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WHEN UNIFORM WEAK CONVERGENCE FAILS: EMPIRICAL
PROCESSES FOR DEPENDENCE FUNCTIONS AND
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In the past decades, weak convergence theory for stochastic processes
has become a standard tool for analyzing the asymptotic properties of various
statistics. Routinely, weak convergence is considered in the space of bounded
functions equipped with the supremum metric. However, there are cases when
weak convergence in those spaces fails to hold. Examples include empirical
copula and tail dependence processes and residual empirical processes in lin-
ear regression models in case the underlying distributions lack a certain de-
gree of smoothness. To resolve the issue, a new metric for locally bounded
functions is introduced and the corresponding weak convergence theory is
developed. Convergence with respect to the new metric is related to epi- and
hypo-convergence and is weaker than uniform convergence. Still, for contin-
uous limits, it is equivalent to locally uniform convergence, whereas under
mild side conditions, it implies Lp convergence. For the examples mentioned
above, weak convergence with respect to the new metric is established in sit-
uations where it does not occur with respect to the supremum distance. The
results are applied to obtain asymptotic properties of resampling procedures
and goodness-of-fit tests.

1. Introduction. The Hoffman–Jørgensen weak convergence theory in the
space of bounded functions is a great success story in mathematical statistics
[Kosorok (2008), van der Vaart and Wellner (1996)]. Measurability assumptions
are reduced to a minimum, no smoothness assumptions on the trajectories are
needed, it applies in a vast variety of circumstances, and the topology of uniform
convergence is fine enough so that, through the continuous mapping theorem and
functional delta method, it implies weak convergence of a countless list of inter-
esting statistical functionals.

But precisely because of the strength of uniform convergence, there are circum-
stances where it does not hold. Weak convergence can fail when the (pointwise)
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candidate limit process has discontinuous trajectories. Think of empirical distri-
butions based on residuals of some sort, that is, observations that are themselves
approximations of some latent random variables. Because of the measurement er-
ror in the ordinates, jump locations fail to be located exactly, and uniform conver-
gence fails. The examples which interest us in this paper concern empirical copula
processes, the empirical process based on residuals in a linear regression setting
and empirical tail dependence function processes.

A radical solution to the lack-of-convergence issue is to seek for another metric
on an appropriate function space. The metric should be weak enough so that con-
vergence does take place, but still strong enough to enable statistical applications.
Ideally, when the limit process has continuous trajectories, it should be equiva-
lent to uniform convergence, so that in standard situations, nothing is lost. This
is a difficult task, and it turns out that the various extensions of Skorohod’s met-
rics [Skorohod (1956)] to functions of several variables [Bass and Pyke (1985),
Bickel and Wichura (1971), Neuhaus (1971), Straf (1972)] are not suitable for the
examples that we consider.

In the present paper, we construct such a metric by building on ideas that orig-
inate in variational analysis and optimization theory. In the context of minimiza-
tion problems, one identifies a real function f on a suitable metric space T with
its epigraph, which is the set of all points (x, y) in T × R such that f (x) ≤ y.
Epi-convergence of functions is then defined as Painlevé–Kuratowski convergence
of their epigraphs [Beer (1993), Molchanov (2005), Rockafellar and Wets (1998)].
For maximization problems, hypographs and hypo-convergence are defined in the
same way, the inequality sign pointing in the other direction.

Combining these modes of convergence, we will say that fn hypi-converges
to f if the epigraphs of fn converge to the closure of the epigraph of f and the
hypographs of fn converge to the closure of the hypograph of f . This mode of
convergence is to be distinguished from epi/hypo-convergence, a concept arising
in connection with saddle points [Attouch and Wets (1983)].

Broadly speaking, hypi-convergence is intermediate between uniform conver-
gence and Lp convergence. Hypi-convergence implies uniform convergence on
compact subsets of the domain that are contained in the set of continuity points
of the limit function. Hence, for continuous limits, we are back to uniform con-
vergence. But even without continuity, hypi-convergence implies convergence of
global extrema. Moreover, for limit functions which are continuous almost every-
where, hypi-convergence implies Lp convergence on compact sets.

In a similar way as one can consider weak epi-convergence of random
lower semicontinuous functions [Geyer (1994), Molchanov (2005)], we de-
velop Hoffman–Jørgensen weak convergence theory with respect to the hypi-
(semi)metric. Thanks to an extension of the continuous mapping theorem for
semimetric spaces, we are able to leverage the above properties of hypi-convergen-
ce to yield weak convergence of finite-dimensional distributions, Kolmogorov–
Smirnov type statistics, and procedures related to Lp spaces, notably Cramér–von
Mises statistics. An extension of the functional delta method is also discussed.
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We investigate weak convergence with respect to the hypi-semimetric of empiri-
cal copula processes, empirical tail dependence functions, and empirical processes
based on regression residuals. Weak hypi-convergence of the empirical copula pro-
cess is established for copulas whose partial derivatives exist and are continuous
everywhere except for an arbitrary Lebesgue null set of the unit cube, which ex-
tends results from Rüschendorf (1976) and others (see Section 4 for more ref-
erences on the empirical copula process). From there, we show validity of the
bootstrap [see Fermanian, Radulović and Wegkamp (2004)] and extend results on
power curves for goodness-of-fit tests under local alternatives [Genest, Quessy
and Remillard (2007)]. Similar results are shown for tail dependence functions,
extending Bücher and Dette (2013) and Einmahl, Krajina and Segers (2012). Clas-
sical results on the empirical distribution function of regression residuals [Koul
(1969), Loynes (1980)] are extended to the case where the true distribution has a
discontinuous density.

The structure of the paper is as follows. The hypi-topology is introduced in Sec-
tion 2. Weak convergence in hypi-space is the topic of Section 3. We provide tools
for checking weak hypi-convergence and for exploiting it in a statistical context.
The new framework is applied for empirical copula processes in Section 4, for
empirical tail dependence function processes in Section 5, and for the empirical
process of regression residuals in Section 6. These three sections can be read in-
dependently of one another. In order to preserve the flow of the text, a number of
auxiliary results and all proofs are deferred to a sequence of Appendices and an
online supplement [Bücher, Segers and Volgushev (2014)]. The weak convergence
theory for semimetric spaces in Appendix B, including a version of the extended
continuous mapping theorem and the functional delta method, is perhaps of inde-
pendent interest.

2. Hypi-convergence of locally bounded functions. We introduce a mode
of convergence for real-valued, locally bounded functions on a locally compact,
separable metric space (Section 2.1). For continuous limits, the metric is equivalent
to locally uniform convergence, but for discontinuous limits, it is strictly weaker,
while still implying Lp convergence (Section 2.2). The proofs for the results in
this section are given in Appendix F.1.

2.1. The hypi-semimetric. Let (T, d) be a locally compact, separable met-
ric space. The space T × R is a locally compact, separable metric space,
too, when equipped, for instance, with the metric dT×R((x1, y1), (x2, y2)) =
max{d(x1, x2), |y1 − y2|}.

Let �∞
loc(T) denote the space of locally bounded functions f :T → R, that is,

functions that are uniformly bounded on compacta. If T is itself compact, we will
simply write �∞(T). Functions f ∈ �∞

loc(T) will be identified with subsets of T×R
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by considering their epigraphs and hypographs:

epif = {
(x, y) ∈ T×R :f (x) ≤ y

}
,

hypof = {
(x, y) ∈ T×R :y ≤ f (x)

}
.

Except for being locally bounded, functions f in �∞
loc(T) can be arbitrarily rough.

A minimal amount of regularity will come from the lower and upper semicontinu-
ous hulls f∧ ≤ f ≤ f∨:

f∧(x) = sup
ε>0

inf
{
f

(
x′) :d

(
x′, x

)
< ε

}
,(2.1)

f∨(x) = inf
ε>0

sup
{
f

(
x′) :d

(
x′, x

)
< ε

}
,(2.2)

functions which are elements of �∞
loc(T), too. Note that (−f )∧ = −f∨. A con-

venient link between epi- and hypographs on the one hand and lower and upper
semicontinuous hulls on the other hand is that

cl(epif ) = epif∧, cl(hypof ) = hypof∨,

where “cl” denotes topological closure, in this case, in the space T × R. In par-
ticular, a function f is lower (upper) semicontinuous if and only if its epigraph
(hypograph) is closed.

Functions being identified with sets, notions of set convergence can be ap-
plied to define convergence of functions. We rely on classical theory exposed in,
among others, Matheron (1975), Beer (1993), Rockafellar and Wets (1998) and
Molchanov (2005). A standard topology on the space of closed subsets of a topo-
logical space is the Fell hit-and-miss topology. If the underlying space is locally
compact and separable, as in our case, then the Fell topology is metrizable. More-
over, in that case, convergence of a sequence of closed sets in the Fell topology
is equivalent to their Painlevé–Kuratowski convergence. Recall that (not necessar-
ily closed) sets An of a topological space converge to a set A in the Painlevé–
Kuratowski sense if and only if (i) for every x ∈ A there exists a sequence xn

with xn ∈ An such that xn → x and (ii) whenever xnk
∈ Ank

for some subse-
quence nk converges to a limit x, we must have x ∈ A. The limit set A is nec-
essarily closed, and Painlevé–Kuratowski convergence of An to A is equivalent to
Painlevé–Kuratowski convergence of cl(An) to A.

Let F(T × R) be the space of closed subsets of T × R and let dF be a metric
inducing the Fell topology, or equivalently, Painlevé–Kuratowski convergence. Ex-
amples of metrics dF for the Fell topology are to be found in Rockafellar and Wets
(1998), Molchanov (2005) and Ogura (2007). A versatile notion of convergence
of functions in optimization theory is epi-convergence: a sequence of functions
fn :T → R is said to epi-converge to a function f if and only if the Painlevé–
Kuratowski limit of epifn (or equivalently, its closure) is equal to epif , that is, if
dF (cl(epifn), cl(epif )) → 0 as n → ∞. Necessarily, the limit set epif is closed
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and, therefore, f must be lower semicontinuous. Similarly, hypo-convergence of
functions is defined as Painlevé–Kuratowski convergence of their hypographs (or
their closures), and the limit function is necessarily upper semicontinuous.

If fn both epi-converges to f∧ and hypo-converges to f∨, then we say that fn

hypi-converges to f . This mode of convergence is the one that we propose in this
paper. According to the following result, hypi-convergence is metrizable and can
be checked conveniently by pointwise criteria.

PROPOSITION 2.1 (Hypi-convergence). Let fn,f ∈ �∞
loc(T). The following

statements are equivalent:

(i) fn epi-converges to f∧ and hypo-converges to f∨.
(ii) The following pointwise criteria hold:⎧⎨

⎩
∀x ∈ T :∀xn → x :f∧(x) ≤ lim inf

n→∞ fn(xn),

∀x ∈ T :∃xn → x : lim sup
n→∞

fn(xn) ≤ f∧(x)
(2.3)

and ⎧⎨
⎩

∀x ∈ T :∀xn → x : lim sup
n→∞

fn(xn) ≤ f∨(x),

∀x ∈ T :∃xn → x :f∨(x) ≤ lim inf
n→∞ fn(xn).

(2.4)

(iii) The distance dhypi(fn, f ) converges to 0, where dhypi denotes the hypi-
semimetric defined as

dhypi(f, g) = max
{
dF (epif∧, epig∧), dF (hypof∨,hypog∨)

}
,

and dF is a metric on F(T×R) inducing the Fell topology.
(iv) fn converges to f in the hypi-topology, which is defined as the coarsest

topology on �∞
loc(T) for which the map

�∞
loc(T) → F(T×R) ×F(T×R) :f �→ (

cl(epif ), cl(hypof )
)

is continuous, that is, the hypi-open sets in �∞
loc(T) are the inverse images of open

sets in F(T×R) ×F(T×R).

Note that in (2.3) and (2.4), we can replace fn by fn,∧ and fn,∨, respectively
(Lemma A.1). The equivalence of (i) and (ii) follows from well-known pointwise
criteria for epi- and hypo-convergence [Molchanov (2005), Chapter 5, Proposi-
tion 3.2(ii)]. Statements (iii) and (iv) are just reformulations of what it means to
have both epi- and hypo-convergence in (i).

Intuitively, two functions are close in the hypi-semimetric if both their epigraphs
and their hypographs are close. Two functions on T = [0,1] whose epigraphs are
close but whose hypographs are far away are depicted in the upper part of Fig-
ure 1: for instance, the point (0.5,1) belongs to the hypograph of the dotted-line
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FIG. 1. Top: two functions whose epigraphs are close but whose hypographs are far away. Bottom:
two functions of which both the epi- and hypographs are close. The light gray areas represent
epigraphs (left column) and hypographs (right column) of the functions depicted by solid lines,
whereas shaded areas represent epigraphs (left column) and hypographs (right column) of the func-
tions depicted by dotted lines.

function but is far away from any point in the hypograph of the solid-line function.
As a consequence, these two functions are not close in the hypi-semimetric. For
comparison, two functions that are close in the hypi-semimetric are depicted in the
lower part of Figure 1.

By Proposition 2.1(ii), if fn hypi-converges to f and if f is continuous at x,
then fn(xn) → f (x) whenever xn → x. Moreover, it follows that locally uni-
form convergence of locally bounded functions implies their hypi-convergence.
The converse is not true if the hypi-limit is not continuous.
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Hypi-convergence of sequences fn and gn to f and g, respectively, does in
general not imply hypi-convergence of the sequence of sums, fn + gn, to the sum
of the limits, f + g. For instance, let xn converge to x in T with xn �= x and set
fn = 1{xn} and gn = −1{x}. Still, a sufficient condition is that at least one of the
limit functions is continuous; see Lemma A.4 for an even more general result.

An alternative view on the hypi-topology can be gained by identifying f ∈
�∞

loc(T) with its completed graph �(f ) = epi(f∧) ∩ hypo(f∨) [Vervaat (1981)].
We suspect that for certain domains, hypi-convergence is equivalent to set con-
vergence of completed graphs. For càdlàg functions on T = [0,1], the latter con-
vergence can be seen to be equivalent to Skorohod M2-convergence [Molchanov
(2005), page 377], whence hypi-convergence can be regarded as a coordinate-free
extension of Skorohod M2-convergence to nonsmooth functions on rather general
domains.

2.2. Leveraging hypi-convergence. As mentioned already, uniform conver-
gence implies hypi-convergence but not conversely. Nevertheless, at subsets of
the domain where the limit function is continuous, the converse does hold. In this
sense, working in hypi-space does not necessarily yield weaker results than in the
uniform topology. All proofs for this section are given in Appendix F.1 in the sup-
plement [Bücher, Segers and Volgushev (2014)].

PROPOSITION 2.2. Let K ⊂ T be compact and let f ∈ �∞
loc(T) be continu-

ous at every x ∈ K . If fn hypi-converges to f in �∞
loc(T), then supx∈K |fn(x) −

f (x)| → 0 as n → ∞.

Being a combination of epi- and hypo-convergence, hypi-convergence preserves
convergence of extrema. Later, we will make use of this property when investigat-
ing Kolmogorov–Smirnov type test statistics (Section 4.3).

PROPOSITION 2.3. Let G ⊂ T be an open subset with compact closure. If
fn hypi-converges to f in �∞

loc(T) and if f is continuous on the boundary of G,
then inffn(G) → inff (G) and supfn(G) → supf (G) as n → ∞. If G = T is
compact, then the boundary of G in T is empty, and hence the conclusions hold
true without imposing any conditions on f .

Hypi-convergence implies Lp-convergence for finite p, provided that the limit
function is not too rough. This is useful, for instance, when studying Cramér–
von Mises statistics (Section 4.3) and other statistical procedures based on the
L2-distance, such as minimum distance estimators. Recall that upper and lower
semicontinuous functions are necessarily Borel measurable.

PROPOSITION 2.4. Let μ be a finite Borel measure supported on a compact
subset of T. If fn hypi-converges to f in �∞(T) and if f is continuous μ-almost
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everywhere, then, for every p ∈ [1,∞), we have
∫ |fn,∨ − fn,∧|p dμ → 0 and∫ |f ∗

n − f ∗|p dμ → 0 as n → ∞, where f ∗
n and f ∗ represent arbitrary Borel

measurable functions on T such that fn,∧ ≤ f ∗
n ≤ fn,∨ and f∧ ≤ f ∗ ≤ f∨.

3. Weak hypi-convergence of stochastic processes. When applying
Hoffman–Jørgensen weak convergence theory, it is customary to work in a metric
space. However, dhypi is a semimetric and not a metric: if functions f,g ∈ �∞

loc(T)

share the same lower and upper semicontinuous hulls, then dhypi(f, g) = 0 even if
f and g are different functions.

To obtain a metric space, we consider equivalences classes of functions at hypi-
distance zero. For f ∈ �∞

loc(T), let [f ] be the set of all g ∈ �∞
loc(T) such that

dhypi(f, g) = 0. Let L∞
loc(T) be the space of all such equivalence classes. Then

L∞
loc(T) becomes a metric space when equipped with the hypi-metric (abusing no-

tation) dhypi([f ], [g]) := dhypi(f, g). The map [·] from �∞
loc(T) into L∞

loc(T) send-
ing f to [f ] is continuous and it sends open sets to open sets and closed sets to
closed sets.

Let Xn and X be maps from probability spaces �n and �, respectively, into
�∞

loc(T). Assume that X is hypi Borel measurable, that is, measurable with respect
to the σ -field generated by the hypi-open sets of �∞

loc(T). Then the map [X] =
[·](X) into L∞

loc(T) is Borel measurable, too. Since L∞
loc(T) is a metric space, weak

convergence theory as in van der Vaart and Wellner (1996) applies: we say that
Xn weakly hypi-converges to X in �∞

loc(T) if and only if [Xn] � [X] in L∞
loc(T).

Simplifying notation, we sometimes omit brackets and write Xn � X in L∞
loc(T).

In order to prove weak hypi-convergence, we will usually combine an initial
result on weak convergence of some stochastic process, usually some empirical
process and with respect to the supremum distance, with the (extended) continuous
mapping theorem [van der Vaart and Wellner (1996), Theorems 1.3.6 and 1.11.1].
The task then consists of proving hypi-continuity of the relevant mappings into
�∞

loc(T) on sufficiently large subsets of their domains. Two situations of particular
importance are the following:

• convergence of sums, inducing in particular a variant of Slutsky’s lemma
(Lemma 3.1 and Appendix A.1);

• convergence to a function in �∞
loc(T) that is defined as the upper or lower semi-

continuous hull of some other function that is originally defined on a dense
subset of T only (Appendix A.2).

LEMMA 3.1 (Slutsky). Let Xn,Yn :�n → �∞
loc(T) be arbitrary maps and

let X :� → �∞
loc(T) be Borel measurable with respect to the hypi-semimetric. If

[Xn] � [X] and [Yn] � [0] in L∞
loc(T), then [Xn + Yn] � [X] in L∞

loc(T).

The proof of this and all other results from this section are given in Appendix F.2
in the supplement [Bücher, Segers and Volgushev (2014)].
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By Proposition 2.2, the map from (�∞
loc(T), dhypi) into (�∞(K),‖ · ‖∞) sending

a function f to its restriction f |K on a compact subset K of T is continuous at ev-
ery function f which is continuous in every point x of K ; here ‖ · ‖∞ denotes the
supremum norm. By a generalization of the continuous mapping theorem to semi-
metric spaces (Theorem B.2), weak hypi-convergence implies weak convergence
with respect to the supremum distance insofar the limit process has continuous
trajectories. More precisely, we have the following result.

COROLLARY 3.2. Let Xn and X be maps from probability spaces �n and �,
respectively, into �∞

loc(T) such that X is hypi Borel measurable. If [Xn] � [X] in
L∞

loc(T) and if K ⊂ T is a nonempty, compact set such that, with probability one,
X is continuous in every x ∈ K , then Xn|K � X|K in (�∞(K),‖ · ‖∞).

Taking K to be finite, we find that weak hypi-convergence implies weak con-
vergence of finite-dimensional distributions at points where the limit process is
continuous almost surely.

For finite Borel measures μ on T with compact support, Proposition 2.4 states
the continuity of the embedding from the set of Borel measurable functions of
�∞

loc(T) equipped with the hypi-topology into Lp(μ), for every 1 ≤ p < ∞. Again
by the continuous mapping theorem (Theorem B.2), weak hypi-convergence then
implies weak Lp-convergence. A technical nuisance is that in order to view Lp(μ)

as a metric space, we have to consider equivalence classes of functions that are
equal μ-almost everywhere; notation [·]μ.

COROLLARY 3.3. Let Xn and X be maps from probability spaces �n and �,
respectively, into �∞

loc(T) such that X is hypi Borel measurable. Let μ be a finite
Borel measure on T with compact support. If [Xn] � [X] in L∞

loc(T) and if X is
μ-almost everywhere continuous with probability one, then

∫ |Xn,∨ − Xn,∧|p dμ

converges to 0 in outer probability and both [Xn,∨]μ and [Xn,∧]μ converge weakly
in Lp(μ) to [X∨]μ = [X∧]μ, for every p ∈ [1,∞).

Addition not being continuous on �∞
loc(T), the latter space is not a topological

vector space. This prohibits a direct application of the functional delta method
[van der Vaart and Wellner (1996), Theorem 3.9.4] to weak hypi-convergence.
However, in Appendix B, we provide a variant of the functional delta method
(Theorem B.7) that is sufficiently flexible to deal with maps defined on semimetric
spaces endowed with an addition operator that is not necessarily continuous.

4. Empirical copula processes. Usually, empirical copula processes are stud-
ied in the space of bounded functions on [0,1]d equipped with the supremum dis-
tance. Weak convergence then requires existence and continuity of the first-order
partial derivatives of the copula on the interior and some subsets of the boundary
of [0,1]d . In this section, we show what can be done in case the latter smoothness
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condition is not satisfied. Existence and continuity of the partial derivatives al-
most everywhere is still enough to ensure weak hypi-convergence of the empirical
copula process (Section 4.1). The result is strong enough to validate the bootstrap
(Section 4.2) and to analyze Kolmogorov–Smirnov and Cramér–von Mises test
statistics, even under local alternatives (Section 4.3). The proofs of the results in
this section are given in Appendix C.1 and, partially, in Appendix F.3 in the sup-
plement [Bücher, Segers and Volgushev (2014)].

4.1. Weak hypi-convergence. Let Xi = (Xi1, . . . ,Xid), with i ∈ N, be a
strictly stationary sequence of d-variate random vectors. (No confusion should
arise from the use of the symbol “d” for both the metric on T above and the di-
mension of the random vectors here.) Throughout this section, the joint distribution
function F of Xi is assumed to have continuous marginal distributions F1, . . . ,Fd

and its copula is denoted by C. Further, for j = 1, . . . , d , let Uij = Fj (Xij ) and
set Ui = (Ui1, . . . ,Uid). Note that Ui is distributed according to C. Consider the
empirical distribution functions

Fn(x) = 1

n

n∑
i=1

1{Xi ≤ x}, Gn(u) = 1

n

n∑
i=1

1{Ui ≤ u}

for x ∈ R
d and u ∈ [0,1]d . For a distribution function H on the reals, let

H−(u) :=
{

inf
{
x ∈ R :H(x) ≥ u

}
, 0 < u ≤ 1,

sup
{
x ∈ R :H(x) = 0

}
, u = 0,

denote the (left-continuous) generalized inverse function of H .
The object of interest is the empirical copula, defined by

Cn(u) = Fn

(
F−

n1(u1), . . . ,F
−
nd(ud)

)
, u ∈ [0,1]d,

where Fnj denotes the j th marginal empirical distribution function. For con-
venience, we will abbreviate the notation for the empirical copula by Cn(u) =
Fn(F−

n (u)), with F−
n (u) = (F−

n1(u1), . . . ,F
−
nd(ud)).

Often, the empirical copula is defined as the distribution function of the vector
of rescaled ranks, and/or it is turned into a genuine copula via linear interpolation.
Since these variants often differ from the empirical copula by at most a term of
order op(n−1/2), uniformly over [0,1]d , they do not affect the asymptotic distri-
bution of the empirical copula process, defined by

Cn = √
n(Cn − C).(4.1)

The asymptotic behavior of Cn, especially its weak convergence in the space
�∞([0,1]d) equipped with the supremum norm ‖ · ‖∞, has been investigated
by several authors under various conditions [Bücher and Volgushev (2013),
Deheuvels (2009), Fermanian, Radulović and Wegkamp (2004), Ghoudi and
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Rémillard (2004), Rüschendorf (1976), Segers (2012), Tsukahara (2005), van der
Vaart and Wellner (2007)].

The main arguments to derive the limit of Cn are as follows. For the sake of a
clear explanation, let us assume for the moment that the random vectors (Xi )i∈N
form an i.i.d. sequence, even though the same arguments work for many time series
models with short-range dependence. Observing that Cn = Fn(F−

n ) = Gn(G−
n ), we

can decompose Cn into two terms:

Cn = √
n
{
Gn

(
G−

n

) − C
} = αn

(
G−

n

) + √
n
{
C

(
G−

n

) − C
}
,(4.2)

where αn = √
n(Gn − C) denotes the usual empirical process associated to the

sequence (Ui)i∈N.
Deriving the limit of the first term in (4.2) is standard: since αn � α in

�∞([0,1]d) with respect to the supremum norm, for a C-Brownian bridge α,
and since sup0≤uj≤1 |G−

nj (uj ) − uj | = op(1), we obtain that αn(G−
n ) � α in

(�∞([0,1]d),‖ · ‖∞), too.
Regarding the second term in (4.2), the argumentation is harder. Set βn =

(βn1, . . . , βnd), where βnj = √
n(G−

nj − id[0,1]) denotes the quantile process of
the j th coordinate and where idA is the identity map on a set A. It follows
from the functional delta method applied to the inverse mapping H �→ H− that
‖βnj + αnj‖∞ = op(1), where αnj (uj ) = αn(1, . . . ,1, uj ,1, . . . ,1), with uj ∈
[0,1] at the j th position. Therefore, βnj � −αj in (�∞([0,1]),‖ · ‖∞), where,
similarly, αj (uj ) is defined as α(1, . . . ,1, uj ,1, . . . ,1). Now,

√
n
{
C

(
G−

n

) − C
} = √

n
{
C(id[0,1]d + βn/

√
n) − C

}
,(4.3)

which can be handled under suitable differentiability conditions on C. To con-
clude upon weak convergence with respect to the supremum distance, the weakest
assumption so far has been stated in Segers (2012).

CONDITION 4.1. For j = 1, . . . , d the partial derivatives Ċj (u) exist and are
continuous on {u ∈ [0,1]d :uj ∈ (0,1)}.

Under Condition 4.1,

√
n
{
C

(
G−

n

) − C
}
(u) � −

d∑
j=1

Ċj (u)αj (uj ),(4.4)

where Ċj (u) can be defined, for instance, as 0 if uj ∈ {0,1}. Hence,

Cn(u) � C(u) = α(u) −
d∑

j=1

Ċj (u)αj (uj )(4.5)

in �∞([0,1]d) with respect to the supremum distance.
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Condition 4.1 ensures that the limit process C in (4.5) has continuous trajecto-
ries. Actually, if Cn is to converge weakly with respect to the supremum distance,
then the weak limit must have continuous trajectories with probability one. The
reason is that the mapping

	 :�∞([0,1]d) → [0,∞) :f �→ sup
u∈[0,1]d

∣∣f∨(u) − f∧(u)
∣∣

is continuous with respect to ‖ · ‖∞ and that 0 ≤ 	Cn ≤ d/
√

n → 0 almost surely.
The expression for C in (4.5) then suggests that Cn does not converge weakly in
(�∞([0,1]),‖ · ‖∞) if Condition 4.1 does not hold.

EXAMPLE 4.2 (Mixture model). For λ ∈ (0,1), consider the bivariate copula
given by

C(u1, u2) = (1 − λ)u1u2 + λmin(u1, u2).

For u1 �= u2, the partial derivatives are

Ċ1(u1, u2) = (1 − λ)u2 + λ1(u1 < u2),

Ċ2(u1, u2) = (1 − λ)u1 + λ1(u2 < u1).

On the diagonal u1 = u2, the partial derivatives do not exist. Still, by the decompo-
sition in (4.2), the finite-dimensional distributions of Cn can be seen to converge
to the ones of the process C̃ defined as

C̃(u1, u2) = α(u1, u2) − Ċ1(u1, u2)α1(u1) − Ċ2(u1, u2)α2(u2),

if u1 �= u2, whereas, on the diagonal u1 = u2 = u,

C̃(u,u) = α(u,u) − (1 − λ)u
{
α1(u) + α2(u)

} − λmax
(
α1(u),α2(u)

)
,

the distribution of which is non-Gaussian.
Now suppose that Cn � C in (�∞([0,1]d,‖ · ‖∞) for some C. Then the finite-

dimensional distributions of C must be equal to the ones of C̃. Additionally, the
trajectories of C must be continuous almost surely, and thus the law of the ran-
dom variable C(u1, u2) must depend continuously on the coordinates (u1, u2).
However, by the above expressions for C̃, continuity cannot hold at points on the
diagonal. This yields a contradiction and, therefore, Cn cannot converge weakly
with respect to the supremum distance.

By considering weak hypi-convergence, we can go far beyond Condition 4.1.
Condition 4.3 imposes the regularity needed to deal with the left-hand side of (4.3)
in the hypi-semimetric.

CONDITION 4.3. The set S of points in [0,1]d where the partial derivatives
of the copula C exist and are continuous has Lebesgue measure 1.
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Since a copula is monotone in each of its arguments, its partial derivatives au-
tomatically exist almost everywhere. Condition 4.3 then only concerns continuity
of these partial derivatives. In practice, Condition 4.3 poses no restriction at all.
Still, there do exist copulas that do not satisfy Condition 4.3. It can be shown that
a bivariate example is given by the copula with Lebesgue density

c(u, v) = 1A×A(u, v)

λ1(A)
+ 1B×B(u, v)

λ1(B)
,

where λ1 denotes the one-dimensional Lebesgue measure, A ⊂ [0,1] is a closed
set which is at the same time nowhere dense and satisfies λ1(A) ∈ (0,1) and where
B = [0,1] \ A.

For broad applicability, we relax the assumption of serial independence and
replace it by the following condition, which holds for i.i.d. sequences as well as
for stationary sequences under various weak dependence conditions [Dehling and
Durieu (2011), Doukhan, Fermanian and Lang (2009), Rio (2000)].

CONDITION 4.4. The empirical process αn = √
n(Gn −C) converges weakly

in (�∞([0,1]d),‖ · ‖∞) to some limit process α which has continuous sample
paths, almost surely.

Under Condition 4.3, the term on the right-hand side of (4.4) is defined only
on S . We extend it to the whole of [0,1]d by taking lower semicontinuous hulls
as in Appendix A.2. Let | · | denote the Euclidean norm and let C(A) be the set of
continuous real-valued functions on a domain A. Recall our convention of omitting
the brackets [·] when working in L∞

loc(T).

THEOREM 4.5. Suppose that Condition 4.4 holds and that C satisfies Condi-
tion 4.3. Then

Cn � C= α + dC(−α1,...,−αd)(4.6)

in (L∞([0,1]d), dhypi), where, for a = (a1, . . . , ad) ∈ {C([0,1])}d ,

dCa(u) = sup
ε>0

inf

{
d∑

j=1

Ċj (v)aj (vj ) : v ∈ S, |v − u| < ε

}
.

By Section 2, Theorem 4.5 has several useful consequences.

• First, it implies weak convergence with respect to the supremum distance of the
restriction of the empirical copula process to compact subsets of the union of S
and the boundary of [0,1]d ; see Corollary 3.2. This is akin to the convergence
results for multilinear empirical copulas for count data in Genest, Nešlehová
and Rémillard (2014). Note that, in particular, we obtain the weak convergence
result in (4.5) under the stronger Condition 4.1.
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• Furthermore, we obtain weak convergence of the empirical copula process in
(Lp([0,1]d),‖ · ‖p) for any 1 ≤ p < ∞. To the best of our knowledge, this
result is new and opens the door to Lp-type inference procedures for a broad
class of copulas.

Two possible applications are treated in the following subsections.

4.2. A bootstrap device. Assume that X1, . . . ,Xn are serially independent.
We show that the bootstrap based on resampling with replacement [Fermanian,
Radulović and Wegkamp (2004)] and the bootstrap based on the multiplier cen-
tral limit theorem [Bücher and Dette (2010)] provide valid approximations for C
with respect to the hypi-semimetric. Our multiplier bootstrap is different from the
approach in Rémillard and Scaillet (2009), which requires estimation of the first-
order partial derivatives of C.

Let M ∈ N be some large integer and, for each m ∈ {1, . . . ,M}, let
X[m]

1 , . . . ,X[m]
n be drawn with replacement from the sample. The resampling boot-

strap empirical copula process is defined as

C
[m]
n = √

n
(
C[m]

n − Cn

)
,(4.7)

where C[m]
n denotes the empirical copula calculated from the bootstrap sample

X[m]
1 , . . . ,X[m]

n . Note that we can represent C[m]
n by F [m]

n (F[m]−
n ), where

F [m]
n (x) = 1

n

n∑
i=1

W
[m]
ni 1(Xi ≤ x)

and where W [m]
n = (W

[m]
n1 , . . . ,W [m]

nn ) denotes a multinomial random vector with n

trials, n possible outcomes, and success probabilities (1/n, . . . ,1/n), independent
of the sample and independent across m ∈ {1, . . . ,M}.

Regarding the multiplier bootstrap, let {ξ [m]
i : i ≥ 1,m = 1, . . . ,M} be i.i.d. ran-

dom variables, independent of the sample, with both mean and variance equal to
one and such that

∫ ∞
0

√
P(ξi > x)dx < ∞. Let

F̃ [m]
n (x) = 1

n

n∑
i=1

ξ
[m]
i 1(Xi ≤ x), x ∈R

d

and define

C̃
[m]
n = √

n
{
F̃ [m]

n

(
F̃[m]−

n

) − Cn

}
(4.8)

as the multiplier bootstrap empirical copula process. The following proposition
shows that both C

[1]
n , . . . ,C[M]

n and C̃
[1]
n , . . . , C̃[M]

n can be regarded as asymptoti-
cally independent copies of Cn.
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PROPOSITION 4.6. Let Xi , i ∈N, be i.i.d. d-variate random vectors with com-
mon distribution function F having continuous margins and a copula C satisfying
Condition 4.3. Let Cn, C[m]

n and C̃
[m]
n be as in (4.1), (4.7) and (4.8), respectively.

Then both (Cn,C
[1]
n , . . . ,C[M]

n ) and (Cn, C̃
[1]
n , . . . , C̃[M]

n ) weakly converge to
(C,C[1], . . . ,C[M]) in the space (L∞([0,1]d), dhypi)

M+1, where C
[1], . . . ,C[M]

denote independent copies of C in (4.6).

By hypi-continuity of the supremum and infimum functionals (see Proposi-
tion 2.3), the bootstrap approximation can, for instance, be used to construct
asymptotic uniform confidence bands for the copula.

4.3. Power curves of tests for independence. In the present section, we de-
rive weak hypi-convergence of the empirical copula process for triangular arrays.
We apply it to the problem of comparing statistical tests for independence by lo-
cal power curves. This comparison has been carried out by Genest, Quessy and
Remillard (2007) under strong differentiability assumptions on copula densities.
By considering hypi-convergence, we can extend their results to copulas that do
not have a density with respect to the Lebesgue measure.

We consider a triangular array of random vectors X(n)
1 , . . . ,X(n)

n which are row-
wise i.i.d. with continuous marginals and copula C(n). We suppose that there exists
a copula C satisfying Condition 4.3 such that

	n = √
n
{
C(n) − C

} → 	(4.9)

uniformly, for some continuous function 	 on [0,1]d . Let C
(n)
n denote the empiri-

cal copula based on X(n)
1 , . . . ,X(n)

n . Let U(n)
1 , . . . ,U(n)

n denote the sample obtained

by the marginal probability integral transform and let G
(n)
n and α

(n)
n denote its

empirical distribution function and empirical process, respectively. Similarly as
before, we have the decomposition

C
(n)
n = √

n
{
C(n)

n − C(n)}
= √

n
{
G(n)

n

(
G(n)−

n

) − C(n)(G(n)−
n

)} + √
n
{
C(n)(G(n)−

n

) − C(n)}
= α(n)

n

(
G(n)−

n

) + √
n
{
C

(
G(n)−

n

) − C
} + {

	n

(
G(n)−

n

) − 	n

}
.

We will show in Appendix F.3 in the supplement [Bücher, Segers and Volgu-

shev (2014)] that α
(n)
n � α in (�∞([0,1]d),‖ · ‖∞), where α is a C-Brownian

bridge. Therefore, the first summand weakly converges to α with respect to the
supremum norm. The second summand weakly converges in the hypi-topology to
dC(−α1,...,−αd), while the last one converges to 	 − 	 ≡ 0, uniformly. This moti-
vates the following result.
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PROPOSITION 4.7. Given the above set-up and if (4.9) is met with C satisfy-
ing Condition 4.3, we have C

(n)
n � C in (L∞([0,1]d, dhypi), where C is the same

process as in Theorem 4.5. Additionally, in (L∞([0,1]d), dhypi),
√

n
(
C(n)

n − C
)
�C+ 	.

To illustrate the latter result, we investigate the local efficiency of tests for in-
dependence as considered in Genest, Quessy and Remillard (2007). Instead of im-
posing conditions (i) and (ii) on page 169 in their paper, we only suppose that (4.9)
holds with C = �, the independence copula, and 	 = δ�, where � ∈ C([0,1]d)

and δ ≥ 0. For brevity, we only compare the test statistics

Tn = n

∫
[0,1]d

{
C(n)

n − �
}2

d� and Sn = √
n
∥∥C(n)

n − �
∥∥∞.

From weak hypi-convergence of
√

n(C
(n)
n − C) and Propositions 2.2 and 2.4, we

obtain that

Tn � Tδ =
∫
[0,1]d

(C+ δ�)2 d�, Sn � Sδ = ‖C+ δ�‖∞.

Hence, the local power curves of the tests to the level α ∈ (0,1) in direction � are
given by

δ �→ P
{
Tδ > qT0(1 − α)

}
, δ �→ P

{
Sδ > qS0(1 − α)

}
,

where qT0(1 − α) and qS0(1 − α) denote the (1 − α)-quantiles of T0 and S0, re-
spectively. These curves can be compared by analytical calculations as in Genest,
Quessy and Remillard (2007) or by simulation.

5. Stable tail dependence functions. Let X1, . . . ,Xn, where Xi =
(Xi1, . . . ,Xid), be i.i.d. d-variate random vectors with distribution function F

and continuous marginal distribution functions F1, . . . ,Fd . We assume that the
following limit, called the stable tail dependence function of F ,

L(x) = lim
t↓0

t−1
P

{
1 − F1(X11) ≤ tx1 or · · · or 1 − Fd(X1d) ≤ txd

}
,(5.1)

exists as a function L : [0,∞)d → [0,∞).
For i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, let R

j
i denote the rank of Xij among

X1j , . . . ,Xnj . Replacing all distribution functions in (5.1) by their empirical coun-
terparts and replacing t by k/n where k = kn is a positive sequence such that
kn → ∞ and kn = o(n), we obtain the following nonparametric estimator for Ln,
called the empirical (stable) tail dependence function:

L̂n(x) = 1

k

n∑
i=1

1
{
R1

i > n + 1

2
− kx1 or · · · or Rd

i > n + 1

2
− kxd/n

}
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[Drees and Huang (1998), Huang (1992)]. The inclusion of the term 1/2 inside the
indicators serves to improve the finite sample behavior of the estimator.

In Einmahl, Krajina and Segers (2012), a functional central limit theorem for√
k(L̂n − L) is given in the topology of uniform convergence on compact subsets

of [0,∞)d . The result requires L to have continuous first-order partial derivatives
on sufficiently large subsets of [0,∞)d , similar to Condition 4.1 for copulas. By
switching to weak hypi-convergence, we are able to get rid of smoothness condi-
tions altogether.

Similarly as in Section 4, let S denote the set of all points x ∈ [0,∞)d where L

is differentiable. The function L being convex, Theorem 25.5 in Rockafellar (1970)
implies that the complement of S is a Lebesgue null set and that the gradient
(L̇1, . . . , L̇d) of L is continuous on S . Proceeding as in Appendix A.2, we may
define, for any (a1, . . . , ad) ∈ {C([0,∞))}d , a function on [0,∞)d by

dL(a1,...,ad )(x) = sup
ε>0

inf

{
d∑

j=1

L̇j (y)aj (yj ) : y ∈ S, |x − y| < ε

}
.(5.2)

As in Einmahl, Krajina and Segers (2012), let � be the Borel measure on
[0,∞)d such that �(A(x)) = L(x) where A(x) = ⋃d

j=1{y ∈ [0,∞)d :yj ≤ xj }
for x ∈ [0,∞)d . Let W be a mean-zero Gaussian process on [0,∞)d with contin-
uous trajectories and with covariance function E[W(x)W(y)] = �(A(x) ∩ A(y)).
Let 	d−1 = {x ∈ [0,1]d :x1 + · · · + xd = 1} be the unit simplex in R

d . For
f ∈ �∞

loc([0,∞)d) and j = 1, . . . , d , define f 0
j ∈ �∞

loc([0,∞)) through f 0
j (xj ) =

f (0, . . . ,0, xj ,0, . . . ,0). Recall our convention of omitting the brackets [·] when
working in L∞

loc(T).

THEOREM 5.1. Let Xi , i ∈ N, be i.i.d. d-dimensional random vectors with
common distribution function F with continuous margins F1, . . . ,Fd and stable
tail dependence function L. Suppose that the following conditions hold:

(C1) For some α > 0 we have, uniformly in x ∈ 	d−1,

t−1
P

{
1 − F1(X11) ≤ tx1 or · · · or 1 − Fd(X1d) ≤ txd

}
= L(x) + O

(
tα

)
, t ↓ 0.

(C2) We have k = o(n2α/(1+2α)) and k → ∞ as n → ∞.

Then, in (L∞
loc([0,∞)d), dhypi),

√
k(L̂n − L) �W+ dL(−W

0
1,...,−W

0
d ), n → ∞.

The proof of Theorem 5.1 is similar to the one of Theorem 4.5 and is deferred
to the supplement [Bücher, Segers and Volgushev (2014)].
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Conditions (C1) and (C2) also appear in Theorem 4.6 in Einmahl, Krajina and
Segers (2012) and are needed to ensure that the estimator is asymptotically unbi-
ased. The difference with their theorem is that we do not need their condition (C3)
on the partial derivatives of L. Therefore, Theorem 5.1 also covers piecewise linear
stable tail dependence functions arising from max-linear models [Wang and Stoev
(2011)].

Weak hypi-convergence of
√

k(L̂n − L) can be exploited to validate statisti-
cal procedures for tail dependence functions in the same way as was done with
weak hypi-convergence of empirical copula processes in Section 4. In contrast to
copulas, no smoothness conditions on L are needed at all. Applications include
the bootstrap [Peng and Qi (2008)] and minimum L2-distance estimation [Bücher
and Dette (2013)]. Hypi-convergence implying L2-convergence, Theorem 5.1 also
provides another way to prove the asymptotic normality of the M-estimator in
Einmahl, Krajina and Segers (2012).

6. Error distributions in regression models. Consider a linear regression
model for a sample (Xi , Yi), i ∈ {1, . . . , n}, in R

p ×R, of the form

Yi = X′
iβ + εi.(6.1)

Here, (Xi , εi), for i ∈ {1, . . . , n}, are i.i.d. random vectors in R
p ×R. It is assumed

that Xi and εi are independent and that the distribution of εi is constrained in such a
way that the vector of regression coefficients β is identifiable (provided the support
of Xi is sufficiently large). For instance, the requirement E(εi) = 0 yields a mean
regression model, whereas median(εi) = 0 yields a median regression model. For
simplicity, we restrict attention to serial independence and to a scalar dependent
variable.

The model is semiparametric with parametric component β ∈ R
p and nonpara-

metric components P X and P ε , the distributions of the explanatory variables Xi

and the errors εi . We are interested in the estimation of the cumulative distribution
function, F , of εi :

F(z) = P(εi ≤ z), z ∈ R̄,

where R̄ = [−∞,∞], a convenient compactification of the real line.
Let β̂n be a consistent estimator for β . In Theorem 6.1 below, we will be more

specific about the asymptotic distribution of β̂n. We define estimated residuals as

ε̂n,i = Yi − X′
i β̂n = εi − X′

i(β̂n − β)(6.2)

and obtain a simple estimator for F by

F̂n(z) = 1

n

n∑
i=1

1(ε̂n,i ≤ z), z ∈ R̄.(6.3)
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The empirical residual process corresponding to F̂n is

Fn(z) = √
n
{
F̂n(z) − F(z)

}
, z ∈ R̄.(6.4)

Weak convergence results for Fn play a central role in, for example, testing the
goodness-of-fit of error distributions or in the derivation of the asymptotic be-
havior of more sophisticated estimators for F ; see Koul and Qian (2002) for an
overview. First results on the asymptotic behavior of Fn were derived in Koul
(1969) and Loynes (1980) (in generalized regression models), and more recently
those findings were extended in various directions such as, for instance, time series
analysis [see Engler and Nielsen (2009), Koul and Qian (2002), and the references
cited therein] or coefficient vectors of growing dimension [see Chen and Lockhart
(2001), for an overview]. All of those extensions share the assumption that F has
a continuous probability density function f . In that case, weak convergence takes
place with respect to the supremum distance and the process admits an expansion
of the form

Fn(z) =
[

1√
n

n∑
i=1

{
1(εi ≤ z) − F(z)

}] + f (z)E[X]′√n(β̂n − β) + op(1)(6.5)

uniformly in z ∈ R̄, where X denotes a random vector with the same distribution
as Xi . In the present section, we will drop the assumption of continuity of f and
consider weak hypi-convergence of Fn.

The main arguments underlying the derivation of the limit of Fn are as follows.
Let Pn = n−1 ∑n

i=1 δXi ,εi
denote the empirical measure of the sample (Xi , εi),

i ∈ {1, . . . , n}. For (z, δ) ∈ R̄×R
p , consider the function

fz,δ :Rp ×R → R,
(6.6)

(x, ε) �→ 1
(
ε ≤ z + x′δ

)
,

and let F denote the collection of all those functions, that is,

F = {
fz,δ : z ∈ R̄, δ ∈ R

p}
.(6.7)

Combining (6.2) and (6.3) on the one hand with (6.6) on the other hand, we find

F̂n(z) = 1

n

n∑
i=1

1
(
εi ≤ z + X′

i(β̂n − β)
) = Pnfz,β̂n−β

,

where we use the usual operator notation Qh = ∫
hdQ for a signed measure Q

and a measurable function h. Moreover, let P denote the common law of the ran-
dom vectors (Xi , εi), yielding F(z) = E[fz,0(Xi , εi)] = Pfz,0 for z ∈ R̄. Then the
empirical process Fn in (6.4) admits the decomposition

Fn(z) = √
n(Pnfz,β̂n−β

− Pfz,0)

(6.8)
= Gnfz,β̂n−β

+ √
n(Pf

z,β̂n−β
− Pfz,0),
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where Gn is shorthand for Gn = √
n(Pn − P). The decomposition in (6.8) is akin

to the one in (4.2) for the empirical copula process. If β̂n is consistent for β , the
first term can be shown to be

Gnfz,β̂n−β
= Gnfz,0 + op(1) = 1√

n

n∑
i=1

{
1(εi ≤ z) − F(z)

} + op(1)

uniformly in z ∈ R̄. The process on the right-hand side is the usual empirical pro-
cess corresponding to ε1, . . . , εn, and its weak convergence is one of the classical
results of empirical process theory.

The treatment of the second term in (6.8) will be based on a linear expansion of
the map δ �→ Pfz,δ around 0. For (z, δ) ∈ R̄×R

p , we have

Pfz,δ − Pfz,0 =
∫
Rp

{
F

(
z + x′δ

) − F(z)
}
P X(dx).

Therefore, if F is continuously differentiable with derivative f , we can expect that

√
n{Pf

z,β̂n−β
− Pfz,0} = √

n

∫
Rp

f (z)x′(β̂n − β)P X(dx) + op(1)

(6.9)
= f (z)E[X]′√n(β̂n − β) + op(1),

which will converge weakly provided
√

n(β̂n − β) converges weakly. However,
if F is not differentiable at a point z or if f exists but is not continuous in z,
then (6.9) and as a consequence weak convergence with respect to the supremum
distance may fail. Still, weak hypi-convergence continues to hold, as the main
result of this section shows.

THEOREM 6.1. Consider a model of the form (6.1) such that (Xi , εi), i ∈ N,
are i.i.d. random vectors in R

p × R and such that Xi and εi are independent.
Additionally, suppose that the following conditions hold:

(R1) The estimator β̂n admits a linear expansion of the form
√

n(β̂n − β) = (Gnψ1, . . . ,Gnψp)′ + op(1), n → ∞,

in terms of zero-mean, square-integrable functions ψj :Rp × R → R, for j ∈
{1, . . . , p}.

(R2) The distribution F is absolutely continuous. There exists a version of its
density f which is uniformly bounded and which is làdlàg, that is, which admits
right-hand and left-hand limits at every z ∈ R:

f (z+) = lim
0<s→0

f (z + s), f (z−) = lim
0<s→0

f (z − s).

Moreover, f (±∞) := limz→±∞ f (z) = 0.
(R3) The norm of X is integrable, that is, E[|X|] < ∞.
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Set ψ = (ψ1, . . . ,ψp), G = F ∪ {ψ1, . . . ,ψp} and let G denote a P -Brownian
bridge in �∞(G), that is, a zero-mean Gaussian process on G with covariance
function

cov(Gg1,Gg2) = cov
(
g1(X, ε), g2(X, ε)

)
, g1, g2 ∈ G.(6.10)

Then, in (L∞(R̄), dhypi), we have Fn � F as n → ∞, where the limiting process
F can be written as F(±∞) = 0 a.s. and

F(z) = Gfz,0 − f (z−)

∫ 0

−∞
P X({

x : x′
Gψ < y

})
dy

(6.11)

+ f (z+)

∫ +∞
0

P X({
x : x′

Gψ > y
})

dy, z ∈ R.

Note that the limit in (6.11) is not càdlàg, whence the classical Skorohod-
topologies cannot be applied in the present context.

The influence function ψ = (ψ1, . . . ,ψp) in (R1) depends on the estimator and
on the true model. A classical example is given by the ordinary least squares esti-
mator: if the errors εi have mean zero and finite variance and if the components of
X have finite second moments and the p × p matrix E(XX′) is invertible, then

√
n(β̂n − β) = 1√

n

n∑
i=1

{
E

(
XX′)}−1Xiεi + op(1).

If f happens to be continuous in z, then f (z−) = f (z+) = f (z), and we obtain
that F(z) = Gfz,0 + f (z)E[X′]Gψ , which, under (R1), coincides with the limit of
the classical representation in (6.5). If f is continuous everywhere, then F is almost
surely continuous, and, by Corollary 3.2 with K = R̄, the weak convergence in
Fn � F takes place with respect to the supremum distance.

EXAMPLE 6.2 (Mixtures of exponential distributions). Consider the probabil-
ity density function

fθ (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

θ−
ez/θ−, if z < 0,

(1 − w)
1

θ+
e−z/θ+, if z > 0,

(6.12)

where w = θ+/(θ− + θ+). This density is a mixture of the exponential distribu-
tion on (−∞,0) with mean −θ− and the exponential distribution on (0,∞) with
mean θ+, with weights chosen so that the total mean is zero. The left-hand and
right-hand limits of fθ at 0 are

fθ (0−) = θ+
θ−

1

θ− + θ+
, fθ (0+) = θ−

θ+
1

θ− + θ+
.



WEAK CONVERGENCE VIA EPI- AND HYPOGRAPHS 1619

FIG. 2. Left: cumulative distribution function of the mixed double exponential distribution
in (6.12). Right: trajectories of the corresponding empirical residual process Fn for n = 106. In
both cases: (θ−, θ+) = (1,4).

If θ− is different from θ+, these limits are different, and thus the associated distri-
bution function, Fθ , is not continuously differentiable at 0. See the left-hand side
of Figure 2 for the graph of Fθ when (θ−, θ+) is equal to (1,4).

Now, consider the linear regression model in (6.1) with p = 1, Xi ∼ N(0,1) in-
dependent of εi , and with εi distributed according to (6.12). The parameter β ∈ R

is estimated by ordinary least squares, β̂n, and the corresponding empirical resid-
ual process Fn is calculated as in (6.4). Theorem 6.1 implies that Fn converges
in (L∞(R̄), dhypi) to the process F given by (note the simplification arising from
E[X] = 0)

F(z) =Gfz,0 + (
fθ (z+) − fθ (z−)

) ∫ +∞
0

P X({x :xGψ > y})dy,

where G is a P -Brownian bridge for P = P X ⊗ P ε and where fz,0 and ψ are
certain functions in L2(P ). We find that F(z) = Gfz,0 for z �= 0, a continuous
Gaussian process. The only discontinuity occurs at z = 0, when the left-hand and
right-hand limits of fθ are different. The “spike” in Fn then goes upward or down-
ward according to whether fθ (z+) is larger than or smaller than fθ (z−). A sim-
ulated typical trajectories of Fn(z) for n = 106 and z ∈ [−0.05,0.05] is shown on
the right-hand side of Figure 2 when (θ−, θ+) is equal to (1,4).

APPENDIX A: VERIFYING HYPI-CONVERGENCE

In this appendix, we provide some tools for showing convergence of a se-
quence of functions with respect to the hypi-semimetric. Proofs are deferred to
Appendix D in the supplement [Bücher, Segers and Volgushev (2014)].
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A.1. Pointwise convergence and convergence of sums. Let (T, d) be a met-
ric space. For f :T → R, define extended real-valued functions f∧ and f∨ as
in (2.1) and (2.2), respectively. Since we do not require f to be locally bounded,
f∧ and f∨ can attain −∞ and +∞, respectively.

For fn :T →R, we say that fn epi-converges to α ∈ R at x ∈ T if the following
two conditions are met:⎧⎨

⎩
(i) ∀xn → x : lim inf

n→∞ fn(xn) ≥ α,

(ii) ∃xn → x : lim sup
n→∞

fn(xn) ≤ α.
(A.1)

Similarly, fn hypo-converges to α at x if⎧⎨
⎩

(i) ∀xn → x : lim sup
n→∞

fn(xn) ≤ α,

(ii) ∃xn → x : lim inf
n→∞ fn(xn) ≥ α,

(A.2)

which is equivalent to epi-convergence of −fn to −α at x. If additionally
f :T→R, then fn is said to epi- or hypo-converge to f at x if α = f (x) in
the preceding conditions. According to Proposition 2.1, fn hypi-converges to f in
�∞

loc(T) if and only if fn epi-converges to f∧ and hypo-converges to f∨ at every
x ∈ T. For x ∈ T and ε > 0, let B(x, ε) = {y ∈ T :d(x, y) < ε}.

LEMMA A.1 (Convergence of hulls). Let fn :T → R, x ∈ T and α ∈ R. Then
fn epi-converges to α at x if and only if fn,∧ epi-converges to α at x, and fn

hypo-converges to α at x if and only if fn,∨ hypo-converges to α at x. Moreover,

fn(xn) → α ∀xn → x(A.3)

is equivalent to

fn,∧(xn) → α and fn,∨(xn) → α ∀xn → x.(A.4)

The following three lemmas contain results on hulls of sums and on epi-, hypo-
and hypi-convergence of sums.

LEMMA A.2 (On sums of hulls and hulls of sums). For f,g :T →R such that
g∧ and g∨ are both finite, we have

f∧ + g∧ ≤ (f + g)∧ ≤ f∧ + g∨,

f∨ + g∧ ≤ (f + g)∨ ≤ f∨ + g∨.

In particular, if g is continuous in x ∈ T, then (f + g)∧(x) = f∧(x) + g(x) and
(f + g)∨(x) = f∨(x) + g(x).

LEMMA A.3 (Epi- and hypo-convergence of hulls of sums). Let fn, gn :T →
R and let x ∈ T be such that gn(xn) → β ∈ R for all sequences xn → x. If fn,∧
epi-converges to α at x, then (fn + gn)∧ epi-converges to α +β at x. Similarly for
upper semicontinuous hulls and hypo-convergence.
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LEMMA A.4 (Hypi-convergence of sums). Let T be locally compact and sep-
arable. If fn and gn hypi-converge to f and g in �∞

loc(T), respectively, and if at
every point x ∈ T, at least one of the two functions f or g is continuous, then
fn + gn hypi-converges to f + g.

A.2. Upper and lower semicontinuous extensions. The limit processes in
Theorems 4.5 and 5.1 are defined by extending a continuous function defined on
a dense subset of a metric space to the whole space. In this section, some useful
elementary properties of such extensions are recorded. The main tool is Corol-
lary A.7, giving a criterion for proving hypi-convergence to a function defined by
such an extension procedure.

Let (T, d) be a metric space, let A ⊂ T be dense, and let f :A →R. Extend the
domain of f from A to the whole of T by

f A : T∧ (x) = sup
ε>0

inff
(
B(x, ε) ∩ A

) ∈ [−∞,∞],(A.5)

f A : T∨ (x) = inf
ε>0

supf
(
B(x, ε) ∩ A

) ∈ [−∞,∞],(A.6)

for x ∈ T; as before, B(x, ε) = {y ∈ T :d(x, y) < ε} is the open ball centered at x

of radius ε. Note that these definitions also make sense if A = T, and that for f ∈
�∞

loc(T) we have f T : T∧ = f∧ and f T : T∨ = f∨; see the definitions in (2.1) and (2.2).
Clearly, f A : T∧ (x) ≤ f (x) ≤ f A : T∨ (x) for every x ∈ A. For any open set U ⊂ T,

we have

inff A : T∧ (U) = inff (U ∩ A), supf A : T∨ (U) = supf (U ∩ A).

The functions f A : T∧ and f A : T∨ from T into [−∞,+∞] are lower and upper semi-
continuous, respectively. If every x in A admits a neighborhood on which f is
bounded, then f A : T∧ and f A : T∨ are real-valued.

If f is continuous at x ∈ A, then f A : T∧ (x) = f A : T∨ (x) = f (x), and f A : T∧ and
f A : T∨ , seen as functions on T, are continuous at x, too. The following lemma
shows that, if f is continuous on the whole of A, then its domain does not really
matter insofar as the extension is concerned.

LEMMA A.5. Let E ⊂ A ⊂ T be such that E is dense in T. Let f :A → R

and consider the restriction f |E :E → R of f to E and the extensions (f |E)E : T∧
and (f |E)E : T∨ of f |E to T. If f is continuous, then (f |E)E : T∧ = f A : T∧ and
(f |E)E : T∨ = f A : T∨ .

The following two results provide criterions for proving epi-, hypo- or hypi-
convergence to a semicontinuous extension.

PROPOSITION A.6. Let A ⊂ T be dense and let f :A → R be continuous.
Assume that f A : T∧ is real-valued. If the functions fn :T → R converge pointwise
on A to f and if lim infn fn(xn) ≥ f A : T∧ (x) whenever xn ∈ T converges to x ∈ T,
then fn epi-converges to f A : T∧ . Similarly for hypo-convergence to f A : T∨ .
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COROLLARY A.7. Let A ⊂ T be dense. Let f :A →R be continuous and sup-
pose that its lower and upper semicontinuous extensions f A : T∧ and f A : T∨ are real-
valued. Let f ∗ :T →R be such that f A : T∧ ≤ f ∗ ≤ f A : T∨ . Then f A : T∧ = (f ∗)∧ and
f A : T∨ = (f ∗)∨ on T. Moreover, if the functions fn :T → R are locally bounded
and verify

∀x ∈ T :∀xn → x :f A : T∧ (x) ≤ lim inf
n→∞ fn(xn) ≤ lim sup

n→∞
fn(xn) ≤ f A : T∨ (x),

then fn hypi-converges to f ∗.

APPENDIX B: WEAK CONVERGENCE AND SEMIMETRIC SPACES

The workhorses of the theory of weak convergence in metric spaces are the
continuous mapping theorem, the extended continuous mapping theorem, and
for normed vector spaces, the functional delta method; see, for instance, Theo-
rems 1.3.6, 1.11.1 and 3.9.4 in van der Vaart and Wellner (1996). Thanks to these
theorems, weak convergence of many empirical processes can be shown and can
be exploited to conclude weak convergence of sequences of appropriately nor-
malized estimators and test statistics. However, the space of interest in this paper,
(�∞

loc(T), dhypi); see Proposition 2.1, is not a metric space but rather a semimetric
space. Moreover, addition of functions is ill-compatible with the hypi-semimetric:
if f ∈ �∞

loc(T) is not continuous, then dhypi(f +g,0) need not be equal to zero even
if dhypi(g,−f ) = 0. Hence, addition is not well defined on the space of equivalence
classes of functions at hypi-distance zero.

In this appendix, versions of the (extended) continuous mapping theorem and
the functional delta method are given that are adapted to semimetric spaces. In
particular, the maps under consideration are not required to be defined on equiva-
lence classes of points at distance zero but rather on the original semimetric space
itself. Proofs are deferred to Appendix E in the supplement [Bücher, Segers and
Volgushev (2014)].

Let (D, d) be a semimetric space. For x ∈ D, put [x] = cl{x}, the set of y ∈ D

such that d(x, y) = 0. Since d(x′, y′) = d(x, y) whenever x′ ∈ [x] and y′ ∈ [y], we
can, abusing notation, define a metric d([x], [y]) := d(x, y) on the quotient space
[D] = {[x] :x ∈ D}. Let [·] denote the map D → [D] :x �→ [x]. Obviously, [·] is
continuous. The image of an open (closed) subset of D under [·] is open (closed)
in [D].

Let B(D) and B([D]) be the Borel σ -fields on (D, d) and ([D], d), respectively,
that is, the smallest σ -fields containing the open sets. There is a one-to-one cor-
respondence between both σ -fields: for B ∈ B(D), the set [B] = {[x] :x ∈ B}
is a Borel set in D, and conversely, every Borel set B of D can be written as⋃

[x]∈[B][x]; in particular x ∈ B if and only if [x] ∈ [B]. A Borel law L on
(D,B(D)) induces a Borel law L ◦ [·]−1 on ([D],B([D])) and vice versa.
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One of the merits of Hoffman–Jørgensen weak convergence is that measurabil-
ity requirements are relaxed. In the context of semimetric spaces, measurability
issues require, perhaps, some extra care.

LEMMA B.1 (Measurability). Let (D, d) and (E, e) be semimetric spaces. Let
g :D → E be arbitrary. Then the set Dg of x ∈ D such that g is not continuous in
x is Borel measurable. More generally, g−1(B) \ Dg is a Borel set in D for every
Borel set B in E.

In our version of the continuous mapping theorem, the map g is defined on D

and not on [D], that is, even if d(x, y) = 0, it may occur that g(x) �= g(y). There-
fore, we cannot directly apply Theorem 1.3.6 in van der Vaart and Wellner (1996).
Nevertheless, the proof is inspired from the proof of that theorem.

THEOREM B.2 (Continuous mapping). Let (D, d) be a semimetric space and
let (E, e) be a metric space. Let g :D → E be arbitrary and let Dg be the set of
x ∈ D such that g is not continuous in x. Let (�α,Aα,Pα), α ∈ A, be a net of
probability spaces and let Xα :�α → D be arbitrary maps; let (�,A,P ) be a
probability space and let X :� → D be Borel measurable. If [Xα] � [X] in [D]
and if X(�) ⊂ D\Dg , then g(X) :� → E is Borel measurable and g(Xα) � g(X)

in E.

In many circumstances, one needs a refined version of the continuous mapping
theorem that covers maps gn(Xn), rather than g(Xn) for a fixed g. The following
statement and proof are inspired from Theorem 1.11.1(i) and Problem 1.11.1 in
van der Vaart and Wellner (1996) and Theorem 18.11(i) in van der Vaart (1998).

THEOREM B.3 (Extended continuous mapping). Let (D, d) be a semimetric
space and let (E, e) be a metric space. For integer n ≥ 0, let there be probability
spaces �n, subsets Dn ⊂ D, maps Xn :�n → Dn and maps gn :Dn → E. Assume
the following two conditions:

• For every x0 ∈ D0 and for every subsequence (xnk
)k with xnk

∈ Dnk
for all k and

such that xnk
→ x0 as k → ∞, we have gnk

(xnk
) → g0(x0).

• The map X0 is Borel measurable and [Xn] � [X0] in ([D], d).

If g0(X0) is Borel measurable, then gn(Xn) � g0(X0) in (E, e). If g0(X0) is not
Borel measurable, there still exists a version X′

0 of X0 such that g0(X
′
0) is Borel

measurable, and thus gn(Xn) � g0(X
′
0) in (E, e).

ADDENDUM B.4. The law of X0 is concentrated on the set

D∞ = ⋂
k≥1

cl
( ⋃

m≥k

Dm

)
= lim sup

n→∞
Dn,
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which is closed in D. The restriction of the map g0 to D0 ∩ D∞ is continuous.
Whether g0(X0) is measurable or not, there always exists a version X′

0 of X0
which takes values in D0 ∩D∞ and for which g0(X

′
0) is Borel measurable.

COROLLARY B.5. If in Theorem B.3, (E, e) is a semimetric space rather
than a metric space, the conclusion still holds with [gn(Xn)] converging weakly
to [g0(X0)] or [g0(X

′
0)], respectively, in ([E], e).

The formulation of Theorem B.3 has been chosen to make it suitable for estab-
lishing a variant of the functional delta method in semimetric vector spaces. In the
remaining part of this section, let D and E be real vector spaces and let d and e be
semimetrics on D and E, respectively. Addition is not required to be continuous.
Worse still, addition need not even be well defined on equivalence classes.

DEFINITION B.6 (Semi-Hadamard differentiability). Let � :D� → E with
D� ⊂ D. Let x ∈ D� and W ⊂ D. Then � is said to be semi-Hadamard differ-
entiable at x tangentially to W if there exists a map d�x :W → E, called the
(semi-)derivative of � at x, with the following property: for every w ∈ W, every
sequence (tn)n in (0,∞) such that tn → 0 and every sequence (wn)n in D such
that x + tnwn ∈D� for all n and wn → w as n → ∞, we have

t−1
n

(
�(x + tnwn) − �(x)

) → d�x(w), n → ∞.

The derivative d�x is not assumed to be linear or continuous. Still, in Adden-
dum B.8 below, we will see that d�x does enjoy some kind of continuity property.
An extension of the chain rule similar to Lemma 3.9.3 in van der Vaart and Wellner
(1996) is straightforward and is therefore omitted.

THEOREM B.7. Let D� ⊂ D and let � :D� → E be semi-Hadamard differ-
entiable at x ∈ D� tangentially to W ⊂ D with derivative d�x . Let Yn, n ≥ 1, and
X be maps from probability spaces into D such that Yn takes values in D� and
X takes values in W. Assume that X is Borel measurable and that there exists a
positive sequence rn tending to infinity such that, in ([D], d),[

rn(Yn − x)
]
� [X], n → ∞.

Passing to a suitable version of X if necessary to ensure measurability of d�x(X),
we then have, in ([E], e),[

rn
(
�(Yn) − �(x)

)]
�

[
d�x(X)

]
, n → ∞.

ADDENDUM B.8. There exists a subset W∞ of W and a version X′ of X such
that the restriction of d�x to W∞ is continuous, X′ takes values in W∞ only, and
d�x(X

′) is Borel measurable.
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APPENDIX C: PROOFS

This appendix contains the most important proofs for the main part of the pa-
per, namely those for Sections 4 and 6. The remaining proofs are collected in
Appendix F of the supplement [Bücher, Segers and Volgushev (2014)].

C.1. Proofs for Section 4.

PROOF OF THEOREM 4.5. For the sake of a clear exposition, we split the
proof into two propositions. First, Proposition C.2 shows that Condition 4.3 im-
plies a certain abstract hypi-differentiability property stated in Condition C.1.
Then, Proposition C.3 shows that the latter condition suffices to obtain the com-
pletion of Theorem 4.5. �

CONDITION C.1 (Hypi-differentiability of C). Define the set

W(t) := {
a ∈ {

�∞([0,1])}d : u + ta(u) ∈ [0,1]d ∀u ∈ [0,1]d}
,

where a(u) = (a1(u1), . . . , ad(ud)). Whenever tn ↘ 0, tn �= 0, and an = (an1,

. . . , and) ∈ {�∞([0,1])}d converges uniformly to a ∈ W := {C([0,1])}d (i.e.,
‖anj − aj‖∞ → 0 for all j = 1, . . . , d) such that an ∈ W(tn) for all n ∈ N, the
functions

[0,1]d →R :u �→ t−1
n

{
C

(
u + tnan(u)

) − C(u)
}

converge in (�∞([0,1]d), dhypi) to some limit dCa .

PROPOSITION C.2. A copula C satisfying Condition 4.3 also satisfies the
hypi-differentiability Condition C.1 with derivative

dCa(u) = sup
ε>0

inf

{
d∑

j=1

Ċj (v)aj (vj ) : v ∈ S, |v − u| < ε

}
, u ∈ [0,1]d .

Conversely, it is an open problem whether there exists a copula that satisfies
Condition C.1 but violates Condition 4.3. According to the next proposition, Con-
dition C.1 can replace Condition 4.3 in Theorem 4.5.

PROPOSITION C.3. Suppose that Condition 4.4 holds and that C satisfies
Condition C.1. Then, in (L∞([0,1]d), dhypi),

Cn �C = α + dC(−α1,...,−αd).

PROOF OF PROPOSITION C.2. Let tn ↘ 0 and let an ∈ W(tn) converge uni-
formly to a ∈ W . As in Condition C.1, we use the notation an(u) = (an1(u1), . . . ,

and(ud)). We have to prove epi- and hypo-convergence of

u �→ Fn(u) := t−1
n

{
C

(
u + tnan(u)

) − C(u)
}
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to F∧ and F∨, respectively, where F = dCa . Note that, in the notation of Ap-

pendix A.2, we have F = G
S : [0,1]d∧ , where G :S →R is defined through

G(u) =
d∑

j=1

Ċj (u)aj (uj ).

By an application of Corollary A.7, and since F∧ = G
S : [0,1]d∧ and F∨ = G

S : [0,1]d∨ ,
it suffices to show that:

(i) ∀u ∈ [0,1]d :∀un → u : lim infn→∞ Fn(un) ≥ F∧(u),
(ii) ∀u ∈ [0,1]d :∀un → u : lim supn→∞ Fn(un) ≤ F∨(u).

We begin with the proof of (i) and fix a point u ∈ [0,1]d and a sequence un → u.
Choose ε > 0 and let | · |1 denote the L1-norm on R

d . Due to Lemma C.4, we may
choose

u�
n ∈ {

v ∈ [0,1]d : |un − v|1 ≤ εtn/2
}

and

u◦
n ∈ {

v ∈ [0,1]d :
∣∣un + tnan(un) − v

∣∣
1 ≤ εtn/2

}
such that, for the path

γn(s) = (1 − s)u�
n + su◦

n, s ∈ [0,1],
the set {s ∈ [0,1] :γn(s) /∈ S} has Lebesgue-measure zero. Define fn(s) =
t−1
n C(γn(s)), s ∈ [0,1], and note that∣∣{fn(1) − fn(0)

} − Fn(un)
∣∣ = t−1

n

∣∣C(
u◦

n

) − C
(
un + tnan(un)

) − C
(
u�

n

) + C(un)
∣∣

≤ t−1
n

{∣∣un + tnan(un) − u◦
n

∣∣
1 + ∣∣u�

n − un

∣∣
1

} ≤ ε

by Lipschitz-continuity of C. Lipschitz-continuity of C also implies absolute con-
tinuity of fn, which allows us to choose vn ∈ γn([0,1]) ∩ S such that

ε + Fn(un) ≥ fn(1) − fn(0)

=
∫ 1

0
f ′

n(s) ds

=
d∑

j=1

t−1
n

(
u◦

nj − u�
nj

) ∫ 1

0
Ċj

(
γn(s)

)
ds

=
d∑

j=1

[
anj (unj ) + t−1

n

{
u◦

nj − u�
nj − tnanj (unj )

}] ∫ 1

0
Ċj

(
γn(s)

)
ds

≥ inf
s : γn(s)∈S

d∑
j=1

anj (unj )Ċj

(
γn(s)

) − ε
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≥
d∑

j=1

anj (vnj )Ċj (vn) +
d∑

j=1

{
anj (unj ) − anj (vnj )

}
Ċj (vn) − 2ε

≥
d∑

j=1

anj (vnj )Ċj (vn) − 3ε = F(vn) − 3ε = F∧(vn) − 3ε

for sufficiently large n, where we have used the bounds 0 ≤ Ċj ≤ 1, uniform con-
vergence of anj to aj , uniform continuity of aj and the fact that F is continuous
in vn. Hence, by lower semicontinuity of F∧,

lim inf
n→∞ Fn(un) ≥ F∧(u) − 4ε.

As ε > 0 was arbitrary the assertion in (i) follows.
The proof of (ii) is analogous. In the main inequality chain, all signs can be

reversed if the infimum is replaced by a supremum and upon noting that on S , the
functions F , F∧ and F∨ are equal. �

PROOF OF PROPOSITION C.3. Recall βn = (βn1, . . . , βnj ), with βnj =√
n(G−

nj − id[0,1]). It follows from Condition 4.4 and the functional delta method
for the inverse mapping, also known as Vervaat’s lemma, that

(αn,βn) = (αn,βn1, . . . , βnd) � (α,−α1, . . . ,−αd)

in �∞([0,1]d) × {�∞([0,1])}d , with respect to the supremum distance in each
coordinate. Note that we can write Cn = gn(αn,βn), where gn :�∞([0,1]d) ×
W(1/

√
n) → (L∞([0,1]d), dhypi) is defined as

gn(a, b) = a(id[0,1]d + b/
√

n) + √
n
{
C(id[0,1]d + b/

√
n) − C

}
.(C.1)

Exploiting Condition C.1 and Lemma A.4 (recall that α is continuous almost
surely), the assertion follows from the extended continuous mapping theorem, see
Theorem 1.11.1 in van der Vaart and Wellner (1996). �

LEMMA C.4. Let u,v ∈ R
d be two distinct points and denote by Hu and Hv

the hyperplanes being orthogonal to u − v and passing through u and v, respec-
tively. For δ > 0, set Hδ

u = Hu ∩B1(u, δ) and Hδ
v = Hv ∩B1(v, δ), where B1(u, δ)

denotes the unit ball of radius δ centered at u with respect to the ‖ · ‖1-norm. Fi-
nally, let Z denote the cylinder with top area equal to Hδ

u and bottom area equal
to Hδ

v , that is,

Z = {
y + s(v − u) : y ∈ Hδ

u , s ∈ [0,1]}.
Let D be a Lebesgue-null set in R

d and define, for any y ∈ Hδ
u ,

ZD
y = {

s ∈ R : y + s(v − u) ∈ Z ∩D
}
.

Then ZD
y is a one-dimensional Lebesgue-null set for almost all y ∈ Hδ

u .

The proofs of Lemma C.4, Propositions 4.6 and 4.7 are given in Appendix F.3
in the supplement [Bücher, Segers and Volgushev (2014)].
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C.2. Proofs for Section 6.

PROOF OF THEOREM 6.1. The proof consists of two main steps. In the first
step, consider �∞(R̄) ×R

p equipped with the metric

ρ
(
(h1,y1), (h2,y2)

) = ‖h1 − h2‖∞ + |y1 − y2|.
As shown in Appendix F.5 in the supplement [Bücher, Segers and Volgushev
(2014)], we have, in (�∞(R̄) ×R

p,ρ), as n → ∞,(
Gnf·,β̂n−β

,
√

n(β̂n − β)
) = (Gnf·,0,Gnψ) + op(1) � (Gf·,0,Gψ)(C.2)

where G denotes a zero-mean Gaussian process on G = F ∪ {ψ1, . . . ,ψp} with
covariance given in (6.10). Define Tn :�∞(R̄) ×R

p → �∞(R̄) by

Tn(G,γ ) = G + gn(γ ),

where the map gn(γ ) ∈ �∞(R̄) is defined by (gn(γ ))(±∞) = 0 and(
gn(γ )

)
(z) = t−1

n

∫
Rp

{
F

(
z + tnx′γ

) − F(z)
}
P X(dx), z ∈ R.

Note that we can write the second term in (6.8) as√
n{Pf

z,β̂n−β
− Pfz,0} = (

gn

(√
n(β̂n − β)

))
(z)(C.3)

with tn = 1/
√

n. This also allows to write

Fn = Tn

(
Gnf·,β̂n−β

,
√

n(β̂n − β)
)
.

The assertion of Theorem 6.1 will then follow by an application of the extended
continuous mapping theorem. More precisely, if Gn,G ∈ �∞(R̄) are such that G

is continuous and ‖Gn − G‖∞ → 0, and if moreover γ n → γ in R
p , then, in

(�∞(R̄), dhypi),

Tn(Gn,γ n) → T (G,γ ) := G + g(γ ),(C.4)

by Lemma C.7 below and Lemma A.4 on weak hypi-convergence of sums. Here,
the map g(γ ) ∈ �∞(R̄) is defined by g(γ )(±∞) = 0 and, for z ∈ R,

(
g(γ )

)
(z) = −f (z−)

∫ 0

−∞
P

(
X′γ < y

)
dy

(C.5)

+ f (z+)

∫ +∞
0

P
(
X′γ > y

)
dy.

Note that the integrals on the right-hand side of the last display exist as a conse-
quence of condition (R3) and Fubini’s theorem, which implies that∫ +∞

0
P

(
X′γ > y

)
dy = E

[
max

(
X′γ ,0

)]
< ∞,(C.6)

∫ 0

−∞
P

(
X′γ < y

)
dy = E

[
max

(−X′γ ,0
)]

< ∞.(C.7)
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Finally, as a consequence of (C.4) and since Gf·,0 is continuous almost surely
by Lemma F.5 in the supplementary material, the assertion follows from (C.2) and
an application of the extended continuous mapping theorem [van der Vaart and
Wellner (1996), Theorem 1.11.1]. �

The preceding proof made use of Lemma C.7 below. For its formulation, we
need two additional lemmas. The proof of the first one is trivial and, therefore,
omitted.

LEMMA C.5. If f is làdlàg, then both functions z �→ f (z+) and z �→ f (z−)

defined in (R2) of Theorem 6.1 are làdlàg, too. Their right-hand limits at z are
both equal to f (z+) and their left-hand limits at z are both equal to f (z−).

LEMMA C.6. If conditions (R2) and (R3) hold, then for every γ ∈ R
p , the

function g(γ ) in (C.5) is uniformly bounded and làdlàg, with right- and left-hand
limits at z ∈ R given by (

g(γ )
)
(z±) = f (z±)E

[
X′γ

]
.(C.8)

The upper and lower semicontinuous hulls of g(γ ) at z ∈ R are(
g(γ )

)
∨(z) = max

{(
g(γ )

)
(z−),

(
g(γ )

)
(z),

(
g(γ )

)
(z+)

}
,(C.9) (

g(γ )
)
∧(z) = min

{(
g(γ )

)
(z−),

(
g(γ )

)
(z),

(
g(γ )

)
(z+)

}
.(C.10)

Moreover, (g(γ ))∧(±∞) = (g(γ ))∨(±∞) = 0.

PROOF. The existence and the expressions of the right-hand and left-hand lim-
its of g(γ ) at z ∈ R are a consequence of Lemma C.5 and the fact that

−
∫ 0

−∞
P

(
X′γ < y

)
dy +

∫ +∞
0

P
(
X′γ > y

)
dy = E

[
X′γ

]
,

which follows in turn from (C.6) and (C.7). The statement about the upper (lower)
semicontinuous hull follows from the fact that for a làdlàg function, the supremum
(infimum) over a shrinking neighborhood around a point converges to the maxi-
mum (minimum) of the function value at the point itself and the right-hand and
left-hand limits at that point. �

LEMMA C.7. Assume conditions (R2) and (R3) in Theorem 6.1. If γ n → γ
in R

p , then

dhypi
(
gn(γ n), g(γ )

) → 0, n → ∞.

PROOF. First of all, for z ∈ R, we can write (gn(γ ))(z) as∫
Rp

t−1
n

∫ tnx′γ

0
f (z + y)dyP X(dx) =

∫
Rp

∫ x′γ

0
f (z + tny) dyP X(dx).
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It follows that gn(γ n) is uniformly close to gn(γ ): we have

∣∣(gn(γ n)
)
(z) − (

gn(γ )
)
(z)

∣∣ ≤ ‖f ‖∞
∫
Rp

|x|P X(dx)|γ n − γ |, z ∈ R,

and thus, noting that (gn(γ n))(±∞) = 0 = (gn(γ ))(±∞),∥∥gn(γ n) − gn(γ )
∥∥∞ → 0, n → ∞.(C.11)

Hence, without loss of generality, we can assume that γ n = γ for all n.
Fix z ∈ R̄. We will prove hypi-convergence of gn(γ ) to g(γ ) by using the point-

wise criteria in (A.1) and (A.2). First, consider the case zn → z = +∞. Observe
that for any fixed x ∈ R

p

t−1
n

∣∣F (
zn + tnx′γ

) − F(zn)
∣∣ ≤ ∣∣x′γ

∣∣ sup
y≥zn−tn|x′γ |

f (y) → 0

since limz→+∞ f (z) = 0 by assumption. Hence, by dominated convergence,
(gn(γ ))(zn) → 0, which is equal to (g(γ ))∧(+∞) = (g(γ ))∨(+∞) in view of
Lemma C.6. The limit zn → −∞ can be handled similarly.

It thus remains to consider zn → z ∈ R. By Fubini’s theorem, we have

(
gn(γ )

)
(zn) = −

∫ ∫
x′γ<y<0

f (zn + tny) dyP X(dx)

+
∫ ∫

x′γ>y>0
f (zn + tny) dyP X(dx)

= −
∫ 0

−∞
f (zn + tny)P

(
X′γ < y

)
dy

+
∫ +∞

0
f (zn + tny)P

(
X′γ > y

)
dy.

The idea is now to replace f (zn + tny) by f (z−) or f (z+) according to whether
zn + tny is smaller or larger than z. To this end, define the auxiliary functions

w(y) =
{−P

(
X′γ < y

)
, if y < 0,

P
(
X′γ > y

)
, if y > 0;

η(a) = f (z−)

∫ a

−∞
w(y)dy + f (z+)

∫ +∞
a

w(y) dy, a ∈R.

Further, put an = (z − zn)/tn and observe that zn + tny < z if y < an while zn +
tny > z if y > an. We have

(
gn(γ )

)
(zn) =

∫ ∞
−∞

f (zn + tny)w(y)dy.
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By the dominated convergence theorem, as
∫
R

|w(y)|dy = E[|X′γ |] < ∞,(
gn(γ )

)
(zn) − η(an)

=
∫ +∞
−∞

{
f (zn + tny) − f (z−)

}
1(y < an)w(y) dy(C.12)

+
∫ +∞
−∞

{
f (zn + tny) − f (z+)

}
1(y > an)w(y) dy = o(1).

Consider the extrema of the function η. The function η can be written as

η(a) = f (z+)

∫ +∞
−∞

w(y)dy + {
f (z−) − f (z+)

} ∫ a

−∞
w(y)dy.

It follows that η is absolutely continuous with Radon–Nikodym derivative η̇(a) =
{f (z−) − f (z+)}w(a). Since w(y) ≤ 0 for y < 0 and w(y) ≥ 0 for y > 0, we
find that η is monotone on (−∞,0) and on (0,∞). Hence, η attains its extrema at
either a → −∞, a = 0, or a → +∞. But for a → ±∞, we find from (C.8) that

η(∓∞) = f (z±)

∫ +∞
−∞

w(y)dy = f (z±)E
[
X′γ

] = (
g(γ )

)
(z±),

while for a = 0, we find

η(0) = f (z−)

∫ 0

−∞
w(y)dy + f (z+)

∫ +∞
0

w(y)dy = (
g(γ )

)
(z).

As a consequence, using (C.9),

sup
a∈R

η(a) = max
{
η(−∞), η(0), η(+∞)

}
= max

{(
g(γ )

)
(z−),

(
g(γ )

)
(z),

(
g(γ )

)
(z+)

} = (
g(γ )

)
∨(z),

and similarly, by (C.10), infa∈R η(a) = (g(γ ))∧(z). In combination with (C.12),
we obtain that(

g(γ )
)
∧(z) = inf

a∈Rη(a)

(I1)≤ lim inf
n→∞

(
gn(γ )

)
(zn) ≤ lim sup

n→∞
(
gn(γ )

)
(zn)

(I2)≤ sup
a∈R

η(a) = (
g(γ )

)
∨(z).

Moreover, the inequalities (I1) and (I2) in the above display become equalities
if we choose zn in such a way that an = (z − zn)/tn converges to −∞, 0, or ∞,
according to where the infinimum and supremum of η are attained.

The above paragraph shows that gn(γ ) epi-converges to (g(γ ))∧ and hypo-
converges to (g(γ ))∨ pointwise at every z ∈ R. As a consequence, gn(γ ) hypi-
converges to g(γ ). This completes the proof. �
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