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GRAPH-BASED CHANGE-POINT DETECTION

BY HAO CHEN AND NANCY ZHANG

University of California, Davis and University of Pennsylvania

We consider the testing and estimation of change-points—locations
where the distribution abruptly changes—in a data sequence. A new ap-
proach, based on scan statistics utilizing graphs representing the similarity
between observations, is proposed. The graph-based approach is nonpara-
metric, and can be applied to any data set as long as an informative similar-
ity measure on the sample space can be defined. Accurate analytic approxi-
mations to the significance of graph-based scan statistics for both the single
change-point and the changed interval alternatives are provided. Simulations
reveal that the new approach has better power than existing approaches when
the dimension of the data is moderate to high. The new approach is illustrated
on two applications: The determination of authorship of a classic novel, and
the detection of change in a network over time.

1. Introduction. Change-point models are widely used in various fields for
detecting lack of homogeneity in a sequence of observations. In the typical for-
mulation, the observations {yi : i = 1,2, . . . , n} are assumed to have distribution
F0 for i ≤ τ and possibly a different distribution F1 for i > τ . The parameter τ

is referred to as the change-point. We consider the case where the total length of
the sequence n is fixed. There is a rich literature on theory and applications of this
model when yi are real or integer valued scalars. For example, in a well-known
study of the annual flow volume of the Nile River at the city of Aswan, Egypt,
from 1871 to 1970, each yi is a continuous measurement of the annual discharge
from the river [Cobb (1978)], and the goal is to detect shifts in flow volume. If
the distribution of yi were assumed to be normal, score- or likelihood-based tests
can be applied [James, James and Siegmund (1987)]. Bayesian and nonparametric
approaches have also been developed [see Carlstein, Müller and Siegmund (1994)
for a survey].

Modern statistical applications are faced with data of increasing richness and
dimension. High throughput measurement schemes and digitization in many sci-
entific fields have produced data sequences {yi : i = 1,2, . . . , n}, where each yi

is a high dimensional vector or even a non-Euclidean data object. The dimen-
sion of each observation can be larger than the length of the sequence. Testing the
homogeneity of such high dimensional sequences is a challenging but important
problem. Following are some motivating examples.
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Network evolution: Data on networks have become increasingly common. For
example, email, phone and online chat records can be used to construct a network
of social interactions among individuals [Kossinets and Watts (2006), Eagle, Pent-
land and Lazer (2009)]. High throughput biological experiments have led to the
ubiquitous study of protein- or gene-interaction networks. A large part of these
studies is characterizing how the network evolves through time. Here, the obser-
vation at each time point is a graphical encoding of the network. In a longitudinal
study, one might ask whether there is an abrupt shift in network connectivity at
any point in time.

Image analysis: Image data collected through time appears in diverse applica-
tions, from video surveillance to climatology to neuroscience. The detection of
abrupt events, such as security breaches, storms or brain activity, can be formu-
lated as a change-point problem. Here, the observation at each time point is the
digital encoding of an image.

Text or sequence analysis: Many classic works in both western and eastern lit-
erature have ongoing authorship debates. For example, the debate surrounding both
Tirant lo Blanc, a Catalan romance, and Dream of the Red Chamber, a Chinese
masterpiece, is whether there is a change of authorship midway through the novel.
In the digital era, an objective approach to these debates is to statistically test for
abrupt changes in writing style, which can be reflected by word usage. Similar
problems arise in genomic sequence analysis in biology, where it is often of inter-
est to find regions of the genome with different DNA-word compositions [see, e.g.,
Tsirigos and Rigoutsos (2005)]. In both settings, each observation in the sequence
is a vector of word counts over a large dictionary of words.

In all of these examples, the problem can be given the following statistical for-
mulation: We observe a sequence of observations {yi}, i = 1, . . . , n, indexed by
some meaningful ordering, such as time or location. We are concerned with test-
ing the null hypothesis

H0 : yi ∼ F0, i = 1, . . . , n,(1.1)

against the single change-point alternative

H1 :∃1 ≤ τ < n, yi ∼
{

F1, i > τ,

F0, otherwise,
(1.2)

or the changed interval alternative

H2 :∃1 ≤ τ1 < τ2 ≤ n, yi ∼
{

F1, i = τ1 + 1, . . . , τ2,

F0, otherwise,
(1.3)

where F0 and F1 are two probability measures that differ on a set of nonzero
measure. Scenarios with multiple change-points can be decomposed into these two
types of simple alternatives.

We study this change-point problem under the assumption that {yi} are indepen-
dent. Independence is an ideal assumption that may be violated in some settings.
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However, this assumption allows us to conduct theoretical analysis, which also
produce results that are useful when the assumption is slightly violated. We later
discuss modifications to our approach when the independence assumption is vio-
lated.

In the multivariate setting, existing approaches are limited in many ways. Most
methods are based on parametric models that are highly context specific. For exam-
ple, Zhang et al. (2010) and Siegmund, Yakir and Zhang (2011) studied the prob-
lem of detecting common shifts in mean in sequences of independent multivariate
Gaussian variables with identity covariance. Under the same setting, Srivastava
and Worsley (1986) and James, James and Siegmund (1992) discussed general
likelihood ratio tests for a change in mean, which requires that the dimension of
the observations be smaller than the number of observations. As we will show in
simulations, parametric change-point tests for multivariate data work under very
specific assumptions, and are sensitive to violation of these assumptions. The exist-
ing parametric tests also cannot be applied in very high dimensions, unless strong
assumptions are made to avoid the estimation of the large number of nuisance
parameters that are a by-product of increasing dimension.

In the nonparametric context, Desobry, Davy and Doncarli (2005) and
Harchaoui, Moulines and Bach (2009) used kernel-based methods. A common
drawback for kernel-based methods is that they rely heavily on the choice of the
kernel function and its parameters, and the problem becomes more severe when
the data is in moderate to high dimensions. Also, none of these methods offer a
fast analytical formula for false positive control, thus making them difficult to ap-
ply for large data sets. Lung-Yut-Fong, Lévy-Leduc and Cappé (2011) proposed a
nonparametric approach based on marginal rank statistics, which is useful if there
is a clear ranking mechanism, but also requires the restriction that the number of
observations be larger than the dimension of the data.

In this paper, we describe a nonparametric approach to change-point detection
and estimation. The approach can be applied to data in arbitrary dimension and
even to non-Euclidean data, with a general, analytic formula for type I error con-
trol. We illustrate the approach on two applications: Testing for a change in author
of a classic European novel, and testing the temporal homogeneity of a social net-
work. We show, via simulations, that as dimension increases this nonparametric
method gains power over parametric methods in cases where the parametric meth-
ods can be applied. The generality of the new approach and the availability of
analytic formulas for type I error make it an easy off-the-shelf tool for homogene-
ity testing in multivariate settings. The method is implemented in an R package
“gSeg,” which is available in CRAN.

This paper is organized as follows: In Section 2, we describe the proposed
method. The underlying idea is graph-based two-sample tests adapted to the scan-
statistic setting. Two-sample tests based on various types of graphs representing
the similarity between observations were first proposed in Friedman and Rafsky
(1979) and Rosenbaum (2005). We review these previous works in Section 2.1.
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Once the graph has been constructed, theoretical analysis of the scan statistic can
be decoupled from the modeling of the high dimensional data. We describe the test
statistic in the detection of a single change-point in Section 2.2, and that in the de-
tection of a changed interval in Section 2.3. Section 3 gives analytic formulas for
approximating the significance of the tests, and evaluates their accuracy in numer-
ical studies. Section 4 evaluates the power of the test via simulations. In Section 5,
the new method is applied to the analysis of the text of Tirant lo Blanc, and the
analysis of the Friendship Network data set collected by the MIT Media Labora-
tory [Eagle, Pentland and Lazer (2009)]. In Section 6, we discuss some extensions
to the approach to deal with local dependency in the sequence and to construct a
confidence interval to the change-point. Finally, we conclude with a discussion in
Section 7.

2. A graph-based framework for change-point detection. In both the sin-
gle change-point (1.2) and the changed interval alternatives (1.3), the observations
are partitioned into two groups. We allow each group to have a minimum num-
ber of observations: 1 < n0 ≤ τ ≤ n1 < n for the single change-point scenario and
1 < l0 ≤ τ2 − τ1 ≤ l1 < n for the changed interval scenario, where n0, n1, l0, l1 are
prespecified. Sometimes, these values can be better chosen using domain knowl-
edge. We may also have some further constrains on the locations of τ1 and τ2.

We do not impose any restrictions on the sample space or distribution of yi . Our
approach requires that the similarity between yi can be represented by a graph,
with edges in the graph connecting observations that are “close” in some sense.
For the proposed method to have good power, data points drawn from F0 need to
be closer to each other than to data points drawn from F1, in a global sense, and
vice versa. We describe this in more detail next, and briefly review graph-based
two-sample tests.

2.1. Graph-based two-sample tests. By graph-based tests, we refer to tests
that are based on graphs with the observations {yi} as nodes. The graph is usually
derived from a distance or a generalized dissimilarity on the sample space, with
edges connecting observations that are close in distance. For example, Friedman
and Rafsky (1979) proposed the first graph-based test for testing the null hypoth-
esis that subjects from two groups are equal in distribution against an omnibus
alternative. Their method relies on the minimum spanning tree (MST), which is a
tree connecting all observations minimizing the total distance across edges. Their
test statistic is the number of edges in the tree connecting observations from dif-
ferent groups, rejecting the null hypothesis when this count is low compared to its
distribution under permutation. The rationale is that, if the two groups come from
different distributions, data points from the same group should be closer to each
other, and thus edges in the tree should be more likely to connect subjects within a
group.
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FIG. 1. The MST, MDP and NNG graphs on an example two-dimensional data set. 20 points were
drawn from N (0, I2) (shown in triangles) and 20 points were drawn from N ((2,2)′, I2) (shown in
circles).

There are many other ways to construct the graph. Rosenbaum (2005) proposed
minimum distance pairing (MDP), which divides the n subjects into n/2 (assum-
ing n is even) nonoverlapping pairs in such a way as to minimize the total of n/2
distances between pairs. For odd N , Rosenbaum suggested creating a pseudo data
point that has distance 0 with all other subjects, and later discarding the pair con-
taining this pseudo point. This method has the desirable property of being truly
distribution-free.

The nearest neighbor graph (NNG), which connects each data point to its nearest
neighbor, can also be used to define a statistic in similar style to Friedman and
Rafsky (1979) and Rosenbaum (2005).

Figure 1 illustrates the MST, MDP and NNG on 40 points in R
2. Ways to con-

struct the graph are not limited to these three. In some applications, the graph may
be given at the start of the analysis without alluding to an underlying distance mea-
sure; see the Haplotype example in Chen and Zhang (2013). The proposed method
does not depend on how the graph was constructed. The test statistic and its prop-
erties under the permutation null rely only on the graph and not on the underlying
distance measure nor on the original data. However, the quality of the graph in
separating F0 and F1 is integral to the power of the test.

2.2. Test statistic for a single change-point alternative. Here, we derive the
test statistic for testing the null H0 (1.1) versus the single change-point alternative
H1 (1.2). Each possible value of τ divides the observations into two groups: Obser-
vations come before τ and observations that come after τ . Let G be the similarity
graph on {yi}, as described in Section 2.1. We use G to refer to both the graph and
its set of edges when the vertex set is implicitly obvious. For any event x let Ix

be the indicator function that takes value 1 if x is true, and 0 otherwise. Then, for
any candidate value t of τ , the number of edges connecting points from different
groups is

RG(t) = ∑
(i,j)∈G

Igi(t)�=gj (t), gi(t) = Ii>t .
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Here, gi(t) is an indicator function for the event that yi is observed after t . So
RG(t) is the number of edges in the graph G that connect observations from the
“past” (≤ t) to the “future” (>t). Relatively small values of RG(t) are evidence
against the null hypothesis.

Figure 2 illustrates the computation of RG(t) on a small artificial data set of
length n = 40 with the first 20 points drawn from N (0, I2) and the second 20

FIG. 2. The computation of RG(t) for nine different values of t . The data is a sequence of
length n = 40, with the first 20 points drawn from N (0, I2) and the second 20 points drawn from
N ((2,2)′, I2). The similarity graph G shown in the plots is the MST on Euclidean distance. Each t

divides the observations into two groups, one group for observations before and at t (shown as trian-
gles) and the other group for observations after t (shown as circles). Edges that connect observations
from the two different groups (i.e., edges connecting a triangle and a circle) are bold in the graph.
Notice that G does not change as t changes, but the group identities of some observations change,
causing RG(t) to change.
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points drawn from N ((2,2)′, I2). The similarity graph G is the MST constructed
using Euclidean distance.

Under the null hypothesis H0 (1.1) and the independence assumption, the joint
distribution of {yi : i = 1, . . . , n} is the same under the permutation distribution.
We define the null distribution of RG(t) to be the permutation distribution, which
places 1/n! probability on each of the n! permutations of {yi : i = 1, . . . , n}. Let
π(i) be the time of observing yi after permutation, then for the permuted sequence,
gi(t) becomes Iπ(i)>t . Notice that the graph G is determined by the values of yi ’s,
not their order of appearance, and thus remains constant under permutation. When
there is no further specification, we denote by P, E, Var probability, expectation
and variance, respectively, under the permutation null distribution.

Since the null distribution of RG(t) depends on t , we standardize RG(t) so that
it is comparable across t . Let

ZG(t) = −RG(t) − E[RG(t)]√
Var[RG(t)] .(2.1)

In the standardization, we also invert the sign, so that large values of ZG(t) are
evidence against the null.

Lemma 2.1 below gives analytic formulas for E[RG(t)] and Var[RG(t)]. Before
we state the lemma, we introduce some new notation: Let Gi be the subgraph of
G containing all edges that connect to node yi . As before, we recycle notation and
use Gi to denote the set of edges in Gi . |Gi | denotes the number of edges in Gi ,
which is apparently also the degree of node yi in G.

LEMMA 2.1. Under the permutation null, the expectation and variance of
RG(t) are

E
(
RG(t)

) = p1(t)|G|,
Var

(
RG(t)

) = p2(t)|G| +
(

1

2
p1(t) − p2(t)

)∑
i

|Gi |2 + (
p2(t) − p2

1(t)
)|G|2,

where

p1(t) = 2t (n − t)

n(n − 1)
, p2(t) = 4t (t − 1)(n − t)(n − t − 1)

n(n − 1)(n − 2)(n − 3)
.

The expressions for the expectation and variance are obtained by combinatorial
analysis and the details are in Supplement A.1 [Chen and Zhang (2014)].

REMARK 2.2. The expectation and variance of RG(t) under the permutation
null depend only on t , n and two characteristics of the graph—the number of edges
(|G|) and the sum of squares of node degrees (

∑n
i=1 |Gi |2).
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FIG. 3. The profile of RG(t) and ZG(t) against t for the same data set as in Figure 2. There is a
change-point at t = 20.

Figure 3 shows the RG(t) and ZG(t) processes for the same illustration data set
in Figure 2. We see that ZG(t) peaks at the true change-point 20. For contrast, Fig-
ure 4 shows RG(t) and ZG(t) for a sequence of 40 points all drawn from N (0, I2).
Note that for the latter data set, with no change-point, ZG(t) exhibits random fluc-
tuation and attains a maximum value much smaller than that of Figure 3.

To test H0 versus Ha , we use the scan statistic

max
n0≤t≤n1

ZG(t),(2.2)

where n0 and n1 are prespecified constraints for the range of τ as described ear-
lier. The null hypothesis is rejected if the maxima is greater than some threshold.
Section 3 describes how to choose the threshold to control the family wise error
rate.

2.3. Test statistic for a changed interval alternative. Next, we derive the test
statistic for testing H0 (1.1) versus the changed interval alternative H2 (1.3). Simi-

FIG. 4. The profile of RG(t) and ZG(t) against t on a sequence of points all randomly drawn from
N (0, I2). There is no change-point in the sequence.
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lar to the single change-point case, any specific alternative (t1, t2) divides the data
into two groups, one group containing all points observed during (t1, t2], and the
other group containing all points observed outside of this interval. Then the num-
ber of edges in G connecting data points from different groups is

RG(t1, t2) = ∑
(i,j)∈G

Igi(t1,t2) �=gj (t1,t2), gi(t1, t2) = It1<i≤t2 .

We standardize RG(t1, t2) as before,

ZG(t1, t2) = −RG(t1, t2) − E(RG(t1, t2))√
Var(RG(t1, t2))

.

Lemma 2.3 below gives explicit expressions for the expectation and variance of
RG(t1, t2) under the permutation null. The scan statistic involves a maximization
over t1 and t2,

max
1≤t1<t2≤n

l0≤t2−t1≤l1

ZG(t1, t2),(2.3)

where l0 and l1 are constraints on the window size. For example, we can set l1 =
n− l0 so that only alternatives where the number of observations in either group is
larger than l0 are considered.

We can further constrain t1 and t2 to prefixed sets based on domain knowledge.
If we do so, the p-value approximations in Section 3.2 will have minor but ob-
vious modifications, which can be followed straightforwardly by steps given in
Section 3.2.

LEMMA 2.3. Under the permutation null, the expectation and variance of
RG(t1, t2) are

E
(
RG(t1, t2)

) = p1(t2 − t1)|G|,
Var

(
RG(t1, t2)

) = p2(t2 − t1)|G| +
(

1

2
p1(t2 − t1) − p2(t2 − t1)

)∑
i

|Gi |2

+ (
p2(t2 − t1) − p2

1(t2 − t1)
)|G|2,

where p1(·) and p2(·) are defined in Lemma (2.1).

The proof for this lemma is very similar to the proof of Lemma 2.1 and is
omitted here.

3. Analytic approximations to significance levels. How large do the values
of the scan statistics (2.2) and (2.3) need to be to constitute sufficient evidence
against the null hypothesis of homogeneity? In other words, we are concerned
with the tail distribution of the scan statistics under H0, that is,

P
(

max
n0≤t≤n1

ZG(t) > b
)

(3.1)
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for the single change-point alternative, and

P
(

max
1≤t1<t2≤n

l0≤t2−t1≤l1

ZG(t1, t2) > b
)

(3.2)

for the changed interval alternative. In the rest of the paper, we omit the implicitly
obvious constraint 1 ≤ t1 < t2 ≤ n for simplicity.

The null distributions of maxZG(t) and maxZG(t1, t2) are defined as the per-
mutation distribution. For small n, we can directly sample from the permuta-
tion distribution to approximate (3.1) and (3.2). However, when n is large, per-
mutation is computationally prohibitive, especially for (3.2) where each scan is
of order O(n2) if l1 − l0 ∼ O(n). Therefore, we derive analytic expressions for
both tail probabilities to make the method instantly applicable. Treating {ZG(t)}
and {ZG(t1, t2)} as families of tests, the two probabilities are their family-wise
error rates. The tests are dependent since they are all based on the same se-
quence. The marginal distributions of ZG(t) and ZG(t1, t2), under permutation,
are also quite complicated. Therefore, it is impossible to obtain exact expres-
sions for the two probabilities for finite n. In the rest of this chapter, we give
analytic approximations to the two probabilities. We first show that, under mild
conditions on G, {ZG([nu]1) : 0 < u < 1} converges to a Gaussian process and
{ZG([nu], [nv]) : 0 < u < v < 1} converges to a Gaussian random field as n → ∞
(Section 3.1). We then derive analytic approximations to the two probabilities un-
der Gaussian field approximation (Section 3.2). To achieve better accuracy for the
case of small n and for the case where the conditions for Gaussian convergence
are questionable, we refine our approximations by correcting the skewness in the
marginal distributions (Section 3.3). All of these approximations are checked by
numerical studies under a set of representative scenarios (Section 3.5).

3.1. Asymptotic properties of the processes. In this section, we derive the lim-
iting distributions of {ZG([nu]) : 0 < u < 1} and {ZG([nu], [nv]) : 0 < u < v < 1}
under permutation. We first introduce some notation. For edge e = (e−, e+), where
e− < e+ are the indices of the nodes connected by the edge e, let

Ae = Ge− ∪ Ge+,(3.3)

be the set of edges that connect to either node e− or node e+, and

Be = ∪{
Ae′ : e′ ∈ Ae

}
,(3.4)

be the set of edges that connect to nodes in Ge− and Ge+ .
We define two asymptotic conditions on the graph.

CONDITION 1. |G| ∼ O(nα), 0 < α < 1.125.

1[x] is the largest integer that is no larger than x.
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CONDITION 2.
∑

e∈G |Ae||Be| ∼ o(n1.5(α∧1)).

THEOREM 3.1. Under Conditions 1 and 2, as n → ∞,

1. {ZG([nu]) : 0 < u < 1} converges to a Gaussian process, which we denote as
{Z�

G(u) : 0 < u < 1},
2. {ZG([nu], [nv]) : 0 < u < v < 1} converges to a two-dimensional Gaussian

random field, which we denote as {Z�
G(u, v) : 0 < u < v < 1},

under the permutation distribution.

The proof for this theorem utilizes the Stein’s method Chen and Shao (2005).
The whole proof is in Supplement A.2 [Chen and Zhang (2014)].

REMARK 3.2. Condition 2 restricts both the size and number of hubs, which
are nodes with a large degree. The largest hub in the graph must have degree
smaller than n0.75(α∧1) to satisfy the condition. On the other hand, if we increase
the number of edges in the graph (increase α), the densest graph we could achieve
under Condition 2 has the number of edges of order less than n1.125. This is be-
cause when |G| ∼O(nα),α > 1,

∑
e∈G |Ae||Be| ≥ nαnα−1n2(α−1) = n4α−3.

LEMMA 3.3. The covariance function of the Gaussian process Z�
G(u),0 <

u < 1, defined as ρ�
G(u, v)

�= cov(Z�
G(u),Z�

G(v)) has the following expression:

ρ�
G(u, v) = 2(u ∧ v)2(1 − (u ∨ v))2|G|

σ�
G(u)σ �

G(v)
(3.5)

+ (u ∧ v)(1 − (u ∨ v))(1 − 2u)(1 − 2v)
∑

i |Gi |2
σ�

G(u)σ �
G(v)

,

where

σ�
G(u) =

√
2u2(1 − u)2|G| + u(1 − u)(1 − 2u)2

∑
i

|Gi |2.

The lemma is proved through combinatorial analysis and the details are in Sup-
plement A.3 [Chen and Zhang (2014)].

ρ�
G(u, v) is partially differentiable in u(�= v) to all orders. So, fixing v, the kth

order left- and right-derivatives in u at u = v are well defined for all k. We de-

note the kth left- and right-derivative by f
(k)
v,−(0)(≡ limu↗v

∂ρ�
G(u,v)

∂u
) and f

(k)
v,+(0),

respectively. One important property, which can be checked by tedious algebra, is
that f ′

v,−(0) = −f ′
v,+(0).
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3.2. Asymptotic approximations to p-values. We now examine the asymptotic
behavior of the two probabilities (3.1) and (3.2). Our approximations will involve
the function ν(x) defined as

ν(x) = 2x−2 exp

{
−2

∞∑
m=1

m−1�

(
−1

2
xm1/2

)}
, x > 0.(3.6)

This function is closely related to the Laplace transform of the overshoot over the
boundary of a random walk. A simple approximation given in Siegmund and Yakir
(2007) is sufficient for numerical purpose:

ν(x) ≈ (2/x)(�(x/2) − 0.5)

(x/2)�(x/2) + φ(x/2)
.(3.7)

The following proposition is the foundation for obtaining analytic approximations
to the probabilities.

PROPOSITION 3.4. Assume that n0 → ∞, n1 → ∞, b → ∞, and n → ∞ in
a way such that for some 0 < x0 < x1 < 1 and b0 > 0

ni/n → xi (i = 0,1) and b/
√

n → b0.

Then as n → ∞,

P
(

max
n0≤t≤n1

Z�
G(t/n) > b

)
∼ bφ(b)

∫ x1

x0

h�
r0,r1

(x)ν
(
b0

√
2h�

r0,r1
(x)

)
dx,(3.8)

P
(

max
n0≤t2−t1≤n1

Z�
G(t1/n, t2/n) > b

)
(3.9)

∼ b3φ(b)

∫ x1

x0

(
h�

r0,r1
(x)ν

(
b0

√
2h�

r0,r1
(x)

))2
(1 − x)dx,

where

h�
r0,r1

(x) = 1

2x(1 − x)
+ 2

4x(1 − x) + (1 − 2x)2(r1 − 4r0)
,

with r0
�= limn→∞ |G|/n, and r1

�= limn→∞
∑

i |Gi |2/|G|.

The proof of this proposition utilizes Woodroofe’s method [Woodroofe (1976,
1978)] and Siegmund’s method [Siegmund (1988, 1992)]. The whole proof is in
Supplement A.4 [Chen and Zhang (2014)].

REMARK 3.5. Since n
∑

i |Gi |2 ≥ (
∑

i |Gi |)2 = 4|G|2, r1 − 4r0 is always
nonnegative, and

h�
r0,r1

(x) ∈
[

1

2x(1 − x)
,

1

x(1 − x)

]
.
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Based on Proposition 3.4, when
∑

e∈G |Ae||Be| ∼ o(n3/2), |G| ∼ O(n), we ap-
proximate (3.1) and (3.2) by

P
(

max
n0≤t≤n1

ZG(t) > b
)

(3.10)

∼ bφ(b)

∫ n1/n

n0/n
h�

r̂0,r̂1
(x)ν

(
b0

√
2h�

r̂0,r̂1
(x)

)
dx,

P
(

max
n0≤t2−t1≤n1

ZG(t1, t2) > b
)

(3.11)

∼ b3φ(b)

∫ n1/n

n0/n

(
h�

r̂0,r̂1
(x)ν

(
b0

√
2h�

r̂0,r̂1
(x)

))2
(1 − x)dx,

where r̂0 = |G|/n, r̂1 = ∑
i |Gi |2/|G|.

REMARK 3.6. In practice, when using (3.10) and (3.11) to approximate the
tail probabilities, we use hG(n, x) in place of h�

r̂0,r̂1
(x), where hG(n, x) is the

finite-sample equivalent of h�
r̂0,r̂1

(x) for the stochastic process ZG([nu]). That is,

h�
r̂0,r̂1

(x) = lim
u↗x

∂ρ�
G(u, x)

∂u
,

hG(n, x) = 1

n
lim

s↗nx

∂ρG(s, nx)

∂s
,

where ρG(s, t)
�= cov(ZG(s),ZG(t)). The explicit expression for hG(n, x) is

hG(n, x)
(3.12)

= (n − 1)[h1(n, x)|G| + h2(n, x)
∑n

i=1 |Gi |2 − h3(n, x)|G|2]
2x(1 − x)[h4(n, x)|G| + h5(n, x)

∑n
i=1 |Gi |2 − h6(n, x)|G|2] ,

where

h1(n, x) = 4n(n − 1)
(−2nx2 + 2nx − 1

)
,

h2(n, x) = n
[
n(n + 1)(1 − 2x)2 − 2(n − 1)

]
,

h3(n, x) = 4n
[
n(1 − 2x)2 − 1

]
,

h4(n, x) = 4n(n − 1)(nx − 1)(n − nx − 1),

h5(n, x) = n(n − 1)
[
n2(1 − 2x)2 − n + 2

]
,

h6(n, x) = 4n
[
n2(1 − 2x)2 − 2n

(
1 − 3x + 3x2) + 1

]
.

It is easy to show that limn→∞ hG(n, x) = h�
r̂0,r̂1

(x).
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FIG. 5. Plots of skewness γG(t) (= E(ZG(t))) against t with G being MST (left panel) and MDP
(right panel) constructed on Euclidean distance on a sequence of 1000 points randomly generated
from N (0, I100).

3.3. Skewness correction. Convergence of ZG(t) to normal is slow if t/n is
close to 0 or 1. Also, we may doubt the validity of Conditions 1 and 2 if the
graph contains large hubs. For instance, as we show via simulation in Section 3.5
and as detailed in Radovanović, Nanopoulos and Ivanović (2010), MST and NNG
constructed on high dimensional data can have large hubs under standard distance
measures, such as L2 and L1. Then the statistic ZG(t) is left-skewed (see Figure 5,
left panel), and the p-value approximations (3.10) and (3.13) overestimate the tail
probabilities. The other extreme is the MDP, where each node has degree 1 and the
graph is completely “flat.” The statistic ZG(t) and the two ends is right-skewed
(see Figure 5, right panel), and the p-value approximations (3.10) and (3.13) un-
derestimate the true tail probabilities.

Skewness correction in tail probability approximation of change-point tests was
first carried out in Tu and Siegmund (1999) and later modified in Tang and Sieg-
mund (2001). Both of these papers applied a universal third moment correction. In
our problem, the extent of the skewness of ZG(t) depends on the value of t . This
can be seen clearly in Figure 5, as ZG(t) is more skewed toward the two ends.
Since universal corrections are too crude, we adopt a different approach where the
skewness correction adapts to the skewness of ZG(t) at each t . In particular, we
give a better approximation to the marginal probability, P(ZG(t) ∈ b + dx/b) in
the single change-point case and P(ZG(t1, t2) ∈ b + dx/b) in the changed interval
case, for which normal approximation was used in producing the approximations
(3.10) and (3.13).

Consider first the approximation of the marginal probability P(Z ∈ b + dx/b),
suppressing in our notation the dependence on t . Since Z has been properly stan-
dardized, E(Z) = 0,E(Z2) = 1. Let γ = E(Z3) be the skewness term, which can
be calculated explicitly by a combinatorial analysis described in Section 3.4 below.
We make use of the cumulant generating function ψ(θ) = log EP (eθZ). By change
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of measure dQθ = eθZ−ψ(θ) dP , we can approximate P(Z ∈ b + dx/b) by

1√
2π(1 + γ θb)

exp
(−θbb − xθb/b + θ2

b (1 + γ θb/3)/2
)
,

where θb is chosen such that ψ̇(θb) = b. By a third Taylor approximation, we get

θb ≈ (−1 +
√

1 + 2γ b)/γ.

More details are given in Supplement B.1 [Chen and Zhang (2014)].
The p-value approximations, after correcting for the skewness of the marginal

distribution of the two processes, become

P
(

max
n0≤t≤n1

ZG(t) > b
)

(3.13)

≈ bφ(b)

∫ n1/n

n0/n
SG(nx)hG(n, x)ν

(√
2b2

0hG(n, x)
)
dx,

where

SG(t) = exp((1/2)(b − θ̂b,G(t))2 + (1/6)γG(t)θ̂b,G(t)3)√
1 + γG(t)θ̂b,G(t)

,(3.14)

with γG(t) = E[Z3
G(t)] and θ̂b,G(t) = (−1 + √

1 + 2γG(t)b)/γG(t).

P
(

max
n0≤t2−t1≤n1

ZG(t1, t2) > b
)

≈ φ(b)

b

∑
n0≤t2−t1≤n1

SG(t1, t2)
(
b2

0hG

(
n, (t2 − t1)/n

)
(3.15)

× ν
(
b0

√
2hG

(
n, (t2 − t1)/n

)))2
,

where

SG(t1, t2)
(3.16)

= exp((1/2)(b − θ̂b,G(t1, t2))
2 + (1/6)γG(t1, t2)θ̂b,G(t1, t2)

3)√
1 + γG(t1, t2)θ̂b,G(t1, t2)

,

with γG(t1, t2) = E[Z3
G(t1, t2)] and

θ̂b,G(t1, t2) = (−1 +
√

1 + 2γG(t1, t2)b
)
/γG(t1, t2).

REMARK 3.7. When the marginal distribution is highly left-skewed, it is pos-
sible that γ (t) is too small for 1 + 2γ (t)b to be positive. This does not mean that
the solution to ψ̇t (θ) = b does not exist, but that higher moments are needed to get
a good approximation. In this paper, we apply an easy heuristic fix to this prob-
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lem: Since 1 + 2γ (t)b < 0 usually happens when t/n is close to 0 or 1, within this
problematic region θb(t) can be extrapolated using its values outside the region.
The details of the extrapolation method are given in Supplement B.2 [Chen and
Zhang (2014)].

3.4. Explicit expressions for skewness. We now derive an explicit expression
for the skewness terms γG(t) and γG(t1, t2) that are used in (3.13) and (3.15). We
have

E
(
Z3

G(t)
) = E3(RG(t)) + 3E(RG(t))Var(RG(t)) − E(R3(t))

(Var(RG(t)))3/2 ,

E
(
Z3

G(t1, t2)
) = E3(RG(t1, t2)) + 3E(RG(t1, t2))Var(RG(t1, t2)) − E(R3(t1, t2))

(Var(RG(t1, t2)))3/2 .

The explicit expressions of E(RG(t)), Var(RG(t)), E(RG(t1, t2)), and Var(RG(t1,

t2)) are given in Lemmas 2.1 and 2.3. The explicit expressions of E3(RG(t)) and
E3(RG(t1, t2)) are given in the following lemma.

LEMMA 3.8.

E
(
R3

G(t)
) = p1(t)|G| + 3

2
p1(t)

∑
i

|Gi |(|Gi | − 1
)

+ 3p2(t)

(
|G|(|G| − 1

) + 1

2

∑
i

|Gi |(|Gi | − 1
)(|G| − |Gi |))

− 3p2(t)

(∑
i

|Gi |(|Gi | − 1
) + ∑

(i,j)∈G

(|Gi | − 1
)(|Gj | − 1

))

+ p3(t)
∑
i

|Gi |(|Gi | − 1
)(|Gi | − 2

)
+ p4(t)

(
|G|(|G| − 1

)(|G| − 2
) + 6

∑
(i,j)∈G

(|Gi | − 1
)(|Gj | − 1

))

− 2p4(t)
∑

(i,j)∈G

∣∣{k : (i, k), (j, k) ∈ G
}∣∣

− p4(t)

(∑
i

|Gi |(|Gi | − 1
)(

3|G| − 2|Gi | − 2
))

.

The functions p1(t) and p2(t) are given in Lemma 2.1, and

p3(t) := t (n − t)((n − t − 1)(n − t − 2) + (t − 1)(t − 2))

n(n − 1)(n − 2)(n − 3)
,

p4(t) := 8t (t − 1)(t − 2)(n − t)(n − t − 1)(n − t − 2)

n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)
.
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FIG. 6. Eight configurations of three edges (a, b, c) randomly chosen, with replacement, from the
graph.

Also

E3(
RG(t1, t2)

) = E3(
RG(t2 − t1)

)
.(3.17)

PROOF. For the uncentered process RG(t),

E
(
R3

G(t)
) = ∑

(i,j),(k,l),(u,v)∈G

P
(
gi(t) �= gj (t), gk(t) �= gl(t), gu(t) �= gv(t)

)
.

There are in total eight different configurations for three edges randomly cho-
sen (with replacement) from the graph (see Figure 6 for illustrations). We derive

P(gi(t) �= gj (t), gk(t) �= gl(t), gu(t) �= gv(t))
�= P3 separately for each configura-

tion:

(1) The three edges are actually the same edge

P3 = P
(
gi(t) �= gj (t)

) = 2t (n − t)

n(n − 1)
.

(2) Two edges are the same and share one node with the third edge

P3 = P
(
gi(t) �= gj (t), gi(t) �= gk(t)

) = t (n − t)

n(n − 1)
.

(3) Two edges are the same and do not share any node with the third edge

P3 = P
(
gi(t) �= gj (t), gk(t) �= gl(t)

) = 4t (t − 1)(n − t)(n − t − 1)

n(n − 1)(n − 2)(n − 3)
.

(4) The three edges share one node, and neither of them share the other node
(star-shaped)

P3 = P
(
gi(t) �= gj (t), gi(t) �= gk(t), gi(t) �= gl(t)

)
= t (n − t)((n − t − 1)(n − t − 2) + (t − 1)(t − 2))

n(n − 1)(n − 2)(n − 3)
.

(5) One edge share one node with another edge and share the other node with
the third edge. No node sharing between the second and the third edge (linear
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chain)

P3 = P
(
gi(t) �= gj (t), gi(t) �= gk(t), gj (t) �= gl(t)

)
= 2t (t − 1)(n − t)(n − t − 1)

n(n − 1)(n − 2)(n − 3)
.

(6) The three edges form a triangle

P3 = P
(
gi(t) �= gj (t), gj (t) �= gk(t), gk(t) �= gi(t)

) = 0.

(7) Two edges share one node, and share no node with the third edge

P3 = P
(
gi(t) �= gj (t), gi(t) �= gk(t), gu(t) �= gv(t)

)
= 2t (t − 1)(n − t)(n − t − 1)

n(n − 1)(n − 2)(n − 3)
.

(8) No pair of the three edges share any node

P3 = P
(
gi(t) �= gj (t), gk(t) �= gl(t), gu(t) �= gv(t)

)
= 8t (t − 1)(t − 2)(n − t)(n − t − 1)(n − t − 2)

n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)
.

Among all |G|3 possible ways of randomly selecting the three edges, the num-
ber of occurrences for each of the configuration are:

(1) |G|;
(2) 3

∑
i |Gi |(|Gi | − 1);

(3) 3|G|(|G| − 1) − 3
∑

i |Gi |(|Gi | − 1);
(4)

∑
i |Gi |(|Gi | − 1)(|Gi | − 2);

(5) 6
∑

(i,j)∈G(|Gi | − 1)(|Gj | − 1) − 6
∑

(i,j)∈G |{k : (i, k), (j, k) ∈ G}|;
(6) 2

∑
(i,j)∈G |{k : (i, k), (j, k) ∈ G}|;

(7) 3
∑

i |Gi |(|Gi | − 1)(|G| − |Gi |) + 6
∑

(i,j)∈G |{k : (i, k), (j, k) ∈ G}| −
12

∑
(i,j)∈G(|Gi | − 1)(|Gj | − 1);

(8) |G|(|G|−1)(|G|−2)+6
∑

(i,j)∈G(|Gi |−1)(|Gj |−1)−2
∑

(i,j)∈G |{k : (i, k),

(j, k) ∈ G}| − ∑
i |Gi |(|Gi | − 1)(3|G| − 2|Gi | − 2).

The lemma follows by summing up all of the probabilities as enumerated above.
It is not hard to observe that the number of occurrences only depends on the

sizes of the two groups, so E3(RG(t1, t2)) = E3(RG(t2 − t1)). �

The terms in E(R3
G(t)) can be rearranged and written in other forms. The ex-

pansion shown in Lemma 3.8 makes it easier to understand the origin of each term
in the context of the proof. If we examine the expression, we would find γG(t) are
fully determined by t , n, |G|, ∑

i |Gi |2,
∑

i |Gi |3,
∑

(i,j)∈G(|Gi | − 1)(|Gj | − 1)

and the number of triangles in G.
For MDP, only configurations (1), (3) and (8) are possible, and the number of

occurrences of each case is
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(1) |G| = n;
(3) 3|G|(|G| − 1) = 3n(n − 1);
(8) |G|(|G| − 1)(|G| − 2) = n(n − 1)(n − 2);

and its E(R3
G(t)) has a much simpler expression:

E
(
R3

G(t)
) = p1(t)n + p2(t)3n(n − 1) + p4(t)n(n − 1)(n − 2)

= (
p1(t) − 3p2(t) + 2p4(t)

)
n + 3

(
p2(t) − p4(t)

)
n2 + p4(t)n

3.

3.5. Numerical studies. In this section, we check the analytic approximations
to p-values, both assuming Gaussianity and after skewness correction, through
numerical studies. We examine both the accuracy of the critical value and the cov-
erage probability.

3.5.1. Critical value. We compare the critical values obtained from (3.10),
(3.13), (3.11) and (3.15) to those obtained from doing 10,000 permutations, un-
der various simulation settings. In each simulation, i.i.d. sequences of length 1000
were generated from a given distribution F0 in R

d . MST, MDP and NNG were
constructed on the data based on Euclidean distance. For each graph, analytic and
permutation critical values were computed for both 0.05 and 0.01 p-value thresh-
olds.

We first check the single change-point alternative. Tables 1–3 show the results
for the single change-point alternative with the underlying graph being MST or
MDP. Results for when the underlying graph is NNG, shown in Supplement C.1.1
[Chen and Zhang (2014)], are similar to those for when the graph is MST. In
the column headers, “A1” denotes critical values obtained assuming Gaussianity
(3.10), “A2” denotes critical values obtained after correcting for skewness (3.13),
and “Per” denotes critical values obtained by 10,000 permutations (can be viewed
as the true p-value).

Six different choices for F0 are shown, for two different distributions (standard
normal and exponential with mean 1), each in three different dimensions (d =
1, 10, or 100). For d = 10 or 100, each element of the data vector is generated
independently from the given distribution. The analytic approximations depend
also on constraints on the region in which the change-point is searched. These are
reflected in the choice of n0 and n1 (l0 and l1 for the changed interval alternative).
To make things simple, we set n1 = n−n0. In general, the analytic approximations
become less precise when the minimum segment length decreases. This is mainly
because the Gaussian approximation (and skewness correction) to the distribution
of Z(t) degrades for small samples.

Both the analytic and permutation p-values depend on certain characteristics of
the graph’s structure. The structures of MST (for d ≥ 2) and NNG depend on the
underlying data set, and thus the critical values vary by simulation run. In such
cases, we show results for 5 randomly simulated sequences. Two characteristics of
the graph are also shown for each simulated sequence: The sum of squared node



158 H. CHEN AND N. ZHANG

TABLE 1
Critical values for the single change-point scan statistic based on MST at 0.05 significance level.

n = 1000. “A1” denotes critical values obtained assuming Gaussianity (3.10), “A2” denotes
critical values obtained after correcting for skewness (3.13), and “Per” denotes critical values

obtained by 10,000 permutations

Critical values

n0 = 100 n0 = 50 n0 = 25 Graph

A1 A2 Per A1 A2 Per A1 A2 Per
∑ |Gi |2 dmax

d = 1 2.98 3.05 3.04 3.08 3.22 3.23 3.14 3.39 3.49 4994 2

d = 10 2.92 2.90 2.90 3.00 2.95 2.95 3.05 2.98 2.96 5430 8
N(0,1) 2.92 2.89 2.89 3.00 2.95 2.92 3.05 2.97 2.95 5438 7

2.92 2.90 2.87 3.00 2.95 2.94 3.05 2.98 2.96 5394 7
2.92 2.89 2.86 3.00 2.94 2.90 3.05 2.97 2.92 5534 8
2.92 2.89 2.89 3.00 2.95 2.92 3.05 2.97 2.95 5460 7

d = 10 2.93 2.91 2.89 3.01 2.97 2.96 3.06 3.00 2.97 5064 7
Exp(1) 2.93 2.91 2.88 3.01 2.97 2.92 3.06 3.00 2.95 5082 7

2.93 2.91 2.91 3.01 2.98 2.97 3.06 3.01 3.00 5028 5
2.93 2.91 2.87 3.01 2.98 2.93 3.06 3.01 2.97 5028 6
2.93 2.91 2.88 3.01 2.96 2.92 3.06 2.98 2.94 5180 9

d = 100 2.86 2.69 2.68 2.94 2.70 2.68 3.00 2.70 2.68 12,454 38
N(0,1) 2.86 2.72 2.72 2.95 2.74 2.72 3.00 2.74 2.72 10,904 38

2.86 2.70 2.66 2.94 2.71 2.66 3.00 2.71 2.66 11,294 42
2.87 2.72 2.68 2.95 2.74 2.68 3.00 2.74 2.68 10,690 40
2.86 2.69 2.65 2.94 2.70 2.65 3.00 2.70 2.65 11,722 40

d = 100 2.85 2.64 2.60 2.93 2.65 2.60 2.99 2.65 2.60 14,706 56
Exp(1) 2.87 2.77 2.76 2.95 2.80 2.77 3.01 2.81 2.77 9608 25

2.84 2.62 2.53 2.93 2.62 2.53 2.99 2.62 2.53 15,536 77
2.86 2.74 2.69 2.95 2.76 2.69 3.00 2.76 2.69 10,890 30
2.86 2.72 2.66 2.94 2.73 2.66 3.00 2.73 2.66 12,018 39

degrees (
∑

i |Gi |2) and the maximum node degree (dmax). These quantities give
some intuition on the size and density of hubs in the graph. Since the MST for any
one-dimensional data set is a chain, in this case the critical values do not change
with simulation run for each setting of the parameters.

The structure of the MDP graph is always the same for all data sets. Therefore,
the critical values for MDP-based scan depend only on n,n0, n1 (l0 and l1 for the
changed interval alternative). The critical values for MDP-based scan do not de-
pend on the dimension or the underlying distribution of the data. As emphasized in
Rosenbaum (2005), statistics based on the MDP is truly a distribution-free method,
which can sometimes be desirable.

We can see from the tables that the analytic approximations after skewness
correction perform much better than the analytic approximations under Gaus-
sian assumption, especially when dimension increases. The accuracy of the skew-



GRAPH-BASED CHANGE-POINT DETECTION 159

TABLE 2
Critical values for the single change-point scan statistic based on MST at 0.01 significance level.

n = 1000

Critical values

n0 = 100 n0 = 50 n0 = 25 Graph

A1 A2 Per A1 A2 Per A1 A2 Per
∑ |Gi |2 dmax

d = 1 3.52 3.62 3.67 3.60 3.81 3.85 3.65 4.05 4.31 4994 2

d = 10 3.47 3.43 3.46 3.53 3.46 3.48 3.57 3.48 3.48 5430 8
N(0,1) 3.47 3.43 3.44 3.53 3.46 3.46 3.57 3.47 3.46 5438 7

3.47 3.43 3.44 3.53 3.46 3.47 3.58 3.48 3.48 5394 7
3.47 3.42 3.38 3.53 3.46 3.40 3.57 3.47 3.41 5534 8
3.47 3.43 3.44 3.53 3.46 3.46 3.57 3.47 3.46 5460 7

d = 10 3.48 3.45 3.40 3.54 3.49 3.44 3.58 3.50 3.45 5064 7
Exp(1) 3.48 3.44 3.40 3.54 3.48 3.42 3.58 3.50 3.44 5082 7

3.48 3.45 3.47 3.54 3.49 3.49 3.58 3.51 3.52 5028 5
3.48 3.45 3.41 3.54 3.49 3.44 3.58 3.51 3.46 5028 6
3.48 3.44 3.49 3.54 3.47 3.53 3.58 3.48 3.54 5180 9

d = 100 3.42 3.17 3.19 3.48 3.17 3.19 3.53 3.17 3.19 12,454 38
N(0,1) 3.42 3.21 3.24 3.49 3.21 3.24 3.53 3.21 3.24 10,904 38

3.42 3.19 3.17 3.49 3.19 3.17 3.53 3.19 3.17 11,294 42
3.42 3.22 3.18 3.49 3.22 3.18 3.53 3.22 3.18 10,690 40
3.42 3.18 3.21 3.49 3.18 3.21 3.53 3.18 3.21 11,722 40

d = 100 3.41 3.14 3.12 3.48 3.14 3.12 3.52 3.14 3.12 14,706 56
Exp(1) 3.43 3.28 3.26 3.49 3.28 3.26 3.54 3.28 3.26 9608 25

3.41 3.15 3.10 3.48 3.15 3.10 3.52 3.15 3.10 15,536 77
3.42 3.24 3.21 3.49 3.24 3.21 3.53 3.24 3.21 10,890 30
3.42 3.22 3.13 3.48 3.22 3.13 3.53 3.22 3.13 12,018 39

TABLE 3
Critical values for the single change-point scan statistic based on MDP. n = 1000

d = 1 d = 10 d = 100

n0 A1 A2 N(0,1) Exp(1) N(0,1) Exp(1) N(0,1) Exp(1)

Significance level = 0.05
200 2.82 2.84 2.83 2.81 2.85 2.85 2.85 2.83
100 2.98 3.07 3.06 3.04 3.08 3.08 3.07 3.05
50 3.08 3.27 3.30 3.29 3.35 3.36 3.35 3.31
25 3.14 3.48 3.54 3.58 3.57 3.66 3.60 3.60

Significance level = 0.01
200 3.38 3.43 3.39 3.38 3.44 3.46 3.45 3.44
100 3.52 3.66 3.66 3.64 3.67 3.75 3.67 3.59
50 3.60 3.90 3.99 3.99 3.94 4.05 3.95 3.99
25 3.65 4.21 4.61 4.65 4.78 4.72 4.59 4.81
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corrected approximation does not degrade significantly with dimension. For the
statistics based on MST and NNG, the skew-corrected approximations remain ac-
curate for window sizes as small as 25 at both 0.05 and 0.01 significance levels. For
the statistics based on MDP, the skew-corrected approximations work well when
the minimum window size is as small as 25 at 0.05 significance level, and 50 at
0.01 significance level.

There is not much difference between results for simulations based on normal
and those based on exponential distributions. The main factor influencing approx-
imation accuracy, other than the minimum window size, is the dimension (d). As
dimension increases, the graph becomes more “star-shaped” as reflected by the
increase in both

∑ |Gi |2 and dmax. As shown in Section 3.3, skewness and other
higher order moments of ZG(t) are a function of polynomials of the node degrees.
Thus, the increase in the number and density of hubs makes skewness correction
important in high dimensions. This also indicates that a different distance mea-
sure other than Euclidean distance in high dimension to better distinguish different
distributions.

For the changed interval alternative, the results are similar, with details in Sup-
plement C.1.2 [Chen and Zhang (2014)].

3.5.2. Coverage probability. For both widely used significance levels, 0.05
and 0.01, we also check the coverage probability of the p-value approximations.
From the previous section on checking critical values, we see that the underlying
distribution of the data does not affect the result, so we generate data only from the
multivariate Gaussian distribution. We now expand our study to a denser graphs.
In each simulation run, a sequence of length 1000 were generated from N (0, Id).
1,3,5-MST/MDP/NNG were constructed on the data based on Euclidean distance.
1-MST is the same as MST, which we also call the 1st MST. The 2nd MST is
defined as a spanning tree that is orthogonal to the 1st MST (not using any edge
in the 1st MST) minimizing the total distance over the edges, and the 2-MST is
defined as the union of 1st and 2nd MST. Recursively, the kth MST is the spanning
tree that is orthogonal to all i MSTs (i < k) minimizing the total distance over
edges, and the k-MST is defined as the union of all of the ith MSTs, i = 1, . . . , k.
Similar definitions apply to k-MDP and k-NNG.

In each simulation run, we calculated the critical value based on the p-value
approximation for a given significance level (0.05 or 0.01), and used this critical
value as the actual threshold. Then we did 10,000 permutations and calculated the
percentage of the permutations with the scan statistic larger than the threshold.
This percentage is viewed as the coverage probability. We checked the coverage
probability for data in low dimension (d = 10) and high dimension (d = 100), with
100 simulation runs for each. Figures 7 and 8 show boxplots of the coverage prob-
ability for the single change-point alternative with the smallest window size (n0)
being 50. The results for n0 being 25 or 100, other settings unchanged, are shown
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FIG. 7. Boxplots for coverage probability with significance level 0.05 under the single change-point
alternative. The smallest windows size is 50. The dimension of each observation in the sequence is
10 in the upper panel and 100 in the lower panel. For each type of graph, the result from the p-value
approximation assuming Gaussianity is shown in blue and that after skewness correction is shown in
red.

in Supplementary material C.2 [Chen and Zhang (2014)]. The coverage probabili-
ties for the p-value approximation assuming Gaussianity (3.10) are shown in blue
and those after skewness correction (3.13) are shown in red. We see that coverage
probabilities based on the skewness-corrected p-value approximation are closer to
the designed significance level, with the improvement being very significant for
MDP in all scenarios and for MST/NNG when the data dimension is high.

Base on results in both the critical values and coverage probabilities, the skew-
corrected approximations are quite safe to use.
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FIG. 8. Boxplots for coverage probability with significance level 0.01. Other parameters remain
unchanged from Figure 7.

4. Power comparisons. To examine the power of our proposed method, we
consider cases that parametric methods are applicable. In particular, we consider
cases where normal theory can apply. In the first simulation set-up, we generated
a sequence of 200 observations from the following model:

yt ∼
{

N(0, Id), t = 1, . . . ,100;
N(μ,�), t = 101, . . . ,200.

As before, d is the dimension of each observation. There is a change-point at 100.
The mean μ of the second half of the data is shifted from 0 by amount � in Eu-
clidean distance. We considered cases where the covariance matrix remains con-
stant (� = Id ), as well as cases where the covariance matrix also changes. When
the covariance matrix changes, we set � to a diagonal matrix with �[1,1] = d1/3
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and �[i, i] = 1 for i = 2, . . . , d . We chose � for each value of d so that most
methods have moderate power.

Hotelling’s T 2 is a parametric test designed specifically for detecting a change
in multivariate normal mean when there is no change in variance. When there is
a change in both mean and variance, the generalized likelihood ratio test (GLR)
can be used. We compare the graph-based scan statistics to scan statistics based on
these two existing methods. For any candidate change-point t , the Hotelling’s T 2

is

T 2(t) = t (n − t)

n

(
ȳt − ȳ∗

t

)T
�̃−1(

ȳt − ȳ∗
t

)
,

where

ȳt =
t∑

i=1

yi/t, ȳ∗
t =

n∑
i=t+1

yi/(n − t),

�̃ = (n − 2)−1

[
t∑

i=1

(yi − ȳt )(yi − ȳt )
T +

n∑
i=t+1

(
yi − ȳ∗

t

)(
yi − ȳ∗

t

)T ]
.

The GLR is

GLR(t) = n log |�̂n| − t log |�̂t | − (n − t) log
∣∣�̂∗

t

∣∣,
where

�̂t =
∑t

i=1(yi − ȳt )(yi − ȳt )
T

t
, �̂∗

t =
∑n

i=t+1(yi − ȳ∗
t )(yi − ȳ∗

t )
T

n − t
.

T 2(t) and GLR(t) both have some constraints on the dimension of the data. For
T 2, the number of observations n needs to be larger than the dimension of the data
d so that �̃ can be inverted. For GLR, both t and n − t need to be larger than the
dimension of the data so that the determinants of �̂t , �̂

∗
t are not zero. Thus, when

d ≤ 20, we set n0 = d + 10 and n1 = n − n0. When d > 20, we set n0 = 50 and
n1 = 150. (An exception for GLR is that when d = 50, n0 and n1 are set to 60 and
140, resp., so that the test statistic can be calculated.)

Scan statistics based on the three ways of constructing the graph—MST, MDP
and NNG—using Euclidean distance are compared to scan statistics based on max-
imization of T 2(t) and GLR(t). We also examined the power of denser graphs:
3-MST, 3-MDP and 3-NNG. The significance level is determined through 10,000
permutation runs (for Hotelling T 2 and GLR) or skew-corrected approximations
(for graph-based methods). Table 4 shows the number of trials, out of 100, that the
null hypothesis is rejected at 0.05 level for each of these methods. To examine the
accuracy of the estimated change-point, the number of trials where the estimated
change-point is within 20 from the true change-point is given in parentheses. In the
table, bold numbers are cases when the graph-based method outperforms both tests
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based on normal theory. In general, they appear when the dimension is relatively
high.

First, compare the graph-based methods to Hotelling’s T 2: When the variance
does not change, T 2 outperforms all other methods in low to moderate dimension
(d < 150). This is expected, as T 2 was designed specifically for this scenario.
Remarkably, graph-based methods surpass T 2 at its own game when dimension
is high (d ≥ 150). If we increase the dimension further, our proposed method is
still working while the standard Hotelling’s T 2 is no longer applicable in the case
where the variance also changes. By assuming an incorrect alternative, the power
of T 2 is quickly surpassed by graph-based methods, for d as low as 5.

Comparing graph-based methods to the GLR-based scan statistic, we see a sim-
ilar pattern: When dimension is low (d = 1,5,10), GLR-based scans dominate
in power when both the mean and variance changes. Graph-based methods ex-
ceed GLR in power when d increases, already performing much better by d = 20,
which is considered quite low in today’s applications. The low power of GLR at
even moderate dimension is due to its requirement that the covariance matrix be
estimated for both segments.

We also considered a case where the normality assumption is violated by gener-
ating data from the log-normal distribution (� = Id ). Then graph-based methods
outperform T 2 by d = 10, and GLR even when d = 1 (3-MST and 3-NNG).

Comparing among the graph-based scan statistics, we see that MST and NNG
have comparable power, and dominate MDP in all scenarios. An explanation is
that, of these three types of graphs, the MDP retains the least information from
the data, having half as many edges as the other two graphs. The fact that denser
graphs lead to higher power is also evident as we compare the performance of
3-MST/MDP/NNG to the (1-) versions. Also, 3-MST/MDP/NNG have similar
power, indicating that power is not sensitive to the method of graph construction,
so long as the graph and distance function effectively separates F0 from F1.

Another interesting fact on the graph-based tests is that their power mainly de-
pends on the size of the change and not decrease much as the dimension increases.
This can be seen clearly in the first table in Table 4. As we increase the change
(�) from 1.2 (d = 100) to 2 (d = 175), there is an increasing trend in power for
each of the graph-based tests. On the other hand, there is a slightly decreasing
trend for the Hotelling’s T 2 test. Also, as we jump from d = 175 to d = 500, we
only increase the change a little (2 to 2.5) to have all the graph-based tests remain
similar power. These results show that the graph-based tests are powerful in high
dimension despite the hubbing phenomenon.

For all scenarios that the null is rejected, we also tally whether the estimated
change-points are within [80,120] to check their accuracy (numbers in parenthe-
ses, Table 4). We see that, in terms of the accuracy, the graph-based methods are
comparable to, if not better than, that based on normal theory.
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TABLE 4
Number of simulated sequences (out of 100) with significance less than 5%, and the numbers in

parentheses are those having the estimated change-point within [80, 120]

Normal data, � = I

d 1 10 50 100 125 150 175 500
� 0.5 0.8 1 1.2 1.4 1.6 2 2.5

T 2 85 97 80 69 69 66 53 –
(68) (83) (64) (58) (58) (54) (42) –

GLR 74 26 12 – – – – –
(60) (14) (0) – – – – –

1-, 3-MST 15, 30 20, 52 14, 42 17, 38 27, 48 38, 65 60, 86 58, 87
(4, 16) (13, 37) (11, 37) (13, 34) (18, 44) (33, 59) (54, 85) (51, 85)

1-, 3-MDP 13, 19 16, 34 14, 29 15, 24 30, 42 26, 48 40, 77 49, 72
(0, 6) (6, 23) (7, 18) (8, 15) (19, 24) (19, 37) (30, 63) (29, 56)

1-, 3-NNG 11, 28 20, 51 18, 40 17, 32 27, 51 32, 67 53, 87 57, 88
(3, 17) (14, 39) (14, 32) (12, 28) (19, 47) (27, 61) (49, 85) (50, 85)

Normal data, � is diagonal with �[1,1] = d1/3,�[i, i] = 1, i = 2, . . . , d

d 1 5 10 20
� 0.5 0.4 0.1 0.2

T 2 78 16 7 7
(60) (11) (1) (1)

GLR 65 80 69 23
(45) (70) (59) (10)

1-, 3-MST 14, 33 29, 52 35, 61 62, 85
(5, 17) (15, 30) (24, 52) (44, 77)

1-, 3-MDP 14, 17 12, 29 17, 42 44, 76
(1, 6) (4, 17) (7, 28) (24, 61)

1-, 3-NNG 8, 31 28, 45 30, 64 58, 86
(3, 11) (12, 28) (18, 51) (42, 74)

Log-normal data, � = I

d 1 5 10 20 50 75 100
� 0.7 0.9 1 1 1.2 1.4 1.4

T 2 78 84 78 54 57 43 28
(57) (69) (61) (38) (43) (34) (20)

GLR 30 15 16 14 11 – –
(21) (9) (8) (3) (0) – –

1-, 3-MST 24, 59 41, 67 43, 89 33, 64 45, 66 54, 84 52, 75
(11, 43) (29, 54) (38, 79) (26, 57) (32, 60) (48, 81) (44, 72)

1-, 3-MDP 18, 28 23, 53 24, 52 13, 32 30, 51 23, 65 24, 58
(5, 17) (7, 35) (15, 40) (3, 19) (19, 37) (19, 50) (15, 41)

1-, 3-NNG 18, 51 38, 67 32, 77 27, 60 46, 70 49, 85 46, 75
(10, 33) (27, 53) (27, 66) (20, 52) (32, 61) (43, 82) (38, 71)
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5. Real data examples. We illustrate the new approach on two different ap-
plications. The first is a statistical analysis of the text of Tirant lo Blanc. The second
is a longitudinal study of a network through time.

5.1. Authorship debate. Tirant lo Blanc, a chivalry novel published in 1490, is
considered to be one of the best known medieval works of literature in Catalan, and
is well recognized to be a major influence to Don Quixote. For such an important
work in western literature, there is a long lasting debate regarding its authorship
originated from conflicting information provided in its first published version. The
dedicatory letter at the beginning of the book states,

. . . So that no one else can be blamed if any faults are found in this work, I, Joanot
Martorell, knight, take sole responsibility for it, as I have carried out the task single-
handedly. . .

However, the colophon at the end of the book states something different,

. . . by the magnificent and virtuous knight, Sir Joanot Martorell, who because of his
death, could only finish writing three parts of it. The fourth part, which is the end of the
book, was written by the illustrious knight Sir Marti Joan de Galba. If faults are found
in that part, let them be attributed to his ignorance. . .

This inconsistency sparked a debate, still ongoing, about the authorship of Tirant
lo Blanc since its publication. Opinions have mainly fallen into two camps, one
favoring single authorship by Joanot Martorell and the other favoring a change of
author somewhere between Chapters 350 and 400 with 487 chapters in total. One
objective way to settle this debate is through the statistical analysis of word usage,
which reflects the unique writing style of different people.

Girón, Ginebra and Riba (2005) analyzed two sets of word usage statistics ex-
tracted from the book. The first, which we call the word length data set, catego-
rizes the words in each chapter by its length, with a single category for all words
with length greater than nine letters. Thus, this data set represents each chapter
by a vector of length 10. The second, which we call the context-free word fre-
quency data set, counts the occurrence of the 25 most frequent context-free words
in each chapter. Girón, Ginebra and Riba (2005) analyzed the two data sets using a
Bayesian multinomial change-point model and a Bayesian clustering method, and
concluded in favor of the change of author hypothesis with the estimated change-
point between Chapters 371 and 382.

Here, we apply the graph based change-point method to the two data sets, treat-
ing each chapter as a time-point. There are in total 487 chapters, and we use the
425 chapters that have more than 200 words. For both data sets, we normalized the
count vector for each chapter by dividing the total number of words in the chapter.
Thus, our data is a sequence of 425 normalized proportions, of dimension 10 for
the word length data and dimension 25 for the context-free word frequency data.
The L2 norm is used to construct the MST, MDP and NNG graphs representing
similarity between chapters. ZG(t) and the estimated change-points, computed for



GRAPH-BASED CHANGE-POINT DETECTION 167

Data MST MDP NNG

Word length 0.0000 (1.5e–9) 0.0042 (0.0018) 0.0000 (7.5e–7)
Context-free word frequency 0.0000 (2.7e–13) 0.0000 (6.1e–6) 0.0000 (3.0e–14)

FIG. 9. Results of graph-based scans of chapter-wise word usage frequencies of Tirant lo Blanc,
based on the word length data (first row) and context-free word frequency data (second row). The
three columns show scans based on three different graphs: MST, MDP and NNG from left to right.
In each plot, ZG(t) is plotted along t (chapter). The estimated change-point is shown in the caption
above the plot in the form A/B , where A is the index of the change-point within the 425 chapters
used for analysis, and B is the chapter number in the novel. The two vertical lines show n0 and n1;
we excluded the first 5% and the last 5% of the points. The horizontal lines show critical values at
0.05 and 0.01 significance levels, with the solid lines showing critical values computed from 10,000
permutations and the dashed lines showing those computed from the analytic approximation with
skewness correction. The table lists the p-values for the tests through 10,000 permutations with the
skew-corrected approximations in parentheses.

each type of graph, are shown in Figure 9. Test results using the three different
graphs and the two data sets support the change of author hypothesis, with the es-
timated change-point around Chapter 360, which is consistent with the view that
there is a change of author somewhere between Chapters 350 and 400. The p-
values are shown in the table in Figure 9.

To check the robustness of our analysis, we also applied the scan on data for
the first 350 chapters to see if it rejects the null there. Opinions seem to be quite
uniform that the first 350 chapters were all written by Joanot Martorell. The results
are shown in Figure 10. The word length data does not reject the null for the 350
chapters at 0.05 significance level. However, the context-free word frequency data
supports a change-point, although different graphs favor different locations for
the change-point. The p-values of the tests are shown in the table in Figure 10.
One explanation is that the context-free word frequency is still affected by the
context, and thus less robust than the word length in reflecting writing styles. It



168 H. CHEN AND N. ZHANG

Data MST MDP NNG

Word length 0.0485 (0.0562) 0.1079 (0.1040) 0.3053 (0.3527)
Context-free word frequency 0.0000 (2.9e–13) 0.0018 (0.0009) 0.0000 (1.3e–11)

FIG. 10. Results from the first 350 chapters. The setting of the figure is the same as in Figure 9.
The table lists the p-values for the tests through 10,000 permutations with the skew-corrected ap-
proximations in parentheses.

is also possible that the first author’s writing style evolves as he proceeded in the
dimension of context-free word frequency.

5.2. Friendship network. The MIT Media Laboratory conducted a study fol-
lowing 90 subjects, consisting of students and staff at the university, using mobile
phones with preinstalled software recording call logs from July 2004 to June 2005
[Eagle, Pentland and Lazer (2009)]. In this analysis, we extract the information on
the caller, callee and time for every call that was made during the study period.
The question of interest is whether phone call patterns changed during this time,
which may reflect a change in relationship among these subjects. We bin the calls
by day and, for each day, construct a network with the 90 subjects as nodes and a
link between two subjects if they had at lease one call on that day. We encode the
network of each day by an adjacency matrix, with 1 for element [i, j ] if there is an
edge between subject i and subject j , and 0 otherwise. Thus, the processed data
are adjacency matrices, one for each day from 2004/7/20 to 2005/6/14.

We show results for graphs constructed using two different dissimilarity mea-
sures. Let Ai be the 90 by 90 adjacency matrix on day i. We denote vi to be the
vector form of Ai . The dissimilarities are:

(1) the number of different edges: ‖vi − vj‖1 = ‖vi − vj‖2
2,

(2) the number of different edges, normalized by the geometric mean of the
total for each day: ‖vi−vj‖1√‖vi‖1‖vj‖1

.
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FIG. 11. Results of graph-based scans of the MIT phone call network. Top row shows results from
using number of different edges as the dissimilarity measure and bottom row shows results from
using the normalized number of different edges. The three columns show three different ways of
constructing the graph: MST, MDP and NNG from left to right. The content in each plot is the same
as in Figure 9.

Results based on different dissimilarities and different ways of constructing the
graph are shown in Figure 11. We see that statistics based on MST and NNG give
similar results under both dissimilarities. Based on the scans using MST and NNG,
a change-point occurred at around December 19, 2004 (t = 154) or January 9/10,
2005 (t = 174/175), which are almost the two ends of the winter break. So these
results suggest a change of phone call pattern as they move from the fall quarter to
the spring quarter. The statistic based on MDP is quite horizontal for a long range
of time. One reason is that for this network data, the change is relatively gradual
rather than abrupt and the constructing of MDP then tend to connect observation
t to observations t − 1 or t + 1, which makes the resulting graph not informative
in determine the location of a “big” change. The p-values for the scan based on
MST and NNG under both dissimilarity measures are all <0.0001, by both 10,000
permutations and skew-corrected approximations.

6. Extensions. In this section, we discuss some extensions to the approach
to deal with local dependency in the sequence (Section 6.1) and to construct a
confidence interval for the change-point (Section 6.2).

6.1. Block permutation for local dependency. In both applications, indepen-
dence is a useful but idealized assumption for the data. One way to deal with local
dependency is to define the null distribution as the distribution under block per-
mutation rather than permutation. In block permutation, the sequence is divided
into blocks of size b and the blocks are permuted.2 The standardized count is then
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TABLE 5
p-values from 10,000 block permutations for the authorship data set

Word length Context-free word frequency

Block size MST MDP NNG MST MDP NNG

1∗ 0 0.0042 0 0 0 0
2 0 0.0029 0 0 0 0
5 0 0.0041 0 0 0.0001 0

10 0 0.0057 0 0 0.0006 0

∗: a block size of 1 is equivalent to permutation under independence assumption.

defined as

ZG,bp(t) = −RG(t) − Ebp(RG(t))√
Varbp(RG(t))

,(6.1)

where Ebp(RG(t)) and Varbp(RG(t)) are the expectation and variance for RG(t)

under block permutation.3 The test statistic is now defined as

max
n0≤t≤n1

ZG,bp(t),(6.2)

and the p-value for the above statistic can be obtained by block permutation. While
analytical formulas for the null moments and the family-wise error rate under the
block permutation model are too complicated to be practical, for medium to small
data sets these quantities can be obtained by brute force computation.

We used the block permutation model to analyze both the Tirant lo Blanc au-
thorship and the friendship network data. The p-values for the authorship data
under different block sizes (2, 5, 10) are summarized in Table 5, and plots of the
ZG,bp values are shown in Figure 12 (block size 5) and Supplement D.1.1 [Chen
and Zhang (2014)] (block size 2 and 10). Results for the authorship data with the
first 350 chapters and the phone call network data are in Supplement D [Chen and
Zhang (2014)].

In all cases, block permutation gives the same conclusion as permutation. Block
permutation tends to increase the p-value when the block size is large. Simulation
studies show that this is the case even when the sequence is made up of independent
observations. It is due to the fact that block permutation with large blocks produces
a less homogeneously mixed sequence. Despite the slight decrease in significance,
the fact that p-values remain in the same regime even under block permutation
boosts our confidence in our conclusions for both applications.

2There are b ways to divide the sequence into blocks of size b, with the first block of size
1,2, . . . , b. For each block permuted sequence, we first randomly chosen one way from the b ways,
and then randomly permute the blocks.

3Ebp(·) and Varbp(·) can be calculated by doing, for example, 10,000 block permutations.
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FIG. 12. Results of graph-based scans of chapter-wise word usage frequencies of Tiran lo Blanc,
based on the word length data (first row) and context-free word frequency data (second row), under
block permutation with block size 5. The critical values at 0.05 and 0.01 levels, obtained from 10,000
block permutation runs are shown in these blue dash lines. The solid black lines are critical values
from permutation.

6.2. Confidence interval for estimated change-point. Upon rejection of the
null one is often concerned with the accuracy of the estimate of the change-point
location. To some extent, we explored this in Section 4 by tallying whether the
estimated change-point is within a fixed window centered at the true change-point.
Here, we describe a procedure for constructing a confidence region for the change-
point, which is motivated by the approach studied by Worsley (1986), where it was
called a Cox–Spjøtvoll-type confidence region citing the original paper Cox and
Spjøtvoll (1982).

The Cox–Spjøtvoll type confidence region is based on the duality relationship
where the α level confidence region for a change-point contains all values k that
partition the sequence into two subsequences (before and after k), where within the
subsequences the hypothesis of homogeneity cannot be rejected at level α. That is,
let pL

k and pR
k be the p-values for testing the null hypothesis of homogeneity

in respectively the left and right subsequences when partitioned at k. A 1 − α

confidence region can be expressed as

Dα = {
k :pL

k ,pR
k ≥ 1 − √

1 − α
}
.

On the word length data, the 0.01 confidence region D0.01 for the chap-
ter where the author changes from Joanot Martorell to Marti Joan de Galba is
{296} ∪ [298,355]. While this region is informative, the break between Chapters
296 and 298 is hard to interpret. Note that for a value k < τ̂ to belong to a 1 − α

level Cox–Spjøtvoll region, both the subsequence to the left of k and the subse-
quence to the right of k must test negative for a change-point. The subsequence to
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the right of k, which contains τ̂ , usually tests positive if there are enough points
between k and τ̂ . In this way, the confidence region has the desirable tendency
of including points close to τ̂ . The subsequence to the left of k, which does not
include τ̂ , may test positive for a change-point for two reasons: Inhomogeneity in
the left subsequence, for example, existence of another change-point before τ , or a
false positive due to random chance. Neither of these reasons seems to have much
to do with our precision of estimating τ with τ̂ .

For example, 297 is excluded in the confidence region for the change of author
in Tirant lo Blanc because of what happened in Chapters 1 to 297, not because of
what happened in Chapter 298 onward (the right subsequence actually test neg-
ative). There is no historical evidence pointing to a third author, and thus we are
willing to believe that there is either one author (Joan Martorell) or two authors
(Joan Martorell and Marti Joan de Galba). Thus, when we compute our confidence
region for the change-point, we are doing so under the premise that there is a single
change in author. Hence, not including 297 due to possible inhomogeneity prior
to Chapter 297, when our best estimate of the change-point is 320, seems a bit
silly. We would much rather include 297, claim to have a conservative interval,
and forego the exact coverage property of the Cox–Spjøtvoll region.

Motivated by these considerations, we modify the Cox–Spjøtvoll type confi-
dence region in the following way: If k comes before the estimated change-point
(τ̂ ), we test whether the right-subsequence contains a change-point; and if k comes
after τ̂ , we test whether the left-subsequence contains a change-point. In other
words, let

Cα,L = {
k < τ̂ :pR

k ≥ 1 − √
1 − α

}
,

Cα,R = {
k < τ̂ :pL

k ≥ 1 − √
1 − α

}
,

our confidence region is Cα = Cα,L ∪ Cα,R ∪ {τ̂ }. Since Cα ⊇ Dα , Cα is a conser-
vative α level confidence region. Cα is more likely than Dα to form an interval,
and despite its conservativeness it is more accurate in reflecting the precision of τ̂

in estimating τ when we believe τ to be the sole change-point.
This modified procedure is illustrated on the word length data shown in Fig-

ure 13. The 0.01 confidence region for the location of change in author is
[281,355], which correspond to original chapter numbers 330 to 409. Compar-
ing to D0.01, we deduce that not only 297 but 281–295 were excluded from D0.01
due to possible inhomogeneity in the left subsequence. As for any real data, ho-
mogeneity is an ideal and not a completely correct assumption for the Tirant lo
Blanc word length sequence. In reporting the Cα region, we are choosing a region
that is more conservative, but in turn, more robust against slight deviations from
the model.

7. Conclusions and discussion. The proposed method for change-point de-
tection can be applied to a wide range of data, requiring only the existence of a
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FIG. 13. Illustration for computing the Cα confidence region for location of change in author in
Tirant lo Blanc on word length data with G being a MST. The vertical line is the estimated change–
point. The x-axis is the indices on the chapters being used and y-axis is the p-value for the right- or
left-subsequence (depending on whether the point is resp. before or after τ̂ ). The horizontal line is at
the value 1 − √

1 − 0.01.

dissimilarity measure on the sample space. In applications, the choice of a good
dissimilarity measure is critical, and domain knowledge should be used to design a
measure that is sensitive to the signal of interest. The graph-based approach in this
paper decouples this modeling choice of dissimilarity measure from the formal test
for a change-point. Given the graph, the scan statistics are straightforward to com-
pute, with general off-the-shelf analytic formulas for family-wise error control.

We have shown that the p-value approximations are quite accurate. Our simula-
tions were for a data sequence of length n = 1000. The accuracy of the approxima-
tions depend on the minimum allowed group size n0 (l0 for the changed interval
alternative) and not so much on n. Accuracy also depends on the structure of the
graph. When the graph is dominated by hubs, skewness correction is critical for the
approximations to be accurate. For extremely star-shaped graphs, we imagine that
adjusting for kurtosis and higher order moments would also be helpful. The strat-
egy would be similar to skewness correction, but more technically complicated.
We do not compute these higher order terms in this paper, but if needed they can
be computed in a similar fashion as the skewness term with the aid of a symbolic
computation software.

If hubs dominate the topology of the graph, perturbation of any hub can change
the topology drastically, and RG(t), which does not take into account the interac-
tion between edges, loses all information regarding the high order structure. Under
such circumstances, the particular graph would not be useful for differentiating F1
from F0, and one would need to explore other dissimilarity measures and graph
construction methods on the data. Radovanović, Nanopoulos and Ivanović (2010)
studied the hubbing phenomenon in high dimensional data under several similarity
measures, which can serve as a starting point for choosing informative similarity
measures for particular problems.
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Compared to parametric approaches, the graph-based approach requires far
fewer assumptions, but also makes less use of the data. Although this leads to
loss of power in low dimensions if the data indeed follow the parametric model,
it leads to robustness and wider applicability. An important observation is that the
graph-based approach has desirable power, compared to existing parametric tests,
in moderate and high dimensions. For high dimensional data, it is often hard to pre-
dict the direction and nature of the change. Without such prior knowledge, para-
metric models would require the estimation of many parameters, most of which
would be unrelated to the change. For example, the Hotelling T 2 statistic requires
the estimation of the large covariance matrix. If, by prior knowledge or data pre-
processing, we can circumvent the covariance estimation, then Hotelling T 2 would
be preferable when the data satisfies its assumptions—normality with no change
of variance. Otherwise, graph-based approaches gain increasing advantage over
Hotelling’s T 2 as d increases, even in the problem for which Hotelling’s T 2 was
explicitly designed.

We explored three different ways of constructing the underlying graph given a
dissimilarity measure. From the numerical results and the analysis of the MIT cell
phone network, we see that scans based on MST and NNG perform similarly, while
scans based on MDP have lower power. We suspect this is due to the fact that MDP
is the least dense graph and utilizes the least amount of information from the orig-
inal data set. This is confirmed as the power increases when we use denser graphs
(3-MST/MDP/NNG vs. 1-MST/MDP/NNG). More study is needed to determine
what is the optimal choice of graph. One may also consider assigning weights to
the edges. As in all problems, building more assumptions into the statistic leads to
improved power if the assumptions are true, but sacrifices robustness.

The analytic moment and significance formulas assume independent observa-
tions. When there is local dependence, block permutations may be useful in pro-
ducing more accurate p-values. We illustrated this in Section 6.1. Block permu-
tation is computationally intensive, and in practice one always wrestles with the
question of how to choose the block size. When local dependence is weak, as for
our data examples, the thresholds given by block permutation are quite close to the
analytic thresholds that assume dependence.

A Cox–Spjøtvoll type confidence region, as proposed by Worsley (1986), can
be computed under this graph-based framework to assess the uncertainty in the
estimation of the change-point. As described in Section 6.2, we find Worsley’s
approach to be sometimes misleading in practice, and propose a modification that
is conservative but more robust. Our discussion focused on the inference for the
chapter where authorship changed in Tirant lo Blanc, because this seems to be a
problem where the space of models is limited, and the interpretation of the change-
point parameter is clear.

If more than one change-point or changed interval were of interest, the graph-
based scan can be applied recursively in a procedure that is called binary or circular
binary segmentation [Olshen et al. (2004), Vostrikova (1981)].
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SUPPLEMENTARY MATERIAL

Supplement to “Graph-based change-point detection” (DOI: 10.1214/14-
AOS1269SUPP; .pdf). Supplement A: Proofs for lemmas, propositions and theo-
rems. We provide the proofs to the lemmas, propositions and theorems. Supple-
ment B: Skewness correction. We provide the details to the skewness correction
we used. Supplement C: Checking analytic approximations to p-values. We pro-
vide more results in checking analytic approximations to p-values. Supplement D:
Block permutation results. We provide more results on block permutation in ana-
lyzing the two real data examples.
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