the classification error.

(c) In other settings, the two criteria can be very different.

We now show (a) and (c), and will discuss (b) in Section 6.
For each f , we define a family of classifiers hc(x) = I {f (x) < c} indexed by c,

where I (·) is the indicator function. For each given c, we define the classification
error of hc to be err(hc) ≡ P(hc(X) �= Y). The classification error of f is then
defined by

Err(f ) ≡ min
c∈R

{
err(hc)

}
.
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Most existing classification procedures aim at finding a data-driven projection f̂

such that Err(f̂ ) is small (the threshold c is usually easy to choose). Examples
include linear discriminant analysis (LDA) and its variations in high dimensions
[e.g., Cai and Liu (2011), Fan and Fan (2008), Fan, Feng and Tong (2012), Guo,
Hastie and Tibshirani (2005), Han, Zhao and Liu (2013), Shao et al. (2011), Witten
and Tibshirani (2011)], quadratic discriminant analysis (QDA), support vector ma-
chine (SVM), logistic regression, boosting, etc.

We now compare Rq(f ) and Err(f ). Let π = P(Y = 0), μ1 = E(X|Y = 0),
�1 = cov(X|Y = 0), μ2 = E(X|Y = 1) and �2 = cov(X|Y = 1). We consider
linear functions {f (x) = a�x + b : a ∈ R

d, b ∈ R}, and write Rq(a) = Rq(a�x),
Err(a) = Err(a�x) for short. By direct calculation, when the two classes have a
common covariance matrix �,

Rq(a) = π(1 − π)
[a�(μ1 − μ2)]2

a��a
.

Hence, the optimal aR = �−1(μ1 − μ2). On the other hand, when data follow
multivariate normal distributions, the optimal classifier is h∗(x) = I {a�

Ex < c},
where aE = �−1(μ1 − μ2) and c = 1

2μ�
1 �−1μ1 − 1

2μ�
2 �−1μ2 + log(1−π

π
). It is

observed that aR = aE and the two criteria are the same. In fact, for all vectors a
such that a�(μ1 − μ2) > 0,

Err(a) = 1 − �

(
1

2

[
Rq(a)

π(1 − π)

]1/2)
,

where � is the distribution function of a standard normal random variable, and we
fix c = a�(μ1 +μ2)/2. Therefore, the classification error is a monotone transform
of the Rayleigh quotient.

When we move away from these ideal assumptions, the above two criteria can
be very different. We illustrate this point using a bivariate distribution, that is,
d = 2, with different covariance matrices. Specifically, π = 0.55, μ1 = (0,0)�,
μ2 = (1.28,0.8)�, �1 = diag(1,1) and �2 = diag(3,1/3). We still consider lin-
ear functions f (x) = a�x but select only one out of the two features, X1 or X2.
Then the maximum Rayleigh quotients, by using each of the two features alone, are
0.853 and 0.923, respectively, whereas the minimum classification errors are 0.284
and 0.295, respectively. As a result, under the criterion of maximizing Rayleigh
quotient, Feature 2 is selected, whereas under the criterion of minimizing classifi-
cation error, Feature 1 is selected. Figure 1 displays the distributions of data after
being projected to each of the two features. It shows that since data from the sec-
ond class has a much larger variability at Feature 1 than at Feature 2, the Rayleigh
quotient maximization favors Feature 2, although Feature 1 yields a smaller clas-
sification error.
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FIG. 1. An example in R
2. The green and purple represent class 1 and class 2, respectively. The el-

lipses are contours of distributions. Probability densities after being projected to X1 and X2 are also
displayed. The dotted lines correspond to optimal thresholds for classification using each feature.

1.2. Objective of the paper. In this paper, we consider the Rayleigh quotient
maximization problem in the following setting:

• We consider sparse quadratic functions, that is, f (x) = x��x − 2δ�x, where �
is a sparse d × d symmetric matrix, and δ is a sparse d-dimensional vector.

• The two classes can have different covariance matrices.
• Data from these two classes follow elliptical distributions.
• The dimension is large (it is possible that d 	 n).

Compared to Fisher’s LDA, our setting has several new ingredients. First, we go
beyond linear classifiers to enhance flexibility. It is well known that the linear
classifiers are inefficient. For example, when two classes have the same mean,
linear classifiers perform no better than random guesses. Instead of exploring ar-
bitrary nonlinear functions, we consider the class of quadratic functions so that
the Rayleigh quotient still has a nice parametric formulation, and at the same
time it helps identify interaction effects between features. Second, we drop the
requirement that the two classes share a common covariance matrix, which is a
critical condition for Fisher’s rule and many other high-dimensional classifica-
tion methods [e.g., Cai and Liu (2011), Fan and Fan (2008), Fan, Feng and Tong
(2012)]. In fact, by using quadratic discriminant functions, we take advantage of
the difference of covariance matrices between the two classes to enhance classifi-
cation power. Third, we generalize multivariate normal distributions to the ellip-
tical family, which includes many heavy-tailed distributions, such as multivariate
t-distributions, Laplace distributions, and Cauchy distributions. This family of dis-
tributions allows us to avoid estimating all O(d4) fourth cross-moments of d pre-
dictors in computing the variance of quadratic statistics and hence overcomes the
computation and noise accumulation issues.
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In our setting, Fisher’s rule, that is, aR = �−1(μ1 − μ2), no longer maximizes
the Rayleigh quotient. We propose a new method, called quadratic dimension re-
duction via Rayleigh optimization (QUADRO). It is a Rayleigh-quotient-oriented
procedure and is a statistical tool for simultaneous dimension reduction and fea-
ture selection. QUADRO has several properties. First, it is a statistically efficient
generalization of Fisher’s linear discriminant analysis to the quadratic setting.
A naive generalization involves estimation of all fourth cross-moments of the two
underlying distributions. In contrast, QUADRO only requires estimating a one-
dimensional kurtosis parameter. Second, QUADRO adopts rank-based estimators
and robust M-estimators of the covariance matrices and the means. Therefore, it is
robust to possibly heavy-tail distributions. Third, QUADRO can be formulated as
a convex programming and is computationally efficient.

Theoretically, we prove that under elliptical models, the Rayleigh quotient of the
estimated quadratic function f̂ converges to population maximum Rayleigh quo-
tient at rate Op(s

√
log(d)/n), where s is the number of important features (count-

ing both single terms and interaction terms). In addition, we establish a connection
between our method and quadratic discriminant analysis (QDA) under elliptical
models.

The rest of this paper is organized as follows. Section 2 formulates Rayleigh
quotient maximization as a convex optimization problem. Section 3 describes
QUADRO. Section 4 discusses rank-based estimators and robust M-estimators
used in QUADRO. Section 5 presents theoretical analysis. Section 6 discusses the
application of QUADRO in elliptically distributed classification problems. Sec-
tion 7 contains numerical studies. Section 8 concludes the paper. All proofs are
collected in Section 9.

Notation. For 0 ≤ q ≤ ∞, |v|q denotes the Lq -norm of a vector v, |A|q
denotes the elementwise Lq -norm of a matrix A and ‖A‖q denotes the matrix
Lq -norm of A. When q = 2, we omit the subscript q . λmin(A) and λmax(A) denote
the minimum and maximum eigenvalues of A. det(A) denotes the determinant
of A. Let I (·) be the indicator function: for any event B , I (B) = 1 if B happens
and I (B) = 0 otherwise. Let sign(·) be the sign function, where sign(u) = 1 when
u ≥ 0 and sign(u) = −1 when u < 0.

2. Rayleigh quotient for quadratic functions. We first study the population
form of Rayleigh quotient for an arbitrary quadratic function. We show that it has
a simplified form under the elliptical family.

For a quadratic function

Q(X) = X��X − 2δ�X,

using (2), its Rayleigh quotient is

R(�, δ) = {E[Q(X)|Y = 0] −E[Q(X)|Y = 1]}2

π var[Q(X)|Y = 0] + (1 − π)var[Q(X)|Y = 1](3)
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up to a constant multiplier. The Rayleigh quotient maximization can be expressed
as

max
(�,δ) : �=��

R(�, δ).

2.1. General setting. Suppose E(Z) = μ and cov(Z) = �. By direct calcula-
tion,

E
[
Q(Z)

]= tr(��) + μ��μ − 2δ�μ,

var
[
Q(Z)

]= E
[
tr
(
�ZZ��ZZ�)]− 4E

[
δ�ZZ��Z

]
+ 4δ��δ + 4

(
δ�μ

)2 − {
E
[
Q(Z)

]}2
.

So E[Q(Z)] is a linear combination of the elements in {�(i, j),1 ≤ i ≤ j ≤ d;
δ(i),1 ≤ i ≤ d}, and var[Q(Z)] is a quadratic form of these elements. The coef-
ficients in E[Q(Z)] are functions of μ and � only. However, the coefficients in
var[Q(Z)] also depend on all the fourth cross-moments of Z, and there are O(d4)

of them.
Let us define M1(�, δ) = E[Q(X)|Y = 0], L1(�, δ) = var[Q(X)|Y = 0] and

M2(�, δ), L2(�, δ) similarly. Also, let κ = (1 − π)/π . We have

R(�, δ) = [M1(�, δ) − M2(�, δ)]2

L1(�, δ) + κL2(�, δ)
.

Therefore, both the numerator and denominator are quadratic combinations of the
elements in � and δ. We can stack the d(d + 1)/2 elements in � (assuming it
is symmetric) and the d elements in δ into a long vector v. Then R(�, δ) can be
written as

R(v) = (a�v)2

v�Av
,

where a is a d ′ × 1 vector, A is a d ′ × d ′ positive semi-definite matrix and d ′ =
d(d + 1)/2 + d . A and a are determined by the coefficients in the denominator
and numerator of R(�, δ), respectively. Now, max(�,δ) R(�, δ) is equivalent to
maxv R(v). It has explicit solutions. For example, when A is positive definite, the
function R(v) is maximized at v∗ = A−1a. We can then reshape v∗ to get the
desired (�∗, δ∗).

Practical implementation of the above idea is infeasible in high dimensions as
it involves O(d4) cross moments of Z. This not only poses computational chal-
lenges, but also accumulates noise in the estimation. Furthermore, good estimates
of fourth moments usually require the existence of eighth moments, which is not
realistic for many heavy tailed distributions. These problems can be avoided under
the elliptical family, as we now illustrate in the next subsection.

2.2. Elliptical distributions. The elliptical family contains multivariate distri-
butions whose densities have elliptical contours. It generalizes multivariate normal
distributions and inherits many of their nice properties.



DIMENSION REDUCTION VIA RAYLEIGH OPTIMIZATION 1505

Given a d × 1 vector μ and a d × d positive definite matrix �, a random vector
Z that follows an elliptical distribution admits

Z = μ + ξ�1/2U,(4)

where U is a random vector which follows the uniform distribution on unit sphere
Sd−1, and ξ is a nonnegative random variable independent of U. Denote the el-
liptical distribution by E(μ,�, g), where g is the density of ξ . In this paper, we
always assume that Eξ4 < ∞ and require that E(ξ2) = d for the model identifia-
bility. Then � is the covariance matrix of Z.

PROPOSITION 2.1. Suppose Z follows an elliptical distribution as in (4). Then

E
[
Q(Z)

]= tr(��) + μ��μ − 2μ�δ,

var
[
Q(Z)

]= 2(1 + γ ) tr(����) + γ
[
tr(��)

]2 + 4(�μ − δ)��(�μ − δ),

where γ = E(ξ4)
d(d+2)

− 1 is the kurtosis parameter.

The proof is given in the online supplementary material [Fan et al. (2014)]. The
variance of Q(Z) does not involve any fourth cross-moments, but only the kurtosis
parameter γ . For multivariate normal distributions, ξ2 follows a χ2-distribution
with d degrees of freedom, and γ = 0. For multivariate t-distribution with degrees
of freedom ν > 4, we have γ = 2/(ν − 4).

2.3. Rayleigh optimization. We assume that the two classes both follow ellip-
tical distributions: X|(Y = 0) ∼ E(μ1,�1, g1) and X|(Y = 1) ∼ E(μ2,�2, g2). To
facilitate the presentation, we assume the quantity γ is the same for both classes
of conditional distributions. Let

M(�, δ) = −μ�
1 �μ1 + μ�

2 �μ2 + 2(μ1 − μ2)
�δ − tr

(
�(�1 − �2)

)
,

Lk(�, δ) = 2(1 + γ ) tr(��k��k) + γ
[
tr(��k)

]2(5)

+ 4(�μk − δ)��k(�μk − δ),

for k = 1 and 2. Combining (3) with Proposition 2.1, we have

R(�, δ) = [M(�, δ)]2

L1(�, δ) + κL2(�, δ)
,(6)

where κ = (1 − π)/π .
Note that if we multiply both � and δ by a common constant, R(�, δ) remains

unchanged. Therefore, maximizing R(�, δ) is equivalent to solving the following
constrained minimization problem:

min
(�,δ) : M(�,δ)=1,�=��

{
L1(�, δ) + κL2(�, δ)

}
.(7)
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We call problem (7) the Rayleigh optimization. It is a convex problem whenever
�1 and �2 are both positive semi-definite.

The formulation of the Rayleigh optimization only involves the means and co-
variance matrices, and the kurtosis parameter γ . Therefore, if we know γ (e.g.,
when we know which subfamily the distributions belong to) and have good esti-
mates (μ̂1, μ̂2, �̂1, �̂2), we can solve the empirical version of (7) to obtain (�̂, δ̂),
which is the main idea of QUADRO. In addition, (7) is a convex problem, with a
quadratic objective and equality constraints. Hence it can be solved efficiently by
many optimization algorithms.

3. Quadratic dimension reduction via Rayleigh optimization. Now, we
formally introduce the QUADRO procedure. We fix a model parameter γ ≥ 0.
Let M̂ , L̂1 and L̂2 be the sample versions of M,L1,L2 in (5) by replacing
(μ1,μ2,�1,�2) with their estimates. Details of these estimates will be given in
Section 4. Let π̂ = n1/(n1 + n2) and κ = π̂/(1 − π̂). Given tuning parameters
λ1 > 0 and λ2 > 0, we solve

min
(�,δ) : M̂(�,δ)=1,�=��

{
L̂1(�, δ) + κL̂2(�, δ) + λ1|�|1 + λ2|δ|1}.(8)

We propose a linearized augmented Lagrangian method to solve (8). To simplify
the notation, we write L̂ = L̂1 + κL̂2, and omit the hat symbol on M and L when
there is no confusion. The optimization problem is then

min
(�,δ) : M(�,δ)=1,�=��

{
L(�, δ) + λ1|�|1 + λ2|δ|1}.

For an algorithm parameter ρ > 0, and a dual variable ν, we define the augmented
Lagrangian as

Fρ(�, δ, ν) = L(�, δ) + ν
[
M(�, δ) − 1

]+ (ρ/2)
[
M(�, δ) − 1

]2
.

Using zero as the initial value, we iteratively update:

• δ(k) = argminδ{Fρ(�(k−1), δ, ν(k−1)) + λ2|δ|1},
• �(k) = argmin� : �=��{Fρ(�, δ(k), ν(k−1)) + λ1|�|1},
• ν(k) = ν(k−1) + ρ[M(�(k), δ(k)) − 1].
Here, the first two steps are primal updates, and the third step is a dual update.

First, we consider the update of δ. When � and ν are fixed, we can write

Fρ(�, δ, ν) = δ�Aδ − 2δ�b + cρ(�, ν),

where

A = 4(�1 + κ�2) + 2ρ(μ1 − μ2)(μ1 − μ2)
�,

b = 4(�1�μ1 + κ�2�μ2)(9)

+ [
ρ tr

(
�(�1 − �2)

)+ ρμ�
1 �μ1 − ρμ�

2 �μ2 + (ρ − ν)
]
(μ1 − μ2),
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and cρ(�, ν) does not depend on δ. Note that A is a positive semi-definite matrix.
The update of δ is indeed a Lasso problem.

Next, we consider the update of �. When δ and ν are fixed, Fρ(�, δ, ν) is a
convex function of �. We propose an approximate update step: we first “linearize”
Fρ at � = �(k−1) to construct an upper envelope F̄ρ , and then minimize this upper
envelope. In detail, at any � = �0, we consider the following upper bound of
Fρ(�, δ, ν):

F̄ρ(�, δ, ν) ≡ Fρ(�0, δ, ν) + ∑
1≤i≤j≤d

[
�(i, j) − �0(i, j)

]∂Fρ(�0, δ, ν)

∂�(i, j)

+ τ

2

∑
1≤i≤j≤d

[
�(i, j) − �0(i, j)

]2
,

where τ is a large enough constant [e.g., we can take τ =∑
1≤i≤j≤d

∂2Fρ(�0,δ,ν)

∂�(i,j)2 ].

We then minimize F̄ρ(�, δ, ν) + λ1|�|1 to update �. This modified update step
has an explicit solution,

�∗(i, j) = S
(
�0(i, j) − 1

τ

∂Fρ(�0, δ, ν)

∂�(i, j)
,
λ1

τ

)
,

where S(x, a) ≡ (|x|−a)+ sign(x) is the soft-thresholding function. We can write
�∗ in a matrix form. Let

D = 4(1 + γ )(�1��1 + κ�2��2) + 2γ
[
tr(��1)�1 + κ tr(��2)�2

]
(10)

+ 4 sym
(
�1(�μ1 − δ)μ�

1 + κ�2(�μ2 − δ)μ�
2
)
,

where sym(B) = (B + B�)/2 for any square matrix B. By direct calculation,

�∗ = S
(
�0 − 1

τ
D,

λ1

τ

)
.

We now describe our algorithm. Let us initialize �(0) = 0d×d , δ(0) = 0 and
ν(0) = 0. At iteration k, the algorithm updates as follows:

• Compute A = A(�(k−1), δ(k−1), ν(k−1)) and b = b(�(k−1), δ(k−1), ν(k−1)) us-
ing (9). Update δ(k) = argminδ{δ�Aδ − 2δ�b + λ2|δ|1}.

• Compute D = D(�(k−1), δ(k), ν(k−1)) using (10). Update �(k) = S(�(k−1) −
1
τ

D, λ1
τ

).
• Update ν(k) = ν(k−1) + ρ[M(�(k), δ(k)) − 1].
Stop until max{ρ|�(k) −�(k−1)|, ρ|δ(k) − δ(k−1)|, |ν(k) − ν(k−1)|/ρ} ≤ ε for some
pre-specified precision ε.

This is a modified version of the augmented Lagrangian method, where in the
step of updating �, we minimize an upper envelope, which is obtained by locally
linearizing the augmented Lagrangian.
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REMARK. QUADRO can be extended to folded concave penalties, for ex-
ample, to SCAD [Fan and Li (2001)] or to adaptive Lasso [Zou (2006)]. Using
the Local Linear Approximation algorithm [Fan, Xue and Zou (2014), Zou and
Li (2008)], we can solve the SCAD-penalized QUADRO and the adaptive-Lasso-
penalized QUADRO by solving L1-penalized QUADRO with multiple-step and
one-step iterations, respectively.

4. Estimation of mean and covariance matrix. QUADRO requires esti-
mates of the mean vector and covariance matrix for each class as inputs. We will
show in Section 5 that the performance of QUADRO is closely related to the max-
norm estimation error on mean vectors and covariance matrices. Sample mean and
sample covariance matrix work well for Gaussian data. However, when data are
from elliptical distributions, they may have inferior performance as we estimate
nonpolynomially many of means and variances. In Sections 4.1–4.2, we suggest
a robust M-estimator to estimate the mean and a rank-based estimator to estimate
the covariance matrix, which are more appropriate for non-Gaussian data. More-
over, in Section 4.3 we discuss how to estimate the model parameter γ when it is
unknown.

4.1. Estimation of the mean. Suppose x1, . . . ,xn are i.i.d. samples of a random
vector X = (X1, . . . ,Xd)� from an elliptical distribution E(μ,�, g). Let us denote
μ = (μ1, . . . ,μd)� and xi = (xi1, . . . , xid)� for i = 1, . . . , n. We estimate each μj

marginally using the data {x1j , . . . , xnj }.
One possible estimator is the sample median

μ̂Mj = median
({x1j , . . . , xnj }).

It can be shown that even under heavy-tailed distributions, P(|μ̂Mj − μj | >

A
√

log(δ−1)/n) ≤ δ for small δ ∈ (0,1), where A is a constant determined by the
probability density at μj , for each fixed j . This combined with the union bound
gives that |μ̂M − μ|∞ = Op(

√
log(d)/n).

Catoni (2012) proposed another M-estimator for the mean of heavy-tailed dis-
tributions. It works for distributions where mean is not necessarily equal to me-
dian, which is essential for estimating covariance of random variables. We de-
note the diagonal elements of the covariance matrix � as σ 2

1 , σ 2
2 , . . . , σ 2

d , and the
off-diagonal elements as σkj for k �= j . The estimator μ̂C = (μ̂C,1, . . . , μ̂C,d)�
is obtained as follows. For a strictly increasing function h :R → R such that
− log(1 − y + y2/2) ≤ h(y) ≤ log(1 + y + y2/2), and a value δ ∈ (0,1) such
that n > 2 log(1/δ), we let

αδ =
{

2 log(δ−1)

n[v + (2v log(δ−1))/(n − 2 log(δ−1))]
}1/2

,

where v is an upper bound of max{σ 2
1 , . . . , σ 2

d }. For each j , we define μ̂Cj as
the unique value that satisfies

∑n
i=1 h(αδ(xij − μ̂Cj )) = 0. It was shown in Catoni
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(2012) that P(|μ̂Cj −μj | >
√

2v log(δ−1)

n(1−2 log(δ−1)/n)
) ≤ δ when the variance of Xj exists.

Therefore, by taking δ = 1/(n ∨ d)2, |μ̂M − μ|∞ ≤ C
√

log(d)/n with probability
at least 1 − (n ∨ d)−1, which gives the desired convergence rate.

To implement this estimator, we take h(y) = sgn(y) log(1+|y|+y2/2). For the
choice of v, any value larger than max{σ 2

1 , . . . , σ 2
d } would work in theory. Catoni

(2012) introduced a Lepski’s adaptation method to choose v. For simplicity, we
take v = 3 max{σ̃ 2

1 , . . . , σ̃ 2
d }, where σ̃ 2

j is the sample covariance of Xj .
The two estimators, the median and the M-estimator, both have a convergence

rate of Op(
√

log(d)/n) in terms of the max-norm error. In our numerical experi-
ments, the M-estimator has a better numerical performance, and we stick to this
estimator.

4.2. Estimation of the covariance matrix. To estimate the covariance ma-
trix �, we estimate the marginal covariances {σ 2

j ,1 ≤ j ≤ d} and the correlation
matrix C separately. Again, we need robust estimates even though the data have
fourth moments, as we simultaneously estimate nonpolynomial number of covari-
ance parameters.

First, we consider estimating σ 2
j . Note that σ 2

j = E(X2
j ) − E

2(Xj ). We esti-

mate E(X2
j ) and E(Xj ) separately. To estimate E(X2

j ), we use the M-estimator de-

scribed above on the squared data {x2
1j , . . . , x

2
nj } and denote the estimator by η̂Cj .

This works as E(X4
j ) is finite for each j in our setting; in addition, the M-estimator

applies to asymmetric distributions. We then define

σ̂ 2
Cj = max

{
η̂Cj − μ̂2

Cj , δ0
}
,

where μ̂Cj is the M-estimator of E(Xj ) and δ0 > 0 is a small constant (δ0 <

min{σ 2
1 , . . . , σ 2

d }). It is easy to see that when the fourth moments of Xj are uni-
formly upper bounded by a constant and n ≥ 4 log(d2), max{|σ̂Cj − σj |,1 ≤ j ≤
d} = Op(

√
log(d)/n).

Next, we consider estimating the correlation matrix C. For this, we use
Kendall’s tau correlation matrix proposed by Han and Liu (2012). Kendall’s tau
correlation coefficients [Kendall (1938)] are defined as

τjk = P
(
(Xj − X̃j )(Xk − X̃k) > 0

)− P
(
(Xj − X̃j )(Xk − X̃k) < 0

)
,

where X̃ is an independent copy of X. They have the following relationship to the
true coefficients: Cjk = sin(π

2 τjk) for the elliptical family. Based on this equality,
we first estimate Kendall’s tau correlation coefficients using rank-based estimators

τ̂jk =
⎧⎪⎨⎪⎩

2

n(n − 1)

∑
1≤i<i′≤n

sign
(
(xij − xi′j )(xik − xi′k)

)
, j �= k,

1, j = k,
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and then estimate the correlation matrix by Ĉ = (Ĉjk) with

Ĉjk = sin
(

π

2
τ̂jk

)
.

It is shown in Han and Liu (2012) that |Ĉ − C|∞ = Op(
√

log(d)/n).
Finally, we combine {σ̂ 2

j ,1 ≤ j ≤ d} and Ĉ to get �̂. Let

�̃jk = σ̂j σ̂kĈjk, 1 ≤ j, k ≤ d.

It follows immediately that |�̃ −�|∞ = Op(
√

log(d)/n). However, this estimator
is not necessarily positive semi-definite. To implement QUADRO, we need �̂ to
be positive semi-definite so that the optimization in (8) is a convex problem. We
obtain �̂ by projecting �̃ onto the cone of positive semi-definite matrices through
the convex optimization

�̂ = argmin
A : A is positive semidefinite

{|A − �̃|∞}.(11)

Note that |�̂ − �̃|∞ ≤ |� − �̃|∞ by definition. Therefore, |�̂ − �|∞ ≤ |�̂ −
�̃|∞ + |�̃ − �|∞ ≤ 2|�̃ − �|∞ = Op(

√
log(d)/n). To compute �̂, we note that

the optimization problem in (11) can be formulated as the dual of a graphical
lasso problem corresponding to the smallest possible tuning parameter that still
guarantees a feasible solution [Liu et al. (2012)]. Zhao, Roeder and Liu (2013)
provide more algorithmic details.

4.3. Estimation of kurtosis parameter. When the kurtosis parameter γ is un-
known, we can estimate it from data. Recall that γ = 1

d(d+2)
E(ξ4) − 1. Using

decomposition (4) and the properties of U, we have

E
(
ξ4)= E

{[
(X − μ)��−1(X − μ)

]2}
.

Motivated by this equality, we propose the estimator

γ̂ = max

{
1

d(d + 2)

1

n

n∑
i=1

[
(xi − μ̃)��̃(xi − μ̃)

]2 − 1,0

}
,

where μ̃ and �̃ are estimators of μ and �−1, respectively. Maruyama and Seo
(2003) considered a similar estimator in low-dimensional settings, where they used
the sample mean and sample covariance matrix. In high dimensions, we a robust
estimate to guarantee uniform convergence. In particular, we take μ̃ = μ̂C and
�̃ = �̂clime where �̂clime is the CLIME estimator proposed in Cai, Liu and Luo
(2011). We can also take the covariance estimator in Section 4.2, but we will then
need to establish its sampling property as a precision matrix estimator. We decide
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to use the CLIME estimator since such a property has already been established by
Cai, Liu and Luo (2011). Denote by �−1 = (�jk)d×d . From simple algebra,

|γ̂ − γ | ≤ max
1≤j,k≤d

|μ̃j �̃jkμ̃k − μj�jkμk|

≤ C max
{|μ̃ − μ|∞,

∣∣�̃ − �−1∣∣∞}.
In Section 4.1, we have seen that ‖μ̂C − μ‖∞ = Op(

√
log(d)/n). Moreover, Cai,

Liu and Luo (2011) showed that |�̃ − �−1|∞ = ‖�−1‖1 · Op(
√

log(d)/n) un-
der mild conditions, where ‖ · ‖1 is the matrix L1-norm. Therefore, provided that
‖�−1‖1 ≤ C, we immediately have |γ̂ − γ | = Op(

√
log(d)/n).

5. Theoretical properties. In this section, we establish an oracle inequality
for the Rayleigh quotient of the QUADRO estimates (�̂, δ̂). We assume that π

and γ are known. For notational simplicity, we set λ1 = λ2 = λ. The results can be
easily generalized to the case λ1 �= λ2. Moreover, we drop the symmetry constraint
� = �� in all optimization problems involved. This simplifies the expression of
the regularity conditions. The analysis with the symmetry constraint is a trivial
extension of current analysis.

Recall the definition of M , L1 and L2 in (5) and κ = (1 − π)/π and L = L1 +
κL2, the Rayleigh quotient of (�, δ) is equal to (up to a multiplicative constant)

R(�, δ) = [M(�, δ)]2

L(�, δ)
.

The QUADRO estimates are

(�̂, δ̂) = argmin
(�,δ) : M̂(�,δ)=1

{
L̂(�, δ) + λ|�|1 + λ|δ|1}.

We shall compare the Rayleigh quotient of (�̂, δ̂) with the Rayleigh quotients
of a class of “oracle solutions.” This class includes the one that maximizes the
true Rayleigh quotient, which we denote by (�∗

0, δ
∗
0). Here we adopt a class of

solutions as the “oracle” instead of only (�∗
0, δ

∗
0), because we want the results not

tied to the sparsity assumption on (�∗
0, δ

∗
0) but a weaker assumption: at least one

solution in this class is sparse.
Our theoretical development is technically nontrivial. Conventional oracle in-

equalities are derived in a setting of minimizing a data-dependent loss without
constraint, and the risk function is the expectation of the loss. Here we min-
imize a data-dependent loss with a data-dependent equality constraint, and the
risk function—the Rayleigh quotient—is not equal to the expectation of the loss.
A similar setting was considered in Fan, Feng and Tong (2012), where they intro-
duced a data-dependent intermediate solution to deal with such equality constraint.
However, the rate they obtained depends on this intermediate solution, which is
very hard to quantify. In contrast, the rate in our results purely depends on the ora-
cle solution. To get rid of the intermediate solution in the rate, we need to carefully
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quantify its difference from both the QUADRO solution and the oracle solution.
The technique is new, and potentially useful for other problems.

5.1. Oracle solutions, the restricted eigenvalue condition. For any λ0 ≥ 0, we
define the oracle solution associated with λ0 to be(

�∗
λ0

, δ∗
λ0

)= argmin
(�,δ) : M(�,δ)=1

{
L(�, δ) + λ0|�|1 + λ0|δ|1}.(12)

We shall compare the Rayleigh quotient of (�̂, δ̂) to that of (�∗
λ0

, δ∗
λ0

), for an
arbitrary λ0. In particular, when λ0 = 0, the associated oracle solution (may not be
unique) becomes (

�∗
0, δ

∗
0
)= argmin

(�,δ) : M(�,δ)=1

{
L(�, δ)

}
.

It maximizes the true Rayleigh quotient.
Next, we introduce a restricted eigenvalue (RE) condition jointly on �1, �2, μ1

and μ2. For any matrices A and B, let vec(A) be the vectorization of A by stacking
all the elements of A column by column, and A ⊗ B be the Kronecker product of
A and B. We define the matrices

Qk =
[ (

2(1 + γ )�k + 4μkμ
�
k

)⊗ �k + γ vec(�k)vec(�k)
� −4μk ⊗ �k

−4μ�
k ⊗ �k 4�k

]
,

for k = 1,2. We note that there are (d2 + d) coefficients to decide when maxi-
mizing R(�, δ): d2 elements of � and d elements of δ. We can stack all these
coefficients into a long vector x = x(�, δ) in R

d2+d defined as

x(�, δ) ≡ [
vec(�)�, δ� ]�.(13)

It can be shown that Lk(�, δ) = x�Qkx, for k = 1,2; see Lemma 9.1. Therefore,
L(�, δ) = x�Qx, where Q = Q1 + κQ2. Our RE condition is then imposed on the
(d2 + d) × (d2 + d) matrix Q, and hence implicitly on (�1,�2,μ1,μ2).

We now formally introduce the RE condition. For a set S ⊂ {1,2, . . . , d2 + d}
and a nonnegative value c̄, we define the restricted eigenvalue in the following
way:

�(S; c̄) = min
v : |vSc |1≤c̄|vS |1

v�Qv
|vS |2 .

Generally speaking, �(S; c̄) depends on (�1,�2,μ1,μ2) in a complicated
way. For c̄ = 0, the following proposition builds a connection between �(S;0)

and (�1,�2,μ1,μ2). For each S ⊂ {1,2, . . . , d2 + d}, there exist sets U ⊂
{1, . . . , d} × {1, . . . , d} and V ⊂ {1, . . . , d} such that the support of x(�, δ) is S

if and only if the support of � is U and the support of δ is V . Let

U ′ = ⋃
(i,j)∈U

{i, j}.

Then U ⊂ U ′ × U ′. The following result is proved in Fan et al. (2014).
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PROPOSITION 5.1. For any set S ⊂ {1, . . . , d2 + d}, suppose U ′ and V are
defined as above. Let �̃k be the submatrix of �k by restricting rows and columns to
U ′ ∪V , μ̃k be the subvector of μk by constraining elements to U ′ ∪V , for k = 1,2.
If there exist constants v1, v2 > 0 such that λmin(�̃k −v1μ̃kμ̃

�
k ) ≥ 1

2λmin(�̃k) ≥ v2
2

for k = 1,2, then

�(S,0) ≥ (1 + γ )(1 + κ)v2 min
{
v2,

4v1

2 + v1(1 + γ )

}
> 0.

5.2. Oracle inequality on Rayleigh’s quotient. Suppose max{|�k|∞, |μk|∞,

k = 1,2} ≤ 1 and |�̂k − �k|∞ ≤ |�k|∞, |μ̂k − μk|∞ ≤ |μk|∞ for k = 1,2,
without loss of generality. For any λ0 ≥ 0, let (�∗

λ0
, δ∗

λ0
) be the associated or-

acle solution and S be the support of x∗
λ0

= [vec(�∗
λ0

)�, (δ∗
λ0

)�]�. Let �n =
max{|�̂k − �k|∞, |μ̂k − μk|∞, k = 1,2}. We have the following result for any
given estimators, the proof of which we postpone to Section 9.

THEOREM 5.1. Given λ0 ≥ 0, let S be the support of x∗
λ0

, s0 = |S| and
k0 = max{s0,R(�∗

λ0
, δ∗

λ0
)}. Suppose that �(S,0) ≥ c0, �(S,3) ≥ a0 and

R(�∗
λ0

, δ∗
λ0

) ≥ u0, for some positive constants a0, c0 and u0. We assume 4s0�
2
n ≤

a0c0 and max{s0�n, s
1/2
0 k

1/2
0 λ0} < 1 without loss of generality. Then there ex-

ist positive constants C = C(a0, c0, u0) and A = A(a0, c0, u0) such that for any
η > 1,

R(�̂, δ̂)

R(�∗
λ0

, δ∗
λ0

)
≥ 1 − Aη2 max

{
s0�n, s

1/2
0 k

1/2
0 λ0

}
,

by taking λ = Cη max{s1/2
0 �n, k

1/2
0 λ0}[R(�∗

λ0
, δ∗

λ0
)]−1/2.

In Theorem 5.1, the rate of convergence has two parts. The term s0�n reflects
how the stochastic errors of estimating (�1,�2,μ1,μ2) affect the Rayleigh quo-
tient. The term s

1/2
0 k

1/2
0 λ0 is an extra term that depends on the oracle solution

we aim to use for comparison. In particular, if we compare R(�̂, δ̂) with Rmax ≡
R(�∗

0, δ
∗
0), the population maximum Rayleigh quotient with λ0 = 0, this extra term

disappears. If we further use the estimators in Section 4, �n = Op(
√

log(d)/n).
We summarize the result as follows.

COROLLARY 5.1. Suppose that the condition of Theorem 5.1 holds with
λ0 = 0. Then for some positive constants A and C, when λ > Cs

1/2
0 R

−1/2
max �n, we

have

R(�̂, δ̂) ≥ (1 − As0�n)Rmax.
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Furthermore, if the mean vectors and covariance matrices are estimated by using
the robust methods in Section 4, then when λ > Cs

1/2
0 R

−1/2
max

√
log(d)/n,

R(�̂, δ̂) ≥ (
1 − As0

√
log(d)/n

)
Rmax,

with probability at least 1 − (n ∨ d)−1.

From Corollary 5.1, when (�∗
0, δ

∗
0) is truly sparse, R(�̂, δ̂) is close to the pop-

ulation maximum Rayleigh quotient Rmax. However, we note that Theorem 5.1
considers more general situations, including cases where (�∗

0, δ
∗
0) is not sparse.

As long as there exists an “approximately optimal” and sparse solution, that is,
for a small λ0 the associated oracle solution (�∗

λ0
, δ∗

λ0
) is sparse, Theorem 5.1

guarantees that R(�̂, δ̂) is close to R(�∗
λ0

, δ∗
0) and hence close to Rmax.

REMARK. Our results are analogous to oracle inequalities for prediction error
in linear regressions; therefore, the condition �(S, c̄) is similar to the RE condition
in linear regressions [Bickel, Ritov and Tsybakov (2009)]. To recover the support
of (�∗

0, δ
∗
0), conditions similar to the “irrepresentable condition” for Lasso [Zhao

and Yu (2006)] are needed.

6. Application to classification. One important application of QUADRO is
high-dimensional classification for elliptically-distributed data. Suppose (�̂, δ̂) are
the QUADRO estimates. This yields the classification rule

ĥ(x) = I
{
x��̂x − 2̂δ

�
x < c

}
.

In this section, we first show that for normally distributed data, the Rayleigh quo-
tient is a proxy of the classification error, and then derive an analytic choice of c.
Comparing with many other high-dimensional classification methods, QUADRO
produces quadratic boundaries and can handle both non-Gaussian distributions and
nonequal covariance matrices.

6.1. Approximation of classification errors. Given (�, δ) and a threshold c,
a general quadratic rule h(x) = h(x;�, δ, c) is defined as

h(x;�, δ, c) = I
{
x��x − 2x�δ < c

}
.(14)

We reparametrize c as

c = tM1(�, δ) + (1 − t)M2(�, δ).(15)

Here Mk(�, δ) = μ�
k �μk − 2μ�

k δ + tr(��k) is the mean of Q(X) in class k, for
k = 1,2. After the reparametrization, t is scale-free. As we will see below, in most
cases, given � and δ, the optimal t that minimizes the classification error takes
values on (0,1).
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From now on, we write h(x;�, δ, c) = h(x;�, δ, t). Let Err(�, δ, t) be the clas-
sification error of h(·;�, δ, t). Due to technical difficulties, we only give results
for Gaussian distributions. Suppose X|(Y = 0) ∼ N (μ1,�1) and X|(Y = 1) ∼
N (μ2,�2). For k = 1,2, we write

�
1/2
k ��

1/2
k = KkSkKT

k ,

where Sk is a diagonal matrix containing the nonzero eigenvalues, and the
columns of Kk are corresponding eigenvectors. Let βk = KT

k �k(�μk − δ). When
max{|Sk|∞, |βk|∞, k = 1,2} is bounded, the following proposition shows that an
approximation of Err(�, δ, t) is

Err(�, δ, t) ≡ π�̄

(
(1 − t)M(�, δ)√

L1(�, δ)

)
+ (1 − π)�̄

(
tM(�, δ)√
L2(�, δ)

)
,

where M , L1 and L2 are defined in (5), � is the distribution function of a standard
normal variable and �̄ = 1 − �. Its proof is contained in Section 9.

PROPOSITION 6.1. Suppose that max{|Sk|∞, |βk|∞, k = 1,2} ≤ C0 for some
constant C0 > 0, and let q be the rank of �. Then as d goes to infinity,∣∣Err(�, δ, t) − Err(�, δ, t)

∣∣= O(q) + o(d)

[min{L1(�, δ),L2(�, δ)}]3/2 .

In particular, if we consider all such (�, δ) that the variance of Q(X;�, δ) under
both classes are lower bounded by c0d

θ for some constants θ > 2/3 and c0 > 0,
then we have |Err−Err| = o(1).

We now take a closer look at Err. Let H(x) = �̄(1/
√

x), which is monotone
increasing on (0,∞). Writing for short M = M1 − M2, Mk = Mk(�, δ) and Lk =
Lk(�, δ) for k = 1,2, we have

Err(�, δ, t) = πH

(
L1

(1 − t)2M2

)
+ (1 − π)H

(
L2

t2M2

)
.

Figure 2 shows that H(·) is nearly linear on an important range. This suggests the
following approximation:

Err(�, δ, t) ≈ H

(
π

L1

(1 − t)2M2 + (1 − π)
L2

t2M2

)
= H

(
π

(1 − t)2

1

R(t)

)
,(16)

where R(t) = R(t)(�, δ) is the R(�, δ) in (6) corresponding to the κ value

κ(t) ≡ 1 − π

π

(1 − t)2

t2 .

The approximation in (16) is quantified in the following proposition, which is
proved in Fan et al. (2014).
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FIG. 2. Function H(x) = �̄(1/
√

x).

PROPOSITION 6.2. Given (�, δ, t), we write for short Rk = Rk(�, δ) =
[M(�, δ)]2/Lk(�, δ), for k = 1,2, and define

V1 = V1(�, δ, t) = min
{
(1 − t)2R1,

1

(1 − t)2R1

}
,

V2 = V2(�, δ, t) = min
{
t2R2,

1

t2R2

}
,

V = V (�, δ, t) = max{V1/V2,V2/V1}.
Then there exists a constant C > 0 such that∣∣∣∣Err(�, δ, t) − H

(
π

(1 − t)2R(t)(�, δ)

)∣∣∣∣≤ C
[
max{V1,V2}]1/2 · |V − 1|2.

In particular, when t = 1/2,∣∣∣∣Err(�, δ, t) − H

(
π

(1 − t)2R(t)(�, δ)

)∣∣∣∣≤ CR
1/2
0 ·

(
�R

R0

)2

,

where R0 = max{min{R1,1/R1},min{R2,1/R2}} and �R = |R1 − R2|.

Note that L1 and L2 are the variances of Q(X) = X��X − 2X�δ for two
classes, respectively. In cases where |L1 − L2| � min{L1,L2}, �R � R0. Also,
R0 is always bounded by 1, and it tends to 0 in many situations, for example, when
R1,R2 → ∞, or R1,R2 → 0, or R1 → 0,R2 → ∞. Proposition 6.2 then implies
that the approximation in (16) when t = 1/2 is good.

Combining Propositions 6.1 and 6.2, the classification error of a general
quadratic rule h(·;�, δ, t) is approximately a monotone decreasing transform of
the Rayleigh quotient R(t)(�, δ), corresponding to κ = κ(t). In particular, when
t = 1/2 [i.e., c = (M1 +M2)/2], R(1/2)(�, δ) is exactly the one used in QUADRO.
Consequently, if we fix the threshold to be c = (M1 + M2)/2, then the Rayleigh
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quotient (upon with a monotone transform) is a good proxy for classification error.
This explains why Rayleigh-quotient based procedures can be used for classifica-
tion.

REMARK. Even in the region that H(·) is far from being linear such that the
upper bound in Proposition 6.2 is not o(1), we can still find a monotone trans-
form of the Rayleigh quotient as an upper bound of the classification error. To see
this, note that for x ∈ [1/3,∞), H(x) is a concave function. Therefore, the ap-

proximation in (16) becomes an inequality, that is, Err(�, δ, t) ≤ H( πR(t)

(1−t)2 ). For

x ∈ (0,1/3), H(x) ≤ 0.1248x. It follows that Err(�, δ, t) ≤ 0.1248 · πR(t)

(1−t)2 .

REMARK. In the current setting, the Bayes classifier is a quadratic rule
h(x;�B, δB, cB) with �B = �−1

1 − �−1
2 , δB = �−1

1 μ1 − �−1
2 μ2 and cB =

μ�
2 �−1

2 μ2 − μ�
1 �−1

1 μ1. Let (�∗
0, δ

∗
0) be the population solution of QUADRO

when λ = 0. We note that (�B, δB) and (�∗
0, δ

∗
0) are different: the former min-

imizes inft Err(�, δ, t), while the latter minimizes Err(�, δ,1/2).

6.2. QUADRO as a classification method. Results in Section 6.1 suggest an
analytic method to choose the threshold c, or equivalently t , with given (�, δ). Let

t̂ ∈ min
t

{
π�̄

(
(1 − t)M̂(�, δ)√

L̂1(�, δ)

)
+ (1 − π)�̄

(
tM̂(�, δ)√
L̂2(�, δ)

)}
,(17)

and set

ĉ = (1 − t̂ )M̂1(�, δ) + t̂ M̂2(�, δ).(18)

Here (17) is a one-dimensional optimization problem and can be solved easily. The
resulting QUADRO classification rule is

ĥQuad(x) = I
{
x��̂x − 2x�δ̂ − ĉ < 0

}
.

As a by-product, the method to decide c, described in (17) and (18), can be
used in other classification procedures on Gaussian data, such as logistic regres-
sion, quadratic discriminant analysis (QDA) and kernel support vector machine,
once (�̂, δ̂) are given. It provides a fast and purely data-driven way to decide the
threshold value in quadratic classification rules. In our numerical experiments, it
performs well.

7. Numerical studies. In this section, we investigate the performance of
QUADRO in several simulation examples and a real data example. The simula-
tion studies contain both Gaussian models and general elliptical models. We com-
pare QUADRO with several classification-oriented procedures. Performances are
evaluated in terms of classification errors.



1518 FAN, KE, LIU AND XIA

7.1. Simulations under Gaussian models. Let n1 = n2 = 50 and d = 40. For
each given μ1, μ2, �1 and �2, we generate 100 training datasets independently,
each with n1 data from N (μ1,�1) and n2 data from N (μ2,�2). In QUADRO,
we input the sample means and sample covariance matrices. We set λ2 = rλ1 and
work with λ1 and r from now on. The two tuning parameters λ1 ≥ 0 and r > 0
are selected in the following way. For various pairs of (λ1, r), we apply QUADRO
for each pair and evaluate the classification error via 4000 newly generated testing
data; we then choose the (λ1, r) that minimize the classification error.

We compare QUADRO with five classification-oriented procedures:

• Sparse logistic regression (SLR): We apply the sparse logistic regression to the
augmented feature space {Xi,1 ≤ i ≤ d;XiXj ,1 ≤ i ≤ j ≤ d}. The resulting
estimator then gives a quadratic projection with (�, δ, c) decided from the fitted
regression coefficients. We implement the sparse logistic regression using the R
package glmnet.

• Linear sparse logistic regression (L-SLR): We apply the sparse logistic regres-
sion directly to the original feature space {Xi,1 ≤ i ≤ d}.

• ROAD [Fan, Feng and Tong (2012)]: This is a linear classification method,
which can be formulated equivalently as a modified version of QUADRO by
enforcing �̂ as the zero matrix and plugging in the pooled sample covariance
matrix.

• Penalized-LDA (P-LDA) [Witten and Tibshirani (2011)]: This is a variant of
LDA, which solves an optimization problem with a nonconvex objective and L1
penalties. Also, P-LDA only uses diagonals of the sample covariance matrices.

• FAIR [Fan and Fan (2008)]: This is a variant of LDA for high-dimensional set-
tings, where screening is adopted to pre-select features and only the diagonals
of the sample covariance matrices are used.

To make a fair comparison, the tuning parameters in SLR and L-SLR are selected
in the same way as in QUADRO based on 4000 testing data. ROAD and P-LDA
are self-tuned by its package. The number of features chosen in FAIR is calculated
in the way suggested in [Fan and Fan (2008)].

We consider four models:

– Model 1: �1 is the identity matrix. �2 is a diagonal matrix in which the first
10 elements are equal to 1.3 and the rest are equal to 1. μ1 = 0, and μ2 =
(0.7, . . . ,0.7,0, . . . ,0)� with the first 10 elements of μ2 being nonzero.

– Model 1L: μ1, μ2 are the same as in model 1, and both �1 and �2 are the
identity matrix.

– Model 2: �1 is a block-diagonal matrix. Its upper left 20 × 20 block is an equal
correlation matrix with ρ = 0.4, and its lower right 20 × 20 block is an identity
matrix. �2 = (�−1

1 + I)−1. We also set μ1 = μ2 = 0. In this model, neither
�−1

1 nor �−1
2 is sparse, but �−1

1 − �−1
2 is.
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FIG. 3. Distributions of minimum classification error based on 100 replications for four different
normal models. The tuning parameters for QUADRO, SLR and L-SLR are chosen to minimize the
classification errors of 4000 testing samples. See Fan et al. (2014) for detailed numerical tables.

– Model 3: �1, �2 and μ1 are the same as in model 2, and μ2 is taken from
model 1.

Figure 3 contains the boxplots for the classification errors of all methods. In all
four models, QUADRO outperforms other methods in terms of classification error.
In model 1L, �1 = �2, so the Bayes classifier is linear. In this case which favors
linear methods, QUADRO is still competitive with the best of all linear classifiers.
In model 2, μ1 = μ2, so linear methods can do no better than random guessing.
Therefore, ROAD, L-SLR, P-LDA and FAIR all have very poor performances. For
the two quadratic methods, QUADRO is significantly better than SLR. In models
1 and 3, μ1 �= μ2 and �1 �= �2, so in the Bayes classifier, both “linear” parts and
“quadratic” parts play important roles. In model 1, both �1 and �2 are diagonal,
and the setting favors methods using only diagonals of sample covariance matrices.
As a result, P-LDA and FAIR perform quite well. In model 3, �1 and �2 are both
nondiagonal and nonsparse (but �1 − �2 is sparse). We see that the performances
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of P-LDA and FAIR are unsatisfactory. QUADRO outperforms other methods in
both models 1 and 3.

Comparing SLR and L-SLR, we see the former considers a broader class, while
the latter is more robust, but neither of them perform uniformly better. However,
QUADRO performs well in all cases. In terms of Rayleigh quotients, QUADRO
also outperforms other methods in most cases.

7.2. Simulations under elliptical models. Let n1 = n2 = 50 and d = 40. For
each given μ1, μ2, �1 and �2, data are generated from multivariate t distribu-
tion with degrees of freedom 5. In QUADRO, we input the robust M-estimators
for means and the rank-based estimators for covariance matrices as described in
Section 4. We compare the performance of QUADRO with the five methods com-
pared under Gaussian settings. We also implement QUADRO with inputs of sam-
ple means and sample covariance matrices. We name this method QUADRO-0 to
differentiate it from QUADRO.

We consider three models:

– Model 4: Here we use same parameters as those in model 1.
– Model 5: �1, μ1 and μ2 are the same as in model 1. �2 is the covariance

matrix of a fractional white noise process, where the difference parameter
l = 0.2. In other words, �2 has the polynomial off-diagonal decay |�2(i, j)| =
O(|i − j |1−2l).

– Model 6: �1, μ1 and μ2 are the same as in model 1. �2 is a matrix such that
�2(i, j) = 0.6|i−j |; that is, �2 has an exponential off-diagonal decay.

Figure 4 contains the boxplots of average classification error over 100 replica-
tions. QUADRO outperforms the other methods in all settings. Also, QUADRO
is better than QUADRO-0 (e.g., 0.161 versus 0.173, of the average classification
error in model 5), which illustrates the advantage of using the robust estimators for
means and covariance matrices.

7.3. Real data analysis. We apply QUADRO to a large-scale genomic dataset,
GPL96, and compare the performance of QUADRO with SLR, L-SLR, ROAD, P-
LDA and FAIR. The GPL96 data set contains 20,263 probes and 8124 samples
from 309 tissues. Among the tissues, breast tumor has 1142 samples, which is
the largest set. We merge the probes from the same gene by averaging them, and
finally get 12,679 genes and 8124 samples. We divide all samples into two groups:
breast tumor or nonbreast tumor.

First, we look at the classification errors. We replicate our experiment 100 times.
Each time, we proceed with the following steps:

• Randomly choose a training set of 400 samples, 200 from breast tumor and 200
from nonbreast tumor.

• For each training set, we use half of the samples to compute (�̂, δ̂) and the other
half to select the tuning parameters by minimizing the classification error.
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FIG. 4. Distributions of minimum classification error based on 100 replications across different
elliptical distribution models. The tuning parameters for QUADRO, SLR and L-SLR are chosen to
minimize the classification errors. See Fan et al. (2014) for detailed numerical tables.

• Use the remaining 942 samples from breast tumor and another randomly chosen
942 samples from nonbreast tumor as testing set, and calculate the testing error.

FAIR does not have any tuning parameters, so we use the whole training set to
calculate classification frontier, and the rest to calculate testing error. The results
are summarized in Table 1. We see that QUADRO outperforms all other methods.

Next, we look at gene selection and focus on the two quadratic methods,
QUADRO and SLR. We apply two-fold cross-validation to both QUADRO and
SLR. In the results, QUADRO selects 139 genes and SLR selects 128 genes.
According to KEGG database, genes selected by QUADRO belong to 5 of the
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TABLE 1
Classification errors on GPL96 dataset, across methods QUADRO, SLR and L-SLR. Means and

standard deviations (in the parenthesis) of 100 replications are reported

QUADRO SLR L-SLR ROAD Penalized-LDA FAIR

0.014 0.025 0.025 0.016 0.060 0.046
(0.007) (0.007) (0.009) (0.007) (0.011) (0.009)

pathways that contain more than two genes; correspondingly, genes selected by
SLR belong to 7 pathways. Using the ClueGo tool [Bindea et al. (2009)], we dis-
play the overall KEGG enrichment chart in Figure 5. We see from Figure 5 that
both QUADRO and SLR have focal adhesion as its most important functional
group. Nevertheless, QUADRO finds ECM-receptor interaction as another impor-
tant functional group. ECM-receptor interaction is a class consisting of a mix-
ture of structural and functional macromolecules, and it plays an important role
in maintaining cell and tissue structures and functions. Massive studies [Luparello
(2013), Wei and Li (2007)] have found evidence that this class is closely related to
breast cancer.

Besides the pathway analysis, we also perform the Gene Ontology (GO) en-
richment analysis on genes selected by QUADRO. This analysis was completed
by DAVID Bioinformatics Resources, and the results are shown in Table 2. We
present the biological processes with p-values smaller than 10−3. According to
the table, we see that many biological processes are significantly enriched, and
they are related to previously selected pathways. For instance, the biological pro-
cess cell adhesion is known to be highly related to cell communication pathways,
including focal adhesion and ECM-receptor interaction.

8. Conclusions and extensions. QUADRO is a robust sparse high-dimensio-
nal classifier, which allows us to use differences in covariance matrices to enhance
discriminability. It is based on Rayleigh quotient optimization. The variance of

(a) QUADRO pathways (b) SLR pathways

FIG. 5. Overall KEGG enrichment chart, using (a) QUADRO; (b) SLR.
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TABLE 2
Enrichment analysis results according to Gene Ontology for genes selected by QUADRO. The four

columns represent GO ID, GO attribute, number of selected genes having the attribute and their
corresponding p-values. We rank them according to p-values in increasing order

GO ID GO attribute No. of genes p-value

0048856 Anatomical structure development 58 3.7E–12
0032502 Developmental process 62 2.9E–10
0048731 System development 52 3.1E–10
0007275 Multicellular organismal development 55 1.8E–8
0001501 Skeletal system development 15 1.3E–6
0032501 Multicellular organismal process 66 1.4E–6
0048513 Organ development 37 1.4E–6
0009653 Anatomical structure morphogenesis 28 8.7E–6
0048869 Cellular developmental process 34 1.9E–5
0030154 Cell differentiation 33 2.1E–5
0007155 Cell adhesion 18 2.4E–4
0022610 Biological adhesion 18 2.2E–4
0042127 Regulation of cell proliferation 19 2.9E–4
0009888 Tissue development 17 3.7E–4
0007398 Ectoderm development 9 4.8E–4
0048518 Positive regulation of biological process 34 5.6E–4
0009605 Response to external stimulus 20 6.3E–4
0043062 Extracellular structure organization 8 7.4E–4
0007399 Nervous system development 22 8.4E–4

quadratic statistics involves all fourth cross moments, and this can create both com-
putational and statistical problems. These problems are avoided by limiting our
applications to the elliptical class of distributions. Robust M-estimator and rank-
based estimation of correlations allow us to obtain the uniform convergence for
nonpolynomially many parameters, even when the underlying distributions have
the finite fourth moments. This allows us to establish oracle inequalities under
relatively weaker conditions.

Existing methods in the literature about constructing high-dimensional quadra-
tic classifiers can be divided into two types. One is the regularized QDA, where
regularized estimates of �−1

1 and �−1
2 are plugged into the Bayes classifier; see,

for example, Friedman (1989). QUADRO avoids directly estimating inverse co-
variance matrices, which requires strong assumptions in high dimensions. The
other is to combine linear classifiers with the inner-product kernel. The main differ-
ence between QUADRO and this approach is the simplification in Proposition 2.1.
Due to this simplification, QUADRO avoids incorporating all fourth cross mo-
ments from the data and gains extra statistical efficiency.

QUADRO also has deep connections with the literature of sufficient dimension
reduction. Dimension reduction methods, such as SIR [Li (1991)], SAVE [Cook
and Weisberg (1991)] and Directional Regression [Li and Wang (2007)], can be
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equivalently formulated as maximizing some “quotients.” The population objec-
tive of SIR is to maximize var{E[f (X|Y)]} subject to var[f (X)] = 1. Using the
same constraint, SAVE and directional regression combine var{E[f (X|Y)]} and
E[var(f (X|Y))] in the objective. An interesting observation is that the Rayleigh
quotient maximization is equivalent to the population objective of SIR, by not-
ing that the denominator of (1) is equal to E[var(f (X|Y))] and var[f (X)] =
E[var(f (X|Y))] + var{E[f (X|Y)]}. This is not a coincidence, but due instead to
the known equivalence between SIR and LDA in classification [Kent (1991), Li
(2000)].

Despite similar population objectives, QUADRO and the aforementioned di-
mension reduction methods are different in important ways. First, we clarify that
even when λ1, λ2 are 0, QUADRO is not the same procedure as SIR combined with
the inner-product kernel [Wu (2008)], although they share the same population ob-
jective. The difference is that QUADRO utilizes a simplification of the Rayleigh
quotient for quadratic f , relying on the assumption that X|Y is always elliptically
distributed; moreover, it adopts robust estimators of the mean vectors and covari-
ance matrices. Second, QUADRO is designed for high-dimensional settings, in
which neither SIR, SAVE nor Directional Regression can be directly implemented.
These methods need to either standardize the original data X �→ �̂

−1
(X − X̄)

or solve a generalized eigen-decomposition problem Av = λ�̂v for some ma-
trix A. Both methods require that the sample covariance matrix is well condi-
tioned, which is often not the case in high dimensions. Possible solutions include
Regularized SIR [Li and Yin (2008), Zhong et al. (2005)], solving generalized
eigen-decomposition for an undetermined system [Coudret, Liquet and Saracco
(2014)] and variable selection approaches [Chen, Zou and Cook (2010), Jiang and
Liu (2013)]. However, these methods are not designed for Rayleigh quotient max-
imization. Third, our assumption on the model is different from that in dimension
reduction. We require X|Y to be elliptically distributed, while many dimension re-
duction methods “implicitly” require X to be marginally elliptically distributed.
Neither method is stronger than the other. Assuming conditional elliptical distri-
bution is more natural in classification. In addition, our assumption is used only to
simplify the variances of quadratic statistics, whereas the elliptical assumption is
critical to SIR.

The Rayleigh optimization framework developed in this paper can be extended
to the multi-class case. Suppose the data are drawn independently from a joint
distribution of (X, Y ), where X ∈ R

d and Y takes values in {0,1, . . . ,K − 1}.
Definition (1) for the Rayleigh quotient of a projection f :Rd → R is still well
defined. Let πk = P(Y = k), for k = 0,1, . . . ,K − 1. In this K-class situation,

Rq(f ) =
∑

0≤k<l≤K−1 πkπl{E[f (X)|Y = k] −E[f (X)|Y = l]}2∑
0≤k≤K−1 πk var[f (X)|Y = k] .(19)

Let Mk(f ) = E[f (X)|Y = k] and Lk(f ) = var[f (X)|Y = k]. Similar to the two-
class case, maximizing Rq(f ) is equivalent to solving the following optimization
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problem:

min
f

K−1∑
k=0

πkLk(f ) s.t.
∑

0≤k<l≤K−1

πkπl

∣∣Mk(f ) − Ml(f )
∣∣2 = 1.

However, this is not a convex problem. We consider an approximate Rayleigh-
quotient-maximization problem as follows:

min
f

K−1∑
k=0

πkLk(f ) s.t.
√

πkπl

∣∣Mk(f ) − Ml(f )
∣∣≥ 1, 0 ≤ k < l ≤ K − 1.

To solve this problem, we first pick an order of M1(f ), . . . ,MK(f ) to remove the
absolute values in the constraints. Then it becomes a convex problem. Therefore,
the whole optimization can be carried out by simultaneously solving K! convex
problems. When K is small, the computational cost is reasonable. In practice, we
can apply more efficient algorithms to speed up the computation.

9. Proofs.

9.1. Proof of Theorem 5.1. We prove the claim by first rewriting optimization
problem (8) into a vector form. For any (�, δ), write x = [vec(�)�, δ�]�. Let Q
be as defined in Section 5, and

q = [
vec

(
�2 + μ2μ

�
2 − �1 − μ1μ

�
1

)�
,2(μ1 − μ2)

� ]� .

We introduce the following lemma which is proved in the supplementary material
[Fan et al. (2014)].

LEMMA 9.1. M(�, δ) = q�x and L(�, δ) = x�Qx.

Let x∗
λ0

= [vec(�∗
λ0

)�, (δ∗
λ0

)�]� and x̂ = [vec(�̂)�, δ̂
�]�. Using Lemma 9.1,

x∗
λ0

= min
x∈Rd : q�x=1

{
x�Qx + λ0|x|1},

x̂ = argmin
x∈Rd : q̂�x=1

{
x�Q̂x + λ|x|1},

where Q̂ and q̂ are counterparts of Q and q, respectively, by replacing μ1, μ2, �1
and �2 with their estimates. Moreover, we have the Rayleigh quotient

R(�, δ) = R(x) ≡ (q�x)2

x�Qx
.

In addition, we have the following lemma, which is proved in the supplementary
material [Fan et al. (2014)].

LEMMA 9.2. max{|Q̂ − Q|∞, |̂q − q|∞} ≤ C0 max{|�̂k − �k|∞, |μ̂k −
μk|∞, k = 1,2} for some constant C0 > 0.
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Combining the above results, the claim follows immediately from the following
theorem:

THEOREM 9.1. For any λ0 ≥ 0, let S be the support of x∗
λ0

. Suppose
�(S,0) ≥ c0, �(S,3) ≥ a0 and R(x∗

λ0
) ≥ u0, for positive constants a0, c0 and u0.

Let �n = max{|Q̂ − Q|∞, |̂q − q|∞}, s0 = |S| and k0 = max{s0,R(x∗
λ0

)}. Sup-

pose 4s0�
2
n < c0u0 and max{s0�n, s

1/2
0 k

1/2
0 λ0} < 1. Then there exist positive con-

stants C = C(a0, c0, u0) and A = A(a0, c0, u0), such that for any η > 1, by taking

λ = Cη max{s1/2
0 �n, k

1/2
0 λ0}[R(x∗

λ0
)]−1/2,

R(̂x)

R(x∗
λ0

)
≥ 1 − Aη2 max

{
s0�n, s

1/2
0 k

1/2
0 λ0

}
.

The main part of the proof is to show Theorem 9.1. Write for short x∗ = x∗
λ0

,

R∗ = R(x∗), V ∗ = (R∗)−1 = (x∗)�Qx∗, V̄ ∗ = (V ∗)1/2. Let αn = �n|x∗|1/2
0 , βn =

�n|x∗|0 and Tn(x∗) = max{s0�n, s
1/2
0 k

1/2
0 λ0}. We define the quantity

�(x) = |Qx − (x�Qx)q|∞
(x�Qx)1/2 for any x.

Step 1. We introduce x∗
1, a multiple of x∗, and use it to bound |̂x|1.

Let QSS be the submatrix of Q formed by rows and columns corresponding
to S. Since λmin(QSS)= �(S,0) ≥ c0, we have (x∗)�Qx∗ ≥ c0|x∗|2. Using this
fact and by the Cauchy–Schwarz inequality,∣∣x∗∣∣

1 ≤
√∣∣x∗∣∣

0

∣∣x∗∣∣≤ c
−1/2
0

√∣∣x∗∣∣
0V̄

∗.(20)

It follows that∣∣̂q�x∗ − q�x∗∣∣≤ |̂q − q|∞
∣∣x∗∣∣

1 ≤ c
−1/2
0 �n

√∣∣x∗∣∣
0V̄

∗ = c
−1/2
0 αnV̄

∗.(21)

Let tn = q̂�x∗. Then (21) says that |tn − 1| ≤ c
−1/2
0 αnV̄

∗. Noting that V̄ ∗ =
(R∗)1/2 ≤ u

−1/2
0 , we have |tn − 1| ≤ (c0u0)

−1/2s
1/2
0 �n < 1/2 by assumption. In

particular, tn > 0. Let

x∗
1 = t−1

n x∗.
Then q̂�x∗

1 = 1. From the definition of x̂,

x̂�Q̂x̂ + λ|̂x|1 ≤ (
x∗

1
)�Q̂x∗

1 + λ
∣∣x∗

1
∣∣
1.(22)

By direct calculation,

x̂�Q̂x̂ − (
x∗

1
)�Q̂x∗

1 = (̂
x − x∗

1
)�Q̂

(̂
x − x∗

1
)+ 2

(̂
x − x∗

1
)�Q̂x∗

1

= (̂
x − x∗

1
)�Q̂

(̂
x − x∗

1
)+ 2

(̂
x − x∗

1
)�(Q̂x∗

1 − V ∗q̂
)

(23)

≥ 2
(̂
x − x∗

1
)�(Q̂x∗

1 − V ∗q̂
)
,
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where the second equality is due to q̂�x̂ = q̂�x∗
1 = 1. We aim to bound |Q̂x∗

1 −
V ∗q̂|∞. The following lemma is proved in the supplementary material [Fan et al.
(2014)].

LEMMA 9.3. When �(S,0) ≥ c0, there exists a positive constant C1 = C1(c0)

such that �(x∗
λ0

) ≤ C1λ0[max{s0,R(x∗
λ0

)}]1/2 for any λ0 ≥ 0.

Since x∗
1 = t−1

n x∗ and t−1
n < 2,∣∣Q̂x∗

1 − V ∗q̂
∣∣∞

≤ t−1
n

∣∣Q̂x∗ − V ∗q̂
∣∣∞ + V ∗∣∣t−1

n − 1
∣∣|̂q|∞

≤ 2
(∣∣Qx∗ − V ∗q

∣∣∞ + |Q̂ − Q|∞
∣∣x∗∣∣

1 + V ∗|̂q − q|∞ + V ∗|tn − 1||̂q|∞)
≤ 2

[
�
(
x∗)V̄ ∗ + c

−1/2
0 αnV̄

∗ + u
−1/2
0 �nV̄

∗ + |̂q|∞c
−1/2
0 u−1

0 αnV̄
∗]

≤ C2
(
λ0k

1/2
0 + s

1/2
0 �n

)
V̄ ∗.

Here the third inequality follows from (20)–(21) and V ∗ = V̄ ∗(R∗)−1/2 ≤
u

−1/2
0 V̄ ∗. The last inequality is obtained as follows: from Lemma 9.2, we know

that |̂q|∞ ≤ |q|∞ + |̂q − q|∞ ≤ 2C0 (see also the assumptions in the beginning
of Section 5.2); we also use Lemma 9.3 and αnV̄

∗ ≤ u
−1/2
0 s

1/2
0 �n. By letting

C = 8C2, the choice of λ = Cη max{s1/2
0 �n, k

1/2
0 λ0}V̄ ∗ for η > 1 ensures that∣∣Q̂x∗

1 − q̂
∣∣∞ ≤ λ/4.

Plugging this result into (23) gives

x̂�Q̂x̂ − (
x∗

1
)�Q̂x∗

1 ≥ −λ

2

∣∣̂x − x∗
1
∣∣
1.(24)

Combining (22) and (24) gives

λ|̂x|1 − λ

2

∣∣̂x − x∗
1
∣∣
1 ≤ λ

∣∣x∗
1
∣∣
1.(25)

First, since |̂x|1 = |̂xS |1 + |̂xSc |1 ≥ |x∗
1S |1 − |̂xS − x∗

1S |1 + |̂xSc |1 and |̂x − x∗
1|1 =

|̂xS − x∗
1S |1 + |̂xSc |1, we immediately see from (25) that∣∣(̂x − x∗

1
)
Sc

∣∣
1 ≤ 3

∣∣(̂x − x∗
1
)
S

∣∣
1.(26)

Second, note that |̂x − x∗
1|1 ≤ |̂x|1 + |x∗

1|1. Plugging this into (25) gives

|̂x|1 ≤ 3
∣∣x∗

1
∣∣
1 = 3t−1

n

∣∣x∗∣∣
1 ≤ 6c

−1/2
0

√∣∣x∗∣∣
0V̄

∗.(27)

Step 2. We use (26)–(27) to derive an upper bound for (̂x)�Qx̂ − (x∗
1)

�Qx∗
1.
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Note that

x̂�Q̂x̂ − (
x∗

1
)�Q̂x∗

1

≥ x̂�Qx̂ − (
x∗

1
)�Qx∗

1 − (∣∣̂x�Q̂x̂ − x̂�Qx̂
∣∣+ ∣∣(x∗

1
)�Q̂x∗

1 − (
x∗

1
)�Qx∗

1
∣∣)

≥ x̂�Qx̂ − (
x∗

1
)�Qx∗

1 − (|Q̂ − Q|∞|̂x|21 + |Q̂ − Q|∞
∣∣x∗

1
∣∣2
1

)
(28)

≥ x̂�Qx̂ − (
x∗

1
)�Qx∗

1 − 10t−2
n |Q̂ − Q|∞

∣∣x∗∣∣2
1

≥ x̂�Qx̂ − (
x∗

1
)�Qx∗

1 − C3βnV
∗,

where the last two inequalities are direct results of (27). Combining (22) and (28),

x̂�Qx̂ + λ|̂x|1 ≤ (
x∗

1
)�Qx∗

1 + λ
∣∣x∗

1
∣∣
1 + C3βnV

∗.(29)

Similar to (23), we have

x̂�Qx̂ − (
x∗

1
)�Qx∗

1 = (̂
x − x∗

1
)�Q

(̂
x − x∗

1
)+ 2

(̂
x − x∗

1
)�(Qx∗

1 − V ∗q̂
)
,(30)

where∣∣Qx∗
1 − V ∗q̂

∣∣∞ ≤ t−1
n

(∣∣Qx∗ − V ∗q
∣∣∞ + V ∗|̂q − q|∞)+ V ∗∣∣t−1

n − 1
∣∣|̂q|∞

≤ 2
[
�
(
x∗)V̄ ∗ + u

−1/2
0 �nV̄

∗ + |̂q|∞c
−1/2
0 u−1

0 αnV̄
∗]

≤ λ/4.

It follows that

x̂�Qx̂ − (
x∗

1
)�Qx∗

1 ≥ (̂
x − x∗

1
)�Q

(̂
x − x∗

1
)− λ

2

∣∣̂x − x∗
1
∣∣
1.

Plugging this into (29), we obtain(̂
x − x∗

1
)�Q

(̂
x − x∗

1
)+ λ|̂x|1 − λ

2

∣∣̂x − x∗
1
∣∣
1 ≤ λ

∣∣x∗
1
∣∣
1 + C3βnV

∗.(31)

We can rewrite the second and third terms on the left-hand side of (31) as

λ|̂xS |1 − λ

2

∣∣̂xS − x∗
1S

∣∣
1 + λ

2
|̂xSc |1.

Plugging this into (31) and by the triangular inequality |x∗
1S |1 −|̂xS |1 ≤ |̂xS −x∗

1S |1,
we find that(̂

x − x∗
1
)�Q

(̂
x − x∗

1
)+ λ

2
|̂xSc |1 ≤ 3λ

2

∣∣̂xS − x∗
1S

∣∣
1 + C3βnV

∗.

We drop the term λ
2 |̂xSc |1 on the left-hand side and apply the Cauchy–Schwarz

inequality to the term |̂xS − x∗
1S |1. This gives

(̂
x − x∗

1
)�Q

(̂
x − x∗

1
)≤ 3λ

2

√∣∣x∗
1

∣∣
0

∣∣̂x1S − x∗
1S

∣∣+ C3βnV
∗.(32)
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Since (26) holds, by the definition of �(S,3),(̂
x − x∗

1
)�Q

(̂
x − x∗

1
)≥ a0

∣∣̂xS − x∗
1S

∣∣2.
We write temporarily Y = (̂x−x∗

1)
�Q(̂x−x∗

1) and b = C3βnV
∗. Combining these

with (32),

Y ≤ 3λ

2
√

a0

√∣∣x∗
1

∣∣
0Y + b.

Note that when u2 ≤ au + b, we have (u − a
2 )2 ≤ b + a2

4 , and hence u2 ≤ 2[a2

4 +
(u − a

2 )2] ≤ a2 + 2b. As a result, the above inequality implies

(̂
x − x∗

1
)�Q

(̂
x − x∗

1
)≤ 9λ2

4a0

∣∣x∗∣∣
0 + 2C3βnV

∗,(33)

where we have used |x∗
1|0 = |x∗|0. Furthermore, (30) yields that

x̂�Qx̂ − (
x∗

1
)�Qx∗

1 ≤ (̂
x − x∗

1
)�Q

(̂
x − x∗

1
)+ λ

2

∣∣̂x − x∗
1
∣∣
1

≤ (̂
x − x∗

1
)�Q

(̂
x − x∗

1
)+ 2λ

∣∣x∗
1
∣∣
1(34)

≤ (̂
x − x∗

1
)�Q

(̂
x − x∗

1
)+ 4c

−1/2
0 V̄ ∗λ

√∣∣x∗∣∣
0,

where the second inequality is due to |̂x − x∗
1|1 ≤ |̂x|1 + |x∗

1| ≤ 4|x∗
1|1, and the last

inequality is from (27). Recall that λ = Cη max{k1/2
0 λ0, s

1/2
0 �n}V̄ ∗. As a result,

λ
√∣∣x∗∣∣

0 = Cη max
{
k

1/2
0 s

1/2
0 λ0, s0�n

}
V̄ ∗ = CηTn

(
x∗)V̄ ∗.(35)

Combining (33), (34) and (35) gives

x̂�Qx̂ − (
x∗

1
)�Qx∗

1

≤ 9C2

4a0
η2[Tn

(
x∗)]2V ∗ + 4Cc

−1/2
0 ηTn

(
x∗)V ∗ + 2C3βnV

∗(36)

≤ C4η
2Tn

(
x∗)V ∗.

Step 3. We use (36) to give a lower bound of R(̂x).
Note that R(̂x) = (q�x̂)2/(̂x�Qx̂). First, we look at the denominator x̂�Qx̂.

From (21) and that tn > 1/2,∣∣t−2
n − 1

∣∣= t−1
n

(
1 + t−1

n

)|tn − 1| ≤ 6c
−1/2
0 αnV̄

∗.
Combining with (36) and noting that (x∗

1)
�Qx∗

1 = t−2
n (x∗)�Qx∗ = t−2

n V ∗, we
have

x̂�Qx̂ ≤ [
t−2
n + C4η

2Tn

(
x∗)](x∗)�Qx∗

≤ [
1 + 6c

−1/2
0 αnV̄

∗ + C4η
2Tn

(
x∗)](x∗)�Qx∗(37)

≤ [
1 + C5η

2Tn

(
x∗)](x∗)�Qx∗.
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Second, we look at the numerator q�x̂. Since q̂�x̂ = 1, by (27),∣∣q�x̂ − 1
∣∣≤ |̂q − q|∞|̂x|1 ≤ 6c

−1/2
0 αnV̄

∗ ≤ C6Tn

(
x∗).(38)

Combining (37) and (38) gives

R(̂x) = (q�x̂)2

x̂�Qx̂
≥ [1 − C6Tn(x∗)]2

1 + C5η2Tn(x∗)
1

(x∗)�Qx∗

≥ [
1 − Aη2Tn

(
x∗)] (q�x∗)2

(x∗)�Qx∗(39)

= [
1 − Aη2Tn

(
x∗)]R(x∗),

where A = A(a0, c0, u0) is a positive constant.

9.2. Proof of Proposition 6.1. Denote by P(i|j) the probability that a new
sample from class j is misclassified to class i, for i, j ∈ {1,2} and i �= j . The
classification error of h is

err(h) = πP(2|1) + (1 − π)P(1|2).

Write Mk = Mk(�, δ) and Lk = Lk(�, δ) for short. It suffices to show that

P(2|1) = �̄

(
(1 − t)M√

L1

)
+ O(q) + o(d)

L
3/2
1

,

P(1|2) = �̄

(
tM√
L2

)
+ O(q) + o(d)

L
3/2
2

.

We only consider P(2|1). The analysis of P(1|2) is similar. Suppose X|class 1
(d)=

Z ∼N (μ1,�1). Define

Y = �
−1/2
1 (Z − μ1),

so that Y ∼N (0, Id) and Z = �
1/2
1 Y + μ1. Note that

Q(Z) = (
�

1/2
1 Y + μ1

)�
�
(
�

1/2
1 Y + μ1

)− 2
(
�

1/2
1 Y + μ1

)�
δ

(40)
= Y��

1/2
1 ��

1/2
1 Y + 2Y��

1/2
1 (�μ1 − δ) + μ�

1 �μ1 − 2μ�
1 δ.

Recall that �
1/2
1 ��

1/2
1 = K1S1K�

1 is the eigen-decomposition by excluding the 0

eigenvalues. Since �1 has full rank and the rank of � is q , the rank of �
1/2
1 ��

1/2
1

is q . Therefore, S1 is a q × q diagonal matrix, and K1 is a d × q matrix satisfying
K�

1 K1 = Iq . Let K̃1 be any d × (d − q) matrix such that K = [K1, K̃1] is a d × d

orthogonal matrix. Since Id = KK� = K1K�
1 + K̃1K̃�

1 , we have

Y��
1/2
1 (�μ1 − δ) = Y�K1K�

1 �
1/2
1 (�μ1 − δ) + Y�K̃1K̃�

1 �
1/2
1 (�μ1 − δ).
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We recall that β1 = K�
1 �

1/2
1 (�μ1 −β). Let β̃1 = K̃�

1 �
1/2
1 (�μ1 − δ), W = K�

1 Y,
W̃ = K̃�

1 Y and c1 = μ�
1 �μ1 − 2μ�

1 δ. It follows from (40) that

Q(Z) = Y�K1S1K�
1 Y + 2Y�K1β1 + 2Y�K̃1β̃1 + c1

= W�S1W + 2W�β1 + 2W̃�β̃1 + c1

≡ Q̄1(W) + F̄1(W̃) + c1,

where Q̄1(w) = w�S1w + 2w�β1 and F̄1(w) = 2w�β̃1. Therefore,

P(2|1) = P
(
Q(Z) > c

)= P
(
Q̄1(W) + F̄1(W̃) > c − c1

)
.

We write for convenience W = (W1, . . . ,Wq)
�, W̃ = (Wq+1, . . . ,Wd)�, β1 =

(β11, . . . , β1q)
� and β̃1 = (β1(q+1), . . . , β1d)�, and notice that Wi

i.i.d.∼ N(0,1) for
1 ≤ i ≤ d . Moreover,

Q̄1(W) + F̄1(W̃) =
q∑

i=1

(
siW

2
i + 2Wiβ1i

)+ d∑
i=q+1

2Wiβ1i ≡
d∑

i=1

ξi,(41)

where ξi = siW
2
i I {1 ≤ i ≤ q}+ 2Wiβ1i , for 1 ≤ i ≤ d . The right-hand side of (41)

is a sum of independent variables, so we can apply the Edgeworth expansion to its
distribution function, as described in detail below.

Note that E(W 2
i ) = 1, E(W 4

i ) = 3, E(W 6
i ) = 15 and E(W

2j+1
i ) = 0 for nonneg-

ative integers j . By direct calculation,

η1 ≡
d∑

i=1

E(ξi) =
q∑

i=1

si = tr(S1) = tr(��1),

η2 ≡
d∑

i=1

var(ξi) =
q∑

i=1

(
2s2

i + 4β2
1i

)+ d∑
i=q+1

4β2
1i = 2 tr

(
S2

1
)+ 4|β1|2 + 4|β̃1|2

= 2 tr(��1��1) + 4(�μ1 − δ)��1(�μ1 − δ),

η3 ≡
d∑

i=1

E
[
ξi −E(ξi)

]3 =
d∑

i=1

(
8s3

i + 24β2
1i si

)
= 8 tr

(
S3

1
)+ 24β�

1 S1β1 = 8 tr
[
(��1)

3]+ 24(�μ1 − δ)��1��1(�μ1 − δ).

Notice that E(|ξi − E(ξi)|3) < ∞, as max{|si |, |β1i |,1 ≤ i ≤ d} ≤ C0 by assump-
tion. Using results from Chapter XVI of Feller (1966), we know

P(2|1) = P

(
d∑

i=1

ξi > c − c1

)

= P

(∑d
i=1 ξi −E(

∑d
i=1 ξi)√∑d

i=1 var(ξi)
>

c − c1 −E(
∑d

i=1 ξi)√∑d
i=1 var(ξi)

)
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= �̄

(
c − c1 − η1√

η2

)
+ η3(1 − ((c1 − c + η1)

2/η2))

6η
3/2
2

φ

(
c1 − c + η1√

η2

)

+ o

(
d

η
3/2
2

)
,

where φ is the probability density function of the standard normal distribution. It
is observed that η2 = L1(�, δ) and c1 + η1 = M1(�, δ). Also, c = tM1(�, δ) +
(1 − t)M2(�, δ). As a result,

c − c1 − η1√
η2

= [tM1 + (1 − t)M2] − M1√
L1

= (1 − t)(M2 − M1)√
L1

= (1 − t)
M√
L1

.

Plugging this into the expression of P(2|1), the first term is �̄((1 − t) M√
L1

). More-

over, since the function (1 − u2)φ(u) is uniformly bounded, the second term is
O(

η3

η
3/2
2

). Here η2 = L1, and η3 = O(q) as si’s and β1i ’s are abounded in magni-

tude. Combining the above gives

P(2|1) = �̄

(
(1 − t)M√

L1

)
+ O(q) + o(d)

L
3/2
1

.

The proof is now complete.

SUPPLEMENTARY MATERIAL

Supplement to “QUADRO: A supervised dimension reduction method via
Rayleigh quotient optimization” (DOI: 10.1214/14-AOS1307SUPP; .pdf). Ow-
ing to space constraints, numerical tables for simulation and some of the technical
proofs are relegated to a supplementary document. It contains proofs of Proposi-
tions 2.1, 5.1 and 6.2.
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