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This paper develops empirical likelihood methodology for irregularly
spaced spatial data in the frequency domain. Unlike the frequency domain
empirical likelihood (FDEL) methodology for time series (on a regular grid),
the formulation of the spatial FDEL needs special care due to lack of the
usual orthogonality properties of the discrete Fourier transform for irregu-
larly spaced data and due to presence of nontrivial bias in the periodogram
under different spatial asymptotic structures. A spatial FDEL is formulated in
the paper taking into account the effects of these factors. The main results of
the paper show that Wilks’ phenomenon holds for a scaled version of the log-
arithm of the proposed empirical likelihood ratio statistic in the sense that it
is asymptotically distribution-free and has a chi-squared limit. As a result, the
proposed spatial FDEL method can be used to build nonparametric, asymp-
totically correct confidence regions and tests for covariance parameters that
are defined through spectral estimating equations, for irregularly spaced spa-
tial data. In comparison to the more common studentization approach, a major
advantage of our method is that it does not require explicit estimation of the
standard error of an estimator, which is itself a very difficult problem as the
asymptotic variances of many common estimators depend on intricate inter-
actions among several population quantities, including the spectral density of
the spatial process, the spatial sampling density and the spatial asymptotic
structure. Results from a numerical study are also reported to illustrate the
methodology and its finite sample properties.

1. Introduction. In recent years, there has been a surge in research interest
in the analysis of spatial data using the frequency domain approach; see, for ex-
ample, Hall and Patil [14], Im, Stein and Zhu [15], Fuentes [10, 11], Matsuda and
Yajima [24] and the references therein. An intent of frequency domain analysis is
to allow for inference about covariance structures through a data transformation
and possibly without a full spatial model, though this approach has complications.
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In contrast to the time series case where observations are usually taken at regular
points in time, the data sites are typically irregularly spaced for random processes
observed over space. The lack of a fixed spacing and possible nonuniformity of
the (irregularly spaced) data-locations destroy the orthogonality properties of the
sine- and cosine-transforms of the data, making Fourier analysis in such problems
a challenging task. In a recent paper, Bandyopadhyay and Lahiri [1] (hereafter re-
ferred to as [BL]) carried out a detailed investigation of the properties of a suitably
defined discrete Fourier transform (DFT) of irregularly spaced spatial data, and
provided a characterization of the asymptotic independence property of the spatial
DFTs. In this paper, we utilize the insights and findings of [BL] to formulate a
frequency domain empirical likelihood (FDEL) for such spatial data. The FDEL
method is shown to admit a version of the Wilks’ theorem for test statistics about
spatial covariance parameters (e.g., having chi-square limits similarly to paramet-
ric likelihood), without explicit assumptions on the data distribution or the spatial
sampling design.

To highlight potential advantages of the FDEL approach in this context, suppose
that {Z(s) : s ∈ Rd} (d ∈ N ≡ {1,2, . . .}) is a zero mean second-order stationary
process that is observed at (irregularly spaced) locations s1, . . . , sn in a domain
Dn ⊂ R

d . Also, suppose that we are interested in fitting a parametric variogram
model {γ̌ (·; θ) : θ ∈ �}, � ∈ R

p (p ∈ N) using the least squares approach (cf.
Cressie [7]). A spatial domain approach is based on estimating the parameter θ

using

θ̃n = argmin

{
m∑

i=1

(
2γ̃n(hi ) − γ̌ (hi; θ)

)2 : θ ∈ �

}
,

where h1, . . . ,hm are some user specified lags and where 2γ̃n(hi) is a nonparamet-
ric estimator of the variogram of the Z(·)-process at lag hi . Since the data loca-
tions s1, . . . , sn are irregularly spaced, a nonparametric estimator 2γ̃n(·) of the var-
iogram typically requires smoothing which results in a slow rate of convergence,
particularly in dimensions d ≥ 2. Further, the asymptotic variance of θ̃n in such
situations involves the spectral density of Z(·)-process and the spatial sampling
density of the data-locations s1, . . . , sn (cf. Lahiri and Mukherjee [21]) which must
be estimated from the data to carry out inference on θ using the asymptotic distri-
bution. In contrast, the FDEL approach completely bypasses the need to estimate
2γ̌ (·) directly and it also carries out an automatic adjustment for the complicated
asymptotic variance term in its inner mechanics, producing a distribution-free limit
law that can be readily used for constructing valid tests and confidence regions
for θ . See Example 3 in Section 3 for more details of the FDEL construction in
this case and Section 6.2 for a data example demonstrating the advantages of the
proposed spatial FDEL method over the traditional spatial domain approach. In
general, the proposed FDEL method provides a nonparametric “likelihood”-based
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inference method for covariance parameters of a spatial process observed at irreg-
ularly spaced spatial data-locations without requiring specification of a parametric
joint data model.

Originally proposed by Owen [32, 33] for independent observations, empirical
likelihood (EL) allows for nonparametric likelihood-based inference in a broad
range of applications (Owen [34]), such as construction of confidence regions for
parameters that may be calibrated through the asymptotic chi-squared distribution
of the log-likelihood ratio. This is commonly referred to as the Wilks’ phenomenon,
in analogy to the asymptotic distributional properties of likelihood ratio tests in tra-
ditional parametric problems (Wilks [39]). In particular, EL does not require any
direct estimation of variance or skewness (Hall and La Scala [13]). However, a dif-
ficulty with extending EL methods to dependent data is then to ensure that “cor-
rect” variance estimation occurs automatically within the mechanics of EL under
dependence. For (regularly spaced) time series data, this is often accomplished by
using a blockwise empirical likelihood (BEL) method (cf. Kitamura [17]), which
was further extended to the case of spatial data observed on a regular grid by Nord-
man [26, 27] and Nordman and Caragea [28].

Monti [25] and Nordman and Lahiri [30] proposed periodogram-based EL
methods for time series data. Their works show that, in view of the asymptotic
independence of the DFTs, an analog of the EL formulation for independent data
satisfies Wilks’ phenomenon in the frequency domain. As a result, the vexing issue
of block length choice can be completely avoided by working with the DFTs of
(regularly spaced) time series data. In this paper, we extend the frequency domain
approach to irregularly spaced spatial data. Such an extension presents a number
of unique challenges that are inherently associated with the spatial framework.
First, the irregular spacings of the data locations make the usefulness of the DFT
itself questionable, as the basic orthogonality property of the sine- and cosine-
transforms of gridded data at Fourier frequencies [i.e., at frequencies ωj = 2πj/n

for j = 0,1, . . . , (n − 1) for a time series sample of size n] no longer holds
(cf. [BL]). Second, unlike the compact frequency domain [0,2π ] for regular time
series, in the case of irregularly spaced spatial processes sampled in d-dimensional
Euclidean space R

d , one must deal with the unbounded frequency domain R
d .

Third, as noted in Matsuda and Yajima [24] and [BL], the periodogram of irreg-
ularly spaced spatial data can be severely biased (for the spectral density) and
must be pre-processed. Finally, in contrast to the unidirectional flow of time that
drives the asymptotics in the time series case, for irregularly spaced spatial data
on an increasing domain, more than one possible asymptotic structure can arise
depending on the relative growth rates of the volume of the sampling region and
the sample size (cf. Cressie [7], Hall and Patil [14], Lahiri [18]). A desirable prop-
erty of any FDEL method for irregularly spaced spatial data would be to guarantee
Wilks’ phenomenon for the spatial FDEL ratio statistic with minimal or no explicit
adjustments for the different asymptotic regimes. This would ensure a sort of ro-
bustness property for the spatial FDEL and would allow the user to use the method
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in practice without having to explicitly tune it for the effects of different spatial
asymptotic structures, which is often not very obvious for a given data set at hand
(cf. Zhang and Zimmerman [40]).

To motivate the construction of our spatial FDEL (hereafter SFDEL), first we
briefly review some relevant results (cf. Section 2) that provide crucial insights
into the properties of the DFT and periodogram of irregularly spaced spatial data
under different spatial asymptotic structures. Our main result is the asymptotic
chi-squared distribution of the SFDEL ratio statistic under fairly general regularity
conditions on the underlying spatial process. However, it turns out that the spatial
asymptotic structure has a nontrivial and nonstandard effect on the limit law. When
the spatial sample size n grows at a rate comparable to the volume of the sampling
region, we shall call this the pure increasing domain or PID asymptotic structure,
while a faster growth rate of n (due to infilling) will be called the mixed increasing
domain or MID asymptotic structure (see Section 2 for more details). To describe
the peculiarity of the limit behavior of the SFDEL, let Rn(θ0) denote the SFDEL
ratio statistic for a covariance parameter of interest θ ∈ R

p under H0 : θ = θ0 based
on a sample of size n. The main results of the paper show that under some regular-
ity conditions,

−2 logRn(θ0)
d→ χ2

p(1.1)

under MID with a sufficiently fast rate of infilling. In contrast, under PID and under
MID with a relatively slow rate of infilling, one gets

−2 logRn(θ0)
d→2χ2

p.(1.2)

Thus, the limit distribution of −2 logRn(θ0) here changes from the more famil-
iar χ2

p to a nonstandard 2χ2
p distribution, which points to the intricacies associ-

ated with spatial asymptotics. The main reason behind this strange behavior of the
SFDEL ratio statistic is the differential growth rates of two components in the vari-
ance term of the DFTs of irregularly spaced spatial data, which alternate in their
roles as the dominating term depending on the strength of the infill component.

To overcome the dichotomous limit behavior of −2 logRn(θ0) in (1.1) and (1.2),
we construct a data based scaling an = an(θ0) (say) and show that the rescaled
version, −an2 logRn(θ0) attains the same χ2

p limit, irrespective of the underlying
spatial asymptotic structure. This provides a unified method for EL based inference
on covariance parameters for irregularly spaced spatial data. In addition, the pro-
posed SFDEL method accomplishes two major goals of the EL method of Owen
[32, 33] for independent data:

(i) it shares the strength of EL methods to incorporate automatic variance es-
timation for spectral parameter inference in its mechanics under different spatial
asymptotic structures and, at the same time,

(ii) it avoids the difficult issue of block length selection.
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A direct solution to either of these problems (i.e., explicit variance estimation and
optimal block length selection) in the spatial domain is utterly difficult due to
highly complex effects of the irregular spacings of the data sites and the spatial
asymptotic structures (cf. Lahiri [18], Lahiri and Mukherjee [21]) and due to po-
tentially nonstandard shapes of the sampling regions (Nordman and Lahiri [29],
Nordman, Lahiri and Fridley [31]). Results from a simulation study in Section 6
show that accuracy of the SFDEL method with the data-based rescaling is very
good even in moderate samples.

The rest of the paper is organized as follows. In Section 2, we describe the the-
oretical framework and some preliminary results on the properties of the DFT for
irregularly spaced spatial data from [BL] that play a crucial role in the formulation
of the SFDEL method. We describe the SFDEL method in Section 3 and give some
examples of useful spectral estimating equations. We state the regularity conditions
and the main results of the paper in Sections 4 and Section 5, respectively. Results
from a simulation study and an illustrative data example are given in Section 6.
Proofs of the main results are presented in Section 7. Further details of the proofs
and some additional simulation results are given in the supplementary material [3].

2. Preliminaries.

2.1. Spatial sampling design. Suppose that for each n ≥ 1 (where n denotes
the sample size), the spatial process Z(·) is observed at data locations s1, . . . , sn

over a sampling region Dn ⊂ R
d . We shall suppose that Dn is obtained by inflating

a prototype set D0 by a scaling factor λn ∈ [1,∞) as

Dn = λnD0, n ≥ 1,(2.1)

where (as the most relevant prototypical case) D0 is an open connected subset of
(−1/2,1/2]d containing the origin and where λn ↑ ∞ as n → ∞ with λn 	 nε for
some ε > 0. Note that this is a common formulation, allowing the sampling region
Dn to have a variety of shapes, such as polygonal, ellipsoidal and star-shaped re-
gions that can be nonconvex. In practice, λn can be determined by the diameter of
a sampling region for use here (cf. García-Soidán [12], Hall and Patil [14], Maity
and Sherman [23], Matsuda and Yajima [24]). Let Z = {0,±1,±2, . . .}. To avoid
pathological cases, we require that for any sequence of real numbers {an}n≥1 such
that an → 0+ as n → ∞, the number of cubes of the form an(j + [0,1)d), j ∈ Z

d

that intersect both D0 and Dc
0 is of the order O([an]−(d−1)) as n → ∞. This bound-

ary condition holds for most regions of practical interest. We also suppose that
the irregularly spaced data locations s1, . . . , sn ∈ Dn are generated by a stochastic
sampling design, as

si ≡ sin = λnXi , 1 ≤ i ≤ n,

where {Xk}k≥1 is a sequence of independent and identically distributed (i.i.d.) ran-
dom vectors with probability density f (x) with support cl.(D0), the closure of D0.
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Note that this formulation allows the number of sampling sites to grow at a dif-
ferent rate than the volume of the sampling region, leading to different asymp-
totic structures (cf. Cressie [7], Lahiri [18]). When n/λd

n → c∗ ∈ (0,∞), one gets
the PID asymptotic structure while for n/λd

n → ∞ as n → ∞, one gets the MID
asymptotic structure. Limit laws of common estimators are known to depend on
the spatial asymptotic structure; see Cressie [7], Du, Zhang and Mandrekar [9],
Lahiri and Mukherjee [21], Loh [22], Stein [37] and the references therein.

2.2. Spatial periodogram and its properties. Define the DFT dn(ω) and the
periodogram In(ω) of {Z(s1), . . . ,Z(sn)} at ω ∈ R

d as

dn(ω) = λd/2
n n−1

n∑
j=1

Z(sj ) exp
(
ιω′sj

)
and In(ω) = ∣∣dn(ω)

∣∣2,(2.2)

where ι = √−1. In an equi-spaced time series, formulation and properties of
FDEL critically depend on the asymptotic independence of the DFTs (cf. Brock-
well and Davis [6], Lahiri [19]) at the Fourier frequencies: wj = 2πj/n, j =
1, . . . , n where n is the sample size. In a recent paper, [BL] showed that the spa-
tial DFTs [in (2.2)] at two sequences of frequencies {ω1n}n≥1, {ω2n}n≥1 ⊂ R

d are
asymptotically independent (i.e., the joint limit law is a product of marginal limits)
if and only if the frequency sequences are asymptotically distant:∥∥λn(ω1n − ω2n)

∥∥→∞ as n → ∞.(2.3)

This suggests that in analogy to the time series FDEL (i.e., using that DFTs
are approximately independent so that the independent data version of EL may be
applied to resulting periodogram values), the formulation of spatial FDEL should
preferably be based on DFTs at a collection of frequencies that are well-separated.
A second important finding in [BL] is that unlike the case of the equi-spaced time
series data, the spatial periodogram In(·) has a nontrivial bias, depending on the
spatial asymptotic structure. In particular, [BL] shows that

EIn(ω) = [
n−1λd

nσ (0) + Kφ(ω)
](

1 + o(1)
)

for all ω ∈ R
d , where σ(·) and φ(·) are respectively the autocovariance and the

spectral density functions of the Z(·)-process and where K = (2π)d
∫
Rd f 2(ω) dω.

As a result, the spatial periodogram In(·) has a nontrivial bias [for estimating
Kφ(·)] at all frequencies under PID, while the bias vanishes asymptotically under
MID. However, the quality of estimation of the spectral density (up to the scal-
ing by K) improves under both PID and MID through an explicit bias correction.
Accordingly, we define the bias corrected periodogram

Ĩn(ω) = In(ω) − n−1λd
nσ̂n(0), ω ∈R

d,(2.4)

where σ̂n(0) = n−1 ∑n
i=1(Z(si ) − Z̄n)

2 is the sample variance, with Z̄n =
n−1 ∑n

i=1 Z(si ) denoting the sample mean. We shall use Ĩn(·) in our formulation
of the SFDEL in the next section.
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3. The SFDEL method.

3.1. Description of the method. For i.i.d. random variables, Qin and Law-
less [35] extended the scope of Owen’s [33] original formulation, linking esti-
mating equations and EL, and developed EL methodology for such parameters.
In a recent work, Nordman and Lahiri [30] (hereafter referred to as [NL]) formu-
lated a FDEL for inference on parameters of an equi-spaced time series defined
through spectral estimating equations (i.e., estimating equations in the frequency
domain [−π,π ]). In a similar spirit, we now define the SFDEL for parameters
θ ∈ � ⊂ R

p , defined through spectral estimating equations (but now defined over
all of Rd ). Specifically, let G :Rd × � → R

p denote a vector of bounded estimat-
ing functions such that Gθ(·) ≡ G(·; θ) satisfies the spectral moment condition∫

Rd
Gθ(ω)φ(ω) dω = 0,(3.1)

where recall that φ(·) denotes the spectral density of the process Z(·). Because
of their use in the SFDEL method to follow [cf. (3.3)], we refer to the functions
Gθ(ω) as estimating functions, though these are not functions of data directly but
rather of parameters θ ∈ � and frequencies ω ∈ R

d . In view of the symmetry of the
spectral density φ(·), without loss of generality (w.l.g.), we shall assume that Gθ(·)
is symmetric about zero, that is, Gθ(ω) = Gθ(−ω) for all ω ∈ R

d . An asymmetric
Gθ(·) can always be symmetrized, as in Example 2 of Section 3.2 below where we
give examples of Gθ(·) in some important inference problems.

The SFDEL defines a nonparametric likelihood for the parameter θ using a
discretized sample version of the above spectral moment condition. Accordingly,
for κ ∈ (0,1), η ∈ [κ,∞) and C∗ ∈ (0,∞), let

N =Nn = {
jλ−κ

n : j ∈ Z
d, j ∈ [−C∗λη

n,C
∗λη

n

]d}
(3.2)

be the set of discrete frequencies, where λn is as in (2.1). Let N = |N | be
the size of N . For notational convenience, also denote the elements of N by
ωkn, k = 1, . . . ,N (with an arbitrary ordering of the N elements of N ). The
frequency grid has two important qualities. First, since κ < 1, for any j �= k,
the sequences {ωjn} and {ωkn} are asymptotically distant [cf. (2.3)], guarantee-
ing their associated periodogram values are approximately independent. Further,
{ω1n, . . . ,ωNn} forms a regular lattice over the hyper-cube [−C∗λη−κ

n ,C∗λη−κ
n ]d ,

with spacings of length λ−κ
n in each direction, and [−C∗λη−κ

n ,−C∗λη−κ
n ]d ↑ R

d

as λn ↑ ∞ when n → ∞ for η > κ , covering the entire range of the integral in
(3.1) in the limit. That is, the frequency grid expands to necessarily cover the en-
tire frequency domain R

d of interest. The exact conditions on κ and η are specified
in Section 4 below.
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Now using the frequencies {ωkn, k = 1, . . . ,N}, we define the SFDEL function
for θ by

Ln(θ) = sup

{
N∏

k=1

pk :
N∑

k=1

pk = 1,pk ≥ 0 and

(3.3)
N∑

k=1

pkGθ(ωkn)Ĩn(ωkn) = 0

}
,

provided that the set of pk satisfying the conditions on the right-hand side is
nonempty. When no such {pk} exists, Ln(θ) is defined to be 0. We note that the
computation of (3.3) is the same as in EL formulations for independent data; see
Owen [32, 34] and Qin and Lawless [35] for these details.

Next, note that without the spectral moment constraint,
∏N

k=1 pk attains its max-
imum when each pk = 1/N . Hence, we define the SFDEL ratio statistic for testing
the hypothesis H0 : θ = θ0 as

Rn(θ0) = Ln(θ0)/
(
N−N )

.

The SFDEL test rejects H0 for small values of Rn(θ0). Similarly, one can use
the SFDEL method to construct confidence regions for θ using the large sample
distribution of the SFDEL ratio statistic. In Section 4, we state a set of regularity
conditions that will be used for deriving the limit distribution of −2 logRn(θ0).
This, in particular, would allow one to calibrate the SFDEL tests and confidence
regions in large samples.

3.2. Examples of estimating equations. We now give some examples of spec-
tral estimating equations for parameters of interest in frequency domain analysis
(cf. Brockwell and Davis [6], Cressie [7], Journel and Huijbregts [16], Lahiri, Lee
and Cressie [20]).

EXAMPLE 1 (Autocorrelation). Suppose that we are interested in nonpara-
metric estimation of the autocorrelation of the Z(·)-process at lags h1, . . . ,hp

for some p ≥ 1. Then θ = (�(h1), . . . , �(hp))′ with �(h) = corr(Z(h),Z(0)) =∫
cos (h′ω)φ(ω) dω/

∫
φ(ω) dω where A′ denotes the transpose of a matrix A.

Thus, in this case,

Gθ(ω) = (
cos

(
h′

1ω
)
, . . . , cos

(
h′

pω
))′ − θ.(3.4)

Estimating functions can also be formulated with hypothesized autocorrelations
(e.g., white noise) to set-up goodness-of-fit tests in the SFDEL approach, in the
spirit of Portmanteau tests Brockwell and Davis [6].

EXAMPLE 2 (Spectral distribution function). For t = (t1, . . . , td)′ ∈R
d , let

�0(t) =
∫

1(−∞,t](ω)φ(ω) dω
/∫

φ(ω) dω
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denote the normalized spectral distribution function, where 1(·) denotes the in-
dicator function and (−∞, t] = (−∞, t1] × · · · × (−∞, td ]. The function �0(·)
plays an important role in determining the smoothness of the sample paths of the
random field Z(·) (cf. Stein [37]). Suppose that the parameter of interest is now
given by θ = (�0(t1), . . . ,�

0(tp))′ for some given set of vectors t1, . . . , tp ∈ R
d .

In this case, the relevant estimating function is Gθ(ω) = [G̃θ (ω) + G̃θ (−ω)]/2,
ω ∈ R

d , where

G̃θ (ω) = (
1(−∞,t1](ω), . . . ,1(−∞,tp](ω)

)′ − θ.(3.5)

EXAMPLE 3 (Variogram model fitting). A popular approach to fitting a para-
metric variogram model to spatial data is through the method of least squares
(cf. Cressie [7]). Let {2γ̌ (·; θ) : θ ∈ �}, � ⊂ R

p be a class of valid variogram
models for the true variogram 2γ̌ (h) ≡ Var(Z(h) − Z(0)), h ∈ R

d of the spatial
process. Let 2γ (·; θ) ≡ 2γ̌ (·; θ)/σ (0) and 2γ (·) ≡ 2γ̌ (·)/σ (0) denote their scale-
invariant versions, where σ(0) = Var(Z(0)). Also, let 2γ̂n(h) denote the sample
variogram at lag h based on Z(s1), . . . ,Z(sn) (cf. Chapter 2, Cressie [7]), scaled
by σ̂n(0) = n−1 ∑n

i=1(Z(si)− Z̄n)
2 where Z̄n = n−1 ∑n

i=1 Z(si). Then one can fit
the variogram model by estimating the parameter θ by

θ̂n = argmin

{
m∑

i=1

(
2γ̂n(hi ) − 2γ (hi; θ)

)2 : θ ∈ �

}

for a given set of lags h1, . . . ,hm. This corresponds to minimizing the population
criterion

∑m
i=1(2γ (hi ) − 2γ (hi; θ))2 which, under some mild conditions, deter-

mines the true parameter θ0 uniquely (cf. Lahiri, Lee and Cressie [20]). Under
these conditions, θ = θ0 is the unique solution to the equation

m∑
i=1

(
2γ (hi ) − 2γ (hi; θ)

)∇[
2γ (hi; θ)

] = 0,

where ∇[2γ (h; θ)] denotes the p × 1 vector of first-order partial derivatives of
2γ (h; θ) with respect to θ . Hence, expressing the variogram in terms of the spectral
density function, we get the following equivalent spectral estimating equation:∫ [

m∑
i=1

{
1 − cos

(
h′

iω
) − γ (h; θ)

}∇[
2γ (hi; θ)

]]
φ(ω) dω = 0,(3.6)

which can be used for defining the SFDEL for θ . As pointed out in Section 1,
the spatial domain approach yields asymptotically correct confidence regions for
θ through asymptotic normal distribution of θ̂n, but it necessarily requires one to
estimate the limiting asymptotic variance and is subject to the curse of dimension-
ality, resulting from nonparametric smoothing in d-dimensions. In comparison,
the SFDEL can be applied with the spectral estimating equation (3.6) to produce
asymptotically correct confidence region for θ , without explicit estimation of the
standard error.
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Note that the spectral estimating equation approach can also be extended to
estimation of θ based on the weighted- and the generalized-least squares crite-
ria (cf. Cressie [7], Lahiri, Lee and Cressie [20]), where in addition to the par-
tial derivatives, suitable weight matrices enter into the corresponding versions of
(3.6). A similar advantage of the spatial FDEL method continues to hold in these
cases.

In the next section, we introduce some notation and the regularity conditions to
be used in the rest of the paper.

4. Regularity conditions.

4.1. Notation and lemmas. First, we introduce some notation. For x, y ∈ R,
let x+ = max{x,0}, �x� = the floor function of x, x ∧ y = min{x, y} and x ∨ y =
max{x, y}. Let Ik denote the identity matrix of order k (k ≥ 1). For two se-
quences {sn} and {tn} in (0,∞), we write sn ∼ tn if limn→∞ sn/tn = 1. For
x = (x1, . . . , xk)

′ ∈ R
k , let ‖x‖1 = |x1| + · · · + |xk| and ‖x‖ = (|x1|2 + · · · +

|xk|2)1/2 respectively denote the �1- and �2-norms of x. Also, let d1(E1,E2) =
inf{‖x − s‖1 : x ∈ E1, s ∈ E2}, E1,E2 ⊂ R

k . For a, b ∈ (0,∞), define the strong
mixing coefficient of Z(·) as α(a;b) = sup{|P(A1 ∩ A2) − P(A1)P (A2)| :Ai ∈
FZ(Ei),Ei ∈ Cb, i = 1,2, d1(E1,E2) ≥ a} where FZ(E) = σ 〈Z(s) : s ∈ E〉 and
Cb is the collection of d-dimensional rectangles with volume b or less.

As indicated earlier, we suppose that the random field {Z(s) : s ∈ R
d} is second-

order stationary (but not necessarily strictly stationary) with zero mean and au-
tocovariance function σ(·) and spectral density function φ(·). Also, recall that
the scaling sequence λn is as in (2.1) and that κ , η and N are as in Sec-
tion 3.1, specifying the SFDEL grid in the frequency domain. Further, the constant
c∗ ≡ limn→∞ n/λd

n determines the spatial asymptotic structure where c∗ ∈ (0,∞)

for PID and c∗ = ∞ for MID. Write cn = n/λd
n , I ∗

n (ω) = In(ω) − c−1
n σ (0)

and An(ω) = c−1
n σ (0) + Kφ(ω), ω ∈ R

d , where K = (2π)d
∫

f 2. Let �n =
2

∑N
k=1 Gθ0(ωkn)Gθ0(ωkn)

′A2
n(ωkn). Also, let Gj,θ0 denote the j th component of

Gθ0 . Write b2
n = Nc−2

n + λκd
n . From Section 7, it follows that b2

n gives a unified
representation for growth rate of the self-normalizing factor in the SFDEL ratio
statistic under different asymptotic structures considered in the paper.

4.2. Conditions. We are now ready to state the regularity conditions.

(C.0) The strong mixing coefficient satisfies α(a, b) ≤ γ1(a)γ2(b), for any
a, b ∈ (0,∞), with respect to some left continuous nonincreasing function
γ1 : (0,∞)→[0,∞) and some right continuous nondecreasing function γ2 :
(0,∞)→(0,∞).

(C.1) There exist δ ∈ (0,1] such that ζ4+δ ≡ sup{(E|Z(s)|4+δ)1/(4+δ) : s ∈ R
d} <

∞ and
∑∞

k=1 k3d [γ1(k)]δ/(4+δ) < ∞.
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(C.2) (i) The spatial sampling density f (·) is everywhere positive on D0 and sat-
isfies a Lipschitz condition: There exists a C0 ∈ (0,∞) such that∣∣f (x) − f (y)

∣∣ ≤ C0‖x − y‖ for all x,y ∈ D0.

(ii) There exist C1 ∈ (0,∞) and a0 ∈ (d/2, d] such that∣∣∣∣
∫

eιω′xf (x) dx
∣∣∣∣ +

∣∣∣∣
∫

eιω′xf 2(x) dx
∣∣∣∣ ≤ C1‖ω‖−a0

for all ‖ω‖ > C1.

(C.3) (i) For each j = 1, . . . , p, Gj,θ0(·) is bounded, symmetric, and almost ev-
erywhere continuous on R

d (with respect to the Lebesgue measure), and∫
Gθ0(ω)φ(ω) dω = 0;

(ii) There exist C2 ∈ (0,∞) and a nonincreasing function h : [0,∞)→
[0,∞) such that |φ(ω)| ≤ h(‖ω‖) for all ‖ω‖ > C2;

(iii) lim infn→∞ det(N−1 ∑N
k=1 Gθ0(ωkn)Gθ0(ωkn)

′) > 0;
(iv)

∫
Gθ0(ω)Gθ0(ω)′φ2(ω) dω is nonsingular.

(C.4) (i) 0 < κ < η < 1; and

(ii) �
−1/2
n

∑N
k=1 Gθ0(ωkn)I

∗
n (ωkn)

d−→ N(0, Ip).
(C.5)′ For each n ≥ 1, there exists a function Mn(·) such that∥∥∥∥∥

N∑
k=1

Gθ0(ωkn)Gθ0(ωkn)
′ exp

(
ιt′ωkn

)∥∥∥∥∥ ≤ Mn(t) for all t ∈R
d

and with dν(t,x) = ‖t‖γ1(‖t‖)δ/(4+δ)f (x) dtdx and δ ∈ (0,1] of (C.1),∫ ∫
Mn

(
t + a1[s + 2λna2x + 2λna3y])dν(t,x) dν(s,y)

= o
(
b2
nc

1−a1
n λ1+a1

n

)
for all a1, a2, a3 ∈ {0,1}.

We comment on the conditions. Conditions (C.0)–(C.1) are standard moment
and mixing conditions on the spatial process Z(·) (cf. Lahiri [18]), which en-
tail that Z(·) must be weakly dependent and are used to ensure finiteness of the
variance of the periodogram values [which are themselves quadratic functions of
Z(s)], among other things. See Doukhan [8] for process examples fulfilling such
conditions, including Gaussian, linear and Markov random fields. Also, note that
the function γ2(·) in (C.0) is allowed to grow to infinity to ensure validity of
the results for bonafide strongly mixing random fields in d ≥ 2 (cf. Bradley [4,
5]). Condition (C.2) specifies the requirements on the spatial design density f .
Part (i) of (C.2) is a smoothness condition on f while part (ii) requires the charac-
teristic functions corresponding to the probability densities f (·) and f 2(·)/ ∫

f 2

to decay at the rate O(‖ω‖−a0) as ‖ω‖→∞. Condition (C.2) is satisfied [with
a0 = d in (ii)] when f (·) is the uniform distribution on a rectangle of the form



530 S. BANDYOPADHYAY, S. N. LAHIRI AND D. J. NORDMAN

(−s1, t1) × · · · × (−sd, td) for some 0 < si, ti < 1/2 for all i = 1, . . . , d . However,
there exist many nonuniform densities that also satisfy (C.2) with a0 = d .

Condition (C.3) specifies the regularity conditions on the spectral estimating
function Gθ0 . In addition to the spectral moment condition (3.1), parts (i) and (ii)
of (C.3) provide sufficient conditions that make the errors of Riemann sum approx-
imations to the variance integral

∫
Gθ0(ω)Gθ0(ω)′φ(ω) dω asymptotically negligi-

ble. Conditions (C.3)(iii) and (iv) provide alternative forms of a sufficient condition
that guarantees nonsingularity of the p×p matrix �n through a subsequence under
PID and for the full sequence under (a subcase of) the MID asymptotic structure,
respectively. Without these, the degrees of freedom of the limiting chi-squared dis-
tribution of the scaled log-SFDEL ratio statistic can be smaller than p. It is easy to
verify that the examples presented in Section 3 satisfy condition (C.3), under mild
conditions on the hi’s in Example 1, on the ti’s in Example 2, and on the hi’s and
the parametric variogram model 2γ (·; θ) in Example 3.

Next, consider condition (C.4). The first part of (C.4) states the requirements on
the SFDEL tuning parameters κ and η that must be chosen by the user in practice.
Note that κ and η determine a Riemann-sum approximation to the spectral mo-
ment condition (3.1) over the discrete grid (3.2) where κ determines the grid spac-
ing while η determines the range of the approximating set [−C∗λη−κ

n ,C∗λη−κ
n ]d .

Thus, one must choose these parameters so that the grid spacing is small and the in-
tegral of Gθ0φ outside [−C∗λη−κ

n ,C∗λη−κ
n ]d is small. On the other end, κ needs to

satisfy the requirement 0 < κ < 1 to ensure that the neighboring frequencies in N
are “asymptotically distant.” Section 6 gives some specific examples of the choices
of κ and η in finite sample applications. As for condition (C.4)(ii), note that the
“asymptotically distant” property of the frequencies in N renders the summands
in

∑N
k=1 Gθ0(ωkn)I

∗
n (ωkn) approximately independent, and hence, under suitable

normalization, the sum must have a Gaussian limit. One set of sufficient condi-
tions for the weak convergence of �

−1/2
n

∑N
k=1 Gθ0(ωkn)[I ∗

n (ωkn) − EI ∗
n (ωkn)] to

a Gaussian limit is given by a CLT result in Bandyopadhyay, Lahiri and Nord-
man [2] (hereafter referred to as [BLN]). Alternative sufficient conditions for the
CLT in (C.4)(ii) can also be derived requiring that Z(·) is a d-dimensional linear
process, but we do not make any such structural assumptions on Z(·) here.

Finally, consider condition (C.5)′ which will be used only in the MID case (cf.
Theorems 5.2 and 5.3). This condition can be verified easily when the Fourier
transform ξj,k (say) of the function Gj,θ0Gk,θ0 decays quickly, for all 1 ≤ j, k ≤ p.
In contrast, if the functions ξj,k do not decay fast enough, one can verify (C.5)′
using Lemma 7.4 and the arguments in the proof of the result below, which shows
that condition (C.5)′ holds for Examples 1–3.

PROPOSITION 4.1. For Gθ(·) of Examples 1–3, condition (C.5)′ holds.

The next section states the main results of the paper under PID and MID.
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5. Asymptotic distribution of the spatial FDEL ratio statistic.

5.1. Results under the PID asymptotic structure. Let PX denote the joint dis-
tribution of the random vectors X1,X2, . . . , generating the locations of the data
sites (cf. Section 2.1). The following result gives the asymptotic distribution of the
SFDEL ratio statistic under PID.

THEOREM 5.1. Suppose that conditions (C.0)–(C.4) and that n/λd
n → c∗ ∈

(0,∞). Then − logRn(θ0)
d−→ χ2

p,a.s. (PX).

Theorem 5.1 shows that under conditions (C.0)–(C.4) [and without requir-
ing (C.5)′], the SFDEL log-likelihood ratio statistic has an asymptotic chi-squared
distribution, for almost all realizations of the sampling design vectors {Xi}. Note
that the scaling for the log SFDEL ratio statistic is nonstandard—namely, the chi-
squared limit distribution is attained by − logRn(θ0), but not by the more familiar
form −2 logRn(θ0) as in Wilks’ theorem and as in the time series FDEL case (cf.
Nordman and Lahiri [30]). This is a consequence of the nonstandard behavior of
the periodogram for irregularly spaced spatial data (cf. Section 3). However, as
the limit distribution of the SFDEL ratio statistic does not depend on any unknown
population quantities, it can be used to construct valid large sample tests and confi-
dence regions for the spectral parameter θ . Specifically, a valid large sample level
α ∈ (0,1/2) SFDEL test for testing

H0 : θ = θ0 vs H1 : θ �= θ0(5.1)

will reject H0 if − logRn(θ0) > χ2
1−α,p , where χ2

1−α,p denotes the (1 − α) quan-

tile of the χ2
p-distribution. For SFDEL based confidence regions for θ , a similar

distribution-free calibration holds (cf. Section 5.3).

REMARK 5.1. Note that the distribution of Rn(θ0) depends on two sources of
randomness, namely, the spatial process {Z(s) : s ∈ R

d} and the vectors {Xi}i≥1.
Let L(T |X ) denote the conditional distribution of a random variable (based on
both {Z(·)} and {Xi}), given X ≡ σ 〈X1,X2, . . .〉 and let dL denote the Levy metric
on the set of probability distributions on R. Then a more precise statement of the
Theorem 5.1 result, under the conditions given there, is

dL

(
L

(− logRn(θ0)|X )
, χ2

p

) = o(1) a.s. (PX).

A similar interpretation applies to the other theorems presented in the paper.

5.2. Results under the MID asymptotic structure. The limit behavior of the
spatial FDEL ratio statistic under the MID asymptotic structure shows a more
complex pattern and it depends on the strength of the infill component. Note that
cn = n/λd

n denotes the relative growth rate of the sample size and the volume of the
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sampling region of Dn, and hence, cn →∞ as n → ∞ under MID, with a higher
the value of cn indicating a higher rate of infilling. The following result gives the
asymptotic behavior of the SFDEL ratio statistic under different growth rates of cn.

THEOREM 5.2. Suppose that conditions (C.0)–(C.4) and (C.5)′ hold [where
(C.3) may be replaced by (C.3)(i), (ii), (iv) for part (b)].

(a) (MID WITH A SLOW RATE OF INFILLING). If 1 � c2
n � Nλ−κd

n , then

− logRn(θ0)
d−→ χ2

p,a.s. (PX).
(b) (MID WITH A FAST RATE OF INFILLING). If c2

n 	 Nλ−κd
n , then

−2 logRn(θ0)
d−→ χ2

p,a.s. (PX).

Theorem 5.2 shows that the asymptotic distribution of − logRn(θ0) can be dif-
ferent depending on the rate at which the infilling factor cn goes to infinity. When
the rate of decay in c2

n is slower than the critical rate Nλ−κd
n ∼ λ

(η−κ)d
n , corre-

sponding to the asymptotic volume of the frequency grid (i.e., determined by the
number N ∝ λ

dη
n of frequency points on a regular grid and the R

d -volume λ−dκ
n

between grid points), the negative log SFDEL ratio has the same limit distribu-
tion as in the PID case. However, when the factor c2

n grows at a faster rate than

λ
(η−κ)d
n , the more familiar version of scaling −2 is appropriate for the log SFDEL

ratio. From the proof of Theorem 5.2, it also follows that in the boundary case,
that is, when c2

n ∼ λ
(η−κ)d
n , the limit distribution of − logRn(θ0) is determined

by that of a quadratic form in independent Gaussian random variables and is not
distribution-free. As a result, this case is not of much interest from an applications
point of view. However, as cn = n/λd

n is a known factor, one can always choose the
SFDEL tuning parameters κ, η to avoid the boundary case.

REMARK 5.2. Theorem 5.2 shows that when the rate of infilling cn does not
grow too fast, the presence of the infill component does not have an impact on the
asymptotic distribution of the log SFDEL ratio statistic. Thus, the limit behavior
under the PID asymptotic structure has a sort of robustness that extends beyond its
realm and covers parts of the MID asymptotic structure in the frequency domain.
This is very much different from the known results on the limit distributions of the
sample mean and of asymptotically linear statistics in the spatial domain where all
subcases of the MID asymptotic structure lead to the same limit distribution and
where the MID limit is different from the limit distribution in the PID case (cf.
Lahiri [18], Lahiri and Mukherjee [21]).

5.3. A unified scaled spatial FDEL method. Results of Sections 5.1 and 5.2
show that in the spatial case, the standard calibration of the EL ratio statistic may
be incorrect depending on the relative rate of infilling. Although nonstandard,
−2 logRn(θ0) has the same 2χ2

p distribution under the PID spatial asymptotic
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structure for all values of c∗ = limn→∞ n/λd
n . In contrast, the limit distribution

of −2 logRn(θ0) can change from the nonstandard 2χ2
p to the standard χ2

p under
the MID asymptotic structure when the rate of infilling is faster. While this gives
rise to a clear dichotomy in the limit, the choice of the correct scaling constant, and
hence, the correct calibration may not be obvious in a finite sample application. To
deal with this problem, we develop a data based scaling factor that adjusts itself to
the relative rates of infilling and delivers a unified χ2

p limit law under the PID as
well as under the different subcases of the MID. Specifically, define the modified
FDEL statistic

−2an(θ) logRn(θ),

where

an(θ) =
∑N

k=1 ‖Gθ(ωkn)‖2Ĩ 2
n (ωkn)∑N

k=1 ‖Gθ(ωkn)‖2I 2
n (ωkn)

.(5.2)

Note that for any θ , the factor an(θ) can be computed using the data {Z(s1), . . . ,

Z(sn)}, where the numerator of an(θ) is computed using the bias-corrected peri-
odogram while the denominator is based on the raw periodogram. For the testing
problem H0 : θ = θ0 against H1 : θ �= θ0, this requires computing the factor an(·)
once. However, for constructing confidence intervals, an(θ) must be computed
repeatedly and, therefore, this version of the SFDEL is somewhat more computa-
tionally intensive.

To gain some insight into the choice of an(θ), note that it is based on the ratio
of the sums of the periodogram and its bias-corrected version that are weighted by
the squared norms of the function Gθ(·) at the respective frequencies ωkn. As ex-
plained before, the bias correction of the periodogram of irregularly spaced spatial
data is needed to render the EL-moment condition in (3.3) unbiased. However, this
leads to a “mismatch” between the variance of the sum

∑N
k=1 Gθ(ωkn)Ĩn(ωkn) and

the automatic scale adjustment factor provided by the EL method. The numerator
and the denominator of an(θ) capture the effects of this mismatch under different
rates of infilling and hence, an(·) provides the “correct” scaling constant under the
different asymptotic regimes considered here.

We have the following result on the modified SFDEL ratio statistic.

THEOREM 5.3. Suppose that the conditions of one of Theorems 5.1–5.2 hold.
Then, under θ = θ0,

−2an(θ0) logRn(θ0)
d−→ χ2

p a.s. (PX).(5.3)

Theorem 5.3 shows that the modified SFDEL method can be calibrated using
the quantiles of the chi-squared distribution with p degrees of freedom for all
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of the three asymptotic regimes covered by Theorems 5.1–5.2. Thus, the empiri-
cally scaled log-SFDEL ratio statistic provides a unified way of testing and con-
structing confidence sets under different asymptotic regimes. Specifically, for any
α ∈ (0,1/2),

Cα ≡ {
θ ∈ � :−2an(θ) logRn(θ) ≤ χ2

1−α,p

}
gives a confidence region for the unknown parameter θ that attains the nominal
confidence level (1−α) asymptotically. The main advantage of the SFDEL method
here is that we do not need to find a studentizing covariance matrix estimator ex-
plicitly, which by itself is a nontrivial task, as this would require explicit estimation
of the spectral density φ(·) and the spatial sampling density f (·) under different
asymptotic regimes.

6. Numerical results.

6.1. Results from a simulation study. Here, we examine the coverage accuracy
of the SFDEL method in finite samples, applied to a problem of variogram model
fitting described in Section 3.2. We consider an exponential variogram model form
(up to variance normalization)

2γ (h; θ1, θ2) = 1 − exp
[−θ1|h1| − θ2|h2|],

with parameters θ1, θ2 > 0 where h = (h1, h2)
′ ∈ R

2. Over several sampling
region sizes Dn = λn[−1/2,1/2)2, λn = 12,24,48, and sample sizes n =
100,400,900,1400, we generated i.i.d. sampling sites s1, . . . , sn ∈ Dn and real-
valued stationary Gaussian responses Z(·) following the exponential variogram
form with θ1 = θ2 = 1 and EZ(s) = 0, Var[Z(s)] = 1 (the simulation results are
invariant here to values for the mean and variance). In the spatial sampling design
(cf. Section 2.1), two distributions f for sites were considered, one being uni-
form over D0 and the other being a mixture of two bivariate normal distributions
0.5N((0,0)′, I2)+0.5N((1/4,1/4)′,2I2), truncated outside D0, where I2 denotes
a 2 × 2 identity matrix.

In implementing the modified SFDEL method to compute 90% confidence re-
gions for θ = (θ1, θ2), we used the estimating functions in (3.6) over m = 2 sets of
lags h1,h2 ∈ R

2 and evaluated the (sample mean-centered) periodogram at scaled
frequencies Nn = {λ−κ

n j : j ∈ Z
2 ∩[−C∗λn,C

∗λn]2}; we varied values C∗ = 1,2,4
(with η = 1 held fixed) and κ = 0.05,0.1,0.2 along with considering different
combinations of lags h1,h2. Recall that C∗ and κ respectively control the number
and spacing of periodogram ordinates, where choices of κ here roughly induce
spacings between frequencies of 1, 0.75 or 0.5 in horizontal/vertical directions; in
our findings, these spacings were adequate whereas tighter spacings (e.g., κ ≥ 0.4)
tended to perform less well by inducing stronger dependence between periodogram
ordinates.



SPATIAL EMPIRICAL LIKELIHOOD 535

TABLE 1
Coverage percentage of 90% SFDEL regions for variogram model parameters θ (uniform design)

h1 = (1,1)′, h2 = (1,−1)′

λn = 12 λn = 24 λn = 48

C∗ κ 100 400 900 1400 100 400 900 1400 100 400 900 1400

1 0.05 86.4 85.6 82.0 80.3 88.9 87.8 87.8 89.9 89.3 89.4 89.7 87.9
1 0.1 87.1 85.3 78.6 75.9 89.0 90.2 89.6 90.4 89.0 91.4 91.5 90.0
1 0.2 86.5 85.1 81.1 76.4 90.0 88.7 90.1 89.7 87.6 87.9 87.9 88.9

2 0.05 88.1 87.8 86.1 85.9 89.0 88.6 89.7 87.9 89.2 88.9 90.5 89.7
2 0.1 86.6 86.8 86.2 84.2 89.2 88.4 91.1 89.9 90.6 90.0 90.0 91.4
2 0.2 89.6 88.8 84.6 83.8 88.9 89.9 89.9 89.2 89.9 89.3 88.1 89.4

4 0.05 89.0 87.8 89.6 88.1 89.3 89.0 90.1 90.2 92.9 88.2 90.6 89.9
4 0.1 86.3 88.6 88.7 86.4 90.3 89.4 90.3 89.2 92.0 87.8 90.8 89.1
4 0.2 88.4 89.0 87.4 87.9 88.7 88.9 90.0 89.6 92.8 88.6 88.5 88.8

The coverage results (based on 1000 simulation runs) are listed in Tables 1–2
for the lag h1 = (1,1)′,h2 = (1,−1)′ for the uniform and nonuniform spatial sites,
respectively, with the results for the other sets of lags reported in the supplementary
material [3]. Except for the occasions with the smallest lag combination [h1 =
(1,1)′,h2 = (1,−1)′] and the smallest sampling region λn = 12 with large n, the
coverages tended to agree quite well with the nominal level. Further, the coverage
levels were largely insensitive to the number and spacing of periodogram ordinates

TABLE 2
Coverage percentage of 90% SFDEL regions for variogram model parameters θ

(nonuniform design)

h1 = (1,1)′, h2 = (1,−1)′

λn = 12 λn = 24 λn = 48

C∗ κ 100 400 900 1400 100 400 900 1400 100 400 900 1400

1 0.05 88.3 86.8 85.5 79.6 89.4 88.9 86.4 90.1 90.2 89.2 89.6 90.0
1 0.10 85.7 83.5 80.3 78.7 88.8 87.7 89.6 92.0 87.0 90.5 89.5 89.3
1 0.20 87.9 86.0 82.4 79.1 89.6 90.0 90.7 90.0 87.4 88.2 88.8 88.7

2 0.05 89.4 89.3 88.0 83.8 90.1 88.6 89.7 88.9 89.6 90.7 89.5 91.2
2 0.10 86.2 87.7 84.3 85.9 89.0 90.7 90.0 88.4 90.1 91.5 90.1 90.0
2 0.20 88.7 89.5 88.5 85.6 90.7 90.4 89.7 88.5 89.7 88.5 90.3 89.8

4 0.05 89.5 89.5 88.3 88.0 87.7 90.0 88.6 90.7 91.8 89.8 89.2 90.9
4 0.10 87.0 88.8 87.4 86.2 89.0 89.9 87.9 89.4 91.7 87.9 88.2 89.9
4 0.20 90.6 89.1 89.1 86.3 89.5 89.0 87.9 89.4 91.5 90.2 89.3 90.1
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FIG. 1. Coal seam data: Sampling locations, distribution of thickness, empirical semivariogram.

for various sample and region sizes. Results for both stochastic sampling designs
were also qualitatively similar.

6.2. An illustrative data example. As a brief demonstration of the SFDEL
method, we consider a coal seam dataset based on a SAS example ([36], Chap-
ter 70). Figure 1 shows locations of 105 sampling sites and the corresponding
distribution of coal seam thickness. Coal seam measurements often exhibit spatial
smoothness (Journel and Huijbregts [16], page 165), as also indicated in the empir-
ical semivariogram in Figure 1 (found by binning distances into 10 bins up to half
the maximum distance between points and plotting Matheron’s average over each
bin against the bin midpoint). Following the SAS analysis, this suggests a Gaus-
sian variogram model 2γ (h; θ1, θ2) = 2θ1[1−exp(−‖h‖2/θ2

2 )], h ∈ R
2, with scale

θ1 > 0 and range θ2 > 0 parameters, though the present data are synthetic with a
value θ2 = 1 as explained below.

Note that the spatial locations are not clearly uniform nor is the marginal dis-
tribution apparently normal. To fit the variogram model in a way that allows non-
parametric confidence intervals (CIs) to access the precision of the estimated pa-
rameters, without making assumptions about the joint distribution of the data or
the distribution of spatial locations, one can apply the SFDEL method using es-
timating functions as in Example 3 motivated by least squares estimation. Alter-
natively, one can apply a kernel bandwidth estimator of the varigoram for which
large sample distributional results are recently known (García-Soidán [12], Maity
and Sherman [23]).

We focus on the range parameter θ2. Using a lag set h1 = (1/4,1/4)′, h2 =
(1,1)′, h3 = (2,2)′ in SFDEL, motivated by empirical lags in Figure 1, the maxi-
mized SFDEL function produces a point estimate θ̂2 = 1.123 (×10,000 ft) with
a 90% SFDEL CI for θ2 as (0.896,1.571). This arises from a frequency grid
{λ−κ

n j : [−C∗λn,C
∗λn]2 ∩ Z

2}, C∗ = 2, κ = 0.2 based on λn = 10 for sampling
region in Figure 1. With a larger frequency grid C∗ = 4, κ = 0.2, the 90% SFDEL
CI is similar (0.887,1.378) with a point estimate 1.071, and increasing the grid
spacing κ = 0.1 produces similar range estimates (1.107 and 1.101 for C∗ = 2,4)
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and intervals. In contrast, using the lags above and the Nadaraya–Watson kernel es-
timator of the semivariogram γ̂ (h) (based on the Epanechnikov kernel, cf. García-
Soidán [12]), the range parameter estimates are 1.505,1.230,1.335 for bandwidths
h = 0.5,1,1.5, where h = 0.5 arises from MSE optimal order considerations. This
approach can also produce large-sample nonparametric CIs based on normal lim-
its for λn[γ̂ (h) − γ (h)], having a covariance matrix C · V , C = [∫ f 2]−2 ∫

f 4, in-
volving the unknown density f of locations {si/λn}105

i=1 on [0,1]2. For bandwidths
h = 0.5,1,1.5, the 90% CIs for θ2 are given by (1.203,1.743), (0.972,1.512),
(1.038,1.564) based on Ĉ = 1.23 from bivariate kernel density estimation (cf. Ven-
ables and Ripley [38]) and simplifying the matrix V by assuming the process is
Gaussian (cf. García-Soidán [12], pages 490–491). Unlike CIs from kernel estima-
tion, the SFDEL CIs require no variance or density approximation steps, tend to
be less sensitive to tuning parameters, and all contain the true value θ2 = 1 here.

To provide some assessment of the CI methods, we conducted a small sim-
ulation study generating marginally standard normal variates {Y(si )}105

i=1 with
correlation corr[Y(s), Y (s + h)] = exp(−‖h‖2) at the locations {si}105

i=1 in Fig-
ure 1 and defining observations {Z(si ) = √

θ1/2[Y 2(si ) − 1] + 40.23}105
i=1 from

a spatial process having a Gaussian variogram as above with scale θ1 = 7.5 and
range θ2 = 1; this data-generation approximately matches features in the origi-
nal SAS coal seam data and also produced the data example above. Based on
1000 simulations, 90% CIs for the range parameter θ2 from the SFDEL method
had coverages 90.5,87.4,93.3 for C∗ = 2 and 89.3,88.7,86.4 for C∗ = 4, over
grid spacings κ = 0.05,0.1,0.2. In contrast, 90% CIs for θ2 from the kernel
estimation approach had actual coverages 68.4,74.4,52.7 for bandwidths h =
0.5,1,1.5.

7. Proofs of the results.

7.1. Notation and lemmas. Define the bias corrected periodogram Ĩn(ω) =
In(ω) − n−1λd

nσ̂n(0) and its (unobservable) variant I ∗
n (ω) = In(ω) − n−1λd

nσ (0).
Recall that An(ω) = c−1

n σ (0) + Kφ(ω), ω ∈ R
d , where K = (2π)d

∫
f 2. For no-

tational simplicity, for a random quantity T depending on both {Z(s) : s ∈ R
d}

and {X1,X2, . . .}, ET will denote the conditional expectation of T given X ≡
{X1,X2, . . .} and likewise P will denote conditional probability. Thus, in the fol-
lowing, P(−2 logRn(θ0) ≤ t) in fact refers to

P
(−2 logRn(θ0) ≤ t |X)

, t > 0.

Also, write PX and EX to denote the probability and the expectation under the
joint distribution of X1,X2, . . . . Further, let C or C(·) denote generic constants
that depend on their arguments (if any), but do not depend on n or the {Xi}.

We now provide some lemmas that will be used for proving the main re-
sults of the paper. Proofs of the lemmas and Proposition 4.1 are relegated to the
supplementary material [3] to save space. For continuity, supplementary mate-
rial [3] begins with three technical lemmas (Lemmas 7.1–7.3), providing some



538 S. BANDYOPADHYAY, S. N. LAHIRI AND D. J. NORDMAN

general cumulant and integral inequalities as well as the bias and the vari-
ance of the periodogram In(·) that are used to establish Lemmas 7.4–7.7 be-
low; these results may also be of independent interest. As presented next, Lem-
mas 7.4–7.7 deal with various properties and sums of the periodogram that
we will need to analyze the asymptotic behavior of the SFDEL ratio statis-
tic under different asymptotic structures and establish the main results in Sec-
tion 7.2.

LEMMA 7.4. Under conditions (C.0)–(C.3) and (C.5)′

E

[
N∑

k=1

Gθ0(ωkn)Gθ0(ωkn)
′I 2

n (ωkn)

]

= 2
N∑

k=1

Gθ0(ωkn)Gθ0(ωkn)
′A2

n(ωkn) + o
(
b2
n

)
a.s. (PX).

LEMMA 7.5. Under conditions (C.0)–(C.3) and (C.5)′,
N∑

i=1

Gθ0(ωin)Gθ0(ωin)
′[Ĩ 2

n (ωin) − (
A2

n(ωin) + K2φ2(ωin)
)]

= op

(
b2
n

)
a.s. (PX).

LEMMA 7.6. Under conditions (C.0)–(C.3) and (C.5)′, for any ε > 0,
P(max1≤k≤N ‖Gθ0(ωkn)In(ωkn)‖ > εbn) = o(1),a.s. (PX).

LEMMA 7.7. Let cho(B) denote the interior of the convex hull of a set B ⊂
R

p . Under conditions (C.0)–(C.3) and (C.5)′, it holds that, as n → ∞, P(0 ∈
cho{Gθ0(ωkn)Ĩn(ωkn)}Nk=1) → 1 a.s. (PX).

7.2. Proofs of the main results. We now present the proofs of the results from
Section 5. In the following, references to the equations from the supplementary
material [3] are given as (S.∗).

PROOF OF THEOREM 5.1. By Lemma 7.7, Rn(θ0) exists and is positive on a
set with probability tending to one, a.s. (PX). When Rn(θ0) > 0 holds, by a general
and standard EL result based on Lagrange multipliers (cf. Owen [33], page 100),
one can express Rn(θ0) as

Rn(θ0) =
N∏

k=1

(1 + γk)
−1,(7.1)

where βθ0 ≡ βθ0,n satisfies Fn(θ0, βθ0) = 0 for

Fn(θ,β) ≡ N−1
N∑

k=1

Gθ(ωkn)Ĩn(ωkn)

1 + β ′Gθ(ωkn)Ĩn(ωkn)
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and where γk ≡ γk,n = β ′
θ0

Gθ0(ωkn)Ĩn(ωkn) satisfies |γk| < 1 for all 1 ≤ k ≤ N .
To prove the theorem, it is enough to show that given any subsequence {ni}, there

exists a further subsequence {nk} of {ni} such that − logRnk
(θ0)

d→ χ2
p . We use

this line of argument because, as the proof indicates, the asymptotic expansion of
− logRnk

(θ0) involves mean-like quantities (e.g., term Jk in the following) which
may have differing (normal) limit distributions along different subsequences of
{nk}; nevertheless, the log-ratio statistic − logRn(θ0) is shown to have a single,
well-defined chi-square limit.

Note first that, under the PID structure here, it follows immediately from (C.3)
[cf. (S.10)] that

b2
n ∼ Nc−2∗ and

∥∥∥∥∥�n − 2c−2∗
[
σ(0)

]2
N∑

k=1

Gθ0(ωkn)Gθ0(ωkn)
′
∥∥∥∥∥ = o(N)(7.2)

[which is applied to show (7.4) from (7.3) next]. Fix a subsequence {ni}. Then by
(C.3)(iii) and the fact that ‖Gθ0(ω)‖ ≤ C for all ω ∈ R

d , it follows that there exist
a subsequence {nk} of {ni} and a nonsingular matrix �∗ (possibly depending on
{nk}) such that

N−1
N∑

j=1

Gθ0(ωjn)Gθ0(ωjn)
′ →�∗ through {nk}.(7.3)

For simplicity, replace the subscript nk by k and set Nk ≡ Nnk
, ωj ≡ ωj,nk

,

γj ≡ γj,nk
and βθ0 ≡ βθ0,nk

. Also, let Wk = N−1
k

∑Nk

j=1 Gθ0(ωj )Gθ0(ωj )
′Ĩ 2

k (ωj )

and Jk = N−1
k

∑Nk

j=1 Gθ0(ωkn)Ĩk(ωj ). Then by (7.2), (7.3), condition (C.3) and
Lemmas 7.5–7.6, we have, a.s. (PX),

|Jk| = Op

(
N

−1/2
k

)
and

∥∥Wk − (2Nk)
−1�k

∥∥ = op(1)(7.4)

as k →∞. Since N−1
k �k →2[σ(0)]2c−2∗ �∗, Wk is nonsingular whenever ‖Wk −

[σ(0)]2c−2∗ �∗‖ is sufficiently small.

CLAIM. ‖βθ0‖ = Op(N
−1/2
k ), a.s. (PX).

PROOF. Write βθ0 = t0u0 where ‖u0‖ = 1 and t0 = ‖βθ0‖. Then

0 = ∥∥Fk(θ0, βθ0)
∥∥ ≥ ∣∣u′

0Fk(θ0, tθ0)
∣∣

= N−1
k

∣∣∣∣∣u′
0

(
Nk∑
j=1

Gθ0(ωj )Ĩk(ωj ) − t0

Nk∑
j=1

Gθ0(ωj )Ĩk(ωj )u′
0Gθ0(ωj )Ĩn(ωj )

1 + t0u′
0Gθ0(ωj )Ĩn(ωj )

)∣∣∣∣∣
≥ t0u′

0Wku0

1 + t0Yk

−
p∑

j=1

∣∣e′
j Jk

∣∣,
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where Yk = max1≤j≤Nk
‖Gθ0(ωj )‖|Ĩk(ωj )| and e1, . . . , er denote the standard

basis of R
r , with ei ∈ R

r having a 1 in the ith position and 0 elsewhere. By
Lemma 7.6, Yk = op(N

1/2
k ). Also, using (7.4), one can conclude that u′

0Wku0 ≥
σ ∗

0 + op(1) and hence, (1 + t0Yk)
−1t0 = Op(N

−1/2
k ), a.s. (PX), where σ ∗

0 > 0
is the smallest eigenvalue of [σ(0)]2c−2∗ �∗. Hence, it follows that t0 = ‖βθ0‖ =
Op(N

−1/2
k ), proving the claim. �

By the Claim and Lemma 7.6,

max
1≤j≤Nk

|γj | ≤ ‖βθ0‖Yk = Op

(
N

−1/2
k

)
op

(
N

1/2
k

) = op(1) a.s. (PX).(7.5)

Next, we obtain a stochastic approximation to βθ0 . Using Fk(θ0, βθ0) = 0, note that

0 = N−1
k

Nk∑
j=1

Gθ0(ωj )Ĩk(ωj )

1 + β ′
θ0

Gθ0(ωj )Ĩn(ωj )

= N−1
k

Nk∑
j=1

Gθ0(ωj )Ĩn(ωj )

[
1 − γj + γ 2

j

1 + γj

]

= Jk − Wkβθ0 + N−1
k

Nk∑
j=1

Gθ0(ωj )Ĩk(ωj )γ
2
j

1 + γj

.

Therefore, we have the representation

βθ0 = (Wk)
−1Jk + ηk,(7.6)

where, using condition (C.3), Lemma 7.5, the Claim, and (7.5), ‖ηk‖ ≤ Yk‖βθ0‖2 ×
‖Wk‖−1{N−1

k

∑Nk

j=1 ‖Gθ0(ωj )‖2Ĩ 2
k (ωj )}{max1≤j≤Nk

(1 − |γj |)−1} = op(N
1/2
k ) ×

Op(N−1
k )Op(1)Op(1)Op(1) = op(N

−1/2
k ), a.s. (PX). For ‖βθ0‖Yk < 1, applying

a Taylor series expansion, we have

log (1 + γj ) = γj − γ 2
j /2 + �j,

where |�j | ≤ ‖βθ0‖3Yk‖Gθ0(ωj )‖2Ĩ 2
k (ωj )(1 − ‖βθ0‖Yk)

−3 for all 1 ≤ j ≤ Nk .

Also, by Lemmas 7.4–7.5, (C.3) and (7.4), NkJ
′
k(Wk)

−1Jk
d−→ 2χ2

p and

Nk∑
j=1

|�j | ≤ Nk‖βθ0‖3Yk

(
1 − ‖βθ0‖Yk

)−3
{
N−1

k

Nk∑
j=1

∥∥Gθ0(ωj )
∥∥2

Ĩ 2
k (ωj )

}

= NkOp

(
N

−3/2
k

)
op

(
N

1/2
k

)
Op(1)Op(1) = op(1),
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a.s. (PX). Hence, it follows that

− logRnk
(θ0) ≡ − logRk(θ0) =

Nk∑
j=1

log (1 + γj )

=
[

Nk∑
j=1

γj − 2−1
Nk∑
j=1

γ 2
j

]
+

Nk∑
j=1

�j

= [
β ′

θ0
[NkJk] − 2−1Nkβ

′
θ0

Wkβθ0

] +
Nk∑
j=1

�j

= 2−1NkJ
′
k(Wk)

−1Jk + op(1)
d−→ χ2

p.

This completes the proof of Theorem 5.1. �

PROOF OF THEOREM 5.2. By conditions on cn, N and λn in the MID case of
part (a),

b2
n ∼ Nc−2

n and
(7.7) ∥∥∥∥∥�n − 2c−2

n

[
σ(0)

]2
N∑

k=1

Gθ0(ωkn)Gθ0(ωkn)
′
∥∥∥∥∥ = o

(
b2
n

)
,

where c−1
n = o(1). Thus, bn has a slower growth rate in this case compared

to the PID case. As in the proof of Theorem 5.1, it is enough to show that

− logRnk
(θ0)

d−→ χ2
p through some subsequence {nk} of a given subsequence

{ni}. Indeed, the subsequence {nk} is extracted using (C.3)(iii) as before so
that (7.3) holds. Let Yk , βθ0 and γj be as defined in the proof of Theorem 5.1,
and here we continue to use the convention that the subscript nk is replaced
by k, as before. Next, redefine Jk and Wk as Jk = b−2

k

∑Nk

j=1 Gθ0(ωkn)Ĩk(ωj )

and Wk = b−2
k

∑Nk

j=1 Gθ0(ωj )Gθ0(ωj )
′Ĩ 2

k (ωj ) where, following the convention,
we write bk = bnk

. Then, by (7.3), (7.7), Lemma 7.5 and (C.4),

∥∥Wk − [
σ(0)

]2
�∗∥∥ = o(1) and

bkJk
d−→ N

(
0,2

[
σ(0)

]2
�∗)

.

Further, retracing the proof of Theorem 5.1 and using Lemmas 7.5–7.7, one can
conclude that a.s. (PX), ‖βθ0‖ = Op(b−1

k ) (cf. the Claim), max{|γj | : 1 ≤ j ≤
Nk} = op(1) [cf. (7.5)] and the representation (7.6) holds with ηk = op(b−1

k ).
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Hence, it follows that

− logRk(θ0) =
[

Nk∑
j=1

γj − 2−1
Nk∑
j=1

γ 2
j

]
+

Nk∑
j=1

�j

= [
β ′

θ0

[
b2
kJk

] − 2−1b2
kβ

′
θ0

Wkβθ0

] +
Nk∑
j=1

�j

= 2−1b2
kJ

′
k(Wk)

−1Jk + op(1)
d−→ χ2

p.

This completes the proof of Theorem 5.2(a).
Next, consider part (b). Note that in this MID case, Nc−2

n � λκd
n and hence,

b2
n ∼ λκd

n . Also, using the boundedness of ‖Gθ0(·)‖ over R
d and conditions

(C.3)(i), (ii), (iv) and the DCT, one gets

∥∥�n − 2λκd
n �

∥∥ = o
(
λκd

n

)
,

where � ≡ ∫
Gθ0(ω)Gθ0(ω)′K2φ2(ω) dω is nonsingular. Now retracing the proofs

of Theorems 5.1 and 5.2(a) (with {nk} replaced by the full sequence {n}),
one can show that −2 logRn(θ0) = b2

nJ
′
0n(W0n)

−1J0n + op(1), where J0n =
b−2
n

∑N
j=1 Gθ0(ωjn)Ĩn(ωj ) and W0n = b−2

n

∑N
j=1 Gθ0(ωjn)Gθ0(ωjn)

′Ĩ 2
n (ωjn).

Note that by Lemma 7.5 and the fact that b2
n ∼ λκd

n , we have

∥∥Wn − b−2
n �n

∥∥ = o(1),

which is different from the previous two cases covered by Theorems 5.1 and 5.2(a)
[where ‖Wn − 2−1(b−2

n �n)‖ = o(1)]. In view of (C.4), this implies that b2
nJ

′
0n ×

(W0n)
−1J0n

d−→ χ2
p , proving part (b). �

REMARK 7.1. From the proof of Theorems 5.1–5.2, it follows that the differ-
ent scalings in the two cases are required by the dominant term in the asymptotic
variance of the sum

∑N
k=1 Gθ0(ωkn)I

∗
n (ωkn) and the automatic variance stabiliza-

tion factor, both of which arise from the inner mechanics of the SFDEL. Under PID
and under “slow” MID, the leading term is given by Nc−1

n σ (0), which is of a larger
order of magnitude than λκd

n . When the infilling rate is high, that is, Nc−2
n � λκd

n ,
the other term involving the spectral density of the Z(·)-process dominates (as in
the case of regularly spaced time series FDEL) and the standard scaling by −2 is
appropriate.
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PROOF OF THEOREM 5.3. By Lemma 7.5 and the fact that σ̂n(0) − σ(0) =
Op(λ

−d/2
n ) (cf. Lahiri [18]), under the conditions of Theorem 5.2(b),

an(θ0) = b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖2Ĩ 2

n (ωjn)

b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖2I 2

n (ωjn)

= b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖2[2K2φ2(ωjn)] + op(1)

b−2
n

∑N
j=1 ‖Gθ0(ωjn)‖2[2K2φ2(ωjn)] + op(1)

= 1 + op(1)

while under the conditions of Theorems 5.1 and 5.2,

ank
(θ0) = b−2

k

∑Nk

j=1 ‖Gθ0(ωk)‖2[c−2
nk

[σ(0)]2] + op(1)

b−2
k

∑Nk

j=1 ‖Gθ0(ωk)‖2[2c−2
nk [σ(0)]2] + op(1)

= 2−1(
1 + op(1)

)
.

Now combining this with the proofs of Theorems 5.1–5.2, one can complete the
proof of Theorem 5.3. �
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SUPPLEMENTARY MATERIAL

Supplement to “A frequency domain empirical likelihood method for ir-
regularly spaced spatial data” (DOI: 10.1214/14-AOS1291SUPP; .pdf). Details
of proofs and additional simulation results.
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