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NONPARAMETRIC INDEPENDENCE SCREENING AND
STRUCTURE IDENTIFICATION FOR ULTRA-HIGH

DIMENSIONAL LONGITUDINAL DATA

BY MING-YEN CHENG1, TOSHIO HONDA2, JIALIANG LI3 AND HENG PENG4

National Taiwan University, Hitotsubashi University,
National University of Singapore and Hong Kong Baptist University

Ultra-high dimensional longitudinal data are increasingly common and
the analysis is challenging both theoretically and methodologically. We of-
fer a new automatic procedure for finding a sparse semivarying coefficient
model, which is widely accepted for longitudinal data analysis. Our pro-
posed method first reduces the number of covariates to a moderate order by
employing a screening procedure, and then identifies both the varying and
constant coefficients using a group SCAD estimator, which is subsequently
refined by accounting for the within-subject correlation. The screening proce-
dure is based on working independence and B-spline marginal models. Un-
der weaker conditions than those in the literature, we show that with high
probability only irrelevant variables will be screened out, and the number
of selected variables can be bounded by a moderate order. This allows the
desirable sparsity and oracle properties of the subsequent structure identifi-
cation step. Note that existing methods require some kind of iterative screen-
ing in order to achieve this, thus they demand heavy computational effort
and consistency is not guaranteed. The refined semivarying coefficient model
employs profile least squares, local linear smoothing and nonparametric co-
variance estimation, and is semiparametric efficient. We also suggest ways
to implement the proposed methods, and to select the tuning parameters. An
extensive simulation study is summarized to demonstrate its finite sample
performance and the yeast cell cycle data is analyzed.

1. Introduction. Longitudinal data arise in many modern scientific fields, in-
cluding finance, genetics, medicine and so on. Specifically, we consider observing
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independent realizations of a scalar response process y(t) and a p-dimensional
covariate process x(t) = (x(1)(t), . . . , x(p)(t))T at t = t1, . . . , tm, where t1, . . . , tm,
independent of x(t), are i.i.d. with density fT (t) satisfying C1 ≤ fT (t) ≤ C2.
In this paper, C,C1,C2, . . . are positive generic constants. There exist various
parametric, nonparametric and semiparametric models for regressing y(t) on x(t)

[12, 38]. Among the three categories, the semiparametric approach, in particular
varying coefficient models, is in general preferred to the other two. Parametric
models are efficient if correctly specified, but can be seriously biased otherwise.
While nonparametric approach avoids this problem, the curse of dimensionality
issue arises.

Consider the varying coefficient model, which can capture the dynamical im-
pacts of the covariates on the response variable, given as

y(t) = β0(t) +
p∑

k=1

x(k)(t)βk(t) + ε(t), t ∈ [0,1],(1.1)

where β0(t), β1(t), . . . , βp(t) are the unknown varying coefficients and ε(t) is an
error process with E{ε(t)|x(t)} = 0. For a generic real-valued function g, write
g(t) = (g(t1), . . . , g(tm)), where t ≡ (t1, . . . , tm). Suppose we are given n inde-
pendent observations on (y(t),x(t)): for the ith subject, we observe yi(t) and
xi (t) = (x

(1)
i (t), . . . , x

(p)
i (t))T at t = ti1, . . . , timi

. Here, mi can be random, but
is uniformly bounded and independent of xi (t). Writing ti = (ti1, . . . , timi

)T , we
have (yi(ti ),xi(ti )) where xi (ti ) = (xi (ti1), . . . ,xi (timi

)) is a p × mi random ma-
trix. Based on model (1.1), we have

yi(ti ) = β0(ti ) +
p∑

k=1

x
(k)
i (ti)βk(ti)T + εi(ti ), i = 1, . . . , n,(1.2)

where εi(ti ) = (εi(ti1), . . . , εi(timi
)) is the error process in the ith subject.

As technology evolves rapidly over the recent decades, high-dimensional lon-
gitudinal data have become commonly encountered, and the analysis poses new
challenges from methodological, theoretical and computational aspects. When p

is large, it is often the case that many of the covariates are irrelevant. Under such
circumstances, including the irrelevant variables in the model would create un-
desirable identifiability and estimation instability problems, and variable selec-
tion is a natural way to address the challenges. In parametric regression for i.i.d.
data, popular tools for this purpose include the SCAD [7], Lasso [26], adaptive
Lasso [39] and group Lasso [22, 36] estimators. These ideas have been adopted
to select important variables in varying coefficient models for i.i.d. data, that is,
m1 = · · ·mn = 1, [34]. For longitudinal data, when p is fixed, group SCAD pe-
nalized B-spline methods were studied in [29] and [23], and regularized P-spline
methods were considered in [2]. When p diverges and p = o(n2/5), where n is the
sample size, [32] and [1] examined adaptive group Lasso estimators.
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However, it occurs often in today’s longitudinal studies that p is very large. An
example we will investigate in Section 5.2 is the famous yeast cell cycle data set,
which consists of gene expression measurements at different time points during
the cell cycle [25]. In this dataset, p = 96 and n = 297, thus p is much larger
than n2/5 ≈ 10. Under such circumstances, there is no guarantee that existing vari-
able selection procedures can find the relevant variables consistently. We consider
the more general ultra-high dimensional case where p can be lager than n. Our
idea is first reducing the dimensionality to a moderate order by employing some
screening procedure, and then selecting variables using a group SCAD estimator,
which possesses the desirable sparsity and oracle properties. In parametric settings,
existing screening methods include the sure independence screening procedures
[8, 11], the rank correlation screening procedure [18] and others. In semiparamet-
ric settings, screening procedures have been considered for additive and varying
coefficient models when the data are i.i.d. [4, 10, 21]. In the present setup, we
adopt the nonparametric independence screening (NIS) idea in [4]. Moreover, the
covariance structure of ε(t) is unknown in general, and it is infeasible to estimate
it at this stage. We base our NIS procedure on a working independence structure.
Intuitively, this approach is expected to work since the coefficient estimators based
on working independence achieve the same convergence rate as that based on the
true covariance structure.

Under weaker conditions than in the literature, our NIS step can effectively
cut the dimensionality down to a moderate order. Writing as x(1), . . . , x(q) the
remaining variables after the NIS step, we now reduce the full varying coefficient
model (1.2) to the following lower-dimensional one:

yi(ti) = β0(ti ) +
q∑

k=1

x
(k)
i (ti )βk(ti )T + εi(ti ), i = 1, . . . , n.(1.3)

Under appropriate smoothness assumptions, we can estimate the unknown coef-
ficient functions in model (1.3) using B-spline smoothing [24]. However, the di-
mension q may be still too large for the modeling purpose, thus it is preferable
to further select among these q variables the significant ones. Noticeably, we can
proceed directly with variable selection as we show that q can be controlled at
o(n2/5/

√
logn) after the NIS step, while existing methods require some sort of

iterative screening to achieve similar goals [8, 11]. We choose the SCAD penalty
in both of the variable screening and selection steps because it enjoys a faster con-
vergence rate than the Lasso L1 penalty when the dimension is very large [13].

Besides variable screening and variable selection, we pay attention to the struc-
ture identification problem. That is, some of the important variables may simply
have constant effects. Identifying the nonzero constant coefficients is an important
issue because treating a constant coefficient as varying will yield a slower conver-
gence rate than

√
n. When p is fixed, significant effort has been devoted to address

this problem in varying coefficient models for both i.i.d. and longitudinal data
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[16, 33, 38]. In addition, structure identification was considered for partially lin-
ear additive models by [37] and for Cox proportional hazard models with varying
coefficients by [20, 35]. To achieve simultaneous variable selection and structure
identification, we construct a group SCAD penalty to penalize both spurious non-
constant effects and spurious nonzero effects. After this step, we further reduce the
varying coefficient model (1.3) to the following semivarying coefficient model:

yi(ti ) = β0(ti ) +
s1∑

k=1

x
(k)
i (ti )βk +

s∑
k=s1+1

x
(k)
i (ti )βk(ti)T + εi(ti),(1.4)

i = 1, . . . , n, where s1 and s satisfy 0 ≤ s1 ≤ s � q , β1, . . . , βs1 are the constant
coefficients, and βs1+1(t), . . . , βs(t) are the functional coefficients. We treat (1.4)
as the final model, and estimate both the constant and varying coefficient functions
with the covariance structure of ε(t) taken into account.

To the best of our knowledge, for the present setup, both screening and simulta-
neous variable selection and structure identification have not been studied before,
and the estimation methods are new. Note that p is fixed and the structure identi-
fication method is a model selection approach in [38]. We show both theoretically
and numerically that, for p of any exponential order of n, based on working inde-
pendence, the proposed NIS procedure can keep the relevant variables with high
probability. In addition, we relax the conditions on the threshold parameter as com-
pared to those in the literature [4, 10, 21]. A consequence is that the dimension after
the NIS step can be controlled at a moderate order which fulfills the conditions on
the dimensionality in the subsequent group SCAD step. This provides the theoret-
ical ground for our new sequential screening and variable selection approach. In
addition, we discuss the computation and tuning parameter selection issues.

In Section 2, our NIS procedure is introduced and its theoretical properties are
studied. The group SCAD procedure for simultaneous variable selection and struc-
ture identification, and its consistency, sparsity and oracle properties are given in
Section 3. The refined estimation procedure for estimating the constant and varying
coefficients in the final model (1.4) is detailed in Section 4. Results of a simula-
tion study and application to the yeast cell cycle data are reported and discussed in
Section 5. Proofs of the theorems and some lemmas are placed in Appendix and
the supplementary material [3].

2. Nonparametric independence screening. Denote the Euclidean norm and
the sup norm of a vector v by |v| and |v|∞, respectively. Also, for a matrix A =
(aij ), define |A| = sup|x|=1 |Ax| and |A|∞ = supi,j |aij |. Denote the sup norm and
the L2 norm of a function g on [0,1] by ‖g‖∞ and ‖g‖L2 , respectively. In order
to describe and examine our procedures, we define, respectively, the empirical
and theoretical inner products of two vector-valued stochastic processes u(t) ∈R

k

and v(t) ∈ R
l by〈

u,vT 〉
n = 1

n

n∑
i=1

1

mi

(
ui(ti1), . . . ,ui(timi

)
)(

vi (ti1), . . . ,vi (timi
)
)T
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and 〈
u,vT 〉 = E

{〈
u,vT 〉

n

}
,

where {ui (t)}ni=1 and {vi (t)}ni=1 are i.i.d. samples of u(t) and v(t). When u(t) is not
stochastic, we should take ui (t) = u(t). When k = 1, we define, respectively, ‖u‖n

and ‖u‖ by ‖u‖2
n = 〈u,u〉n and ‖u‖2 = 〈u,u〉. Note that for any square integrable

function g on [0,1], C1‖g‖L2 ≤ ‖g‖ ≤ C2‖g‖L2 uniformly in g.

2.1. Nonparametric independence screening algorithm. Consider the full
model (1.2). Define the set of indices of relevant covariates by

Mκ = {
k ≥ 1|‖βk‖2 ≥ Cκ1n

−2κL
}
,

for some positive constant κ . Here, L is the dimension of the B-spline basis. Under
the sparsity Assumption M2(2) given in Section 2.2, we can carry out the nonpara-
metric independence screening (NIS) prescribed in the following.

Similar to (3) of [10], we consider for each k = 1, . . . , p a marginal model for
y(t) and x(k)(t) defined by

y(t) = ak(t) + bk(t)x
(k)(t) + ηk(t),(2.1)

where ak(t) and bk(t) are given by arg mina,b∈L2[0,1] ‖y − a − bx(k)‖2. Alterna-
tively, [21] employed a conditional correlation approach. Let B(t) = (B1(t), . . . ,

BL(t))T be an equispaced B-spline basis of order 3 on [0,1], where L is the di-
mension of the basis. Write B(ti ) = (B(ti1), . . . ,B(timi

)). Then, under the smooth-
ness conditions specified in Assumption M1, bk(t) in (2.1) can be approximated
by some linear combination of B(t). Thus, we can estimate bk by minimizing the
following objective function:∥∥y − γ T

1 B − γ T
2 x(k)B

∥∥2
n ≡ ∥∥y − γ T

1 B − γ T
2 Wk

∥∥2
n, γ1, γ2 ∈ R

L.(2.2)

Note that the regressors Wk(t) and Wk(t), and their sample versions Wik(t) and
Wik(ti ), for the above B-spline estimation of bk are given by

Wk(t) = x(k)(t)B(t) = (
Wk1(t), . . . ,WkL(t)

)T ∈ R
L,

Wk(t) = (
Wk(t1), . . . ,Wk(tm)

) ∈ R
L×m,

(2.3)
Wik(t) = (

Wik1(t), . . . ,WikL(t)
)T = x

(k)
i (t)B(t) ∈ R

L, i = 1, . . . , n,

Wik(ti) = (
Wik(ti1), . . . ,Wik(timi

)
) ∈ R

L×mi , i = 1, . . . , n.

Writing γ̂1k and γ̂2k for the minimizer of (2.2), we define the B-spline estimator
of bk by

b̂k(t) = γ̂ T
2kB(t).(2.4)
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Given b̂k , k = 1, . . . , p, we carry out the nonparametric independence screening
and define the index set of selected covariates, denoted as M̂κ , by

M̂κ = {
k ≥ 1|‖b̂k‖2

n ≥ Cκ3n
−2κL

}
(2.5)

for some sufficiently small positive constant Cκ3 satisfying Cκ3 < Cκ2/2, where
Cκ2 is given in Assumption M2(1).

Intuitively, we may still have too many irrelevant variables kept in the analysis
if the threshold parameter κ in (2.5) is chosen too large. On the other hand, we may
run into the danger of screening out some of the relevant variables if it is chosen too
small. In the literature, the screening step is immediately followed by the model
fitting step, thus some iterative screening procedure is employed to control the
false selection rate [8, 11]. We avoid such time-consuming iterations by adding
between these two steps a variable selection step, given in Section 3.1. The theory
given in Section 2.2 guarantees that, with proper choices of κ and L, by the first
screening step we can reduce the dimensionality to a moderate order with the false
negative rate under control. This allows the next variable selection step to possess
the sparsity and oracle properties given in Section 3.2. In practice, we sort the
‖b̂k‖2

n’s in the descending order and keep the first [nα/ logn] variables, for some
2/5 ≤ α ≤ 1. In the numerical sections, we took α = 1.

2.2. Theory of the proposed NIS procedure. Here, we collect the technical as-
sumptions on the marginal models given in (2.1). Let Id denote the identity matrix
of dimension d and let #A be the number of the elements in a set A.

ASSUMPTION M1. There are positive constants CM0 and CM2 satisfying
(1)–(3) in the following. For k = 1, . . . , p:

(1) ak and bk are twice continuously differentiable,
(2) ‖ak‖∞ ≤ CM0 and ‖bk‖∞ ≤ CM0,
(3) ‖a′′

k ‖∞ ≤ CM2 and ‖b′′
k‖∞ ≤ CM2.

ASSUMPTION M2. For the κ in the definition of Mκ , there are positive con-
stants Cκ1 and Cκ2 such that (1)–(2) in the following hold and we also have (3)
given below:

(1) If ‖βk‖2 ≥ Cκ1n
−2κL, we have ‖bk‖2 ≥ Cκ2n

−2κL.
(2) If ‖βk‖2 < Cκ1n

−2κL, we have ‖βk‖2 = 0.
(3) n1−4κL/ logn → ∞, n−2κL = o(1), and L−3 = o(n−2κ).

Assumption M1 is necessary in order to bound the approximation error to
ak and bk by B-spline bases. Assumption M2 requires that the marginal mod-
els (2.1) still reflect the significance of relevant covariates, and similar assumptions
are assumed in the NIS literature [4]. We mention that, in Assumption M2(2), we
require that ‖βk‖2 = 0 merely for simplicity of presentation, and it is sufficient to
replace it with ‖βk‖2 = o(n−2κL).
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ASSUMPTION T. (1) For some positive constant CT 1, we have CT 1 ≤
E[{x̃(k)(t)}2] for t ∈ [0,1] and k = 1, . . . , p, where x̃(k)(t) = x(k)(t) − E{x(k)(t)}.

(2) For any positive constant C1, there is a positive constant C2 such that

E
[
exp

{
C1

∣∣εi(ti )
∣∣/√mi

}|xi (ti ), ti
]
< C2.

(3) Let xM(t) be the covariate vector consisting of 1 and all the covariates
in Mκ . Then there is a positive constant CT 2 such that

E
{
xM(t)xM(t)T

} ≥ CT 2I#Mκ+1 for any t ∈ [0,1].
(4) For some positive constant CT 3, supt∈[0,1] |x(k)(t)| ≤ CT 3, k = 1, . . . , p.
(5) For some positive constant CT 4,

∑
k∈A supt∈[0,1] |βk(t)| ≤ CT 4, where A =

{k|0 ≤ k ≤ p and supt∈[0,1] |βk(t)| > 0}.
(6) The functions βk(t), k = 0, . . . , p, are twice continuously differentiable.

Besides,
∑

k∈A supt∈[0,1] |β ′′
k (t)| ≤ CT 5 for some positive constant CT 5.

Assumption T(1) and (4) imply that for some positive constants C1 and C2, we
have

C1I2 ≤ E

(
1 x(k)(t)

x(k)(t)
{
x(k)(t)

}2

)
≤ C2I2, t ∈ [0,1] and 1 ≤ k ≤ p.(2.6)

Assumption T(2), (4) and (5) are technical assumptions needed in order to ap-
ply the exponential inequalities. Note that #A may increase, but we assume
that the signal

∑
k∈A x(k)(t)βk(t) should not diverge by imposing Assump-

tion T(5) and (6). Similar conditions are made in Assumption D of [4]. We can
relax T(4) and T(5) slightly, for example, we can replace CT 3 and CT 4 with
CT 3 logn and CT 4 logn at the expense of multiplying the present convergence
rate by (logn)c for some positive c. We can also relax Assumption T(6) similarly
with conformable changes made in the approximation error of the B-spline ba-
sis. We need Assumption T(1) and (2.6) for identifiability and estimation of the
marginal models. Assumption T(3) is the identifiability condition of the coefficient
functions in model (1.1). We use Assumption T(5) and (6) to evaluate the approx-
imation error of the B-spline basis when we consider the group SCAD variable
selection discussed in Section 3.

THEOREM 2.1. Suppose Assumptions M1, M2, and T(1)–(5) hold. Then

P(Mκ ⊂ M̂κ) ≥ 1 − Cp1pL exp
(−Cp2n

1−4κL
)
,

where Cp1 and Cp2 are positive constants depending on Cκj , j = 1,2,3, and the
constants specified in the above mentioned assumptions.

Theorem 2.1 implies that all the relevant covariates will be selected with high
probability, due to Assumption M2(1) and the uniform consistency. Specifically,
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when p = O(ncp) for any positive cp we have P(Mκ ⊂ M̂κ) → 1, if κ satisfies
Assumption M2(3). Under the smoothness Assumption M1(1), the optimal rate of
L is L = cLn1/5 for some positive cL. In this case, Assumption M2(3) reduces to
n6/5−4κ/ logn → ∞, n1/5−2κ = o(1), and n2κ−3/5 = o(1). Then a sufficient con-
dition on κ is that

1/10 < κ < 3/10.(2.7)

Thus, the proposed screening procedure may reduce the number of covariates dras-
tically. However, #M̂κ may be still too large to apply any variable selection proce-
dures with consistency property. Fortunately, we have succeeded in giving an upper
bound on #M̂κ , as given in Theorem 2.2, which circumvents such situations. We
emphasize that condition (2.7) is weaker than those in the literature: Theorem 1
of [10] requires that n1−4κL−3 → ∞ which reduces to κ < 1/10 when L is of
the order n1/5, and in Theorem 2 of [21] the condition on κ implies κ < 1/10 as
well. This improvement is crucial for us to obtain a tighter upper bound in Theo-
rem 2.2, as compared to that in [10] (no upper bound is provided in [21]), which
leads to (2.10). We succeed in achieving this improvement by exploiting the band
diagonal property of 〈B,BT 〉n, 〈B,BT 〉, 〈Wk,Wl〉n, 〈Wk,Wl〉, and so on.

In order to state Theorem 2.2, we need a little more notation. Define

Wk = Wk − AkB and W = (
W

T

1 , . . . ,W
T

p

)T
,(2.8)

where Ak = 〈Wk,BT 〉〈B,BT 〉−1. Note that Wk and W are, respectively, L- and
pL-dimensional stochastic processes on [0,1]. Besides we define

� = 〈
W,W

T 〉
,(2.9)

which is a pL × pL matrix. We write λmax(A) and λmin(A) for the maximum and
minimum eigenvalues of a symmetric matrix A, respectively.

THEOREM 2.2. Under the same assumptions as in Theorem 2.1 except As-
sumption M2(2), we have for some positive constant Cκ4,

P
(
#M̂κ ≤ Cκ4n

2κλmax(�)
) ≥ 1 − Cp1pL exp

(−Cp2n
1−4κL

)
,

where Cp1 and Cp2 are the same constants as in Theorem 2.1.

Theorem 2.2 implies that, with high probability, the number of variables se-
lected by our screening procedure will not be large. Note that it does not require
Assumption M2(2). This means that, although some of the irrelevant covariates
(with ‖βk‖ small) may be included in M̂κ merely because they have large val-
ues of ‖bk‖, the number of such variables is limited. Furthermore, they will be
removed by the subsequent variable selection procedure given in Section 3.
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Define W̃k(t), W̃k(t), W̃ik(t) and W̃ik(ti ) by replacing x(k)(t) and x
(k)
i (t) in

the definitions of Wk(t), Wk(t), Wik(t) and Wik(ti) given in (2.3) with

x̃(k)(t) = x(k)(t) − E
{
x(k)(t)

}
and x̃

(k)
i (t) = x

(k)
i (t) − E

{
x

(k)
i (t)

}
,

respectively. It is easy to see, by properties of orthogonal projection that〈
W̃,W̃T 〉 ≤ � ≤ 〈

W,WT 〉
,

where W̃ = (W̃T
1 , . . . ,W̃T

p )T and W = (WT
1 , . . . ,WT

p )T . The maximum eigen-
value of 〈W,WT 〉 may tend to infinity very quickly with p. However, since we
do a kind of centerization to W and obtain W as in (2.8), we conjecture that
� is very close to 〈W̃,W̃T 〉 under some regularity conditions. If the maximum
eigenvalues of the two matrices have the same order, and for some positive Kn,
λmax(E{̃x(t )̃x(t)T }) ≤ Kn uniformly in t , then

λmax(�) ≤ C1L
−1Kn and #M̂κ ≤ C2n

2κL−1Kn

with probability tending to 1. Suppose L is chosen to be of the optimal order n1/5.
Then, for κ satisfying condition (2.7), this implies that

#M̂ = Op

(
n2/5−η)

Kn for some 0 < η < 2/5.(2.10)

Thus, when Kn is bounded, #M̂ fulfills the requirement (3.4) on q in the subse-
quent variable selection step given in Section 3. In addition, if we choose a smaller
value of κ , we can further allow a moderately increasing Kn.

3. Variable selection and structure identification. We can remove a lot of
irrelevant covariates by the NIS procedure given in Section 2. However, it does not
have the consistency property in selecting the important variables. In this section,
we propose a group SCAD estimator for variable selection and structure iden-
tification, and establish its consistency, sparsity and oracle properties. Here, we
denote the number of covariates by q , instead of p as in Section 2. This distinc-
tion is necessary. When the dimensionality p is very large, we have to employ
some screening procedure before we can carry out any variable selection proce-
dure. In this case, p and q are, respectively, the number of variables before and
after the screening procedure is applied. For simplicity of notation, we still denote
as x(1), . . . , x(q) the variables selected by the NIS algorithm. When the p is not
very large, we can simply take q = p and proceed directly with the group SCAD
procedure.

3.1. Group SCAD procedure. Suppose we are given yi(ti), x
(k)
i (ti), i =

1, . . . , n, k = 1, . . . , q and consider the varying coefficient model (1.3). To esti-
mate the coefficient functions βk(t), k = 0,1, . . . , q , first we define

lq(γ ) =
∥∥∥∥∥y − γ T

0 B −
q∑

k=1

γ T
k Wk

∥∥∥∥∥
2

n

,(3.1)
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where γ = (γ T
0 , . . . , γ T

q )T ∈ R
(q+1)L. When q is fixed and sufficiently small,

based on working independence, we can estimate βk(t) by minimizing the ob-
jective function lq(γ ). Denoting the minimizer by γ̃ = (γ̃ T

0 , . . . , γ̃ T
q )T , for k =

0,1, . . . , q , we can estimate βk(t) by

β̃k(t) = γ̃ T
k B(t).(3.2)

Recall that L is the dimension of the B-spline basis. Suppose q satisfies

q = o
(√

n/(L logn)
)
.(3.3)

This restriction is necessary since the Hessian matrix of the objective function
lq(γ ) given in (3.1) must be positive definite. Note that [29] imposed similar con-
ditions in the case where q is a fixed constant. When L is taken as the optimal
order n1/5, condition (3.3) reduces to

q = o
(
n2/5(logn)−1/2)

.(3.4)

When q is relatively large and a lot of the covariates seem to be irrelevant, we
would add a penalty term to lq(γ ) given in (3.1), such as the group SCAD or
the adaptive group Lasso penalty, and then conduct variable selection and estima-
tion simultaneously. After the variable selection step, if necessary, we can estimate
the coefficient functions of the selected variables again without the penalty term.
Besides, we are also interested in structure identification. That is, some of the coef-
ficient functions may be constant while the others are time-varying. As mentioned
in Section 1, when there is no a priori knowledge on which of the coefficient func-
tions are indeed constant, treating the constant coefficients as time-varying would
result in a loss in the convergence rate. Thus, an important issue is to identify them
based on data. To this end, we can add another penalty term to regularize the es-
timated coefficient functions. A similar kind of penalty term was used in [35] for
Cox proportional hazard models with time-varying coefficients.

Now we define our group SCAD penalty term for simultaneous variable selec-
tion and structure identification. First, we introduce an orthogonal decomposition
of gk(t) ≡ γ T

k B(t) with respect to the L2 norm by

gk(t) = (gk)c + (gk)f (t),(3.5)

where (gk)c = ∫ 1
0 gk(t) dt and (gk)f (t) = gk(t) − (gk)c. Then, we have ‖gk‖2

L2
=

|(gk)c|2 + ‖(gk)f ‖2
L2

. Let pλ(·) be the SCAD function given by

pλ(u) =
⎧⎪⎨⎪⎩

λu, if 0 ≤ u ≤ λ,

−(
u2 − 2a0λu + λ2)

/
{
2(a0 − 1)

}
, if λ < u ≤ a0λ,

(a0 + 1)λ2/2, if u > a0λ,

(3.6)

where a0 is a constant larger than 1. We take a0 = 3.7 as suggested by [7]. Our
group SCAD penalty is defined by

∑q
k=1{pλ1(|(gk)c|) + pλ2(‖(gk)f ‖L2)}, where
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gk = γ T
k B, k = 0, . . . , q . We specify the values of λ1 and λ2 later. Our objective

function for our group SCAD estimator is then given by

Qq(γ ) = lq(γ ) +
q∑

k=1

{
pλ1

(∣∣(gk)c
∣∣) + pλ2

(∥∥(gk)f
∥∥
L2

)}
.(3.7)

Based on Qq(γ ), we can carry out variable selection, structure identification, and
estimation simultaneously by the following procedure:

γ̂ = (
γ̂ T

0 , . . . , γ̂ T
q

)T = arg min
γ∈R(q+1)L

Qq(γ ) and β̂k = γ̂ T
k B, k = 0, . . . , q.(3.8)

Then we can choose the significant covariates as those x(k) with ‖β̂k‖L2 > 0 and
identify the constant coefficients by the criterion ‖(β̂k)f ‖L2 = 0. We call β̂k the
group SCAD estimator.

To compute the group SCAD estimator given in (3.8), we use the approximation
to the SCAD function suggested in [7]: pλ(u) ≈ pλ(u0)+ 1

2(p′
λ(u0)/u0)(u

2 −u2
0),

for u in a neighborhood of any given u0 ∈ R
+. Define τj = τ−1 ∫ 1

0 Bj(t) dt ,
and Bj = √

L(Bj − τ−1
1 τjB1), j = 0,1, . . . ,L, where {B0(t),B1(t), . . . ,BL(t)}

is the B-spline basis on [0,1]. Then it will be convenient to use the new ba-
sis (1,B2, . . . ,BL) when we calculate the group SCAD penalty term. The num-
ber of covariates q after the NIS step should be small enough to calculate the
least squares estimates, which can be used as the initial estimates in the itera-
tive algorithm for finding γ̂ . To select the tuning parameters λ1 and λ2 in (3.7),
we treat them as equal λ1 = λ2 = λ and use the BIC criterion to select λ:
BIC(λ) = ‖y − β̂0(λ) − ∑q

k=1 β̂k(λ)x(k)‖2
n + K logN , where β̂k(λ) is the group

SCAD estimate based on λ, K is the number of parameters in the fitted model,
and N = ∑n

i=1 mi . A similar BIC criterion was suggested by [27], and a general-
ized information criterion was considered by [14] for tuning parameter selection
in penalized likelihood models.

3.2. Asymptotic properties of the group SCAD procedure. In this section, we
state the consistency, sparsity, and oracle properties of the proposed group SCAD
estimator given in (3.8). The proofs of the theorems are deferred to Appendix.
First, we state the sparsity assumption. We can relax Assumption S(2) in some
sense. See Remark 1 for more details.

ASSUMPTION S. (1) There is a positive integer s < q such that the following
hold:

for k = 1, . . . , s, |(βk)c|/λ1 → ∞ if |(βk)c| > 0 and ‖(βk)f ‖L2/λ2 → ∞ if
‖(βk)f ‖L2 > 0; for k = s + 1, . . . , q , ‖βk‖L2 = 0; the above divergence is uni-
form in k = 0,1, . . . , s.

(2) λ1/rqn → ∞ and λ2/rqn → ∞, where rqn is defined in (3.9).
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We define the spline estimation space, denoted as G, by

G = {
g = (g0, . . . , gq)

T |gk = γ T
k B, k = 0,1, . . . , q

}
and G0, which we may call the oracle space under Assumption S, by

G0 = {
g ∈ G|(gk)c = 0 if

∣∣(βk)c
∣∣ = 0 and (gk)f = 0 if

∥∥(βk)f
∥∥
L2

= 0,

k = 1, . . . , q
}
.

We introduce two norms on G here. For g = (g0, g1, . . . , gq)
T ∈ G, define

‖g‖2
L2

= ∑q
k=0 ‖gk‖2

L2
and ‖g‖∞ = ∑q

k=0 ‖gk‖∞. The approximation error of

spline functions to β = (β0, . . . , βq)
T , denoted as ρqn, affects the convergence

rates of the least squares and the group SCAD estimators, and we define it by
ρqn = supβ infg∈G ‖β − g‖∞, where the supremum is taken over β satisfying As-
sumption T(5)–(6). Corollary 6.26 of [24] and Assumption T(5)–(6) imply that
ρqn ≤ CρL−2 for some positive constant Cρ . Before we state Theorems 3.1–3.3,
we define the convergence rates of the least squares and the group SCAD estima-
tors, respectively, denoted as rqn and rsn, by

rqn = max
{
(qL/n)1/2, ρqn

}
and rsn = max

{
(sL/n)1/2, ρqn

}
,(3.9)

where s, defined in Assumption S, is the number of relevant variables.
We state two technical assumptions here. Set

�n = 〈(
BT WT )T

,
(
BT WT )〉

n and � = E{�n},(3.10)

where W = (WT
1 , . . . ,WT

q )T . A sufficient condition for Assumption V is
λminE{x(t)x(t)T } ≥ C uniformly in t for some positive C.

ASSUMPTION E. There is a positive constant CE such that uniformly in t ,
E{εi(ti )εi(ti )T |xi (ti ), ti} ≤ CEImi

.

ASSUMPTION V. There is a positive constant CV such that λmin(�) ≥ CV /L.

In Theorem 3.2, we derive the L2 convergence rate of the group SCAD estima-
tor given in (3.8). Before that, in Theorem 3.1 we deal with the L2 convergence of
the B-spline estimator given in (3.2).

THEOREM 3.1. Suppose that Assumptions T(4)–(6), V and E hold. Then∥∥(
γ̃ T

0 B, . . . , γ̃ T
q B

)T − (β0, . . . , βq)
T

∥∥2
L2

=
q∑

k=0

∥∥γ̃ T
k B − βk

∥∥2
L2

= Op

(
r2
qn

)
.

THEOREM 3.2. Suppose that Assumptions T(4)–(6), V, E, and S hold. Then
with probability tending to 1, there exists a local minimizer of Qq(γ ) on R

(q+1)L,
denoted by γ̂ = (γ̂ T

0 , . . . , γ̂ T
q )T , such that

∥∥(
γ̂ T

0 B, . . . , γ̂ T
q B

)T − (β0, . . . , βq)
T

∥∥2
L2

=
q∑

k=0

∥∥γ̂ T
k B − βk

∥∥2
L2

= Op

(
r2
qn

)
.
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Next, we define the sparsity and the oracle properties of estimators.

SPARSITY PROPERTY. Suppose that Assumption S(1) holds. Then if an esti-
mator ĝ = (ĝ0, . . . , ĝq)

T of (β0, . . . , βq)
T satisfies the conditions below with prob-

ability tending to 1, we say that ĝ has the sparsity property.

(1) For k = 0, . . . , s: |(ĝk)c| > 0 if and only if |(βk)c| > 0, and ‖(ĝk)f ‖L2 > 0
if and only if ‖(βk)f ‖L2 > 0.

(2) For k = s + 1, . . . , p: ‖(ĝk)f ‖L2 = 0.

ORACLE PROPERTY. If we knew the value of s in Assumption S(1), we would
use the knowledge and minimize lq(γ ) on the subspace of R(q+1)L corresponding
to G0. We call this imaginary estimator the oracle estimator. We say that an estima-
tor has the oracle property if it is asymptotically equivalent to this oracle estimator.

Theorem 3.3 is about the sparsity property and the oracle property of the group
SCAD estimator defined in (3.8). Note that the existence of the local solution in
Theorem 3.3 is established in Theorem 3.2.

THEOREM 3.3. Suppose that Assumptions T(4)–(6), V, E, and S hold. Let
{ηn} be a sequence of positive numbers satisfying ηn → ∞, λ1/(ηnrqn) → ∞, and
λ2/(ηnrqn) → ∞. Then, with probability tending to 1, any local minimizer γ̂ =
(γ̂ T

0 , . . . , γ̂ T
q )T of Qq(γ ) satisfying ‖(γ̂ T

0 B, . . . , γ̂ T
q B)T − (β0, . . . , βq)

T ‖L2 ≤
ηnrqn is equal to the oracle estimator. We also have(

γ̂ T
0 B, . . . , γ̂ T

q B
)T ∈ G0

and
s∑

k=0

∥∥γ̂ T
k B − βk

∥∥2
L2

= Op

(
r2
sn

)
.

Since Qq(γ ) may not be concave, there may be another local minimizer of
Qq(γ ) outside {γ ∈ R

(q+1)L|‖(γ T
0 B, . . . , γ T

q B)T − (β0, . . . , βq)
T ‖L2 ≤ ηnrqn}.

REMARK 1. Assumption S(2) may be restrictive when q is large compared
to s, for example, q = cnn

2/5/
√

logn with cn → 0 slowly, L = cLn1/5 and s

bounded. Thus, it would be desirable if we could replace rqn in the denomina-
tors with some quantity independent of q . This is possible in some sense, and
here we give an example. Consider only variable selection, and no structure iden-
tification. Then the penalty term in the objective function Qq(γ ) is given by∑q

j=0 pλ(‖gj‖L2), and we assume that λ/max{√srsn,L
−3/2} → ∞. We also need

Assumption T(2) to employ exponential inequalities and denote the global mini-
mizer of ls(γ 1) = ‖y −γ T

0 B −∑s
k=1 γ T

k Wk‖2
n on R

(s+1)L by γ̂ 1 ∈ R
(s+1)L. Then,

with probability tending to 1, (γ̂ T
1 ,0T )T ∈ R

(q+1)L is a local minimizer of Qq(γ ),
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where γ ∈ R
(q+1)L. Thus, some flexibility will be allowed in the tuning parameter

selection when s is bounded. The proof of this result is outlined in the supplemen-
tary material [3].

4. Refinement of the group SCAD estimator. To ease the notation, with-
out loss of generality, denote, respectively, the constant coefficients and the cor-
responding variables by β1 ∈ R

s1 and x1, and denote, respectively, the functional
coefficients and the corresponding variables by β2(t) ∈ R

s2 and x2. Then we can
rewrite model (1.4) as the following:

yi(tij ) = β0(tij ) + x1i (tij )
T β1 + x2i (tij )

T β2(tij ) + εi(tij ),
(4.1)

j = 1, . . . ,mi,

where x1i (tij ) and x2i (tij ) denote, respectively, the observations on x1(t) and x2(t)

in the ith subject at time tij . When x1 and x2 are given, and s1 and s2 are fixed
and small, this estimation problem has been extensively studied in the literature
[19, 38]. We revisit this problem to provide a practical procedure when we en-
counter ultra-high or large dimensionality and we do not have a priori knowledge
of the relevant variables, nor which of them have constant coefficients. First, there
is room to improve the group SCAD estimator given in (3.8). One reason is that
it uses working independence, which does not hold for longitudinal data in gen-
eral. Another reason is that B-spline smoothing suffers from boundary effects. In
model (3.8), the selected variables are divided into two groups. The variables in x1

have constant coefficients with |(β̂k)c| > 0 and ‖(β̂k)f ‖L2 = 0, and those in x2

have time-varying coefficients with ‖(β̂k)f ‖L2 > 0. Note that when |(β̂k)c| = 0
and ‖(β̂k)f ‖L2 > 0 the constant part is zero, but we still include the variable in x2

without such a constraint on βk(t).
Our estimation procedure for the coefficients in (4.1) consists of three steps:

(i) constructing initial estimators, (ii) estimating the covariance function of the er-
ror process and (iii) estimating the coefficients based on the covariance estimate,
which are detailed in the following sections. Alternatively, after the initial coef-
ficient estimates given in Section 4.1 are obtained, we may also iterate between
the covariance function estimation step and the coefficient estimation step until
convergence.

4.1. Initial coefficients estimation. We could use the group SCAD estima-
tor (3.8) as initial estimator for the coefficients in model (4.1). However, it may
suffer from boundary effects, and the following profile least squares estimator is
preferred [5, 17]. Recall that ti = (ti1, . . . , timi

), yi(ti ) = (yi(ti1), . . . , yi(timi
)),

and εi(ti ) = (εi(ti1), . . . , εi(timi
)). Let K denote a kernel function, which is usu-

ally taken as a symmetric p.d.f., and take a bandwidth h1 > 0. For any given
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β1 ∈ R
s1 , we can estimate β0(t) and β2(t) in model (4.1) by minimizing the fol-

lowing local sum of squares:

n∑
i=1

mi∑
j=1

{
yi(tij ) − x1i (tij )

T β1 − (
1,x2i (tij )

T )(
α0 + α1(tij − t)

)}2
Kh1(tij − t)

=
n∑

i=1

{
yi(ti)T − x1i (tij )

T β1 − (
1mi

,x2i(ti )T ,Ti(t)
(
1mi

,x2i (ti )T
))

α
}T

(4.2)
× Wih1(t)

{
yi(ti)T − x1i (tij )

T β1

− (
1mi

,x2i (ti )T ,Ti(t)
(
1mi

,x2i (ti )T
))

α
}
,

where Kh1(·) = K(·/h1)/h1, α0,α1 ∈ R
s2+1, 1mi

is the mi -dimensional one-
vector, Ti = diag{ti1 − t, . . . , timi

− t}, Wih1(t) = diag{Kh1(ti1 − t), . . . ,Kh1 ×
(timi

− t)}, and α = (αT
0 ,αT

1 )T . Let 0k×l be the k × l dimensional zero matrix. For
any given β1 ∈ R

s1 , denote the minimizer of (4.2) by α̃(t,β1). Then an estimator
of (β0(t),β2(t)

T )T is(
β̃0(t,β1), β̃2(t,β1)

T )T
= (Is2+1,0(s2+1)×(s2+1))α̃(t,β1)

(4.3)
= (Is2+1,0(s2+1)×(s2+1))

(
V(t)T Wh1(t)V(t)

)−1V(t)T Wh1(t)

× (Y − X1β1),

where Y = (y1(t1), . . . , y1(tn))T , X1 = (x11(t1), . . . ,x1n(tn))T , and V(t) =
(VT

1t , . . . ,VT
nt )

T with Vit = (1mi
,x2i (ti )T ,Ti (t)(1mi

,x2i (ti )T )), i = 1, . . . , n.
Then, based on working independence, the initial profile least squares estimator

for the constant coefficients β1 in model (4.1) is defined as

β̃
PLS
1 = arg min

β1∈Rs1

n∑
i=1

mi∑
j=1

{
yi(tij )−x1i (tij )

T β1 − β̃0(tij ,β1)−x2i (tij )
T β̃2(tij ,β1)

}2
,

and the initial estimator for (β0(t),β2(t)
T )T is defined as (β̃PLS

0 (t), β̃
PLS
2 (t)T )T =

(β̃0(t, β̃
PLS
1 ), β̃2(t, β̃

PLS
1 )T )T . Note that β̃

PLS
1 can be written as

β̃
PLS
1 = arg min

β1∈Rs1

{
(I − S)(Y − X1β1)

}T {
(I − S)(Y − X1β1)

}
,

where S = (ST
11, . . . ,ST

1m1
, . . . ,ST

n1, . . . ,ST
nmn

)T , Sij = (1,x2i (tij )
T ,01×(s2+1)) ×

(V(tij )
T Wh1(tij )V(tij ))

−1V(tij )
T Wh1(tij ), j = 1, . . . ,mi , i = 1, . . . , n, and I =

Im1+···+mn . Thus, we have

β̃
PLS
1 = {

XT
1 (I − S)T (I − S)X1

}−1XT
1 (I − S)T (I − S)Y,(4.4)
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and, from the definition of (β̃PLS
0 (t), β̃

PLS
2 (t)T )T and (4.3), we have(

β̃PLS
0 (t), β̃

PLS
2 (t)T

)T
= (Is2+1,0(s2+1)×(s2+1))

(
V(t)T Wh1(t)V(t)

)−1V(t)T Wh1(t)(4.5)

× (
Y − X1β̃

PLS
1

)
.

To select the bandwidth h1 in (4.4) and (4.5), we choose the value of h1 that mini-
mizes the leave-one-subject-out cross-validation function.

It is well known that the working independence estimator β̃
PLS
1 is not semipara-

metric efficient when the error process is indeed dependent [31]. In the following
sections, we estimate the covariance function of the error process using residuals

obtained from the initial estimators β̃
PLS
1 , β̃PLS

0 (t) and β̃
PLS
2 (t), and then construct

semiparametric efficient estimators. The semiparametric efficiency results in [19]
concern generalized partially linear models and carry over to the considered semi-
varying coefficient models.

4.2. Estimation of covariance function of the error process. Denote the co-
variance function of the error process ε(t) by φ(u, v) = Cov(ε(u), ε(v)), u, v ∈
[0,1], and assume that ε(t) consists of two independent components:

ε(t) = ε1(t) + ε2(t),

where ε1(t) has a smooth covariance function ψ(s, t) and ε2(t) models the mea-
surement error process. Write the residuals obtained from the initial profile least

squares estimators β̃
PLS
1 and β̃

PLS
2 (tij ) given in Section 4.1 as

ε̂ij = y(tij ) − x1i (tij )
T β̃

PLS
1 − β̃PLS

0 (tij ) − x2i (tij )
T β̃

PLS
2 (tij ),(4.6)

i = 1, . . . , n, j = 1, . . . ,mi . We can estimate φ based on these residuals. There
exist (semi)parametric approaches to covariance estimation for longitudinal data
[6, 12]. Such methods will be efficient when the parametric assumptions hold,
but can suffer from large biases otherwise. In general, we may not have knowledge
about the complicated covariance structure and we can use nonparametric methods
to avoid this problem.

Specifically, we use the nonparametric method of [15] to estimate the covariance
function φ based on the residuals. First, noting that

φ(tij , tik) = ψ(tij , tik) + Var
(
ε2(tij )

)
I (tij = tik),

i = 1, . . . , n, j, k = 1, . . . ,mi,

we can estimate ψ(u, v) by ψ̃(u, v) = ã(u, v) where ã(u, v) is the first element of
ã(u, v) which minimizes the following local sum of squares:

n∑
i=1

∑
j �=k

{̂
εij ε̂ik − a − b(tij − u) − c(tik − v)

}2

(4.7) × Kh2(tij − u)Kh2(tik − v),
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with a bandwidth h2 > 0. An explicit formulae for ψ̃(u, v) is available [15].
The covariance function estimate ψ̃(u, v) is not positive semidefinite in gen-
eral. We can modify this estimate by truncating the negative components in its
spectral decomposition ψ̂(u, v) = ∑ζn

k=1 ω̃kψ̃k(u)ψ̃k(v), where ω̃1 ≥ ω̃2 ≥ · · · are
the eigenvalues of the operator ψ̃ , given by (ψ̃α)(u) = ∫

[0,1] α(v)ψ̃(u, v) dv for
α ∈ L2([0,1]), ψ̃j is the eigenfunction corresponding to ω̃j , j = 1,2, . . . , and
ζn = max{k : ω̃j > 0, j = 1, . . . , k}.

Next, we estimate the variance function of the error process ε(t): σ 2(t) ≡
Var(ε2(t)) by σ̂ 2(t) ≡ â where â is defined by

(â, b̂)T = arg min
(a,b)T ∈R2

n∑
i=1

mi∑
j=1

{̂
ε2
ij − a − b(tij − t)

}2
Kh3(tij − t),(4.8)

with h3 > 0. Then an estimator for φ(u, v) is defined as

φ̂(u, v) = ψ̂(u, v)I (u �= v) + σ̂ 2(u)I (u = v).(4.9)

To select the bandwidths h2 and h3 in (4.7) and (4.8) we can employ the leave-
one-subject-out cross-validation.

4.3. Model estimation accounting for dependent errors. In this section,
we construct semiparametric efficient estimators for the constant and vary-
ing coefficient functions β1 and β2(t) using φ̂(u, v) given in (4.9). Let �̂i =
(φ̂(tij , tik))j,k=1,...,mi

, i = 1, . . . , n. For any β1 ∈ R
s1 , define α̂(t,β1) as the mini-

mizer of the following objective function of α ∈ R
2(s2+1):

n∑
i=1

{
yi(ti )T − x1i (tij )

T β1 − (
1mi

,x2i (ti)T ,Ti(t)
(
1mi

,x2i (ti)T
))

α
}T

�̂
−1/2
i

× Wih1(t)�̂
−1/2
i

{
yi(ti )T − x1i (tij )

T β1

− (
1mi

,x2i (ti )T ,Ti(t)
(
1mi

,x2i (ti)T
))

α
}
.

Then, given β1 ∈R
s1 , an estimator for (β0(t),β2(t)

T )T is taken as(
β̂0(t,β1), β̂2(t,β1)

T )T
= (Is2+1,0(s2+1)×(s2+1))α̂(t,β1)

(4.10)
= (Is2+1,0(s2+1)×(s2+1))

(
V̂(t)T Wh1(t)V̂(t)

)−1V̂(t)T Wh1(t)�̂
−1/2

× (Y − X1β1),

where �̂
−1/2 = diag{�̂−1/2

1 , . . . , �̂
−1/2
n }, and V̂(t) = (V̂T

1t , . . . , V̂T
nt )

T with V̂it =
(�̂

−1/2
i (1mi

,x2i (ti )T ), �̂
−1/2
i Ti (t)(1mi

,x2i(ti )T )), i = 1, . . . , n.
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The profile least squares estimator for β1, denoted by β̂
PLS
1 , accounting for

within-subject correlation, is defined as the minimizer of the following objective
function of β1 ∈ R

s1 :

n∑
i=1

mi∑
j=1

mi∑
k=1

{
yi(tij ) − x1i (tij )

T β1 − β̂0(tij ,β1) − x2i (tij )
T β̂2(tij ,β1)

}T
�̂

−1
i (j, k)

× {
yi(tik) − x1i (tik)

T β1 − β̂0(tij ,β1) − x2i (tij )
T β̂2(tij ,β1)

}
.

Then the corresponding estimator for (β0(t),β2(t)
T )T is as in (4.10) with β1 re-

placed by β̂
PLS
1 . We call these the refined estimators. Rewrite β̂

PLS
1 as

β̂
PLS
1 = arg min

β1∈Rs1

{
(I − Ŝ)(Y − X1β1)

}T
�̂

−1{
(I − Ŝ)(Y − X1β1)

}
,

where �̂
−1 = diag{�̂−1

1 , . . . , �̂
−1
n }, Ŝ = (ŜT

11, . . . , ŜT
1m1

, . . . , ŜT
n1, . . . , ŜT

nmn
)T ,

Ŝij = (1,x2i (tij )
T ,01×(s2+1))(V̂(tij )

T Wh1(tij )V̂(tij ))
−1V̂(tij )

T Wh1(tij )�̂
−1/2

,
j = 1, . . . ,mi , i = 1, . . . , n. Then we have

β̂
PLS
1 = {

XT
1 (I − Ŝ)T �̂

−1
(I − Ŝ)X1

}−1XT
1 (I − Ŝ)T �̂

−1
(I − Ŝ)Y,(4.11)

and it follows from the definition of (β̂PLS
0 (t), β̂

PLS
2 (t)T )T and (4.10) that(

β̂PLS
0 (t), β̂

PLS
2 (t)T

)T
= (Is2+1,0(s2+1)×(s2+1))(4.12)

× (
V̂(t)T Wh1(t)V̂(t)

)−1V̂(t)T Wh1(t)�̂
−1/2(

Y − X1β̂
PLS
1

)
.

To select the bandwidth h1 in (4.11) and (4.12), we choose the value of h1 that
minimizes the leave-one-subject-out cross-validation function.

5. Numerical studies.

5.1. Simulations. In our simulation study summarized in this section, the data
were generated from model (4.1), where each ti is a vector of m equally-spaced
grid points on [0,1]. We considered three coefficients settings:

Case I. β0(t) = 3.5 sin(2πt), s1 = 2, s2 = 3, β1 = (5,−5)T and β2(t) =
(5(1 − t)2,3.5(exp(−(3t − 1)2) + exp(−(4t − 3)2)) − 1.5,3.5t1/2)T .

Case II. β0(t) = 3.5 sin(2πt), s1 = 0, s2 = 5, and β2(t) = (5(1 − t)2,
3.5(exp(−(3t − 1)2) + exp(−(4t − 3)2)) − 1.5,3.5t1/2,6 − 2t,2 − 3 cos(4πt))T .

Case III. β0(t) = 3.5 sin(2πt), s1 = 5, s2 = 0, β1 = (5,−5,2.5,−2.5,1)T .

We generated covariates x(t) from a p-dimensional Gaussian process whose
component processes each has mean zero and covariance function Cov(xk(s),
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xk(t)) = 2 sin(2πs) sin(2πt). The correlation between components is specified as
follows. The first s1 + s2 + s0 elements of x(t) are correlated with a constant
correlation ρ, and thus follow a compound-symmetry covariance structure. The
remaining p − (s1 + s2 + s0) elements of x(t) are uncorrelated with each other
and the first s1 + s2 + s0 elements. The first s1 and s2 elements of x(t) are used
as x1(t) and x2(t) in the model, respectively. The next s0 elements of x(t) are
spurious variables that are not related to y(t) but correlated to x1(t) and x2(t).
The random error ε(t) was simulated from an ARMA(1,1) Gaussian process with
mean zero and covariance function Cov(ε(s), ε(t)) = ωr|s−t |, with ω = 0.85 and
r = 0.5.

In addition, we considered two more cases with different covariate and error
distributions.

Case IV. The same as case I except that the covariance matrix of the first s1 +
s2 + s0 elements of x(t) is an AR(1) matrix with (j, j ′)th element equal to ρ|j−j ′|.
We set ω = 0.85 and r = 0.6 for the error process.

Case V. The same as case I except that the covariance matrix of the first s1 +
s2 + s0 elements of x(t) is a symmetric matrix with (j, j ′)th element equal to
|j − j ′|/{2(s1 + s2 + s0)} + ρ|j−j ′|. We set ω = 0.95 and r = 0.5 for the error
process.

After 500 simulations, we summarized the performance of our variable selec-
tion and structure identification procedures in Table 1 for the five considered cases.
The results for larger values of ρ under cases II and III are very similar to that un-
der case I, and thus are not reported here. Both varying-coefficients and constant
nonzero coefficients were selected correctly with high probability over the simu-
lations, especially when the spurious correlation ρ is low. True positive fractions
for the overall model, the varying-coefficient part and the constant coefficient part
were close to the true number of variables while false positive fractions were small
in general. When spurious correlation was moderate or high, under-selection and
over-selection were observed more often. In general, the selection accuracy was
improved as we increased the sample size n.

The estimation results for various model components are summarized in Ta-
ble 2 for the three cases I–III with n = 100, m = 20 and ρ = 0.1. The results
for moderate or higher correlation values are similar, and are thus skipped here.
For estimates of the parametric components, we report the estimation mean ab-
solute error (MAE) and the root mean square error (RMSE). For estimates of the
nonparametric components, we report the mean integrated absolute error (MIAE)
and the root mean integrated squared error (RMISE). The practical estimates per-
formed almost as well as the respective oracle estimates. The refined estimates in
general performed better than the respective initial estimates. Typical estimates
for the coefficient functions in case I with median MISE are depicted in Fig-
ure 1.
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TABLE 1
Variable selection results from 500 simulations. Cvar (Cfix) is the proportion of variables with varying-coefficients (constant nonzero coefficients) that
are selected; Size is the average model size; U (O) is the proportion of underselection (overselection); TP (FP) is the average number of true positive

(false positive); TPvar (FPvar) is the average number of true positive (false positive) for the varying-coefficients; TPfix (FPfix) is the average number of
true positive (false positive) for the constant coefficients; MMMS is the median of the minimum model size to contain all true nonzeros in the screening

step. Here, m = 20, s0 = 10,p = 500, n is the sample size and ρ is the spurious correlation. The values in the parentheses are the robust standard
deviations

Case I II III IV V

n 100 100 200 100 200 100 200 100 200 100 200
ρ 0.1 0.5 0.5 0.3 0.3 0.4 0.4 0.4 0.5 0.4 0.5

Cvar 0.965 0.904 0.996 0.952 0.986 – – 0.976 0.992 0.925 0.998
Cfix 0.926 0.812 0.912 – – 0.938 0.969 0.854 0.936 0.810 0.914
Size 5.01 (0.79) 6.43 (1.23) 5.02 (0.54) 5.12 (0.13) 5.04 (0.01) 5.25 (0.13) 5.01 (0.01) 4.95 (0.63) 4.98 (0.40) 4.87 (0.96) 4.99 (0.22)

U 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.00
O 0.01 0.19 0.02 0.08 0.01 0.11 0.03 0.03 0.00 0.04 0.00
TP 5.00 (0.79) 4.99 (1.18) 5.00 (0.54) 4.97 (0.13) 5.00 (0.01) 4.96 (0.12) 5.00 (0.01) 4.93 (0.59) 4.97 (0.40) 4.81 (0.93) 4.99 (0.22)

FP 0.01 (0.06) 0.81 (0.25) 0.02 (0.01) 0.09 (0.01) 0.04 (0.00) 0.15 (0.01) 0.05 (0.01) 0.03 (0.19) 0.00 (0.00) 0.05 (0.19) 0.00 (0.00)

TPvar 2.93 (0.54) 2.87 (0.75) 2.97 (0.42) 4.98 (0.11) 5.00 (0.04) – – 2.82 (0.48) 2.92 (0.34) 2.79 (0.65) 2.97 (0.31)

FPvar 0.10 (0.04) 0.15 (0.09) 0.09 (0.06) 0.03 (0.08) 0.01 (0.00) 0.03 (0.08) 0.01 (0.01) 0.01 (0.08) 0.00 (0.00) 0.04 (0.21) 0.01 (0.05)

TPfix 1.92 (0.33) 1.84 (0.48) 1.92 (0.22) – − 4.93 (0.15) 5.00 (0.04) 1.96 (0.26) 1.98 (0.17) 1.88 (0.43) 1.99 (0.09)

FPfix 0.04 (0.28) 0.80 (0.42) 0.14 (0.21) 0.06 (0.14) 0.03 (0.04) 0.10 (0.12) 0.02 (0.01) 0.16 (0.40) 0.06 (0.23) 0.20 (0.42) 0.08 (0.27)

MMMS 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0) 5 (0)
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TABLE 2
Estimation results of 500 simulations. Oracle (Practical) estimate refers to estimation with known

model (after screening and model selection)

Oracle estimate Practical estimate

Initial ˜βPLS
k Refined ̂βPLS

k Initial ˜βPLS
k Refined ̂βPLS

k

Case I
Parameters MAE RMSE MAE RMSE MAE RMSE MAE RMSE

β11 0.0374 0.0623 0.0253 0.0387 0.0572 0.0806 0.0266 0.0458
β12 0.0507 0.0642 0.0296 0.0417 0.0662 0.0768 0.0330 0.0500

Functions MIAE RMISE MIAE RMISE MIAE RMISE MIAE RMISE

β0(t) 0.1678 0.2410 0.0872 0.1526 0.1922 0.2863 0.1020 0.1902
β21(t) 0.1697 0.2497 0.1098 0.1805 0.2066 0.2819 0.1243 0.2111
β22(t) 0.1526 0.2433 0.1151 0.1568 0.1815 0.2760 0.1261 0.1957
β23(t) 0.1804 0.2819 0.1241 0.2007 0.2119 0.2939 0.1317 0.2293

Case II
Functions MIAE RMISE MIAE RMISE MIAE RMISE MIAE RMISE

β0(t) 0.1748 0.2571 0.1042 0.1794 0.2254 0.3179 0.1220 0.2535
β21(t) 0.1939 0.2703 0.0859 0.1389 0.2316 0.3315 0.1015 0.2220
β22(t) 0.1532 0.2357 0.1029 0.1473 0.1964 0.3003 0.1221 0.2088
β23(t) 0.1710 0.2381 0.1019 0.1462 0.2156 0.2901 0.1215 0.2383
β24(t) 0.2074 0.3352 0.1181 0.1889 0.2473 0.3880 0.1243 0.2565
β25(t) 0.2425 0.3562 0.1252 0.2441 0.2680 0.4055 0.1362 0.2590

Case III
Parameters MAE RMSE MAE RMSE MAE RMSE MAE RMSE

β11 0.0136 0.0264 0.0109 0.0223 0.0142 0.0402 0.0136 0.0387
β12 0.0125 0.0200 0.0118 0.0141 0.0144 0.0458 0.0138 0.0374
β13 0.0256 0.0400 0.0162 0.0332 0.0352 0.0538 0.0286 0.0469
β14 0.0206 0.0360 0.0175 0.0282 0.0327 0.0565 0.0249 0.0489
β15 0.0300 0.0400 0.0265 0.0346 0.0525 0.0648 0.0430 0.0608

Functions MIAE RMISE MIAE RMISE MIAE RMISE MIAE RMISE

β0(t) 0.1067 0.0985 0.1038 0.0938 0.1215 0.1126 0.1156 0.1101

5.2. Real data analysis. We analyzed the well-known Yeast Cell Cycle gene
expression data set, originally studied by [25]. There are n = 297 cell-cycle-
regularized genes whose expression levels were measured at m = 18 time points
covering two cell-cycle periods. We aim at identifying important transcription fac-
tors (TF) that affect the gene expression. Using the same subset of the original
data as in [28], we included totally p = 96 TFs as covariates in the following anal-
ysis.
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FIG. 1. Estimated varying coefficients with median MISE for case I. From left to right are (top)
β0(t), β21(t), (bottom) β22(t) and β23(t). The lines with “+” symbols are the true functions; the
solid and dashed lines are, respectively, the refined and initial estimates.

We first applied the nonparametric screening procedure and 51 TFs were kept
after the screening. The nonparametric estimates of varying-coefficients for the
51 TFs from the inital screening are plotted in Figure 2. The names of these TFs
are given in the following list:

HIR2 HIR1 MET4 FKH2 NDD1 SWI4 SWI5 SKN7 FKH1 MCM1
SMP1 PHD1 SWI6 PUT3 ACE2 MBP1 CIN5 ABF1 RLM1 GRF10.Pho2.
MSN1 RTG1 STE12 SOK2 RGM1 MTH1 CBF1 RTG3 STB1 INO4
DOT6 GAT3 SIP4 REB1 STP1 YAP6 HAL9 DAL81 GAL4 YAP5
PDR HAP4 MSN4 RAP1 DIG1 CUP9 NRG1 INO2 HAP5 FHL1 RFX1

The above list includes all of the TFs mentioned in [29]. Comparing to the 21
known yeast TFs related to the cell cycle process included in Figure 2 of [28],
our list does not include BAS1, GCN4, GCR1, GCR2, LEU3 and MET31 and
includes all of the other 15 TFs. Comparing to the additional TFs identified in
Table 2 of [28], the above list does not include 23 of their totally 52 TFs.
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FIG. 2. Estimated varying coefficients of the 51 TFs obtained from NIS.

We then applied our proposed variable selection and structure identification pro-
cedure and identified 11 TFs, among which 9 TFs have varying-coefficients and
the other 2 TFs have constant coefficients. The refined estimates for the 9 varying-
coefficients are plotted in Figure 3, along with the 95% confidence intervals com-
puted from bootstrap based on 500 resamples. For the sake of comparison, in each
panel we also display the corresponding initial estimate and its 95% bootstrap
confidence interval. The two estimates are similar but have distinctions. The con-
fidence intervals for the initial estimates are always slightly wider than those for
the respective refined estimates. The estimated constant coefficients are given in
Table 3 where the standard errors (SE) were computed based on the bootstrap.

Our results are comparable to previous publications. The estimated varying-
coefficients almost all show periodic transcriptional effects, as was evidenced in
earlier publications. Of the 9 TFs with varying coefficients, SWI6, FKH2, NDD1
and SWI5 were also identified as important TFs in [28] and [29]; ABF1, HIR1,
HIR2, MET4 and SMP1 were also identified as important TFs in [28]. Of the 2 TFs
with constant coefficients, MCM1 was identified before in [28] and [29] but its ef-
fect was estimated as a varying coefficient instead of a constant one; RLM1 was
also included in the list of important TFs reported in [28]. Furthermore, [30] used
a penalized estimating equation approach to analyze this data set and identified
similar number of TFs although the authors did not report the names of the identi-
fied TFs.

For two typical individuals selected from the data set, we displayed their ob-
served and fitted time-varying responses in Figure 4. The prediction from the fitted
model resembles the true functional response closely and provides a more natural
and smooth interpretation for the cell cycle process. These results may serve as
useful tools for biologists to study molecular events with large variability.

We remark that the cell cycle is a complicated biological process and the
between-gene heterogeneity may prohibit investigators from making the identical
distribution assumption. Our endeavor here is to model a collective time-varying
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FIG. 3. Estimated varying coefficients for Yeast Cycle data. Blue curves display the refined esti-
mates and red curves display the initial estimates. Solid curves are the estimated functions while
dashed curves are the 95% confidence intervals.

effect of the TF that remains relatively fixed among genes. A more refined analysis
for individual phases of the cycle may be carried out to reduce the variability. Cau-
tion must be exercised to generalize the results, especially to a set of genes with
entirely different regulatory mechanisms.

APPENDIX: PROOFS OF THEOREMS 3.1–3.3

We describe some important facts first. Recall that |γ | denotes the Euclidean
norm of γ . It is easy to see that, for some positive CN1 and CN2,

CN1L
−1/2|γ | ≤ ∥∥(

γ T
0 B, . . . , γ T

q B
)T ∥∥

L2
≤ CN2L

−1/2|γ |(A.1)

uniformly in γ = (γ T
0 , . . . , γ T

q )T . Lemmas 3 and 4 of the supplementary mate-
rial [3] imply that there are positive constants CB1 and CB2 such that, with proba-
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FIG. 3. (Continued).

TABLE 3
Estimated constant coefficients for two transcription

factors in the Yeast Cell Cycle data. In the parentheses
are the bootstrap standard errors

TF Initial ˜βPLS
k Refined ̂βPLS

k

MCM1 0.0129 (0.0103) 0.0220 (0.0101)
RLM1 −0.0032 (0.0095) −0.0097 (0.0094)

FIG. 4. Observed and fitted response curves for subjects 25 (left) and 177 (right) in the sample.
Solid lines are the observed response curves; broken lines are the fitted curves from refined estimates;
Dotted lines are the fitted curves from the initial estimates.
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bility tending to 1,

CB1/L ≤ λmin
(〈

B,BT 〉
n

) ≤ λmax
(〈

B,BT 〉
n

) ≤ CB2/L.

A.1. Proof of Theorem 3.1. Define γ m = (γ T
0m, . . . , γ T

qm)T ∈ R(q+1)L by

γ m = arg min
(γ T

0 ,...,γ T
q )T ∈R(q+1)L

∥∥∥∥∥β0 +
q∑

k=1

βkx
(k) − γ T

0 B −
q∑

k=1

γ T
k Wk

∥∥∥∥∥
2

n

.(A.2)

Lemma 5 of the supplementary material [3] implies that lq(γ ) is strictly concave
with probability tending to 1. Thus, by Lemma 6 of the supplementary material [3],
we have only to demonstrate that there is a local minimizer of lq(γ ) on R(q+1)L,
denoted by γ̃ = (γ̃ T

0 , . . . , γ̃ T
q )T , satisfying∥∥(

γ̃ T
0 B, . . . , γ̃ T

q B
)T − (

γ T
0mB, . . . , γ T

qmB
)T ∥∥2

L2
= Op

(
r2
qn

)
.

Recalling the definition of rqn, given in (3.9), and (A.1), we define �M by

�M = {
γ ∈ R(q+1)L||γ − γ m| = M(qL/n)1/2L1/2}

,

for a positive M , and represent lq(γ ) as

lq(γ ) = lq(γ m) − 2(γ − γ m)T
〈(

BT WT )T
, ε

〉
n

(A.3)
+ (γ − γ m)T �n(γ − γ m).

By Lemma 7 of the supplementary material [3], we have uniformly on �M , the
first term in the right-hand side of (A.3) is MqLn−1Op(1). By Lemma 5 of the
supplementary material [3], we have the second term in the right-hand side of (A.3)
is at least CM2qLn−1 uniformly on �M with probability tending to 1, where C

does not depend on M . Thus, we have

lim
M→∞ lim sup

n→∞
P
(

inf
γ∈�M

lq(γ ) > lq(γ m)
)

= 1.

It follows from the above result, the strict concavity of lq(γ ), and Lemma 6 of the
supplementary material [3], that there is a unique minimizer γ̃ of lq(γ ) on R(q+1)L

giving the desired convergence rate.

A.2. Proof of Theorem 3.2. Define γ = (γ T
0 , . . . , γ T

q )T ∈ R(q+1)L by

arg min
∥∥(β0, . . . , βq)

T − (
γ T

0 B, . . . , γ T
q B

)T ∥∥2
L2

.(A.4)

Then, (γ T
0 B, . . . , γ T

q B)T ∈ G0 due to Assumption S(1), and the minimum in (A.4)
is no larger than that of γ m in Lemma 6 of the supplementary material [3]. Thus,
Lemma 6 of the supplementary material [3] and (A.1) together imply that, with
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probability tending to 1, |γ − γ m|2 ≤ Cρ2
qnL for some positive C. The desired

result follows if we show that

lim
M→∞ lim sup

n→∞
P
(

inf
γ∈�M

Qq(γ ) > Qq(γ )
)

= 1,(A.5)

where �M = {γ ∈ R(q+1)L||γ − γ | = ML1/2rqn}. Write

Qq(γ ) − Qq(γ ) = {
lq(γ ) − lq(γ )

}
+

[ q∑
k=0

{
pλ1

(∣∣(gk)c
∣∣) + pλ2

(∥∥(gk)f
∥∥
L2

)}
(A.6)

−
q∑

k=0

{
pλ1

(∣∣(gk)c
∣∣) + pλ2

(∥∥(gk)f
∥∥
L2

)}]
,

where gk = γ T
k B and gk = γ T

k B, k = 0,1, . . . , q . We have

lq(γ ) − lq(γ )

= 2(γ − γ )T
{−〈(

BT WT )T
, ε

〉
n + �n(γ − γ m)

}
(A.7)

+ (γ − γ )T �n(γ − γ ).(A.8)

Lemmas 5 and 7 of the supplementary material [3] imply that uniformly in
γ ∈ �M , the first term in the right-hand side of (A.7) equals ML1/2rqn ×
Op((q/n)1/2) + MLrqnOp(L−1)ρn = MOp(r2

qn). By Lemma 5 of the supple-
mentary material [3], there is a positive constant C such that the second term in
the right-hand side of (A.7) is no less than CM2r2

qn, uniformly in γ ∈ �M and
with probability tending to 1. Thus, we have

lim
M→∞ lim sup

n→∞
P
(

inf
γ∈�M

{
lq(γ ) − lq(γ )

} ≥ CM2r2
qn/2

)
= 1.(A.9)

Next, we consider the difference between the penalty terms. Recall that a0 ap-
pearing below comes from the SCAD function in (3.6). When |γ −γ | = ML1/2rpn

we have, for k = 0,1, . . . , q and sufficiently large M ,∣∣(γ T
k B

)
c

∣∣, ∣∣(γ T
k B

)
c

∣∣ > a0λ1 or
∣∣(γ T

k B
)
c

∣∣ = o(λ1) and
∣∣(γ T

k B
)
c

∣∣ = 0,∥∥(
γ T
k B

)
f

∥∥
L2

,
∥∥(

γ T
k B

)
f

∥∥
L2

> a0λ2 or
∥∥(

γ T
k B

)
f

∥∥
L2

= o(λ2) and∥∥(
γ T

k B
)
f

∥∥
L2

= 0.

The above relations and the properties of the SCAD function imply the second
term of the right-hand side of (A.6) is nonnegative on �M . Thus, (A.5) follows
from (A.7) and (A.9), and the proof of Theorem 3.2 is complete.
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A.3. Proof of Theorem 3.3. We prove the sparsity property in a way similar
to the former half of the proof of Theorem 1 in [29].

First, let γ̂ be a local minimizer of Qq(γ ) on R(q+1)L satisfying(
γ̂ T

0 B, . . . , γ̂ T
q B

)T ∈ G0,(A.10) ∥∥(
γ̂ T

0 B, . . . , γ̂ T
q B

)T − (β0, . . . , βq)
T

∥∥
L2

≤ ηnrqn.(A.11)

Then consider Qq(γ̂ + δ) for γ̂ + δ ∈ G0, where G0 is the subspace of R(q+1)L

corresponding to the oracle space G0. When |δ| is small enough, we have the same
value of the penalty term as that for γ̂ due to the flatness of the SCAD function. On
the other hand, the local optimality of γ̂ implies that Qq(γ̂ + δ) ≥ Qq(γ̂ ). Thus,
there is a small neighborhood of γ̂ in G0, �h, such that infγ∈�h

lq(γ ) ≥ lq(γ̂ ). This
shows that γ̂ is a local minimizer of lq(γ ) on G0. Since lq(γ ) is strictly concave
on R(q+1)L with probability tending to 1, this γ̂ must be the unique minimizer of
lq(γ ) on G0, denoted by γ̂ 0. A similar argument can be found in [9].

Next, we deal with the oracle estimator γ̂ 0. We neglect x(s+1)(t), . . . , x(q)(t)

and restrict G0 to R(s+1)L. Besides, we define γ m ∈ R(s+1)L and γ ∈ G0 ⊂
R(s+1)L similarly as in the proofs of Theorems 3.1 and 3.2. Then we have

ls(γ ) − ls(γ )

= 2(γ − γ )T
{−〈(

BT WT )T
, ε

〉
n + �n(γ − γ m)

} + (γ − γ )T �n(γ − γ ),

for γ ∈ R(s+1)L, where W is defined with x(s+1)(t), . . . , x(q)(t) removed. Pro-
ceeding in the same way as in the proof of Theorem 3.2, we obtain
limM→∞ lim supn→∞ P(infγ∈�̃M

ls(γ ) > ls(γ )), where �̃M = {γ ∈ G0||γ − γ | =
ML1/2rsn}. Thus, γ̂ 0 satisfies |γ̂ 0 − γ | = Op(L1/2rsn).

Finally, we consider a local minimizer γ̂ satisfying (A.11) and prove that it
also satisfies (A.10). For this γ̂ , suppose that (β̂j )c �= 0 and (βj )c = 0 for some
j , where β̂j = γ̂ T

j B. Then we have that 0 < |(β̂j )c| = o(λ1). Define β̂ t for t ∈
[0,1/2] by

β̂ t = β̂ + t (β̂−cj − β̂) = (1 − t)β̂ + t β̂−cj ,

where β̂ = (β̂0, . . . , β̂q)
T and we define β̂−cj by replacing β̂j of β̂ with (β̂j )f .

Defining γ̂ t = (γ̂ T
0t , . . . , γ̂

T
qt )

T by β̂ t = (γ̂ T
0t B, . . . , γ̂ T

qtB)T , we evaluate

Qq(γ̂ t ) − Qq(γ̂ ) = {
lq(γ̂ t ) − lq(γ̂ )

} + {
pλ1

(
(1 − t)

∣∣(β̂j )c
∣∣) − pλ1

(∣∣(β̂j )c
∣∣)}

= J5 + J6.

It is easy to see that for some t ∈ [0, t], J6 = −t |(β̂j )c|p′
λ1

((1 − t)|(β̂j )c|). In
addition, we can represent J5 as

J5 = −2(γ̂ t − γ̂ )T

〈(
BT WT )T

, y − γ̂ T
0 B −

q∑
k=1

γ̂ T
k Wk

〉
n

+ (γ̂ t − γ̂ )T �n(γ̂ t − γ̂ ).
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Lemmas 5 and 7 of the supplementary material [3] imply that the two terms
in J5 can be expressed as −2(γ̂ t − γ̂ )T 〈(BT WT )T , (BT WT )〉n(γ m − γ̂ )− 2(γ̂ t −
γ̂ )T 〈(BT WT )T , ε〉n and t |(β̂j )c|Op(ηnrqn). Hence we get J5 = t |(β̂j )c|Op ×
(ηnrqn). From the above results, property of the SCAD function and Assump-
tion S(2),

Qq(γ̂ t ) − Qq(γ̂ ) = t
∣∣(β̂j )c

∣∣{Op(ηnrqn) − p′
λ1

(
(1 − t)

∣∣(β̂j )c
∣∣)} < 0

uniformly in t ∈ (0,1/2) with probability tending to 1, and the probability does
not depend on the specific value of j . This contradicts with the local optimality
of γ̂ , and thus (β̂j )c must be equal to 0 if (βj )c = 0. We can treat the other cases
in the same way. Hence, (A.10) is established for the local minimizer γ̂ , and the
proof is complete.

SUPPLEMENTARY MATERIAL

Some technical material: Supplement to “Nonparametric independence
screening and structure identification for ultra-high dimensional longitudi-
nal data” (DOI: 10.1214/14-AOS1236SUPP; .pdf). Some lemmas, and proofs of
Theorems 2.1–2.2 and Remark 1.
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