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NONASYMPTOTIC BOUNDS FOR VECTOR QUANTIZATION
IN HILBERT SPACES

BY CLÉMENT LEVRARD

Université Paris Sud, UPMC and INRIA

Recent results in quantization theory show that the mean-squared ex-
pected distortion can reach a rate of convergence of O(1/n), where n is the
sample size [see, e.g., IEEE Trans. Inform. Theory 60 (2014) 7279–7292 or
Electron. J. Stat. 7 (2013) 1716–1746]. This rate is attained for the empiri-
cal risk minimizer strategy, if the source distribution satisfies some regularity
conditions. However, the dependency of the average distortion on other pa-
rameters is not known, and these results are only valid for distributions over
finite-dimensional Euclidean spaces.

This paper deals with the general case of distributions over separable, pos-
sibly infinite dimensional, Hilbert spaces. A condition is proposed, which
may be thought of as a margin condition [see, e.g., Ann. Statist. 27 (1999)
1808–1829], under which a nonasymptotic upper bound on the expected dis-
tortion rate of the empirically optimal quantizer is derived. The dependency
of the distortion on other parameters of distributions is then discussed, in
particular through a minimax lower bound.

1. Introduction. Quantization, also called lossy data compression in informa-
tion theory, is the problem of replacing a probability distribution with an efficient
and compact representation, that is a finite set of points. To be more precise, let
H denote a separable Hilbert space, and let P denote a probability distribution
over H. For a positive integer k, a so-called k-points quantizer Q is a map from H
to H, whose image set is made of exactly k points, that is |Q(H)| = k. For such
a quantizer, every image point ci ∈ Q(H) is called a code point, and the vector
composed of the code points (c1, . . . , ck) is called a codebook, denoted by c. By
considering the pre-images of its code points, a quantizer Q partitions the separa-
ble Hilbert space H into k groups, and assigns each group a representative. General
references on the subject are to be found in [13, 14] and [20] among others.

The quantization theory was originally developed as a way to answer signal
compression issues in the late 1940s (see, e.g., [13]). However, unsupervised clas-
sification is also in the scope of its application. Isolating meaningful groups from
a cloud of data is a topic of interest in many fields, from social science to biology.
Classifying points into dissimilar groups of similar items is more interesting as the
amount of accessible data is large. In many cases data need to be preprocessed
through a quantization algorithm in order to be exploited.
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If the distribution P has a finite second moment, the performance of a quantizer
Q is measured by the risk, or distortion

R(Q) := P
∥∥x − Q(x)

∥∥2
,

where Pf means integration of the function f with respect to P . The choice of the
squared norm is convenient, since it takes advantages of the Hilbert space structure
of H. Nevertheless, it is worth pointing out that several authors deal with more
general distortion functions. For further information on this topic, the interested
reader is referred to [14] or [12].

In order to minimize the distortion introduced above, it is clear that only quantiz-
ers of the type x �→ arg minc1,...,ck

‖x − ci‖2 are to be considered. Such quantizers
are called nearest-neighbor quantizers. With a slight abuse of notation, R(c) will
denote the risk of the nearest-neighbor quantizer associated with a codebook c.

Provided that P has a bounded support, there exist optimal codebooks minimiz-
ing the risk R (see, e.g., Corollary 3.1 in [12] or Theorem 1 in [15]). The aim is to
design a codebook ĉn, according to an n-sample drawn from P , whose distortion
is as close as possible to the optimal distortion R(c∗), where c∗ denotes an optimal
codebook.

To solve this problem, most approaches to date attempt to implement the
principle of empirical risk minimization in the vector quantization context. Let
X1, . . . ,Xn denote an independent and identically distributed sample with distri-
bution P . According to this principle, good code points can be found by searching
for ones that minimize the empirical distortion over the training data, defined by

R̂n(c) := 1

n

n∑
i=1

∥∥Xi − Q(Xi)
∥∥2 = 1

n

n∑
i=1

min
j=1,...,k

‖Xi − cj‖2.

If the training data represents the source well, then ĉn will hopefully also perform
near optimally on the real source, that is, �(ĉn, c∗) = R(ĉn) − R(c∗) ≈ 0. The
problem of quantifying how good empirically designed codebooks are, compared
to the truly optimal ones, has been extensively studied, as, for instance, in [20] in
the finite-dimensional case.

If H = R
d , for some d > 0, it has been proved in [21] that E�(ĉn, c∗) =

O(1/
√

n), provided that P has a bounded support. This result has been extended
to the case where H is a separable Hilbert space in [6]. However, this upper bound
has been tightened whenever the source distribution satisfies additional assump-
tions, in the finite-dimensional case only.

When H = R
d , for the special case of finitely supported distributions, it is

shown in [2] that E�(ĉn, c∗) = O(1/n). There are much more results in the case
where P is not assumed to have a finite support.

In fact, different sets of assumptions have been introduced in [2, 25] or [18], to
derive fast convergence rates for the distortion in the finite-dimensional case. To
be more precise, it is proved in [2] that, if P has a support bounded by M and
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satisfies a technical inequality, namely for some fixed a > 0, for every codebook c,
there is a c∗ optimal codebook such that

�
(
c, c∗) ≥ a Var

(
min

j=1,...,k
‖X − cj‖2 − min

j=1,...,k

∥∥X − c∗
j

∥∥2
)
,(1)

then E�(ĉn, c∗) ≤ C(k, d,P ) log(n)/n, where C(k, d,P ) depends on the natural
parameters k and d , and also on P , but only through M and the technical param-
eter a. However, in the continuous density and unique minimum case, it has been
proved in [11], following the approach of [25], that provided the Hessian matrix
of c �→ R(c) is positive definite at the optimal codebook, n�(ĉn, c∗) converges in
distribution to a law, depending on the Hessian matrix. As proved in [18], the tech-
nique used in [25] can be slightly modified to derive a nonasymptotic bound of the
type E�(ĉn, c∗) ≤ C/n in this case, for some unknown C > 0.

As shown in [18], these different sets of assumptions turn out to be equivalent
in the continuous density case to a technical condition, similar to that used in [24]
to derive fast rates of convergence in the statistical learning framework.

Thus, a question of interest is to know whether some margin type conditions can
be derived for the source distribution to satisfy the technical condition mentioned
above, as has been done in the statistical learning framework in [22]. This paper
provides a condition, which can clearly be thought of as a margin condition in
the quantization framework, under which condition (1) is satisfied. The technical
constant a has then an explicit expression in terms of natural parameters of P from
the quantization point of view. This margin condition does not require H to have a
finite dimension, or P to have a continuous density. In the finite-dimensional case,
this condition does not demand either that there exists a unique optimal codebook,
as required in [25], hence seems easier to check.

Moreover, a nonasymptotic bound of the type E�(ĉn, c∗) ≤ C(k,P )/n is de-
rived for distributions satisfying this margin condition, where C(k,P ) is explicitly
given in terms of parameters of P . This bound is also valid if H is infinite dimen-
sional. This point may be of interest for curve quantization, as done in [3].

In addition, a minimax lower bound is given which allows one to discuss the
influence of the different parameters mentioned in the upper bound. It is worth
pointing out that this lower bound is valid over a set of probability distributions
with uniformly bounded continuous densities and unique optimal codebooks, such
that the minimum eigenvalues of the second derivative matrices of the distortion,
at the optimal codebooks, are uniformly lower bounded. This result generalizes the
previous minimax bound obtained in Theorem 4 of [1] for k ≥ 3 and d > 1.

This paper is organized as follows. In Section 2, some notation and definitions
are introduced, along with some basic results for quantization in a Hilbert space.
The so-called margin condition is then introduced, and the main results are exposed
in Section 3: first an oracle inequality on the loss is stated, along with a minimax
result. Then it is shown that Gaussian mixtures are in the scope of the margin
condition. Finally, the main results are proved in Section 4 and the proofs of several
supporting lemmas are deferred to the supplementary material [19].
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2. Notation and definitions. Throughout this paper, for M > 0 and a in H,
B(a,M) and Bo(a,M) will denote, respectively, the closed and open ball with
center a and radius M . For a subset A of H,

⋃
a∈AB(a,M) will be denoted by

B(A,M). With a slight abuse of notation, P is said to be M-bounded if its support
is included in B(0,M). Furthermore, it will also be assumed that the support of P

contains more than k points.
To frame quantization as an empirical risk minimization issue, the following

contrast function γ is introduced as

γ :

⎧⎨
⎩

(H)k ×H −→ R,

(c, x) �−→ min
j=1,...,k

‖x − cj‖2,

where c = (c1, . . . , ck) denotes a codebook, that is a kd-dimensional vector if
H = R

d . In this paper, only the case k ≥ 2 will be considered. The risk R(c) then
takes the form R(c) = R(Q) = Pγ (c, ·), where we recall that Pf denotes the inte-
gration of the function f with respect to P . Similarly, the empirical risk R̂n(c) can
be defined as R̂n(c) = Pnγ (c, ·), where Pn is the empirical distribution associated
with X1, . . . ,Xn, in other words Pn(A) = (1/n)|{i|Xi ∈ A}|, for any measurable
subset A ⊂ H.

It is worth pointing out that, if P is M-bounded, for some M > 0, then there
exist such minimizers ĉn and c∗ (see, e.g., Corollary 3.1 in [12]). In the sequel, the
set of minimizers of the risk R will be denoted by M. Since every permutation of
the labels of an optimal codebook provides an optimal codebook, M contains more
than k! elements. To address the issue of a large number of optimal codebooks, M̄
is introduced as a set of codebooks which satisfies{∀c∗ ∈ M,∃c̄ ∈ M̄,

{
c∗

1, . . . , c
∗
k

}= {c̄1, . . . , c̄k},
∀c̄1 �= c̄2 ∈ M̄,

{
c̄1

1, . . . , c̄
1
k

} �= {
c̄2

1, . . . , c̄
2
k

}
.

In other words, M̄ is a subset of the set of optimal codebooks which contains
every element of M, up to a permutation of the labels, and in which two different
codebooks have different sets of code points. It may be noticed that M̄ is not
uniquely defined. However, when M is finite, all the possible M̄ have the same
cardinality.

Let c1, . . . , ck be a sequence of code points. A central role is played by the set
of points which are closer to ci than to any other cj ’s. To be more precise, the
Voronoi cell, or quantization cell associated with ci is the closed set defined by

Vi(c) = {
x ∈ H|∀j �= i,‖x − ci‖ ≤ ‖x − cj‖}.

Note that (V1(c), . . . , Vk(c)) does not form a partition of H, since Vi(c) ∩ Vj (c)
may be nonempty. To address this issue, a Voronoi partition associated with c is
defined as a sequence of subsets (W1(c), . . . ,Wk(c)) which forms a partition of H,
and such that for every i = 1, . . . , k,

W̄i(c) = Vi(c),
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where W̄i(c) denotes the closure of the subset Wi(c). The open Voronoi cell is
defined the same way by

◦
Vi(c) = {

x ∈ H|∀j �= i,‖x − ci‖ < ‖x − cj‖}.
Given a Voronoi partition W(c) = (W1(c), . . . ,Wk(c)), the following inclusion
holds, for i in {1, . . . , k},

◦
Vi(c) ⊂ Wi(c) ⊂ Vi(c),

and the risk R(c) takes the form

R(c) =
k∑

i=1

P
(‖x − ci‖21Wi(c)(x)

)
,

where 1A denotes the indicator function associated with A. In the case where
(W1, . . . ,Wk) are fixed subsets such that P(Wi) �= 0, for every i = 1, . . . , k, it
is clear that

P
(‖x − ci‖21Wi(c)(x)

) ≥ P
(‖x − ηi‖21Wi(c)(x)

)
,

with equality only if ci = ηi , where ηi denotes the conditional expectation of P

over the subset Wi(c), that is,

ηi = P(x1Wi(c)(x))

P (Wi(c))
.

Moreover, it is proved in Proposition 1 of [15] that, for every Voronoi parti-
tion W(c∗) associated with an optimal codebook c∗, and every i = 1, . . . , k,
P(Wi(c∗)) �= 0. Consequently, any optimal codebook satisfies the so-called cen-
troid condition (see, e.g., Section 6.2 of [13]), that is,

c∗
i = P(x1Wi(c∗)(x))

P (Wi(c∗))
.

As a remark, the centroid condition ensures that M ⊂ B(0,M)k , and, for every c∗
in M, i �= j ,

P
(
Vi

(
c∗)∩ Vj

(
c∗)) = P

({
x ∈ H|∀i′,

∥∥x − c∗
i

∥∥ = ∥∥x − c∗
j

∥∥≤ ∥∥x − c∗
i′
∥∥})

= 0.

A proof of this statement can be found in Proposition 1 of [15]. According to this
remark, it is clear that, for every optimal Voronoi partition (W1(c∗), . . . ,Wk(c∗)),{

P
(
Wi

(
c∗)) = P

(
Vi

(
c∗)),

Pn

(
Wi

(
c∗)) =

a.s.
Pn

(
Vi

(
c∗)).(2)
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The following quantities are of importance in the bounds exposed in Section 3.1:⎧⎪⎨
⎪⎩

B = inf
c∗∈M,i �=j

∥∥c∗
i − c∗

j

∥∥,
pmin = inf

c∗∈M,i=1,...,k
P
(
Vi

(
c∗)).

It is worth noting here that B ≤ 2M whenever P is M-bounded, and pmin ≤ 1/k.
If M is finite, it is clear that pmin and B are positive. The following proposition
ensures that this statement remains true when M is not assumed to be finite.

PROPOSITION 2.1. Suppose that P is M-bounded. Then both B and pmin are
positive.

A proof of Proposition 2.1 is given in Section 4. The role of the boundaries
between optimal Voronoi cells may be compared to the role played by the critical
value 1/2 for the regression function in the statistical learning framework (for a
comprehensive explanation of this statistical learning point of view, see, e.g., [24]).
To draw this comparison, the following set is introduced, for any c∗ ∈ M,

Nc∗ = ⋃
i �=j

Vi

(
c∗)∩ Vj

(
c∗).

The region is of importance when considering the conditions under which the em-
pirical risk minimization strategy for quantization achieves faster rates of conver-
gence, as exposed in [18]. However, to completely translate the margin conditions
given in [22] to the quantization framework, the neighborhood of this region has to
be introduced. For this purpose, the t-neighborhood of the region Nc∗ is defined by
B(Nc∗, t). The quantity of interest is the maximal weight of these t-neighborhoods
over the set of optimal codebooks, defined by

p(t) = sup
c∗∈M

P
(
B(Nc∗, t)

)
.

It is straightforward that p(0) = 0. Intuitively, if p(t) is small enough, then the
source distribution P is concentrated around its optimal codebook, and may be
thought of as a slight modification of the probability distribution with finite support
made of an optimal codebook c∗. To be more precise, let us introduce the following
key assumption.

DEFINITION 2.1 (Margin condition). A distribution P satisfies a margin con-
dition with radius r0 > 0 if and only if:

(i) P is M-bounded,
(ii) for all 0 ≤ t ≤ r0,

p(t) ≤ Bpmin

128M2 t.(3)
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Note that, since p(2M) = 1, pmin ≤ 1/k, k ≥ 2 and B ≤ 2M , (3) implies that
r0 < 2M . It is worth pointing out that Definition 2.1 does not require P to have a
density or a unique optimal codebook, up to relabeling, contrary to the conditions
introduced in [25].

Moreover, the margin condition introduced here only requires a local control of
the weight function p(t). The parameter r0 may be thought of as a gap size around
every Nc∗ , as illustrated by the following example:

EXAMPLE 1. Assume that there exists r > 0 such that p(x) = 0 if x ≤ r (e.g.,
if P is supported on k points). Then P satisfies (3), with radius r .

Note also that the condition mentioned in [22] requires a control of the weight
of the neighborhood of the critical value 1/2 with a polynomial function with
degree larger than 1. In the quantization framework, the special role played by the
exponent 1 leads to only consider linear controls of the weight function. This point
is explained by the following example:

EXAMPLE 2. Assume that P is M-bounded, and that there exists Q > 0 and
q > 1 such that p(x) ≤ Qxq . Then P satisfies (3), with

r0 =
(

pminB

128M2Q

)1/(q−1)

.

In the case where P has a density and H = R
d , the condition (3) may be con-

sidered as a generalization of the condition stated in Theorem 3.2 of [18], which
requires the density of the distribution to be small enough over every Nc∗ . In fact,
provided that P has a continuous density, a uniform bound on the density over
every Nc∗ provides a local control of p(t) with a polynomial function of degree 1.
This idea is developed in the following example:

EXAMPLE 3 (Continuous densities, H = R
d ). Assume that H = R

d , P has
a continuous density f and is M-bounded, and that M is finite. In this case, for
every c∗, Fc∗(t) = P(B(Nc∗, t)) is differentiable at 0, with derivative

F ′
c∗(0) =

∫
Nc∗

f (u)dλd−1(u),

where λd−1 denotes the (d − 1)-dimensional Lebesgue measure, considered over
the (d − 1)-dimensional space Nc∗ . Therefore, if P satisfies∫

Nc∗
f (u)dλd−1(u) <

Bpmin

128M2 ,(4)

for every c∗, then there exists r0 > 0 such that P satisfies (3). It can easily be de-
duced from (4) that a uniform bound on the density located at

⋃
c∗ Nc∗ can provide
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a sufficient condition for a distribution P to satisfy a margin condition. Such a
result has to be compared to Theorem 3.2 of [18], where it was required that, for
every c∗,

‖f|Nc∗ ‖∞ ≤ �(d/2)B

2d+5Md+1πd/2 pmin,

where � denotes the Gamma function, and f|Nc∗ denotes the restriction of f to
the set Nc∗ . Note however that the uniform bound mentioned above ensures that
the Hessian matrices of the risk function R, at optimal codebooks, are positive
definite. This does not necessarily imply that (4) is satisfied.

Another interesting parameter of P from the quantization viewpoint is the fol-
lowing separation factor. It quantifies the difference between optimal codebooks
and local minimizers of the risk.

DEFINITION 2.2. Denote by M̃ the set of local minimizers of the map distor-
tion c �−→ Pγ (c, ·). Let ε > 0, then P is said to be ε-separated if

inf
c∈M̃∩Mc

�
(
c, c∗) = ε.(5)

It may be noticed that local minimizers of the risk function satisfy the cen-
troid condition, or have empty cells. Whenever H = R

d , P has a density and
P‖x‖2 < ∞, it can be proved that the set of minimizers of R coincides with the set
of codebooks satisfying the centroid condition, also called stationary points (see,
e.g., Lemma A of [25]). However, this result cannot be extended to noncontinuous
distributions, as proved in Example 4.11 of [14].

The main results of this paper are based on the following proposition, which
connects the margin condition stated in Definition 2.1 to the previous conditions
in [25] or [2]. Recall that k ≥ 2.

PROPOSITION 2.2. Assume that P satisfies a margin condition with radius
r0, then the following properties hold.

(i) For every c∗ in M and c in B(0,M)k , if ‖c − c∗‖ ≤ Br0

4
√

2M
, then

�
(
c, c∗) ≥ pmin

2

∥∥c − c∗∥∥2
.(6)

(ii) M is finite.
(iii) There exists ε > 0 such that P is ε-separated.
(iv) For all c in B(0,M)k ,

1

16M2 Var
(
γ (c, ·) − γ

(
c∗(c), ·))≤ ∥∥c − c∗(c)

∥∥2 ≤ κ0�
(
c, c∗),(7)

where κ0 = 4kM2(1
ε

∨ 64M2

pminB
2r2

0
), and c∗(c) ∈ arg minc∗∈M‖c − c∗‖.



600 C. LEVRARD

As a consequence, (7) ensures that (1) is satisfied, with known constant, which
is the condition required in Theorem 2 of [2]. Moreover, if H = R

d , P has a unique
optimal codebook up to relabeling, and has a continuous density, (6) ensures that
the second derivative matrix of R at the optimal codebook is positive definite, with
minimum eigenvalue larger than pmin/2. This is the condition required in [11] for
n�(ĉn, c∗) to converge in distribution.

It is worth pointing out that the dependency of κ0 on different parameters of
P is known. This fact allows us to roughly discuss how κ0 should scale with the
parameters k, d and M , in the finite-dimensional case. According to Theorem 6.2
of [14], R(c∗) scales like M2k−2/d , when P has a density. Furthermore, it is likely
that r0 ∼ B (see, e.g., the distributions exposed in Section 3.2). Considering that
ε ∼ R(c∗) ∼ M2k−2/d , r0 ∼ B ∼ Mk−1/d , and pmin ∼ 1/k leads to

κ0 ∼ k2+4/d .

At first sight, κ0 does not scale with M , and seems to decrease with the dimension,
at least in the finite-dimensional case. However, there is no result on how κ0 should
scale in the infinite-dimensional case. Proposition 2.2 allows us to derive explicit
upper bounds on the excess risk in the following section.

3. Results.

3.1. Risk bound. The main result of this paper is the following.

THEOREM 3.1. Assume that k ≥ 2, and that P satisfies a margin condition
with radius r0. Let κ0 be defined as

κ0 = 4kM2
(

1

ε
∨ 64M2

pminB2r2
0

)
.

If ĉn is an empirical risk minimizer, then, with probability larger than 1 − e−x ,

�
(
ĉn, c∗) ≤ C0κ0

(k + log(|M̄|))M2

n
+ (9κ0 + 4)

16M2

n
x,(8)

where C0 is an absolute constant.

This result is in line with Theorem 3.1 in [18] or Theorem 1 in [10], concerning
the dependency on the sample size n of the loss �(ĉn, c∗). The main advance lies
in the detailed dependency on other parameters of the loss of ĉn. This provides a
nonasymptotic bound for the excess risk.

To be more precise, Theorem 3.1 in [18] states that

E�
(
ĉn, c∗)≤ C(k, d,P )M2/n,

in the finite-dimensional case, for some unknown constant C(k, d,P ). In fact, this
result relies on the application of Dudley’s entropy bound. This technique was
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already the main argument in [25] or [10], and makes use of covering numbers of
the d-dimensional Euclidean unit ball. Consequently, C(k, d,P ) strongly depends
on the dimension of the underlying Euclidean space in these previous results. As
suggested in [6] or [9], the use of metric entropy techniques to derive bounds on the
convergence rate of the distortion may be suboptimal, as it does not take advantage
of the Hilbert space structure of the squared distance based quantization. This issue
can be addressed by using a technique based on comparison with Gaussian vectors,
as done in [9]. Theorem 3.1 is derived that way, providing a dimension-free upper
bound which is valid over separable Hilbert spaces.

It may be noticed that most of results providing slow convergence rates, such as
Theorem 2.1 in [6] or Corollary 1 in [21], give bounds on the distortion which do
not depend on the number of optimal codebooks. Theorem 3.1 confirms that |M̄|
is also likely to play a minor role on the convergence rate of the distortion in the
fast rate case.

Another interesting point is that Theorem 3.1 does not require that P has a
density or is distributed over points, contrary to the requirements of the previous
bounds in [2, 25] or [10] which achieved the optimal rate of O(1/n). Up to our
knowledge, the more general result is to be found in Theorem 2 of [2], which
derives a convergence rate of O(log(n)/n) without the requirement that P has a
density. It may also be noted that Theorem 3.1 does not require that M̄ contains a
single element, contrary to the results stated in [25]. According to Proposition 2.2,
only (3) has to be proved for P to satisfy the assumptions of Theorem 3.1. Since
proving that |M̄| = 1 may be difficult, even for simple distributions, it seems easier
to check the assumptions of Theorem 3.1 than the assumptions required in [25].
An illustration of this point is given in Section 3.3.

As will be shown in Proposition 3.1, the dependency on ε turns out to be sharp
when ε ∼ n−1/2. In fact, tuning this separation factor is the core of the demonstra-
tion of the minimax results in [4] or [1].

3.2. Minimax lower bound. This subsection is devoted to obtaining a mini-
max lower bound on the excess risk over a set of distributions with continuous
densities, unique optimal codebook, and satisfying a margin condition, in which
some parameters, such as pmin are fixed or uniformly lower-bounded. It has been
already proved in Theorem 4 of [1] that the minimax distortion over distributions
with uniformly bounded continuous densities, unique optimal codebooks (up to
relabeling), and such that the minimum eigenvalues of the second derivative ma-
trices at the optimal codebooks are uniformly lower-bounded, is 
(1/

√
n), in the

case where k = 3 and d = 1. Extending the distributions used in Theorem 4 of [1],
Proposition 3.1 below generalizes this result in arbitrary dimension d , and provides
a lower bound over a set of distributions satisfying a uniform margin condition.

Throughout this subsection, only the case H = R
d is considered, and ĉn will

denote an empirically designed codebook, that is a map from (Rd)n to (Rd)k . Let
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k be an integer such that k ≥ 3, and M > 0. For simplicity, k is assumed to be
divisible by 3. Let us introduce the following quantities:⎧⎪⎪⎨

⎪⎪⎩
m = 2k

3
,

� = 5M

32m1/d
.

To focus on the dependency on the separation factor ε, the quantities involved
in Definition 2.1 are fixed as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B = �,

r0 = 7�

16
,

pmin ≥ 3

4k
.

(9)

Denote by D(ε) the set of probability distributions which are ε-separated, have
continuous densities and unique optimal codebooks, and which satisfy a margin
condition with parameters defined in (9). The minimax result is the following.

PROPOSITION 3.1. Assume that k ≥ 3 and n ≥ 3k/2. Then, for any empiri-
cally designed codebook,

sup
P∈D(c1/

√
n)

E�
(
ĉn, c∗) ≥ c0M

2

√
k1−4/d

√
n

,

where c0 > 0 is an absolute constant, and

c1 = (5M)2

4(32m1/4+1/d)2 .

Proposition 3.1 is in line with the previous minimax lower bounds obtained in
Theorem 1 of [4] or Theorem 4 of [1]. Proposition 3.1, as well as these two previ-
ous results, emphasizes the fact that fixing the parameters of the margin condition
uniformly over a class of distributions does not guarantee an optimal uniform con-
vergence rate. This shows that a uniform separation assumption is needed to derive
a sharp uniform convergence rate over a set of distributions.

Furthermore, as mentioned above, Proposition 3.1 also confirms that the mini-
max distortion rate over the set of distributions with continuous densities, unique
optimal codebooks, and such that the minimum eigenvalues of the Hessian ma-
trices are uniformly lower bounded by 3/8k, is still 
(1/

√
n) in the case where

d > 1 and k ≥ 3.
This minimax lower bound has to be compared to the upper risk bound obtained

in Theorem 3.1 for the empirical risk minimizer ĉn, over the set of distributions
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D(c1/
√

n). To be more precise, Theorem 3.1 ensures that, provided that n is large
enough,

sup
P∈D(c1/

√
n)

E�
(
ĉn, c∗) ≤ g(k, d,M)√

n
,

where g(k, d,M) depends only on k, d and M . In other words, the dependency
of the upper bounds stated in Theorem 3.1 on ε turns out to be sharp whenever
ε ∼ n−1/2. Unfortunately, Proposition 3.1 cannot be easily extended to the case
where ε ∼ n−α , with 0 < α < 1/2. Consequently, an open question is whether
the upper bounds stated in Theorem 3.1 remains accurate with respect to ε in this
case.

3.3. Quasi-Gaussian mixture example. The aim of this subsection is to illus-
trate the results exposed in Section 3 with Gaussian mixtures in dimension d = 2.
The Gaussian mixture model is a typical and well-defined clustering example.

In general, a Gaussian mixture distribution P̃ is defined by its density

f̃ (x) =
k̃∑

i=1

θi

2π
√|�i |e

−(1/2)(x−mi)
t�−1

i (x−mi),

where k̃ denotes the number of components of the mixture, and the θi’s denote the
weights of the mixture, which satisfy

∑k
i=1 θi = 1. Moreover, the mi ’s denote the

means of the mixture, so that mi ∈R
2, and the �i ’s are the 2×2 variance matrices

of the components.
We restrict ourselves to the case where the number of components k̃ is known,

and match the size k of the codebooks. To ease the calculation, we make the ad-
ditional assumption that every component has the same diagonal variance matrix
�i = σ 2I2. Note that a similar result to Proposition 3.2 can be derived for distri-
butions with different variance matrices �i , at the cost of more computing.

Since the support of a Gaussian random variable is not bounded, we define the
“quasi-Gaussian” mixture model as follows, truncating each Gaussian component.
Let the density f of the distribution P be defined by

f (x) =
k∑

i=1

θi

2πσ 2Ni

e−‖x−mi‖2/(2σ 2)1B(0,M),

where Ni denotes a normalization constant for each Gaussian variable.
Let η be defined as η = 1 − mini=1,...,k Ni . Roughly, the model proposed

above will be close the Gaussian mixture model when η is small. Denote by
B̃ = infi �=j‖mi − mj‖ the smallest possible distance between two different means
of the mixture. To avoid boundary issues we assume that, for all i = 1, . . . , k,
B(mi, B̃/3) ⊂ B(0,M).
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Note that the assumption B(mi, B̃/3) ⊂ B(0,M) can easily be satisfied if M is
chosen large enough. For such a model, Proposition 3.2 offers a sufficient condition
for P to satisfy a margin condition.

PROPOSITION 3.2. Let θmin = mini=1,...,k θi , and θmax = maxi=1,...,k θi . As-
sume that

θmin

θmax
≥ 2048k

(1 − η)B̃
max

(
σ 2

B̃(1 − e−B̃2/2048σ 2
)
,

kM3

7σ 2(eB̃2/32σ 2 − 1)

)
.(10)

Then P satisfies a margin condition with radius B̃
8 .

It is worth mentioning that P has a continuous density, and that according to (i)
in Proposition 2.2, the second derivative matrices of the risk function, at the op-
timal codebooks, must be positive definite. Thus, P might be in the scope of the
result in [25]. However, there is no elementary proof of the fact that |M̄| = 1,
whereas M is finite is guaranteed by Proposition 2.2. This shows that the mar-
gin condition given in Definition 2.1 may be easier to check than the condition
presented in [25]. The condition (10) can be decomposed as follows. If

θmin

θmax
≥ 2048kσ 2

(1 − η)B̃2(1 − e−B̃2/2048σ 2
)
,

then every optimal codebook c∗ must be close to the vector of means of the mixture
m = (m1, . . . ,mk). Therefore, it is possible to approximately locate the Nc∗’s, and
to derive an upper bound on the weight function p(t) defined above Definition 2.1.
This leads to the second term of the maximum in (10).

This condition can be interpreted as a condition on the polarization of the mix-
ture. A favorable case for vector quantization seems to be when the poles of the
mixtures are well separated, which is equivalent to σ is small compared to B̃ , when
considering Gaussian mixtures. Proposition 3.2 gives details on how σ has to be
small compared to B̃ , in order to satisfy the requirements of Definition 2.1.

It may be noticed that Proposition 3.2 offers almost the same condition as
Proposition 4.2 in [18]. In fact, since the Gaussian mixture distributions have a
continuous density, making use of (4) in Example 3 ensures that the margin con-
dition for Gaussian mixtures is equivalent to a bound on the density over

⋃
c∗ Nc∗ .

It is important to note that this result is valid when k is known and matches
exactly the number of components of the mixture. When the number of code points
k is different from the number of components k̃ of the mixture, we have no general
idea of where the optimal code points can be located.

Moreover, suppose that there exists only one optimal codebook c∗, up to re-
labeling, and that we are able to locate this optimal codebook c∗. As stated in
Proposition 2.2, the key quantity is in fact B = infi �=j ‖c∗

i − c∗
j‖. In the case where

k̃ �= k, there is no simple relation between B̃ and B . Consequently, a condition like
in Proposition 3.2 could not involve the natural parameter of the mixture B̃ .
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4. Proofs.

4.1. Proof of Proposition 2.1. The lower bound on B follows from a compact-
ness argument for the weak topology on H, exposed in the following lemma. For
the sake of completeness, it is recalled that a sequence cn of elements in H weakly
converges to c, denoted by cn ⇀n→∞ c, if, for every continuous linear real-valued
function f , f (cn) →n→∞ f (c). Moreover, a function φ from H to R is weakly
lower semi-continuous if, for all λ ∈ R, the level sets {c ∈ H|φ(c) ≤ λ} are closed
for the weak topology.

LEMMA 4.1. Let H be a separable Hilbert space, and assume that P is
M-bounded. Then:

(i) B(0,R)k is weakly compact, for every R ≥ 0,
(ii) c �→ Pγ (c, ·) is weakly lower semi-continuous,

(iii) M is weakly compact.

A more general statement of Lemma 4.1 can be found in Section 5.2 of [12], for
quantization with Bregman divergences. However, since the proof is much simpler
in the special case of the squared-norm based quantization in a Hilbert space, it is
briefly recalled in Section A.1 (supplementary material [19]).

Let c′
n be a sequence of optimal codebooks such that ‖c′

1,n − c′
2,n‖ → B , as

n → ∞. Then, according to Lemma 4.1, there exists a subsequence cn and an
optimal codebook c∗, such that cn⇀n→∞c∗, for the weak topology. Then it is
clear that (c1,n − c2,n)⇀n→∞(c∗

1 − c∗
2).

Since u �→ ‖u‖ is weakly lower semi-continuous on H (see, e.g., Proposi-
tion 3.13 in [8]), it follows that∥∥c∗

1 − c∗
2
∥∥ ≤ lim inf

n→∞ ‖c1,n − c2,n‖ = B.

Noting that c∗ is an optimal codebook, and the support of P has more than k points,
Proposition 1 of [15] ensures that ‖c∗

1 − c∗
2‖ > 0.

The uniform lower bound on pmin follows from the argument that, since the
support of P contains more than k points, then R∗

k < R∗
k−1, where R∗

j denotes the
minimum distortion achievable for j -points quantizers (see, e.g., Proposition 1
in [15]). Denote by α the quantity R∗

k−1 − R∗
k , and suppose that pmin < α

4M2 .

Then there exists an optimal codebook of size k, c∗,k = (c
∗,k
1 , . . . , c

∗,k
k ), such that

P(V1(c∗,k)) < α
4M2 . Let c∗,k−1 denote an optimal codebook of size (k − 1), and

define the following k-points quantizer:⎧⎨
⎩

Q(x) = c
∗,k
1 , if x ∈ V1

(
c∗,k

)
,

Q(x) = c
∗,k−1
j , if x ∈ Vj

(
c∗,k−1)∩ (

V1
(
c∗,k

))c.
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Since P(∂V1(c∗,k)) = P(∂Vj (c∗,k−1)) = 0, for j = 1, . . . , k − 1, Q is defined P

almost surely. Then it is easy to see that

R(Q) ≤ P
(
V1

(
c∗,k))4M2 + R∗

k−1 < R∗
k .

Hence, the contradiction. Therefore, we have pmin ≥ α
4M2 .

4.2. Proof of Proposition 2.2. The proof of (i) in Proposition 2.2 is based on
the following lemma.

LEMMA 4.2. Let c and c∗ be in B(0,M)k , and x ∈ Vi(c∗)∩Vj (c)∩B(0,M),
for i �= j . Then ∣∣∣∣

〈
x − ci + cj

2
, ci − cj

〉∣∣∣∣ ≤ 4
√

2M
∥∥c − c∗∥∥,(11)

d
(
x, ∂Vi

(
c∗)) ≤ 4

√
2M

B

∥∥c − c∗∥∥.(12)

The two statements of Lemma 4.2 emphasize the fact that, provided that c and c∗
are quite similar, the areas on which the labels may differ with respect to c and c∗
should be close to the boundary of Voronoi diagrams. This idea is mentioned in the
proof of Corollary 1 in [2]. Nevertheless, we provide a simpler proof in Section A.2
(supplementary material [19]).

Equipped with Lemma 4.2, we are in a position to prove (6). Let c be in
B(0,M)k , and (W1(c), . . . ,Wk(c)) be a Voronoi partition associated with c, as
defined in Section 2. Let c∗ be in M, then �(c, c∗) can be decomposed as follows:

Pγ (c, ·) =
k∑

i=1

P
(‖x − ci‖21Wi(c)(x)

)

=
k∑

i=1

P
(‖x − ci‖21Vi(c∗)(x)

)

+
k∑

i=1

P
(‖x − ci‖2(1Wi(c)(x) − 1Vi(c∗)(x)

))
.

Since, for all i = 1, . . . , k, P(x1Vi(c∗)(x)) = P(Vi(c∗))c∗
i (centroid condition), we

may write

P
(‖x − ci‖21Vi(c∗)(x)

)
= P

(
Vi

(
c∗))∥∥ci − c∗

i

∥∥2 + P
(∥∥x − c∗

i

∥∥21Vi(c∗)(x)
)
,
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from which we deduce that

Pγ (c, ·) = Pγ
(
c∗, ·)+

k∑
i=1

P
(
Vi

(
c∗))∥∥ci − c∗

i

∥∥2

+
k∑

i=1

P
(‖x − ci‖2(1Wi(c)(x) − 1Vi(c∗)(x)

))
,

which leads to

�
(
c, c∗) ≥ pmin

∥∥c − c∗∥∥2

+
k∑

i=1

∑
j �=i

P
((‖x − cj‖2 − ‖x − ci‖2)1Vi(c∗)∩Wj (c)(x)

)
.

Since x ∈ Wj(c) ⊂ Vj (c), ‖x − cj‖2 − ‖x − ci‖2 ≤ 0. Thus, it remains to bound
from above

k∑
i=1

∑
j �=i

P
((‖x − ci‖2 − ‖x − cj‖2)1Vi(c∗)∩Wj (c)(x)

)
.

Noticing that

‖x − ci‖2 − ‖x − cj‖2 = 2
〈
cj − ci, x − ci + cj

2

〉
,

and using Lemma 4.2, we get(‖x − ci‖2 − ‖x − cj‖2)1Vi(c∗)∩Wj (c)(x)

≤ 8
√

2M
∥∥c − c∗∥∥1

Vi(c∗)∩Wj (c)∩Nc∗ ((4
√

2M/B)‖c−c∗‖)(x).

Hence,

k∑
i=1

P
(‖x − ci‖2(1Wi(c)(x) − 1Vi(c∗)(x)

))

≥ −8
√

2M
∥∥c − c∗∥∥p(4

√
2M

B

∥∥c − c∗∥∥).

Consequently, if P satisfies (3), then, if ‖c − c∗‖ ≤ Br0

4
√

2M
, it follows that

�
(
c, c∗)≥ pmin

2

∥∥c − c∗∥∥2
,

which proves (i).
Suppose that M is not finite. According to Lemma 4.1, there exists a se-

quence cn of optimal codebooks and an optimal codebook c∗ such that for all n,
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cn �= c∗ and cn ⇀n→∞ c∗. Assume that there exists i in {1, . . . , k} such that
lim infn ‖cn,i‖2 > ‖ci‖2. Then lim infn ‖x − cn,i‖2 > ‖x − ci‖2, for every x in H.

Let x be in
◦
Vi(c), and j �= i, then

lim inf
n→∞ ‖x − cn,j‖2 ≥ ‖x − cj‖2 > ‖x − ci‖2,

which leads to lim infn γ (cn, x) > γ (c, x). Since P(
◦
Vi(c)) > 0, it easily follows

that

lim inf
n→∞ Pγ (cn, ·) ≥ P lim inf

n→∞ γ (cn, ·) > Pγ (c, ·),
which is impossible. Hence, there exists a subsequence c̄n of cn such that, for i =
1, . . . , k, ‖c̄n,i‖ →n→∞ ‖c∗

i ‖. Since Hilbert spaces are uniformly convex spaces,
hence satisfy the Radon–Riesz property (see, e.g., Propositions 5.1 and 3.32 in [8]),
it follows that c̄n →n→∞ c∗. This contradicts (6) and proves (ii).

The proof of (iii) is based on the following two lemmas.

LEMMA 4.3. Let c be in B(M,
Br0

4
√

2M
). If c satisfies the centroid condition,

then c is in M.

Lemma 4.3 ensures that no local minimizer with nonempty cells can be found in
a neighborhood of M. We postpone its proof to Section A.3 (supplementary ma-
terial [19]). Lemma 4.4 below shows that the infimum distortion over codebooks
which are away from M is achieved.

LEMMA 4.4. For every r > 0, there exists cr in B(0,M + r)k \Bo(M, r) such
that

inf
Hk\Bo(M,r)

P γ (c, ·) = Pγ (cr , ·).

The proof of Lemma 4.4 is given in Section A.4 (supplementary material
[19]). Let c̃ /∈ M be a local minimizer of the distortion. If c̃ has empty cells,
then Pγ (c̃, ·) ≥ R∗

k−1 > R∗
k . Assume that c̃ has no empty cells. Then c̃ satis-

fies the centroid condition, thus Lemma 4.3 ensures that ‖c̃ − c∗‖ ≥ r , for ev-
ery optimal codebook c∗ and for r = Br0

4
√

2M
. Lemma 4.4 provides cr such that

Pγ (c̃, ·) ≥ Pγ (cr , ·) > 0. Hence, (iii) is proved.
The left part of (7) follows from the elementary inequality

∀x ∈ B(0,M)
∣∣γ (c, x) − γ

(
c∗(c), x

)∣∣ ≤ 4M max
i=1,...,k

∥∥ci − c∗
i (c)

∥∥.(13)

According to (6), if ‖c−c∗(c)‖ ≤ Br0

4
√

2M
, then �(c, c∗) ≥ pmin

2 ‖c−c∗(c)‖2. Now

turn to the case where ‖c− c∗(c)‖ ≥ Br0

4
√

2M
= r . Then Lemma 4.4 provides cr such

that �(c, c∗) ≥ �(cr , c∗). Such a cr is a local minimum of c �→ Pγ (c, ·), or satisfies
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‖cr − c∗(cr )‖ = r . Hence, we deduce

�
(
c, c∗)≥ �

(
cr , c∗) ≥ ε ∧ pmin

2
r2 ≥

(
ε ∧ pminB

2r2
0

64M2

)‖c − c∗(c)‖2

4kM2 .

Note that, since B ≤ 2M and r0 ≤ 2M , (ε ∧ pminB
2r2

0
64M2 )/4kM2 ≤ pmin/2. This

proves (7).

4.3. Proof of Theorem 3.1. Throughout this subsection, P is assumed to sat-
isfy a margin condition with radius r0, and we denote by ε its separation factor.
A nondecreasing map � :R+ → R

+ is called sub-root if x �→ �(x)√
x

is nonincreas-
ing.

The following localization theorem, derived from Theorem 6.1 in [7], is the
main argument of our proof.

THEOREM 4.1. Let F be a class of uniformly bounded measurable functions
such that there exists ω :F −→ R

+ satisfying

∀f ∈ F, Var(f ) ≤ ω(f ).

Assume that

∀r > 0, E

(
sup

ω(f )≤r

∣∣(P − Pn)f
∣∣)≤ �(r),

for some sub-root function �. Let K be a positive constant, and denote by r∗ the
unique solution of the equation �(r) = r/24K .

Then, for all x > 0, with probability larger than 1 − e−x ,

∀f ∈ F, Pf − Pnf ≤ K−1
(
ω(f ) + r∗ + (9K2 + 16K supf ∈F ‖f ‖∞)x

4n

)
.

A proof of Theorem 4.1 is given in Section 5.3 of [18]. The proof of (8) follows
from the combination of Proposition 2.2 and a direct application of Theorem 4.1.
To be more precise, let F denote the set

F = {
γ (c, ·) − γ

(
c∗(c), ·)|c ∈ B(0,M)k

}
.

According to (13), it is clear that, for every f ∈ F ,{‖f ‖∞ ≤ 8M2,

Var(f ) ≤ 16M2
∥∥c − c∗(c)

∥∥2
.

Define ω(f ) = 16M2‖c−c∗(c)‖2. It remains to bound from above the complexity
term. This is done in the following proposition.
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PROPOSITION 4.1. One has

E sup
f ∈F,ω(f )≤δ

∣∣(P − Pn)f
∣∣ ≤ (4

√
πk +

√
2 log(|M̄|))√
n

√
δ.(14)

The proof of Proposition 4.1 relies on the use of Gaussian complexities com-
bined with Slepian’s lemma (see, e.g., Theorem 3.14 in [23]), as done in [9]. We
postpone it to the following subsection. Let � be defined as the right-hand side
of (14), and let δ∗ denote the solution of the equation �(δ) = δ/24K , for some
positive K > 0. Then δ∗ can be expressed as

δ = 576K2

n

(
4
√

πk +
√

2 log
(|M̄|))2 ≤ C

K2(k + log(|M̄|))
n

:= K2�

n
,

where C = 18,432π , and � = C(k+ log(|M̄|)). Applying Theorem 4.1 to F leads
to, with probability larger than 1 − e−x ,

(P − Pn)
(
γ (c, ·) − γ

(
c∗(c), ·))

≤ K−116M2∥∥c − c∗(c)
∥∥2 + K�

n
+ 9K + 128M2

4n
x.

Introducing the inequality κ0�(c, c∗) ≥ ‖c − c∗(c)‖2 provided by Proposition 2.2,
and choosing K = 32M2κ0 leads to (8).

4.3.1. Proof of Proposition 4.1. As mentioned above, this proof relies on the
use of Gaussian complexities (see, e.g., [5]). As will be shown below, avoiding
Dudley’s entropy argument by introducing some Gaussian random vectors allows
us to take advantage of the underlying Hilbert space structure. The first step is to
decompose the complexity term according to optimal codebooks in the following
way:

E sup
‖c−c∗(c)‖2≤δ/16M2

∣∣(P − Pn)
(
γ (c, ·) − γ

(
c∗(c), ·))∣∣

≤ E sup
c∗∈M̄

sup
‖c−c∗‖2≤δ/16M2

∣∣(P − Pn)
(
γ (c, ·) − γ

(
c∗, ·))∣∣.

Let Y ∗
c denote the random variable defined by

Y ∗
c = sup

‖c−c∗‖2≤δ/16M2

∣∣(P − Pn)
(
γ (c, ·) − γ

(
c∗, ·))∣∣,

for every c∗ in M̄. It easily follows that

E sup
c∗∈M̄

Y ∗
c ≤ E sup

c∗∈M̄

(
Y ∗

c −EY ∗
c
)+ sup

c∗∈M̄
EY ∗

c .(15)
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Since, for a fixed c∗, ‖γ (c, ·) − γ (c∗, ·)‖∞ ≤ √
δ when ‖c − c∗‖2 ≤ δ/16M2, the

bounded difference inequality (see, e.g., Theorem 5.1 in [23]) ensures that Y ∗
c is a

sub-Gaussian random variable, with variance bounded from above by δ/n, that is,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
P

(
Y ∗

c −EY ∗
c ≥

√
2δx

n

)
≤ e−x,

P

(
EY ∗

c − Y ∗
c ≥

√
2δx

n

)
≤ e−x,

for every c∗ in M̄ and every positive x. For a more general definition of sub-
Gaussian random variables, the interested reader is referred to [23]. Applying
Lemma 6.3 in [23] to the special case of sub-Gaussian random variables leads
to

E sup
c∗∈M̄

(
Y ∗

c −EY ∗
c
) ≤

√
2 log(|M̄|)δ

n
.(16)

Next, we bound from above the quantities EY ∗
c . Let c∗ be fixed, and let

σ1, . . . , σn denote some independent Rademacher variables. According to the sym-
metrization principle (see, e.g., Section 2.2 of [16]),

E sup
‖c−c∗‖2≤δ/16M2

∣∣(P − Pn)
(
γ (c, ·) − γ

(
c∗, ·))∣∣

≤ 2EX,σ sup
‖c−c∗‖2≤δ/16M2

1

n

n∑
i=1

σi

(
γ (c,Xi) − γ

(
c∗,Xi

))
,

where EY denotes integration with respect to the distribution of Y . Let g1, . . . , gn

denote some independent standard Gaussian variables. Applying Lemma 4.5
in [17] leads to

EX,σ sup
‖c−c∗‖2≤δ/16M2

1

n

n∑
i=1

σi

(
γ (c,Xi) − γ

(
c∗,Xi

))

≤
√

π

2
EX,g sup

‖c−c∗‖2≤δ/16M2

1

n

n∑
i=1

gi

(
γ (c,Xi) − γ

(
c∗,Xi

))
.

To derive bounds on the Gaussian complexity defined above, the following com-
parison result between Gaussian processes is needed.

THEOREM 4.2 (Slepian’s lemma). Let Xt and Zt , t in V , be some centered
real Gaussian processes. Assume that

∀s, t ∈ V, Var(Zs − Zt) ≤ Var(Xs − Xt),

then

E sup
t∈V

Zt ≤ 2E sup
t∈V

Xt.
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A proof of Theorem 4.2 can be found in Theorem 3.14 of [23]. For a fixed
sample X1, . . . ,Xn, define the Gaussian process Zc by

Zc =
n∑

i=1

gi

(
γ (c,Xi) − γ

(
c∗,Xi

))
,

over the set V(δ) = B(c∗,
√

δ
4M

), where c∗ is a fixed optimal codebook. For i =
1, . . . , n, c, c′ ∈ V(δ), we have(

γ (c,Xi) − γ
(
c′,Xi

))2 ≤ sup
j=1,...,k

(‖Xi − cj‖2 − ∥∥Xi − c′
j

∥∥2)2

≤ sup
j=1,...,k

(−2
〈
cj − c′

j ,Xi

〉+ ‖cj‖2 − ∥∥c′
j

∥∥2)2

≤ sup
j=1,...,k

(
8
〈
cj − c′

j ,Xi

〉2 + 2
(‖cj‖2 − ∥∥c′

j

∥∥2)2)
.

Define now the Gaussian process Xc by

Xc = 2
√

2
n∑

i=1

k∑
j=1

〈
cj − c∗

j ,Xi

〉
ξi,j + √

2n

k∑
j=1

(‖cj‖2 − ∥∥c∗
j

∥∥2)
ξ ′
j ,

where the ξ ’s and ξ ′’s are independent standard Gaussian variables. It is straight-
forward that Var(Zc − Zc′) ≤ Var(Xc − Xc′). Therefore, applying Theorem 4.2
leads to

Eg sup
c∈V(δ)

Zc ≤ 2Eξ sup
c∈V(δ)

Xc

≤ 4
√

2Eξ sup
c∈V(δ)

n∑
i=1

k∑
j=1

〈
cj − c∗

j ,Xi

〉
ξi,j(17)

+ 2
√

2nEξ ′ sup
c∈V(δ)

k∑
j=1

(‖cj‖2 − ∥∥c∗
j

∥∥2)
ξ ′
j .

Using almost the same technique as in the proof of Theorem 2.1 in [6], the first
term of the right-hand side of (17) can be bounded as follows:

Eξ sup
c∈V(δ)

n∑
i=1

k∑
j=1

〈
cj − c∗

j ,Xi

〉
ξi,j

= Eξ sup
c∈V(δ)

k∑
j=1

〈
cj − c∗

j ,

(
n∑

i=1

ξi,jXi

)〉

≤ Eξ sup
c∈V(δ)

∥∥c − c∗∥∥
√√√√√ k∑

j=1

∥∥∥∥∥
n∑

i=1

ξi,jXi

∥∥∥∥∥
2
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≤
√

δ

4M

√√√√√ k∑
j=1

Eξ

∥∥∥∥∥
n∑

i=1

ξi,jXi

∥∥∥∥∥
2

≤
√

kδ

4M

√√√√ n∑
i=1

‖Xi‖2.

Then, applying Jensen’s inequality ensures that

EX

√√√√ n∑
i=1

‖Xi‖2 ≤ √
nM.

Similarly, the second term of the right-hand side of (17) can be bounded from
above by

Eξ ′ sup
c∈V(δ)

k∑
j=1

(‖cj‖2 − ∥∥c∗
j

∥∥2)
ξ ′
j

≤ Eξ ′ sup
c∈V(δ)

√√√√√ k∑
j=1

(‖cj‖2 − ∥∥c∗
j

∥∥2)2
√√√√√ k∑

j=1

ξ ′
j

2

≤
√

kδ

2
.

Combining these two bounds ensures that, for a fixed c∗,

EX,g sup
‖c−c∗‖2≤δ/16M2

Zc ≤ 2
√

2kn
√

δ,

which leads to

EYc∗ ≤ 4
√

kπδ√
n

.(18)

Combining (16) and (18) into (15) gives the result.

4.4. Proof of Proposition 3.1. Throughout this subsection, H = R
d , and for a

codebook c, let Q denote the associated nearest neighbor quantizer. In the general
case, such an association depends on how the boundaries are allocated. However,
since the distributions involved in the minimax result have densities, how bound-
aries are allocated will not matter.

Let k ≥ 3 be an integer. For convenience, k is assumed to be divisible by 3.
Let m = 2k/3. Let z1, . . . , zm denote a 6�-net in B(0,M − ρ), where � > 0, and
w1, . . . ,wm a sequence of vectors such that ‖wi‖ = �. Finally, denote by Ui the
ball B(zi, ρ) and by U ′

i the ball B(zi +wi,ρ). Slightly anticipating, define ρ = �
16 .
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To get the largest � such that for all i = 1, . . . ,m, Ui and U ′
i are included in

B(0,M), it suffices to get the largest � such that there exists a 6�-net which can be
packed in B(0,M − �/16). Since the cardinal of a maximal 6�-net is larger than
the smallest number of balls of radius 6� which together cover B(0,M − �/16),
a sufficient condition on � to guarantee that a 6�-net can be found is given by

m ≤
(

M − �/16

6�

)d

.

Since � ≤ M , � can be chosen as

� = 5M

32m1/d
.

For such a �, ρ takes the value ρ = �
16 = 5M

512m1/d . Therefore, it only depends on k,
d and M .

Let z = (zi)i=1,...,m and w = (wi)i=1,...,m be sequences as described above,
such that, for i = 1, . . . ,m, Ui and U ′

i are included in B(0,M). For a fixed
σ ∈ {−1,+1}m such that

∑m
i=1 σi = 0, let Pσ be defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pσ (Ui) = 1 + σiδ

2m
,

Pσ

(
U ′

i

) = 1 + σiδ

2m
,

Pσ ∼
Ui

(
ρ − ‖x − zi‖)1‖x−zi‖≤ρ dλ(x),

Pσ ∼
U ′

i

(
ρ − ‖x − zi − wi‖)1‖x−zi−wi‖≤ρ dλ(x),

where λ denotes the Lebesgue measure and δ ≤ 1/3. These distributions have been
designed to have continuous cone-shaped densities, as in Theorem 4 of [1].

Similarly, let Qσ denote the quantizer defined by Qσ(Ui) = Qσ(U ′
i ) = zi +

ωi/2 if σi = −1, Qσ(Ui) = zi and Qσ(U ′
i ) = zi + ωi if σi = +1. At last, for τ in

{−1,+1}m/2, σ(τ) is defined as the sequence in {−1,+1}m such that{
σi(τ ) = τi,

σi+m/2(τ ) = −σi(τ ),

for i = 1, . . . , m
2 , and the set of corresponding Qσ(τ)’s is denoted by Q.

Given a quantizer Q, let R(Q,Pσ ) and �(Q,Pσ ) denote, respectively, the dis-
tortion and loss of Q in the case where the source distribution is Pσ . Proposi-
tion 4.2 below shows that only quantizers in Q may be considered in order to
derive lower bounds on R.

PROPOSITION 4.2. Let σ and σ ′ be in {−1,+1}m such that
∑m

i=1 σi =∑m
i=1 σ ′

i = 0, and let ρ(σ,σ ′) denote the distance
∑m

i=1 |σi − σ ′
i |. Then

R(Qσ ′,Pσ ) = R(Qσ ,Pσ ) + �2δ

8m
ρ
(
σ,σ ′).(19)
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Furthermore, for every nearest neighbor quantizer Q, there exists σ and τ such
that

∀Pσ(τ ′) R(Q,Pσ(τ ′)) ≥ R(Qσ ,Pσ(τ ′)) ≥ 1
2R(Qσ(τ),Pσ(τ ′)).

At last, if Q �= Qσ , then the first inequality is strict, for every Pσ(τ ′).

The proof of Proposition 4.2 follows the proof of step 3 of Theorem 1 in [4],
and can be found in Section B.1 (supplementary material [19]).

Since, for σ �= σ ′, R(Q′
σ ,Pσ ) > R(Qσ ,Pσ ), Proposition 4.2 ensures that the

Pσ(τ)’s have unique optimal codebooks, up to relabeling. According to Proposi-
tion 4.2, the minimax lower-bound over empirically designed quantizer may be
reduced to a lower-bound on empirically designed τ ’s, that is,

inf
Q̂n

sup
τ∈{−1,+1}m/2

E�(Q̂n,Pσ(τ))

≥ 1

2
inf
τ̂

sup
τ∈{−1,+1}m/2

E�(Qσ(τ̂ ),Pσ(τ))(20)

≥ �2δ

8m
inf
τ̂

sup
τ∈{−1,+1}m/2

Eρ(τ̂ , τ ),

where the inequality ρ(σ(τ), σ (τ ′)) = 2ρ(τ, τ ′) has been used in the last inequal-
ity.

Let us define, for two distributions P and Q with densities f and g, the
Hellinger distance

H 2(P,Q) =
∫
Rd

(
√

f − √
g)2(x) dλ(x).

To apply Assouad’s lemma to Q, the following lemma is needed.

LEMMA 4.5. Let τ and τ ′ denote two sequences in {−1,+1}m/2 such that
ρ(τ, τ ′) = 2. Then

H 2(P ⊗n
σ(τ),P

⊗n
σ(τ ′)

)≤ 4nδ2

m
:= α,

where P ⊗n denotes the product law of an n-sample drawn from P .

The proof of Lemma 4.5 is given in Section B.2 (supplementary material [19]).
Equipped with Lemma 4.5, a direct application of Assouad’s lemma as in Theo-
rem 2.12 of [26] yields, provided that α ≤ 2,

inf
τ̂

sup
τ∈{−1,+1}m/2

Eρ(τ̂ , τ ) ≥ m

4

(
1 −

√
α(1 − α/4)

)
.
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Taking δ =
√

m

2
√

n
ensures that α ≤ 2. For this value of δ, it easily follows

from (20) that

sup
τ∈{−1,+1}m/2

E�(Q̂n,Pσ(τ)) ≥ c0M
2

√
k1−4/d

n
,

for any empirically designed quantizer Q̂n, where c0 is an explicit constant.
Finally, note that, for every δ ≤ 1

3 and σ , Pσ satisfies a margin condition as
in (9), and is ε-separated, with

ε = �2δ

2m
.

This completes the proof of Proposition 3.1.

4.5. Proof of Proposition 3.2. As mentioned below in Proposition 3.2, the in-
equality

θmin

θmax
≥ 2048kσ 2

(1 − ε)B̃2(1 − e−B̃2/2048σ 2
)

ensures that, for every j in {1, . . . , k}, there exists i in {1, . . . , k} such that ‖c∗
i −

mj‖ ≤ B̃/16. To be more precise, let m denote the vector of means (m1, . . . ,mk),
then

R(m) ≤
k∑

i=1

θi

2πσ 2Ni

∫
Vi(m)

‖x − mi‖2e−‖x−mi‖2/(2σ 2) dλ(x)

≤ pmax

2(1 − ε)πσ 2

k∑
i=1

∫
R2

‖x − mi‖2e−‖x−mi‖2/(2σ 2) dλ(x)

≤ 2kpmaxσ
2

1 − ε
.

Assume that there exists i in {1, . . . , k} such that, for all j , ‖c∗
j − mi‖ ≥ B̃/16.

Then

R(c) ≥ θi

2πσ 2

∫
B(mi,B̃/32)

B̃2

1024
e−‖x−mi‖2/(2σ 2) dλ(x)

≥ B̃2θmin

2048πσ 2

∫
B(mi,B̃/32)

e−‖x−mi‖2/(2σ 2) dλ(x)

>
B̃2θmin

1024

(
1 − e−B̃2/(2048σ 2))

> R(m).
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Hence, the contradiction. Up to relabeling, it is now assumed that for i = 1, . . . , k,

‖mi − c∗
i ‖ ≤ B̃/16. Take y in Nc∗(x), for some c∗ in M and for x ≤ B̃

8 , then, for
every i in {1, . . . , k},

‖y − mi‖ ≥ B̃

4
,

which leads to

k∑
i=1

θi

2πσ 2Ni

‖y − mi‖2e−‖y−mi‖2/(2σ 2) ≤ kθmax

(1 − ε)2πσ 2 e−B̃2/(32σ 2).

Since the Lebesgue measure of Nc∗(x) is smaller than 4kπMx, it follows that

P
(
Nc∗(x)

) ≤ 2k2Mθmax

(1 − ε)σ 2 e−B̃2/(32σ 2)x.

On the other hand, ‖mi − c∗
i ‖ ≤ B̃/16 yields

B(mi,3B̃/8) ⊂ Vi

(
c∗).

Therefore,

P
(
Vi

(
c∗)) ≥ θi

2πσ 2Ni

∫
B(mi,3B̃/8)

e−‖x−mi‖2/(2σ 2) dλ(x)

≥ θi

(
1 − e−9B̃2/(128σ 2)),

hence pmin ≥ θmin(1 − e−9B̃2/(128σ 2)). Consequently, provided that

θmin

θmax
≥ 2048k2M3

(1 − ε)7σ 2B̃(eB̃2/32σ 2 − 1)
,

direct calculation shows that

P
(
Nc∗(x)

) ≤ Bpmin

128M2 x.

This ensures that P satisfies (3). According to (ii) in Proposition 2.2, M is finite.
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SUPPLEMENTARY MATERIAL

Appendix: Remaining proofs (DOI: 10.1214/14-AOS1293SUPP; .pdf). Due
to space constraints, we relegate technical details of the remaining proofs to the
supplement [19].

http://dx.doi.org/10.1214/14-AOS1293SUPP
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