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ROLE OF NORMALIZATION IN SPECTRAL CLUSTERING
FOR STOCHASTIC BLOCKMODELS

BY PURNAMRITA SARKAR1 AND PETER J. BICKEL

University of Texas, Austin and University of California, Berkeley

Spectral clustering is a technique that clusters elements using the top few
eigenvectors of their (possibly normalized) similarity matrix. The quality of
spectral clustering is closely tied to the convergence properties of these prin-
cipal eigenvectors. This rate of convergence has been shown to be identical
for both the normalized and unnormalized variants in recent random matrix
theory literature. However, normalization for spectral clustering is commonly
believed to be beneficial [Stat. Comput. 17 (2007) 395–416]. Indeed, our ex-
periments show that normalization improves prediction accuracy. In this pa-
per, for the popular stochastic blockmodel, we theoretically show that nor-
malization shrinks the spread of points in a class by a constant fraction under
a broad parameter regime. As a byproduct of our work, we also obtain sharp
deviation bounds of empirical principal eigenvalues of graphs generated from
a stochastic blockmodel.

1. Introduction. Networks appear in many real-world problems. Any dataset
of co-occurrences or relationships between pairs of entities can be represented
as a network. For example, the Netflix data can be thought of as a giant bipartite
network between customers and movies, where edges are formed via ratings. Face-
book is a network of friends, where edges represent who knows whom. Weblogs
link to other blogs and give rise to blog networks. Networks can also be implicit;
for example, in machine learning they are often built by computing pairwise simi-
larities between entities.

Many problems in machine learning and statistics are centered around commu-
nity detection. Viral marketing functions by understanding how information prop-
agates through friendship networks, and community detection is key to this. Link
farms in the World Wide Web are basically malicious tightly connected clusters of
webpages which exploit web-search algorithms to increase their rank. These need
to be identified and removed so that search results are authentic and do not mislead
users.

Spectral clustering [7, 9] is a widely used network clustering algorithm. The
main idea is to first represent the ith entity by a k-dimensional vector obtained by
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concatenating the ith elements of the top k eigenvectors of a graph, and then cluster
this lower-dimensional representation. We will refer to this as the spectral repre-
sentation. Due to its computational ease and competitive performance, emerging
application areas of spectral clustering range widely from parallel computing [12],
CAD (computer aided design) [11], parallel sparse matrix factorization [19] to im-
age segmentation [23], general clustering problems in machine learning [17] and
most recently, to fitting and classification using network blockmodels [21, 24].

A stochastic blockmodel is a widely used generative model for networks with
labeled nodes [13, 21]. It assigns nodes to k different classes and forces all nodes in
the same class to be stochastically equivalent. For example, in a two-class stochas-
tic blockmodel, any pair of nodes belonging to different classes link with proba-
bility γn (a deterministic quantity possibly dependent on the size of the graph, i.e.,
n), whereas any pair belonging to class one (two) link with probability αn (βn).

Recently the consistency properties of spectral clustering in the context of
stochastic blockmodels have attracted a significant amount of attention. Rohe,
Chatterjee and Yu [21] showed that, under general conditions, for a sequence of
normalized graphs with growing size generated from a stochastic blockmodels,
spectral clustering yields the correct clustering in the limit. In a subsequent paper,
Sussman et al. [24] showed that an analogous statement holds for an unnormalized
sequence of graphs. For finite k, the above results can also be obtained using direct
applications of results from [18].

This prior theoretical work does not distinguish between normalized and un-
normalized spectral clustering, and hence cannot be used to support the common
practice of normalizing matrices for spectral clustering. In this paper, we present
both theoretical arguments and empirical results to give a quantitative argument
showing that normalization improves the quality of clustering. While existing work
[21, 24] bounds the classification accuracy, we do not take this route, since upper
bounds can not be used to compare two methods. Instead, we focus on the vari-
ance within a class under the spectral representation using the top k eigenvectors.
In this representation, by virtue of stochastic equivalence, points are identically
distributed around their respective class centers. Hence the empirical variance can
be computed using the average squared distance of points from their class center.

In this setting, the distance between the class centers can be thought of as bias;
we show that this distance approaches the same deterministic quantity with or
without normalization. Surprisingly, we also prove that normalization reduces the
variance of points in a class by a constant fraction for a large parameter regime. So
normalization does not change the bias, but shrinks the variance asymptotically.
However, our results also indicate that the variance of points in a class increases as
the graph gets sparser; hence methods which reduce the within-class variance are
desired.

A simple consequence of our result is that in the completely associative case
(γn = 0) as well as the completely dissociative case (αn = βn = 0), the variance of
the spectral embedding within a class is asymptotically four times less when the
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matrix is normalized. While the completely associative case is on its own uninter-
esting, we build the proof of the general case using similar ideas and techniques.

Our results indicate that normalization has a clear edge when the parameters
are close to the completely associative or completely dissociative settings. These
seemingly easy to cluster regimes can be relatively difficult in sparse networks.
Of course, as n grows, both methods have enough data to distinguish between
the clusters and behave similarly. But for small and sparse graphs, it is indeed an
important regime.

Sussman et al. [24] present a parameter setting where normalization is shown
to hurt classification accuracy empirically. We show that this is but a partial pic-
ture; and in fact there is a large parameter regime where spectral clustering with
normalized matrices yields tighter and hence better clusters.

Using quantifiable link prediction experiments on real world graphs and clas-
sifications tasks in labeled simulated graphs, we show that normalization leads to
better classification accuracies for the regime dictated by our theory, and yields
higher link prediction accuracy on sparse real world graphs.

We conclude the introduction with a word of caution. Our asymptotic theory
is valid in the degree regime where networks are connected with probability ap-
proaching one. However, finite sparse networks can have disconnected or weakly
connected small components, in the presence of which, the normalized method re-
turns uninformative principal eigenvectors with support on the small components.
This makes classification worse compared to the unnormalized method, whose
principal eigenvectors are informative in spite of having high variance. Hence, our
asymptotic results should be used only as a guidance for finite n, not as a hard
rule. We deal with this problem by removing low degree nodes and performing
experiments on the giant component of the remaining network.

2. Preliminaries and import of previous work. In this paper we will only
work with two class blockmodels. Given a binary n × 2 class membership ma-
trix Z, the edges of the network are simply outcomes of

(n
2

)
independent Bernoulli

coin flips. The stochastic blockmodel ensures stochastic equivalence of nodes
within the same block; that is, all nodes within the same block have identical prob-
ability of linking with other nodes in the graph.

Thus the conditional expectation matrix P of the adjacency matrix A can be
described by three probabilities, namely αn,βn, γn; where αn and βn denote the
probabilities of connecting within the first and second classes (C1 and C2), re-
spectively, and γn denotes the probability of connecting across two classes. All
statements in this paper are conditioned on αn,βn, γn and Z.

DEFINITION 2.1 (A stochastic blockmodel). Let Z ∈ {0,1}n×2 be a fixed and
unknown matrix of class memberships such that every row has exactly one 1, and
the first and second columns have nπ and n(1 − π) ones, respectively. A stochas-
tic blockmodel with parameters (αn,βn, γn,Z) generates symmetric graphs with
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adjacency matrix A such that, P(A(i, i) = 1) = 0, ∀i. For i > j , Aij = Aji are
independent with P(Aij = 1|Z) = Pij , where P is symmetric with Pij = αn for
i, j ∈ C1, γn for i ∈ C1, j ∈ C2 and βn for i, j ∈ C2.

For ease of exposition we will assume that the rows and columns of A are per-
muted such that all elements of the same class are grouped together. We have
P := E[A|Z]. Clearly, P is a blockwise constant matrix with zero diagonal by
construction.

We use a parametrization similar to that in [3] to allow for decaying edge prob-
abilities as n grows. Formally αn, βn and γn are proportional to a common rate
variable ρn where ρn → 0 as n → ∞, forcing all edge probabilities to decay at the
same rate. Thus it suffices to replace αn, βn or γn by ρn in orders of magnitude;
for example, the expected degree of nodes in either class is C0nρn. We use “C0”
to denote a generic positive constant. All expectations are conditioned on Z; for
notational convenience we write E[·] instead of E[·|Z].

First we consider the eigenvalues and eigenvectors of P without the con-
straint of zero diagonals. If αnβn �= γ 2

n , then this matrix (denoted by PB ) will
have two eigenvalues with magnitude O(nρn) and n − 2 zero eigenvalues. Since
‖P − PB‖ = O(ρn), using Weyl’s inequality we see that the principal eigenvalues
of P are O(nρn), whereas all other eigenvalues are O(ρn).

Let vi (λi) denote the ith eigenvector (eigenvalue) of matrix P . The ordering
is in decreasing order of absolute value of the eigenvalues. We will denote the ith
empirical eigenvector (eigenvalue) by v̂i (λ̂i). v1, v2 are piecewise constant.

Now we will define the normalized counterparts of the above quantities. Let
Ã := D−1/2AD−1/2, and also let P̃ := D−1/2PD−1/2, where D and D are the
diagonal matrices of degrees and expected degrees, respectively. We denote the
first two eigenvectors by u1 and u2, and the first two eigenvalues by ν1 and ν2.
Similar to v1 and v2, u1 and u2 also are piecewise constant vectors. The empirical
counterparts of the eigenvectors and values are denoted by ũi , ν̃i . One interesting
fact about ũ1 is that the ith entry is proportional to

√
di , where di is the degree of

node i. However, one cannot explicitly obtain the form of û1(i).
Among the many variants of spectral clustering, we consider the algorithm used

in [21]. The idea is to compute an n × k matrix Q̂ with the top k eigenvectors
of A along its columns, and apply the kmeans algorithm on the rows of Q̂. The
kmeans algorithm searches over different clusterings and returns a local optima
of an objective function that minimizes the squared Euclidean distance of points
from their respective cluster centers. The clusters are now identified as estimates
of the k blocks.

Probabilistic bounds on misclassification errors of spectral clustering under the
stochastic blockmodel has been obtained in previous work [21, 24]. However, up-
per bounds cannot be used for comparing two algorithms. Instead, we define a sim-
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ple clustering quality metric computable in terms of an appropriately defined de-
viation of empirical eigenvectors from their population counterparts, and we show
that these are improved by normalization.

2.1. Quality metrics. The quality metrics are defined as follows: the algorithm
passes the empirical eigenvectors to an oracle who knows the cluster memberships.
The oracle computes cluster centers Kk := ∑

i∈Ck
Q̂i/|Ck|, for us k ∈ {1,2}. Let

d2
11 denote the mean squared distance of points in C1 from K1, and let d2

12 denote
the mean squared distance of points in C1 from K2. From now on we will de-
note by d̂2

11 and d̃2
11 the distances obtained from the unnormalized and normalized

methods, respectively.
To be concrete, we can write d̂2

11 = ∑
i∈C1

‖Q̂i − K1‖2/nπ . Similarly, de-

fine d̂2
12 as the mean square distance of points in C1 from K2, that is, d̂2

12 =∑
i∈C1

‖Q̂i − K2‖2/nπ . One can analogously define d̂2
22 and d̂2

21. We will use
the notation d2

11 (or d2
12) when we refer to the corresponding quantities in general,

that is, without any particular reference to a specific method.
Although d̂2

11 seems like a simple average of squared distances, it actually has
useful information about the quality of clustering. For definiteness, let us take the
unnormalized case and examine points in C1. By stochastic equivalence, ∀i ∈ C1,
{v̂1(i), v̂2(i)} are identically distributed (albeit dependent) random variables. Now
d̂2

11 essentially is the trace of the 2×2 sample variance matrix, and hence measures
the variance of these random variables.

Ideally a good clustering algorithm with or without normalization should satisfy

d2
11/d

2
12

P→ 0, but we will show that this ratio converges to zero at the same rate,
with or without normalization, in consistence with previous work [18, 21] and

[24]. Furthermore, we will show that d̃2
12/d̂

2
12

P→ 1; that is, the two methods do not
distinguish between d2

12.
Interestingly, our results also imply that d2

11 increases as the graphs become
sparser; that is, ρn decreases. Hence, if a method can be shown to reduce the vari-
ance of points in a class by a constant fraction, it would be preferable for sparse
graphs. Indeed we show that d̃2

11/d̂
2
11 converges to a constant which is less than 1

for a broad range of parameter settings of αn,βn and γn. In the simple disconnected
case with γn = 0, this constant is 1/4.

Another advantage of d2
11 is that it can be conveniently expressed in terms of

an appropriately defined deviation of empirical eigenvectors from their population
counterpart. For any population and empirical eigenvector pair {v, v̂}, we consider
the following orthogonal decomposition: v = cv̂ + r, where c := vT v̂. The norm
of residual r will measure the deviation of v̂ from v. The deviation of ũ from u can
be measured similarly.

Since we are interested in two class blockmodels, we will mostly use ri , i ∈
{1,2} as the residual of the ith empirical eigenvector from its population coun-
terpart, and cjj := vT

j v̂j . We denote by v(C1) := ∑
i∈C1

v(i)/nπ the average of
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entries of vector v restricted to class C1. A key fact is that v1, v2 (or u1, u2) are
both piecewise constant:

d2
11 = 1

c2
11

( ∑
i∈C1

r1(i)
2

nπ
− r1(C1)

2
)

+ 1

c2
22

( ∑
i∈C1

r2(i)
2

nπ
− r2(C1)

2
)
,(2.1)

d2
12 = 1

nπ

∑
i∈C1

‖Q̂i − K2‖2 = d2
11 + ‖K1 − K2‖2.(2.2)

We will denote the distances obtained from A by d̂·· and from Ã by d̃··. Even
though Ki is defined in terms of v̂1 and v̂2, we will abuse this notation somewhat to
use the above expressions for calculating d̃··, where Ki will be defined identically
in terms of ũ1 and ũ2. For a wide regime of (αn,βn, γn), we prove that d̃2

11 is
asymptotically a constant factor smaller and hence better than d̂2

11. First, using
results from [10] we will prove that for γn = 0, d̃2

11 = 1/4d̂2
11(1 + oP (1)). In this

case, the result can be proven using existing results on Erdős–Rényi graphs [10]
and a simple application of Taylor’s theorem. In order to generalize the result to
γn �= 0, we would need new convergence results for A and Ã generated from a
stochastic blockmodel. All results rely on the following assumption on ρn:

ASSUMPTION 2.1. We assume logn/nρn → 0, as n → ∞.

This assumption ascertains with high probability that the sequence of growing
graphs are not too sparse. The expected degree is np = O(nρn), and this is the
most commonly used regime where norm convergence of matrices can be shown
[5, 6, 18]. Note that this is also the sharp threshold for connectivity of Erdős–Rényi
graphs [4]. We will now formally define the sparsity regime in which we derive our
results.

DEFINITION 2.2 (A semi-sparse stochastic blockmodel). Define a stochastic
blockmodel with parameters αn, βn, γn and Z; see Definition 2.1. Let αn, βn and
γn be deterministic quantities of the form C0ρn. If ρn satisfies Assumption 2.1,
we call the stochastic blockmodel (αn,βn, γn,Z) a semi-sparse stochastic block-
model.

The paper is organized as follows: we present the main results in Section 3.
The proof of the simple γn = 0 case is in Section 4, whereas the expressions of
d̂2

11 and d̂2
12 in the general case appear in Section 5. We derive the expressions

of d̃2
11 and d̃2

12 in Section 6. Experiments on simulated and real data appear in
Section 7. The proofs of some accompanying lemmas and ancillary results are
omitted from the main manuscript for ease of exposition and are deferred to the
Supplement [22].
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2.2. Import of previous work. By virtue of stochastic equivalence of points be-
longing to the same class, eigenvectors of P map the data to k distinct points. This
is why consistency of spectral clustering is closely tied to consistency properties of
empirical eigenvalues and eigenvectors. We will show that current theoretical work
on eigenvector consistency does not distinguish between the use of normalized or
unnormalized A.

One of the earlier results on the consistency of spectral clustering can be found
in [26], where weighted graphs generated from a geometric generative model are
considered. While this is an important work, this does not apply to our random
network model.

For any symmetric adjacency matrix A with independent entries, one can use
results on random matrix theory from Oliveira [18] to show that the empirical
eigenvectors of a semi-sparse stochastic blockmodel converge to their population
counterpart at the same rate with or without normalization. If p : [n]2 → [0,1]
denotes the probability function P(Aij = 1) = 1 − P(Aij = 0) = p(i, j), and dp
denotes the expected degree, then:

THEOREM 2.1 (Theorem 3.1 of [18]). For any constant c > 0, there exists
another constant C = C(c) > 0, independent of n or p, such that the following
holds. Let d := mini∈[n] dp(i), 	 := maxi∈[n] dp(i). If 	 > C logn, then for all
n−c ≤ δ ≤ 1/2,

P
(‖A − P‖ ≤ 4

√
	 log(n/δ)

) ≥ 1 − δ.

Moreover, if d ≥ C logn, then for the same range of δ,

P
(‖Ã − P̃‖ ≤ 14

√
log(4n/δ)/d

) ≥ 1 − δ.

Let �a,b(A) denote the orthogonal projector onto the space spanned by the
eigenvectors of A corresponding to eigenvalues in [a, b]. A simple consequence
of Theorem 2.1 is that for suitably separated population eigenvalues, the operator
norm of the difference of the eigenspaces also converges to zero.

COROLLARY 2.1 (Corollary 3.2 of [18]). Given some x > 0, let Nx(P ) be
the set of all pairs a < b such that a + x < b − x, and P has no eigenvalues in
(a − x, a + x) ∪ (b − x, b + x). Then for x > 4

√
	 log(n/δ),

‖A − P‖ ≤ 4
√

	 log(n/δ)

�⇒ ∀(a, b) ∈ Nx(P ),

∥∥�a,b(A) − �a,b(P )
∥∥ ≤

(
4(b − a + 2x)

π(x2 − x
√

	 log(n/δ))

)√
	 log(n/δ).
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Similarly define Nx(P̃ ). Then for x > 14
√

log(4n/δ)/d ,

∥∥Ã − P̃
∥∥ ≤ 14

√
log(4n/δ)

d

�⇒ ∀(a, b) ∈ Nx(P̃ ),

∥∥�a,b(Ã) − �a,b(P̃ )
∥∥ ≤

(
4(b − a + 2x)

π(x2 − x
√

	 log(n/δ))

)√
log(n/δ)/d.

In particular the right-hand sides of the above equations hold with probability
≥ 1 − δ for any n−c < δ < 1/2.

A straightforward application of this corollary yields that spectral clustering
for a stochastic blockmodel with A and Ã lead to OP (

√
logn/nρn) convergence

of empirical eigenvectors to their population counterparts. Further analysis shows
that the fraction of misclassified nodes go to zero at the same rate for A and Ã. We
defer the proof to Section B of the Supplement [22].

COROLLARY 2.2. Let A be generated from a semi-sparse stochastic block-
model (Definition 2.2) with γn > 0 and αnβn �= γ 2

n . Then, for i ∈ {1,2}, ‖vivT
i −

v̂i v̂T
i ‖ = OP (

√
logn/nρn). Furthermore the fraction of misclassified nodes can be

bounded by OP (logn/nρn) for both methods.

Spectral clustering with Ã derived from a stochastic blockmodel with growing
number of blocks has been shown to be asymptotically consistent [21]. Further, the
fraction of mis-clustered nodes is shown to converge to zero under general condi-
tions. These results are extended to show that spectral clustering on unnormalized
A also enjoys similar asymptotic properties [24]. Sussman et al. [24] also give an
example of parameter setting for a stochastic blockmodel where spectral clustering
using unnormalized A outperforms that using Ã. We, however, demonstrate using
theory and experiments that this is only a partial picture, and there is a large regime
of parameters where normalization indeed improves performance.

For ease of exposition, we list the different variables and their orders of mag-
nitude in Table 1. For deterministic quantities xn and cn, xn � cn, denotes that
xn/cn converges to some constant as n → ∞. For two random variables Xn and
Yn, we use Xn ∼ Yn to denote Xn = Yn(1 + oP (1)). For the scope of this paper
‖ · ‖ denotes the L2 norm, unless otherwise specified.

3. Main results. For the general case we derive the following asymptotic ex-
pressions of d2

11 and d2
12. We recall that d2

11 measures the variance of points in class
one under the spectral representation, whereas d2

12 basically measures the distance
between the class centers, which can also be thought of as bias. We will show that
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TABLE 1
Table of notation

ρn Edge probability I The n × n identity matrix
n Number of nodes in the network Z n × 2 binary matrix of class memberships
Ci The ith group, i ∈ {1,2} π |C1|/n

D Diagonal matrix of degrees D Diagonal matrix of expected degrees,
conditioned on Z

A Adjacency matrix Ã D−1/2AD−1/2

P E[A|Z] P̃ D−1/2PD−1/2

αn P [Aij = 1|i ∈ C1, j ∈ C1] � ρn μ1 E[Dii/n|i ∈ C1] = παn + (1 − π)γn − αn/n � ρn

βn P [Aij = 1|i ∈ C2, j ∈ C2] � ρn μ2 E[Dii/n|i ∈ C2] = πγn + (1 − π)βn − βn/n � ρn

γn P [Aij = 1|i ∈ C1, j ∈ C2] � ρn μ
∑

i Dii /n2 = πμ1 + (1 − π)μ2 � ρn

di Dii , i ∈ {1, . . . n} = OP (nρn) d̄i

∑
j [Aij − E[Aij |Z]] = OP (

√
nρn)

d̄
(1)
i

∑
j∈C1

[Aij − E[Aij |Z]] = OP (
√

nρn) d̄
(2)
i

∑
j∈C2

[Aij − E[Aij |Z]] = OP (
√

nρn)

E1
∑

i∈C1
di E2

∑
i∈C2

di

E
∑

i di x(C1) The average of x restricted to C1, that is,∑
i∈C1

x(i)

λi ith largest eigenvalue of P in magnitude νi ith largest eigenvalue of P̃ in magnitude
� nρn, for i ∈ {1,2} � 1, for i ∈ {1,2}

vi ith eigenvector of P ui ith eigenvector of P̃

xk vk(i)(k ∈ {1,2}, i ∈ C1) � 1/
√

n x̃k uk(i)(k ∈ {1,2}, i ∈ C1) � 1/
√

n

yk vk(i)(k ∈ {1,2}, i ∈ C2) � 1/
√

n ỹk uk(i)(k ∈ {1,2}, i ∈ C2) � 1/
√

n

λ̂i ith largest eigenvalue of A in magnitude; ν̃i ith largest eigenvalue of Ã in magnitude
v̂i ith eigenvector of A ũi ith eigenvector of Ã

K1
∑

j∈C1
Q̂j /nπ K2

∑
j∈C2

Q̂j /nπ

Q̂ n × 2 matrix of top two empirical Q The population variant of Q̂

eigenvectors (of A) along the columns
d̂2
k�

∑
i∈Ck

‖Q̂i − K�‖2/nπ d̃2
k� Variant of d̂2

k� using eigenvectors of Ã

C Q̂T Q cij Cij := vT
i v̂j

r̂i vi − (vT
i v̂i )v̂i , i ∈ {1,2} r̃i ui − (uT

i ũi )ũi , i ∈ {1,2}

normalizing A asymptotically reduces the variance without affecting the bias. The
proofs can be found in Sections 5 and 6.

THEOREM 3.1. Let A be the adjacency matrix generated from a semi-sparse
stochastic blockmodel (αn,βn, γn,Z) where γn > 0 and αnβn �= γ 2

n . We define λi ,
xi , yi , for i ∈ {1,2} and π as in Table 1:

d̂2
11 ∼

[(
x2

1

λ2
1

+ x2
2

λ2
2

)
nπαn(1 − αn) +

(
y2

1

λ2
1

+ y2
2

λ2
2

)
n(1 − π)γn(1 − γn)

]
,(3.1)

d̂2
12 ∼ 1/nπ(1 − π).(3.2)

THEOREM 3.2. Let A be the adjacency matrix generated from a semi-sparse
stochastic blockmodel (αn,βn, γn,Z) where γn > 0 and αnβn �= γ 2

n .We define μ1,
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μ2, ν2 and π as in Table 1:

d̃2
11 ∼

[
nπαn(1 − αn)

n3πμ2
1

(
1

4
+ (1 − π)γn

μ1ν
2
2

)
(3.3)

+ n(1 − π)γn(1 − γn)

n3μ2
1

(
1

4π
+ παn

(1 − π)μ2ν
2
2

)]
,

d̃2
12 ∼ 1

nπ(1 − π)
.(3.4)

Before explaining the above theorems, we present a special case for clarity.

REMARK (A special case). When γn = 0, we have λ1 = nμ1, and x1 =
1/

√
nπ and y1 = 0, which immediately shows that normalization shrinks the vari-

ance of the spectral embedding within a class (d2
11) by a factor of four. This is

the completely associative case. Now consider the completely dissociative case,
that is, γn = 0. It is easy to see that then λ1 = −λ2 = n

√
π(1 − π)γn, and

y1 = −y2 = 1/
√

2n(1 − π). Substituting these values into the distance formulas
again shows that normalization shrinks d2

11 by a factor of four in the completely
dissociative case.

We call the completely associative case the zero communication case, which
can be thought of as two disconnected Erdős–Rényi graphs. Under Assumption 2.1
each of the smaller graphs will be connected with probability tending to one. von
Luxburg [25] already established that spectral clustering achieves perfect classi-
fication in this scenario. We merely present this simple setting because the ideas
and proof techniques used for this case will be carried over to the general case with
γn �= 0. In particular, our results indicate that in the general case (αn, γn > 0), for
parameter regimes close to the completely associative or completely dissociative
models, the normalized method has a clear edge.

COROLLARY 3.1. Let A be the adjacency matrix generated from a semi-
sparse stochastic blockmodel (αn,βn, γn,Z) (see Definition 2.2) where γn = 0
and αnβn �= γ 2

n . We have

d̂2
11

d̃2
11

∼ 4,(3.5)

d̂2
12

d̃2
12

∼ 1,(3.6)

d̂2
11

d̂2
12

= OP

(
1

nρn

)
,(3.7)

d̃2
11

d̃2
12

= OP

(
1

nρn

)
.(3.8)
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The same holds for normalized and unnormalized versions of d2
22 and d2

21.

While both of d2
11 and d2

12 (derived the unnormalized and normalized methods)
are approaching zero in probability, d2

11/d
2
12 is C0/nρn for both the normalized

and unnormalized cases. In our regime of ρn this translates to perfect classification
as n → ∞. This is not unexpected because existing literature has established that
spectral clustering with both A and Ã are consistent in the semi-sparse regime.
Also, d̃2

12/d̂
2
12 approaches one; thus if the limiting ratio d̃2

11/d̂
2
11 is smaller (larger)

than one, then there is some indication that the normalized (unnormalized) method
is to be preferred.

For simplicity, we consider a stochastic blockmodel with two equal sized classes
and βn = αn. We will now show that for this simple model, in the semi-sparse
regime, our quality metric indicates that normalization would always improve per-
formance. In the dense regime, that is, when degree grows linearly with n, there
are parts of the parameter space where our quality metric prefers the unnormal-
ized method. However, the network is so dense that the two class centers are well
separated, leading to equally good performance of both methods.

For this simple model, the limiting d̃2
11/d̂

2
11 ratio has a concise form in the semi-

sparse case, which is presented in Corollary 3.2, and plotted in Figure 1(A). Fig-
ure 1(B) shows the contour plot of the limiting ratio in the dense case. We also
highlight the parameter regime where the ratio is close to or larger than one. Fi-
nally Figure 1(C) focuses on this highlighted area.

COROLLARY 3.2. Let A be the adjacency matrix generated from the stochas-
tic blockmodel (αn,αn, γn,Z) where γn = xαn > 0 and π = 1/2. When ρn → 0,
we have the following limit, which is always smaller than one:

d̃2
11

d̂2
11

∼ 1

4
+ 3

2

x

1 + x2 .(3.9)

On the other hand, when ρn is a constant w.r.t. n, the above ratio is smaller than
one, unless x ≥ 1 or αn ≥ 1/2. The universal upper bound is 1.31.

REMARK. Here we summarize the result in the above corollary.

(1) In the semi-sparse regime [Figure 1(A)], the limiting ratio is always less
than one, thus favoring the normalized method.

(2) In the dense case [Figure 1(B) and (C)], where ρn is a constant w.r.t. n, this
ratio can be larger than one when x ≥ 1 or αn ≥ 1/2, with an upper bound of 1.31.
The upper bound is achieved for large αn, γn pairs, for example, αn = 1/3, γn = 1
and αn = 1, γn = 0.24. In this dense regime, both methods perform equally well
on any reasonably sized network. Using simulations on small networks (twenty
nodes), we found that in terms of misclassification error, the methods perform
comparably.
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(A) (B)

(C)

FIG. 1. Simple blockmodel with two equal sized classes and αn = βn: (A) Limiting ratio of d̃2
11/d̂2

11
in the semi-sparse case. (B) Contour plot for the ratio in the dense case. The rectangular area consists
of parameters settings leading to a ratio bigger than one. This is highlighted in (C), which shows the
surface plot for d̃2

11/d̂2
11 along the Z axis in the regime where ratio is close to or larger than one. Y

axis has varying αn, X axis has varying γn/αn. For reference we also plot the plane Z = 1.

(3) Because of the inherent symmetry of the simple model, for y := αn/γn,
the ratio d̃2

11/d̂
2
11 → 1/4 + 3y/2(1 + y2), in the semi-sparse regime. This again

shows that normalization provides a clear edge close to the completely associative
(γn = 0) or completely dissociative (αn = 0) cases.

We want to point out that for the simulated experiment with αn = 0.42, βn =
0.50, γn = 0.42 (and π = 0.60), the unnormalized method performs better than
the normalized method in Sussman et al. [24]. In this case the analytic ratio also is
larger than one, and the graph is very close to an Erdős–Rényi graph.

3.1. A shortcoming of asymptotic analysis. While Corollary 3.2 suggests that
normalization always reduces within class variance in the semi-sparse degree
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regime, there is one caveat to this asymptotic result. In the semi-sparse regime,
the network is connected with high probability as n → ∞. However, finite sparse
networks may have disconnected components consisting of a few nodes. In such
scenarios, by construction the normalized method assigns eigenvalue one to eigen-
vectors with support on nodes in each of the connected components. As a result,
the leading eigenvectors are uninformative, leading to poor performance. The un-
normalized method, however, does not suffer from this problem and has the infor-
mative eigenvectors as the leading eigenvectors, albeit with a high variance. We
get around this problem by removing small degree nodes and then working on
the largest connected component. We also point out this problem in the discussion
section.

3.2. Accuracy of the analytic ratio. Finally, we also use simulations to see
how accurate the analytic ratio is. For n = 1000, we vary αn ∈ [0.4,0.6], βn ∈
[0.5,0.9] and γn/αn between zero and two such that ∀αn, γn ≤ 1, and γ 2

n �= αnβn.
We note that the ratio increases for large (αn, γn) pairs. The mean, median and
maximum absolute relative error for d̃2

11/d̂
2
11 (d̃2

12/d̂
2
12) from their analytic coun-

terparts is 0.02, 0.02 and 0.1 (0.001, 0.001 and 0.03), respectively. In both cases
the maximum happens for the {αn,βn, γn} combination where |αnβn − γ 2

n | is the
smallest, leading to most instability. Since all our oP (1) terms are OP (1/

√
nρn),

for this experiment these errors are indeed justifiable.

4. The zero communication case. We will now present our result for two
class blockmodels (see Definition 2.2) with γn = 0. We will heavily use the fol-
lowing orthogonal decomposition of the population eigenvectors:

vk := ckkv̂k + rk for k ∈ {1,2}, where ckk = vT
k v̂k.

Since γn = 0, A can be thought of as two disconnected Erdős–Rényi graphs of
size nπ and n(1 − π) (let the two adjacency matrices be denoted by A1 and A2,
resp.). We assume WLOG παn > (1 −π)βn so that λ1 = nπαn +O(ρn) and λ2 =
n(1 − π)βn + O(ρn). We also assume that rows and columns of A are permuted
so that the first nπ entries are from C1. (We will not use this in our proofs; it only
helps the exposition.)

Füredi and Komlós [10] show that for i ∈ {1,2}, λ̂i = λi + OP (1) and
maxi>2 |λi | = OP (

√
nρn). Hence for large n, the second largest eigenvalue will

come from A2, and will have zeros along the first class, similar to the second pop-
ulation eigenvector. Thus r̂1(i) = 0 for i ∈ C2, and vice versa.

Further, some algebra reveals that K1 = {c11/
√

nπ,0} and K2 = {0, c22/√
n(1 − π)}. Computing d̂2

11 or d̃2
11 requires one to compute the norm and aver-

age of r̂k and r̃k restricted to C1; see equation (2.1). For γn = 0, this reduces to
examining r̂ and r̃ for two Erdős–Rényi graphs.

Let us consider an Erdős–Rényi graph Gn,p . Since self-loops are prohibited, the
conditional expectation matrix P is simply p(11T − I ), which has n eigenvalues,
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the largest of which is λ := (n − 1)p, and the rest are all −p. We denote by di the
degree of node i, and d̄i := di − (n − 1)p.

Let λ, v (ν,u) be respectively the principal eigenvalue and eigenvector pair of
P (P̃ ), whose empirical counterparts are given by λ̂ and v̂ (ν̂ and ũ) respectively.
In this simple case, v and u are the same. We require that all eigenvectors are unit-
length. We denote by 〈xi〉 the a n length vector with the ith entry equaling xi . We
note that v = 〈1/

√
n〉, and ṽ = 〈

√
di/

∑
j dj 〉. Let ĉ := v̂T v and c̃ := ũT u. We will

prove that ‖r̂‖2 ∼ 4‖r̃‖2, which will help us prove Corollary 3.1.
Before proceeding with the result, for ease of exposition we recall the or-

ders of magnitudes of some random variables used in the proof. Let E denote∑
i di . We have

∑
i d̄i = OP (n

√
ρn) [this is simply twice the sum of

(n
2

)
centered

Bernoulli(p) variables and
∑

i d̄
2
i = n2p(1 + oP (1))]. The later result can be ob-

tained by showing that the expectation is n(n − 1)p, and the standard deviation is
of a smaller order. A detailed proof can be found in [10].

LEMMA 4.1. Write the first population eigenvector v of an Erdős–Rényi
(n,p) graph adjacency matrix A as v = ĉv̂ + r̂. If p = C0ρn satisfies Assump-
tion 2.1, we have

‖r̂‖2 ∼ 1

((n − 1)p)2

∑
i d̄

2
i

n
.

PROOF. Before delving into the proof, we state the main result from [10]. For
an Erdős–Rényi graph, λ̂1 = 1T A1

n
+ (1 − p) + OP (1/

√
n). Since 1T A1

n
− (n −

1)p = OP (
√

p(1 − p)), we have λ̂1 − (n − 1)p = OP (1). As the explicit form
of v̂ is not known, the following step is used to compute the norm of r̂:

(A − λ̂1I )r̂ = 〈
(di − λ̂1)/

√
n
〉
.(4.1)

The proof is straightforward. First we see that

Av − λ̂1v = A(ĉv̂ + r̂) − λ̂1v = (A − λ̂1I )r̂.

Using v = 〈1/
√

n〉, Av − λ̂1v = 〈(di − λ̂1)/
√

n〉, thus proving equation (4.1).
Now equation (4.1) and standard norm-inequalities yield ‖A − λ̂1I‖ ≤ (λ̂1 +
max(λ̂2, |λ̂n|)), where λ̂i is the ith largest eigenvalue of A.

Now, using results from [8] we have max(λ̂2, |λ̂n|) = OP (
√

np), and hence
‖A− λ̂1I‖ ∼ np. Interestingly, note that r̂ ⊥ v̂, and hence ‖Ar̂‖/‖r̂‖ = OP (

√
np).

Hence ‖(A − λ̂1I )r̂‖ ≥ λ̂1(1 + oP (1))‖r̂‖. Combining this with the former upper
bound, we have ∥∥(A − λ̂1I )r̂

∥∥ ∼ λ̂1‖r̂‖.
Since d̄i/

√
n = OP (

√
p(1 − p)) and E[di] = (n − 1)p, we have

∑
i

(di − λ̂1)
2

n
= ∑

i

d̄2
i

n
+ (

λ̂1 − (n − 1)p
)2 − 2

(
λ̂1 − (n − 1)p

)∑
i d̄i

n
∼ ∑

i

d̄2
i

n
.
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The last step is true because
∑

i
d̄2
i

n
= OP (np(1 −p)), whereas both λ̂1 − (n− 1)p

and
∑

i d̄i/n are OP (1). Simple application of the Cauchy–Schwarz inequality
shows that the cross term is also OP (1). Now we have

r̂T r̂ = 1

λ̂2
1

∑
i

(di − λ̂1)
2

n
∼ 1

((n − 1)p)2

∑
i d̄

2
i

n
.(4.2)

�

Since the form of ũ is known, r̃T r̃ can be obtained by using element-wise Taylor
expansion. The only complication arises because we often approximate the norm
of a length n vector by the norm of its first or second order Taylor expansion,
where n is growing to infinity. Hence we present the following helping lemma,
where we formalize sufficient conditions for neglecting lower order terms in such
an expansion.

LEMMA 4.2. Consider length n vector xn := cn+x1
n+Rn where cn is a vector

of constants c. If both ‖Rn‖ = oP (‖x1
n‖) and |∑i x

1
n(i)/n| = oP (‖x1

n‖/
√

n), as
n → ∞,

∑
i (xn(i) − ∑

i xn(i)/n)2 ∼ ‖x1
n‖2.

The following lemma has the asymptotic form of ‖r̃‖2.

LEMMA 4.3. Write the first population eigenvector u of an Erdős–Rényi
(n,p) graph normalized adjacency matrix Ã as u = c̃ũ + r̃. If p = O(ρn) sat-
isfies Assumption 2.1,

‖r̃‖2 ∼ 1

4n(n − 1)p2

∑
i

d̄2
i

n
.

PROOF SKETCH. We will use the fact that ‖r̃‖2 = 1 − c̃2 = ∑
i (ũi −∑

i ũi/n)2. Since one can explicitly obtain the expression of ui , the basic idea
is to use Taylor approximation term by term to obtain the norm. However, the
issue is that we are summing over n elements where n is going to infinity, and
extra care is required for the remainder terms; in particular, we will bound them
uniformly over n.

It is easy to check that the vector 〈√di/E〉 is an eigenvector of Ã with eigen-
value one. By virtue of Assumption 2.1 we know that A is connected with high
probability, and so the principal eigenvalue has multiplicity one. Thus ũ(i) =√

di/E. Now termwise Taylor approximation gives

ũi = 1√
n

+ d̄i

2
√

n(n − 1)2p2
+ R,(4.3)

where R is a length n vector of remainder terms. We will now invoke Lemma 4.2.

Let cn be the vector of constants 1/
√

n, and x1
n := d̄i

2
√

d0E0
, where d0 and E0
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are respectively the expectation of di and E. In particular d0 = (n − 1)p and

E0 = n(n−1)p. Hence ‖x1
n‖ ∼ C0/

√
nρn, and the mean of x1

n is OP (1/

√
n3ρn) =

oP (‖x1
n‖/√n). Using standard probabilistic arguments and the form of R, we show

that ‖R‖ = oP (‖1/
√

nρn‖); for details, see Section D of the Supplement [22].
Hence we have

‖r̃‖2 = ∑
i

(
ũi − ∑

i

ũi/n

)2

∼ 1

4n(n − 1)p2

∑
i

d̄2
i

n
.

�

PROOF OF COROLLARY 3.1. In order to compute d̃2
11 and d̂2

11, we need to
compute the norms and averages of r̂k and r̃k, k ∈ {1,2} restricted to class C1.
First note that r̂1(C1) = r̂T

1 v1/
√

nπ = ‖r̂1‖2/
√

nπ by construction, and r̂2(i) = 0,
for i ∈ C1. Hence

∑
i∈C1

r̂1(i)
2 = ‖r̂1‖2.

Using equation (2.1), d̂2
11 = (‖r̂1‖2/nπ − ‖r̂1‖4/nπ)/ĉ2

11 = ‖r̂1‖2/nπ . But
‖r̂1‖2 is the norm-square of the residual of the principal eigenvector from A1 which
is an Erdős–Rényi (nπ,αn) graph; see Lemma 4.1.

Now we consider the corresponding quantities from Ã. The only issue is that
A has two disconnected components (each of which is connected w.h.p., via As-
sumption 2.1), and hence Ã will have two eigenvalues equal to one; hence the
first two eigenvectors can be any two orthogonal vectors spanning this eigenspace.
Since Euclidean distances (e.g., d̃2

11, d̃
2
12 etc.) are preserved under rotation, in this

simple setting, any such pair of vectors can be shown to yield the same answer.
We will construct u1 and ũ1 as follows. u2 and ũ2 are constructed analogously.

u1(i) =
{

1/
√

nπ, for i ∈ C1,

0, otherwise,
ũ1(i) =

{√
di/E, for i ∈ C1,

0, otherwise.

Since u and v are identical in the zero communication case, we have d̃2
11 =

‖r̃1‖2/nπ . However, r̃1 is simply the residual of the principal eigenvector from Ã1.
Now an application of Lemmas 4.1 and 4.3 proves equation (3.5).

As for d̂2
12, note that v̂(C1) = vT

1 v̂/
√

nπ = c11/
√

nπ . Hence, K1 = {c11/√
nπ,0} and K2 = {c22/

√
n(1 − π),0}. Thus ‖K1 − K2‖2 ∼ 1/nπ(1 − π), since

both c2
11 = 1 − r̂T

1 r̂1 and c2
22 = 1 − r̂T

2 r̂2 are 1 − oP (1) (Lemma 4.1). Since d̂2
11 =

OP (1/n2ρn) is of smaller order than ‖K1 −K2‖2, using equation (2.2) we see that
d̂2

12 ∼ 1/nπ(1 − π). An identical argument shows that d̃2
12 ∼ 1/nπ(1 − π), yield-

ing equation (3.6). With or without normalization, we have d2
11 = OP (1/n2ρn),

whereas d2
12 ∼ 1/nπ(1−π); this yields equations (3.7) and (3.8). Finally, an iden-

tical argument proves the result for the normalized and unnormalized versions of
d2

22 and d2
21. �

5. Analysis of the unnormalized method. In this section we obtain expres-
sions for d2

11 and d2
12 when γn �= 0 for A. First we give a simple lemma describing
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the eigen-structure of the conditional probability matrix P . The proof is simple
and is deferred to the Supplement.

LEMMA 5.1. Define a stochastic blockmodel (see Definition 2.2) with param-
eters (αn,βn, γn,Z), where γn > 0 and αnβn �= γ 2

n . The two population eigenvec-
tors of P are piecewise constant with first nπ elements x1 and x2, respectively,
and the second n(1 − π) elements y1 and y2, respectively. These elements are of
the form C0/

√
n, and they satisfy the following:

x2
1 + x2

2 = 1/nπ; y2
1 + y2

2 = 1/n(1 − π); x1y1 + x2y2 = 0.(5.1)

The two principal population eigenvalues λ1 and λ2 are of the form C′nρn and
C′′nρn, where C′ and C′′ are deterministic constants asymptotically independent
of n; also, |λ1 − λ2| is of the form C′′′nρn for some arbitrary constant C′′′, when
γn > 0. All other eigenvalues of P are O(ρn).

We will now lay the groundwork for our result on d̂2
11 and d̂2

12. In order to extend
the simple zero-communication case to the general case, we will need some key re-
sults, which are listed below. Recall the following decomposition of the population
eigenvector:

vk = ckk v̂k + r̂k.(5.2)

We will need the following three key components in order to use the same tech-
nique as in Lemma 4.1:

(1) Sharp deviation of empirical eigenvalues. For γn = 0, we have λ̂k = λk +
OP (1).

(2) Upper bound on ‖Ar̂k‖. For γn = 0, we have ‖Ar̂k‖ = OP (1).
(3) Bound on the average of r̂k restricted to C1. For γn = 0 we have r̂k(C1) =

OP (1/n3/2ρn).

In Section E of the Supplement [22] we will provide detailed proofs of the follow-
ing theorems, which show that the above results are also true when γn �= 0.

In the following lemma we establish a sharp eigenvalue deviation result for
blockmodels similar to the one for Erdős–Rényi graphs presented in [10]. Füredi
and Komlós [10] use the von Mises iteration (also popularly known as power iter-
ation), which intuitively returns a good approximation of the principal eigenvalue
in a few iterations if the second eigenvalue is much smaller than the first. In [10]
the second largest eigenvalue of the adjacency matrix is shown to be an order
smaller than the first; hence two steps of power iteration can be shown to give a
OP (1) close approximation of λ̂1. On the other hand, this approximation can also
be shown to be OP (1) close to the population eigenvalue λ1, thus giving the sharp
deviation bound.

In a stochastic blockmodel the second largest eigenvalue is of the same order
as the first, which is problematic. However, the third largest eigenvalue can be
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shown to be OP (
√

nρn logn). Therefore we design a two-dimensional von Mises-
style iteration argument, so that at any step, the residual vector is orthogonal to
the first two empirical eigenvectors, and thus a OP (1) deviation of the empirical
eigenvalues from their population counterparts can be proved. While we prove
this result only for the two class blockmodels, the proof can be extended easily to
k-class blockmodels, as long as λi, i ∈ {1, . . . , k} are distinct.

LEMMA 5.2. Consider an n node network generated from the semi-sparse
stochastic blockmodel (αn,βn, γn,Z) with γn > 0. We have

For i ∈ {1,2}, λ̂i = λi + OP (1).

Next we need to show that ‖Ar̂k‖ = OP (1), k ∈ {1,2}, even when γn �= 0. For
definiteness let k = 1. We want to emphasize that proving ‖r̂1‖ = OP (1/

√
nρn)

is not enough to get the above. By construction r̂1 is orthogonal to v̂1, and
hence ‖Ar̂1‖ can be upper bounded by |λ̂2|‖r̂1‖. For an Erdős–Rényi graph,
λ̂2 = OP (

√
nρn) leading to an OP (1) bound, whereas for a stochastic blockmodel,

λ̂2 = OP (nρn) leading to a OP (
√

nρn) bound. We show the required result by
proving that v̂T

2 r̂1 = OP (1/nρn). Since v̂1 is orthogonal to v̂2, v̂T
2 r̂1 = v̂T

2 v1, which
we prove to be OP (1/nρn) in the following lemma.

LEMMA 5.3. For the stochastic blockmodel (αn,βn, γn,Z) with γn > 0, de-
fine c12 := vT

1 v̂2 and c21 := vT
2 v̂1. We have

‖r̂1‖2 = 1 − c2
11 = OP (1/nρn), ‖r̂2‖2 = 1 − c2

22 = OP (1/nρn),

c12 := vT
1 v̂2 = OP (1/nρn), c21 := vT

2 v̂1 = OP (1/nρn).

The final task is to show that r̂k(C1) and r̂k(C2) are small. The Cauchy–Schwarz
inequality gives |r̂k(C1)| ≤ ‖r̂k‖/√n = OP (1/n

√
ρn). However, for a stochastic

blockmodel, by virtue of stochastic equivalence, vk for k ∈ {1,2} is piecewise con-
stant; that is, all entries in C1 have value xk , whereas all in C2 have value yk . Now
entries of v̂k in C1 (C2) constitute a noisy estimate of xk (yk). However, one should
be able to get an even better estimate by considering v̂k(C1) and v̂k(C2). Since
r̂k(C1) reflects the error of v̂k(C1) around xk , it is plausible that r̂k(C1) is an order
smaller than ‖r̂k‖, which is what we prove in the following lemma.

LEMMA 5.4. Write vi := cii v̂i + r̂i for i ∈ {1,2}. Now we have

For i, j ∈ {1,2}, r̂i (Cj ) = Op

(
1/n3/2ρn

)
.

Before proceeding to prove our main result, we present the following simple
concentration results, which are derived in the Supplement [22].
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LEMMA 5.5. Denote d̄
(1)
i and d̄

(2)
i as the centered degree of node i restricted

to blocks C1 and C2, respectively. In particular, for k ∈ {1,2}, d̄(k)
i = ∑

j∈Ck
(Aij −

E[Aij |Z]). We have ∑
i∈C1

(
d̄

(1)
i

)2 ∼ (nπ)2αn(1 − αn),

(5.3) ∑
i∈C1

(
d̄

(2)
i

)2 ∼ n2π(1 − π)γn(1 − γn),

∑
i∈C1

(
x1d̄

(1)
i + y1d̄

(2)
i

)2 ∼
(
x2

1

∑
i∈C1

(
d̄

(1)
i

)2 + y2
1

∑
i∈C1

(
d̄

(2)
i

)2
)
.(5.4)

Now we prove Theorem 3.1. Surprisingly, d̂2
12 can be shown to be (1 +

oP (1))/nπ(1 − π), which does not depend on the parameters αn,βn or γn.

5.1. Derivation of the distance formulas for the unnormalized method. We
now prove Theorem 3.1.

PROOF OF THEOREM 3.1. We will first prove equation (3.1) and then equa-
tion (3.2).

Derivation of d̂2
11 [equation (3.1)]. Define r̂i as in equation (5.2). First note that

‖r̂i‖2 = OP (1/nρn) by Lemma 5.2. An argument similar to Lemma 4.1 gives

For i ∈ {1,2}, (A − λ̂iI )r̂i = (A − P)vi + (λi − λ̂i)vi .(5.5)

As discussed earlier, we have r̂T
1 v̂2 = vT

1 v̂2 since v̂1 ⊥ v̂2. But from Lemma 5.2,
we know that c12 = OP (1/nρn), and hence the projection of r̂1 on the second
eigen-space v̂2v̂T

2 only contributes ‖λ̂2c12v̂2‖ = OP (1). As λ̂3 = OP (
√

nρn logn),
‖Ar̂1‖ = OP (1).

We compute d̂2
11 by deriving asymptotic expressions of 1/nπ

∑
i∈C1

r̂k(i)
2 −

r̂k(C1)
2, k ∈ {1,2}. First we show that the second term is of lower order than the

first. This is because
∑

i∈C1
r̂1(i)

2/nπ ≤ ‖r̂1‖2/nπ = OP (1/n2ρn), but r̂1(C1)
2 =

OP (1/n3ρ2
n) using Lemma 5.4. We will now focus on the elements of r̂1 belonging

to C1. We also denote by r̂1(1) the subset of r̂1 indexed by nodes in C1, and thus
by [Ar̂1](1) the subset of vector Ar̂1 indexed by C1. Also note that ‖[Ar̂1](1)‖2 ≤
‖Ar̂1‖2 = OP (1)

[Ar̂1](1) − λ̂1r̂1(1) = [
(A − P)v1

]
(1) + (λ1 − λ̂1)v1(1),

∑
i∈C1

r̂1(i)
2 ∼

∑
i∈C1

(x1d̄
(1)
i + y1d̄

(2)
i )2

λ2
1

.

The last step is valid because ‖(A − P)v1‖ can be shown to be OP (
√

nρn) (see
Section A of the Supplement [22]) whereas ‖[Ar̂1](1)‖ = OP (1) and ‖(λ1 −
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λ̂1)v1(1)‖ = OP (1) using Lemma 5.2. Similarly,
∑

i∈C1
r̂2(i)

2 ∼ ∑
i∈C1

(x2d̄
(1)
i +

y2d̄
(2)
i )2/λ2

2. Hence using Lemma 5.5, equation (5.4), we have

d̂2
11 ∼ 1

nπ

[(
x2

1

λ2
1

+ x2
2

λ2
2

) ∑
i∈C1

(
d̄

(1)
i

)2 +
(

y2
1

λ2
1

+ y2
2

λ2
2

) ∑
i∈C1

(
d̄

(2)
i

)2
]
.

Now Lemma 5.5, equation (5.3) yields equation (3.1).
Derivation of d̂2

12 [equation (3.2)]. We recall that equation (2.2) gives d̂2
12 =

d̂2
11 + ‖K1 − K2‖2, where Kk = {v̂1(Ck), v̂2(Ck)}, k ∈ {1,2}. From equation (5.2),

we see that v̂i(C1) = (vi(C1) − r̂i (C1))/cii , and hence we have

v̂i(C1) − v̂i (C2) =
(

xi − yi

cii

)
−

(
r̂i (C1) − r̂i (C2)

cii

)
, i ∈ {1,2}.

We will now show that ‖K1 −K2‖2 = ∑2
i=1(v̂i(C1)− v̂i (C2))

2 ∼ ((x1 −y1)
2 +

(x2 − y2)
2), which is ∼ 1/nπ(1 − π), using Lemma 5.1 [equation (5.1)]. Since

x1, y1, x2, y2 are of the form C0/
√

n and c2
ii = 1 − OP (1/nρn) (Lemma 5.3), we

can show that
2∑

i=1

(
xi − yi

cii

)2

= 1 + oP (1)

nπ(1 − π)
.

Also, for i ∈ {1,2}, r̂i (C1) = Op(1/n3/2ρn) (Lemma 5.4), and c2
ii = 1 − ‖r̂i‖2 =

OP (1/nρn) (Lemma 5.3), and hence we have equation (3.2). �

6. Analysis of the normalized method. As discussed in Section 4, both ν1
and ν̃1 (see Table 1) equal one, and ũ1(i) = √

di/E. In our analysis what naturally
appears is the following notion of density, defined by the expected degree over n.
All expectations are conditioned on Z. Let μ1 and μ2 the E[di |Z]/n for i in C1
and C2, respectively. Also let μ = ∑

ij Pij /n2. Hence μ1 := παn + (1 − π)γn −
αn/n, and μ2 = (1 − π)βn + πγn − βn/n, and μ = πμ1 + (1 − π)μ2. Also, we
recall that d̄

(1)
i is the centered d

(1)
i , that is, d

(1)
i − (nπ − 1)αn when i ∈ C1 and

d
(1)
i − nπγn when i ∈ C2. The properties of the eigen-spectrum of P̃ are stated in

the following lemma. Its proof is deferred to Section F of the Supplement [22].

LEMMA 6.1. Define a semi-sparse stochastic blockmodel (see Definition 2.2)
with parameters (αn,βn, γn,Z), where αnβn �= γ 2

n . The principal eigenvalues ν1
and ν2, and the blockwise entries x̃1, ỹ1, x̃2 and ỹ2 of the principal eigenvectors of
P̃ are given by

ν1 = 1, x̃1 =
√

μ1

nμ
, ỹ1 =

√
μ2

nμ
,

ν2 = 1 − γnμ

μ1μ2
, x̃2 =

√
(1 − π)μ2

nπμ
, ỹ2 = −

√
πμ1

n(1 − π)μ
.

All other eigenvalues of P̃ are O(1/n).
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In order to obtain d̃2
11 [equation (2.1)], we need

∑
i∈C1

(ũ1(i)− ũ1(C1))
2. Using

ũ(C1) = ∑
i∈C1

ũ(i)/nπ and arguing as in Lemma 4.3, we see that

∑
i∈C1

(
ũ1(i) − ũ1(C1)

)2 ∼ 1

4n3μμ1

∑
i∈C1

d̄2
i .(6.1)

Computing
∑

i∈C1
(ũ2(i)− ũ2(C1))

2 requires more in-depth analysis, since ũ2 can-
not be expressed in closed form as ũ1. Instead we look at a “good” approxima-
tion of ũ2, such that the approximation error cannot mask its OP (1/

√
nρn) de-

viation from the population counterpart u2. The very first guess is to construct a
vector orthogonal to ũ1. In this case, we present u0

g as in equation (6.2). Define
E1 := ∑

i∈C1
di and E2 := ∑

i∈C2
di

u0
g(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
di

E1
, for i ∈ C1,

−
√

di

E2
, for i ∈ C2.

(6.2)

In spite of being a fair guess, u0
g/‖u0

g‖ masks the OP (1/
√

nρn) error. So we take
a von Mises iteration step starting with u0

g , and get a finer approximation, namely
ug . We now present element-wise Taylor expansions of ug .

LEMMA 6.2. Define u0
g as in equation (6.2). We have

[
Ãu0

g

]
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν2

nπ
√

nμ1

(
1 − d̄i

2nμ1
+ d̄

(1)
i

nμ1ν2
− d̄

(2)
i

nμ2ν2

π

1 − π
+ Mi

)
,

i ∈ C1,

− ν2

n(1 − π)
√

nμ2

(
1 − d̄i

2nμ2
− d̄

(1)
i

nμ1ν2

1 − π

π
+ d̄

(2)
i

nμ2ν2
+ M ′

i

)
,

i ∈ C2.

The remainder vectors M and M ′ are of norm oP (C0/
√

ρn)

∥∥Ãu0
g

∥∥ ∼ ν2

√
μ

n2π(1 − π)μ1μ2
.

The next lemma shows that ug has an approximation error of OP (
√

logn/n2ρ2
n).

The proof again is deferred to Section F of the Supplement [22].

LEMMA 6.3. Define ug := Ãu0
g/‖Ãu0

g‖. Let cg := (ũ2)
T ug , that is, the pro-

jection of ug on ũ2 and rg := ug − cgũ2. We have

‖rg‖ = OP

(√
logn

n2ρ2
n

)
; cg = 1 − oP (1).
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Now we are ready to derive the expressions of d̃2
11 and d̃2

12 (Theorem 3.2).

6.1. Derivation of the distance formulas for the normalized method. We now
prove Theorem 3.2.

PROOF. We will first prove equation (3.3) and then equation (3.4).

Derivation of d̃2
11 [equation (3.3)]. Computing d̃2

11 only involves the entries
of ũ2 indexed by nodes in C1; hence we will apply Lemma 4.2 on ũ2(i), i ∈ C1.
Using our construction,

ũ2 = (ug − rg)/cg where cg = 1 − oP (1).(6.3)

Using Lemma 6.2, for i ∈ C1, we can write each term of ug as

ug(i) = χn

(
1 + x1

n(i) + Mi

)
,

where x1
n and M are the first and remainder terms in the Taylor expansion of

ug(i)/χn. We have

χn := ν2

nπ
√

nμ1‖Ãu0
g‖

∼
√

(1 − π)μ2

nπμ
,

x1
n(i) := − d̄i

2nμ1
+ d̄

(1)
i

nμ1ν2
− d̄

(2)
i

nμ2ν2

π

1 − π
, i ∈ C1.

We have

∑
i∈C1

(
ug(i) − ug(C1)

χn

)2

= ∑
i∈C1

((
x1
n(i) − x1

n(C1)
) + (

Mi − M(C1)
))2

.

While ‖x1
n‖ = C0/

√
ρn [Lemma 5.5, equation (5.4)], x1

n(C1) = OP (1/

√
n2ρn),

since it involves averages of O(n2) independent Bernoulli random variables. Also
‖M‖ = oP (1/

√
ρn), and hence using a simple application of the Cauchy–Schwarz

inequality, one has ∑
i∈C1

(
ug(i) − ug(C1)

)2 ∼ χ2
n

∑
i∈C1

x1
n(i)2.(6.4)

Finally, since ‖rg‖2 = OP (logn/(nρn)
2) and

∑
i∈C1

(ug(i)−ug(C1))
2 = C0/nρn,

from equations (6.3) and (6.4), we have

1

nπ

∑
i∈C1

(
ũ2(i) − ũ2(C1)

)2 ∼ χ2
n

nπ

∑
i∈C1

x1
n(i)2.(6.5)
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With a little algebra, equations (6.1) and (6.5) give

d̃2
11 ∼ 1

nπ

∑
i∈C1

(
μ1

nμ

d̄2
i

4n2μ2
1

+ (1 − π)μ2

nπμ

(
− d̄i

2nμ1
+ d̄

(1)
i

nμ1ν2
− d̄

(2)
i

nμ2ν2

π

1 − π

)2)

∼ 1

nπ

∑
i∈C1

[
(d̄

(1)
i )2

n3πμ2
1

(
1

4
+ (1 − π)γn

μ1ν
2
2

)
+ (d̄

(2)
i )2

n3μ2
1

(
1

4π
+ παn − αn/n

(1 − π)μ2ν
2
2

)]
.

The last step uses Lemma 5.5 [equation (5.4)].
Derivation of d̃2

12 [equation (3.4)]. Equation (2.2) gives d̃2
12 = d̃2

11 + ‖K1 −
K2‖. Ki := {ũ1(Ci), ũ2(Ci)} for i ∈ {1,2}. The Taylor expansion used in
Lemma 4.3 shows that the second-order terms are oP (1/n) whereas the first is
of the form C0/n. For μ1 �= μ2, neglecting second-order terms gives

(
ũ1(C1) − ũ1(C2)

)2 ∼ (
√

μ1 − √
μ2)

2

nμ
.(6.6)

For the second part, equation (6.3) and an argument shown earlier gives(
ũ2(C1) − ũ2(C2)

)2 ∼ (
ug(C1) − ug(C2)

)2

(6.7)

∼
(√

(1 − π)μ2

nπμ
+

√
πμ1

n(1 − π)μ

)2

.

Putting equations (6.6) and (6.7) together yields equation (3.4). When μ1 = μ2,
the whole contribution comes from the second eigenvector, and ũ1 only contributes
oP (1/n) terms. �

7. Experiments. We demonstrate the benefit of using normalization via clas-
sification tasks for simulated networks and link prediction experiments for real
world co-authorship networks. For simulations, we investigate the behavior of
misclassification error with: (a) a fixed parameter setting with increasing n and
(b) changing parameter settings for a fixed n. For all simulations, a pair of training
and test graphs are generated from a stochastic blockmodel with a given parameter
setting. The model is fitted using spectral clustering (with or without normaliza-
tion) using the training graph whereas misclassification error is computed using
the test graph.

7.1. Simulated networks. For a stochastic blockmodel with n = 1000, βn = αn

and π = 1/2, we focus on the semi-sparse regime, where expected degree is varied
from 10–20. We vary αn ∈ [0.01,0.018] (y axis) and γn/αn ∈ [0.005,1.2] \ {1}
(x axis). The γn/αn = 1 case causes instability because it reduces the stochastic
blockmodel to an Erdős–Rényi graph and hence is excluded. Since kmeans can
return a local optimum, we run kmeans five times and pick the most balanced
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clustering, in particular the one whose smallest cluster size is largest among the
five runs.

For each of the parameter settings average results from twenty random runs
are reported with error bars. In order to ensure that our parameter settings reflect
the regime of sparseness required for our theory to hold, we find the connected
components of the graph, and only work with those settings where the size of
the largest connected component is at least 95% of the size of the whole graph.
All computations are carried out on the largest connected component. Therefore
we never consider the simple case of disconnected clusters. We also assume that
k = 2 is known.

In each subfigure of Figure 2 we hold γn/αn fixed and plot the classification er-
rors of the two algorithms along the Y axis against increasing αn values on the X

axis. Across the subfigures γn/αn is increased. Our goal is to turn two knobs to ad-
just the hardness of the classification problem. If one increases αn for a fixed value

(A) (B)

(C) (D)

FIG. 2. For a fixed γn/αn ratio miss-classification error is plotted on the Y axis with increasing
αn on the X axis. (A) γn/αn = 0.025, (B) γn/αn = 0.125, (C) γn/αn = 0.4 and (D) γn/αn = 1.2.
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FIG. 3. Miss-classification error on the y axis and increasing n on the x axis.

of γn/αn, then the problem becomes easier as the expected degree increases with
increasing αn. On the other hand, increasing γn/αn makes it hard to distinguish
between clusters.

According to our theoretical results, for small γn/αn ratios, normalization per-
forms better clustering under sparsity. In Figure 2(A) and (B), we see that normal-
ization always has a smaller average error, although the difference is more striking
for small αn (average degree about 10). As αn is increased, both methods start to
perform equally well. In Figure 2(C) and (D), γn/αn is larger, and thus the error
rates are also larger. In Figure 2(C), both methods behave similarly and show im-
provement with increasing αn. Finally in Figure 2(D), both misclassify about half
of the nodes since the networks become close to Erdős–Rényi graphs; possibly
with more data both methods would perform better. For the second simulation we
fix αn = βn = 0.01, γn = 0.002, π = 0.40. Now in Figure 3 we plot the error bars
on classification error from twenty random runs along the Y axis, and n is varied
from 1000 to 2000 in the X axis. One can see that the normalized method con-
sistently outperforms the unnormalized method, the margin of improvement being
smaller for n (smaller average degree and hence sparser graphs).

7.2. Real world networks. For real world datasets we use co-authorship net-
works over T timesteps. The nodes represent authors, and edges arise if two au-
thors have co-authored a paper together. Since these networks are unlabeled, we
cannot use classification accuracy to measure the quality of spectral clustering. In-
stead, we choose the task of link prediction to quantitatively assess the goodness
of clustering. Since the number of clusters is unknown, we learn k via cross val-
idation. We obtain the training graph (A1) by merging the first T -2 datasets, use
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TABLE 2
Table of AUC scores for real data

AUC scores with training AUC scores with training
links included links excluded

Dataset n Avg. degree Unnorm. Norm. Katz Unnorm. Norm. Katz

HepTH 4795 4.6 0.67 0.82 0.87 0.59 0.79 0.79
NIPS 986 4.4 0.75 0.89 0.75 0.71 0.90 0.69
Citeseer 3857 5.6 0.79 0.96 0.97 0.65 0.93 0.90

the T -1th step (A2) for cross-validating k and use the last timestep (A3) as the test
graph.

We use a subset of the high energy physics (HepTH) co-authorship dataset
(T = 6), the NIPS data (T = 9) and the Citeseer data (T = 11). Each timestep con-
siders 1–2 years of papers (so that the median degree of the test graph is at least
1). In order to match the degree regime of our theory, we remove all nodes with
only one neighbor from the training graph, and work with the largest connected
component of the resulting network. Cross validation and testing are done on the
corresponding subgraphs of T -1 and T th timesteps, respectively. The number of
nodes and average degrees are reported in Table 2.

In Section 8 we present the misclassification error on the political blogs net-
work. This is possible because the entities are labeled as democratic and republi-
can. We preprocess the network as discussed above, and use k = 2.

7.2.1. Link prediction task. First, we learn the k × k matrix P̂ of within and
across class probabilities by counting edges between (or across) two clusters. For
testing we pick a hundred nodes at random from nodes with at least one neigh-
bor in the test graph. For node i we construct a prediction vector of length n,
whose j th entry is the linkage probability P̂ab learned using spectral clustering;
here node i belongs to the ath cluster, and node j belongs to the bth cluster. For
ground truth we compute the zero one vector representing presence or absence of
an edge between nodes i and j from A3. These vectors are concatenated to give
one prediction vector and the corresponding ground truth.

Now the AUC score of the prediction vector is computed using the ground truth.
This is simply the area under the ROC curve obtained by plotting the false posi-
tive rate along the x axis and the true positive rate along the y axis. In order to
learn k, we vary k from ten to a hundred. For each value of k we estimate Ẑ using
spectral clustering with k eigenvectors of A1 (or its normalized counterpart) and
then estimate the k × k conditional probability matrix; now AUC scores are com-
puted using these estimated quantities from A2. The k with the largest AUC score
is picked and mean AUC scores of five random runs on the test graph using this k

is reported.
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Since in a co-authorship network, the same edges tend to reappear over time, it
is often possible to achieve high scores simply by predicting the edges which are
already present in the training data. This is why we examine AUC scores from two
experiments:

(1) training links included in the test graph and
(2) training links excluded from the test graph.

The second task is harder. We compare our methods with the Katz similarity mea-
sure between pairs of nodes [15]. This measure simply computes a weighted sum
of number of paths between two nodes, the weights decreasing exponentially as
the length of the path grows. It has been shown to give competitive prediction ac-
curacy for link prediction tasks [16]. In both panels, the normalized score performs
close to or better than the Katz score, and it outperforms the unnormalized score
consistently.

8. Summary and discussion. Normalizing data matrices prior to spectral
clustering is a common practice. In this paper we propose a theoretical framework
to justify this seemingly heuristic choice. With a series of theoretical arguments,
we show that for a large parameter regime, in the context of network blockmodels,
normalization reduces the variance of points in a given class under the spectral
representation. We also present quantifiable classification tasks on simulated net-
works and link prediction tasks on real networks to demonstrate that normalization
improves prediction accuracy.

While we have only considered two class blockmodels, it should be possible to
generalize our proof techniques to a constant number of classes if the population
eigenvalues for the normalized or the unnormalized setting are distinct. In order
to handle identical eigenvalues, one would need to update the proof techniques
so as to argue with eigenspaces instead of individual eigenvectors. However, our
simulations (omitted for brevity) show that a result similar in flavor to Figure 1
would hold. However, as γn/αn increases, the ratio grows to one faster compared
to that of the two-class blockmodel. In fact, for the real world graphs we learn k

by cross validation, and it often exceeds two; our results show that normalization
improves link prediction accuracy in these cases as well.

We conclude this paper with a discussion of some practical disadvantages of
normalization. Unlike A, all disconnected components contribute eigenvalue one
to the eigen-spectrum of Ã. Thus some of the top eigenvectors of Ã may have sup-
port on a small disconnected component and may be uninteresting. Another prob-
lem appears in the presence of small subgraphs weakly connected to the rest of the
graph. Here the entries of Ã corresponding to edges in the subgraph may end up
having relatively larger values than the rest of the elements. Hence the top eigen-
vectors may have high values for nodes in this subgraph leading to poor clustering.

For concreteness let us consider the political blogs network [1], which is a di-
rected network of hyperlinks connecting nodes representing weblogs about US
politics. The nodes are labeled as “liberal” and “conservative” blogs. We sym-
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metrize the network, remove degree one nodes and find the largest connected com-
ponent of the remaining network. On this preprocessed network, misclassification
rates using spectral clustering for the political blogs dataset are 4% for normalized
versus 37% for unnormalized.

If the degree one nodes are not removed prior to finding the largest connected
component, then the misclassification error rate is 50% for normalized and 40% for
unnormalized. On the other hand, removing degree-one nodes drastically improves
the error rate of the normalized method to 4%, while not affecting the unnormal-
ized method’s performance significantly. We have also carried out the link predic-
tion experiments without removing the degree-one nodes; the relative behavior of
the different algorithms remained essentially unchanged.

In order to alleviate this problem, many regularization approaches [2, 5] have
been proposed. These approaches ensure that, with high probability, the eigenval-
ues corresponding to the discriminating eigenvectors are of larger order than those
corresponding to the uninteresting eigenvectors. Further analysis of regularization
can be found in [14] and [20].

We want to point out that our analysis is not for a regularized variant of spectral
clustering; however, our experiments do have a preprocessing step of operating on
the largest connected component after removing low-degree nodes. This can be
thought of as a regularizing procedure since this often removes small and weakly
connected components and ranks the “useful eigenvectors” higher. In a nutshell,
for the normalized method, sparse data artifacts may rank uninteresting eigenvec-
tors high. In this paper we provide theoretical justification for the fact that the
discriminating eigenvectors of Ã are often more useful than those of A.

SUPPLEMENTARY MATERIAL

Supplement to “Role of normalization in spectral clustering for stochastic
blockmodels” (DOI: 10.1214/14-AOS1285SUPP; .pdf). Because of space con-
straints we have moved some of the technical details to the supplementary mate-
rial [22].
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