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A CHARACTERIZATION OF STRONG ORTHOGONAL ARRAYS
OF STRENGTH THREE1

BY YUANZHEN HE AND BOXIN TANG

Chinese Academy of Sciences and Simon Fraser University

In an early paper, He and Tang [Biometrika 100 (2013) 254–260] in-
troduced and studied a new class of designs, strong orthogonal arrays, for
computer experiments, and characterized such arrays through generalized
orthogonal arrays. The current paper presents a simple characterization for
strong orthogonal arrays of strength three. Besides being simple, this new
characterization through a notion of semi-embeddability is more direct and
penetrating in terms of revealing the structure of strong orthogonal arrays.
Some other results on strong orthogonal arrays of strength three are also
obtained along the way, and in particular, two SOA(54,5,27,3)’s are con-
structed.

1. Introduction. Computer models are powerful tools that enable researchers
to investigate complex systems from almost every imaginable field of studies in
natural sciences, engineering, social sciences and humanities. Computer models
can be stochastic or deterministic; we consider deterministic computer models.
When the computer code representing a computer model is expensive to run, it is
desirable to build a cheaper surrogate model. Computer experiments are concerned
with the building of a statistical surrogate model based on the data consisting of
a set of carefully selected inputs and the corresponding outputs from running a
computer code.

Designing a computer experiment, that is, the selection of inputs, is a crucial
step in the process of model building. No matter how elaborate and sophisticated
a model building process is, a statistical model contains no more information than
what the data can offer. In the past two decades, space-filling designs have been
widely accepted as appropriate designs for computer experiments. A space-filling
design refers to, in a very broad sense, any design that strews its points in the de-
sign region in some uniform fashion. The uniformity of a design may be evaluated
using a distance criterion [Johnson, Moore and Ylvisaker (1990)] or a discrepancy
criterion [Fang and Mukerjee (2000)]. See Santner, Williams and Notz (2003) and
Fang, Li and Sudjianto (2006) for more details. Orthogonality has also been play-
ing a significant role in constructing designs for computer experiments as it, in
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addition to being useful in its own right, provides a stepping stone to achieving
uniformity [Lin, Mukerjee and Tang (2009)].

The curse of dimensionality, however, makes it extremely difficult for the points
of a design to provide a good coverage of a high dimensional design region. Even
10,000 points are not enough for a 2m grid in an m = 14 dimensional space,
not to mention that such a regular grid leaves a deep hole in the center of the
2m points. In such situations, it makes more sense to consider designs that are
space-filling in lower dimensional projections of the input space. The idea of Latin
hypercube designs is to achieve the maximum uniformity in all one-dimensional
projections [McKay, Beckman and Conover (1979)]. OA-based Latin hypercubes
[Tang (1993)] carry this idea further, which give designs that, in addition to being
Latin hypercubes, achieve uniformity in t-dimensional margins when orthogonal
arrays of strength t are employed. One could also use orthogonal arrays directly
[Owen (1992)] but such designs do not perform well in one-dimensional projec-
tions when orthogonal arrays have small numbers of levels.

He and Tang (2013) introduced, constructed and studied a new class of arrays,
strong orthogonal arrays, for computer experiments. A strong orthogonal array
of strength t does as well as a comparable orthogonal array in t-dimensional pro-
jections, but the former achieves uniformity on finer grids than the latter in all
g-dimensional projections for any g ≤ t − 1. Consequently, Latin hypercubes con-
structed from a strong orthogonal array of strength t are more space-filling than
comparable OA-based Latin hypercubes in all g-dimensional projections for any
2 ≤ g ≤ t − 1. The concept of strong orthogonal arrays is motivated by the notion
of nets from quasi-Monte Carlo methods [Niederreiter (1992)]. The formulation
of this new concept has two advantages. First, strong orthogonal arrays are more
general than nets in terms of run sizes; and second, strong orthogonal arrays are
defined in the form and language that are familiar to design practitioners and re-
searchers. This not only makes existing results from nets more accessible to design
community but also allows us to obtain new designs and theoretical results.

The present article focuses on strong orthogonal arrays of strength three.
Through a notion of semi-embeddability, we provide a complete yet very simple
characterization for such arrays. Though the characterization using generalized
orthogonal arrays in He and Tang (2013) is general, our new characterization for
strength three is more direct and revealing. Apart from this main result, some other
results on strong orthogonal arrays of strength three are also obtained. In partic-
ular, we construct two strong orthogonal arrays of 54 runs, five factors, 27 levels
and strength three.

The paper is organized as follows. Section 2 introduces some notation and
background material. In Section 3, a notion of semi-embeddability is defined,
through which we present the main result of the paper, stating that a strong
orthogonal array of strength three exists if and only if a semi-embeddable or-
thogonal array of strength three exists. We then examine the semi-embeddability
and nonsemi-embeddability of some orthogonal arrays. Section 4 constructs two
SOA(54,5,27,3)’s. A discussion is given in Section 5.
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2. Notation and background. This section provides a preparation for the rest
of the paper by introducing necessary notation and some background material. An
n × m matrix A with its j th column taking levels 0,1, . . . , sj − 1 is said to be an
orthogonal array of size n, m factors, and strength t if for any n × t sub-matrix
of A, all possible level combinations occur equally often. Such an array is denoted
by OA(n,m, s1 × · · · × sm, t) in this paper. If at least two sj ’s are unequal, the
array is said to be asymmetrical or have mixed levels. When s1 = · · · = sm = s,
we obtain a symmetrical orthogonal array, in which case, the array is denoted by
OA(n,m, s, t). Since they were first introduced by Rao (1947), orthogonal arrays
have been playing a prominent role in both statistical and combinatorial design
literature, and have become the backbone of designs for multi-factor experiments.
Dey and Mukerjee (1999) discussed the construction and optimality of orthogonal
arrays as fractional factorial designs. For a comprehensive treatment of orthogonal
arrays, we refer to Hedayat, Sloane and Stufken (1999).

Motivated by the notion of nets from quasi-Monte Carlo methods [Niederreiter
(1992)], He and Tang (2013) introduced strong orthogonal arrays. Let [x] de-
note the largest integer not exceeding x. An n × m matrix with levels from
{0,1, . . . , st − 1} is called a strong orthogonal array of size n, m factors, st lev-
els, and strength t if any sub-array of g columns for any g with 1 ≤ g ≤ t can
be collapsed into an OA(n, g, su1 × su2 × · · · × sug , g) for any positive integers
u1, . . . , ug with u1 + · · · + ug = t , where collapsing into suj levels is done by
[a/st−uj ] for a = 0,1, . . . , st − 1. We use SOA(n,m, st , t) to denote such an ar-
ray. The following is an SOA(8,3,8,3):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
2 3 6
3 6 2
1 5 4
6 2 3
4 1 5
5 4 1
7 7 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

as we can easily check that:

(i) The array becomes an OA(8,3,2,3) after the eight levels are collapsed into
two levels according to [a/4] = 0 for a = 0,1,2,3 and [a/4] = 1 for a = 4,5,6,7.

(ii) Any sub-array of two columns can be collapsed into an OA(8,2,2 × 4,2)

as well as an OA(8,2,4 × 2,2), where collapsing into two levels is done by [a/4]
and collapsing into four levels is done using [a/2].

(iii) Any sub-array of one column is an OA(8,1,8,1).

Lawrence (1996) introduced the concept of a generalized orthogonal array. Ex-
tending a result of Lawrence (1996), He and Tang (2013) showed that the existence
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of a strong orthogonal array is equivalent to the existence of a generalized orthog-
onal array. For the ease of presentation and the need of this paper, here we give a
review of this equivalence result only for the case of strength three. An n × (3m)

matrix B = {(a1, b1, c1); . . . ; (am, bm, cm)} with entries from {0,1, . . . , s − 1},
where, as indicated, the 3m columns are put into m groups of three columns
each, is called a generalized orthogonal array of size n, m constraints, s levels
and strength three if all the following matrices are orthogonal arrays of strength
three: (ai, aj , ak) for any 1 ≤ i < j < k ≤ m, (ai, bi, aj ) for any 1 ≤ i �= j ≤ m

and (ai, bi, ci) for any 1 ≤ i ≤ m. We use GOA(n,m, s,3) to denote such an array.

LEMMA 1. Let B = {(a1, b1, c1); . . . ; (am, bm, cm)} be a GOA(n,m, s,3).
Define

di = ais
2 + bis + ci.(1)

Then D = (d1, . . . , dm) is an SOA(n,m, s3,3). Conversely, if D = (d1, . . . , dm)

is an SOA(n,m, s3,3), then B = {(a1, b1, c1); . . . ; (am, bm, cm)} is a GOA(n,m,

s,3), where ai, bi, ci are uniquely determined by di as given in (1).

A bit explanation helps understand how ai, bi, ci are obtained from di in the
second part of Lemma 1. Every integer 0 ≤ x ≤ s3 − 1 can be uniquely written as
x = x1s

2 +x2s +x3 for some integers x1, x2, x3 with 0 ≤ xj ≤ s −1. Applying this
fact to every component of di , we obtain di = ais

2 + bis + ci for unique vectors
ai, bi, ci , all with entries from {0,1, . . . , s − 1}.

Strong orthogonal arrays provide a new class of suitable designs for computer
experiments. A strong orthogonal array of strength t enjoys better space-filling
properties than a comparable orthogonal array in all dimensions lower than t while
retaining the space-filling properties of the latter in t dimensions. Strong orthog-
onal arrays are more general than nets in terms of run sizes. They are defined in
the form and language that are familiar to design practitioners and researchers,
and thus help to make the existing results from nets more accessible to design
community. More importantly, this new formulation of the net idea in terms of or-
thogonal arrays allows new designs and results to be found, as has been shown in
He and Tang (2013) and will be further demonstrated in the next two sections of
the present paper.

The rest of the section discusses strong orthogonal arrays in the broad con-
text of quasi-Monte Carlo methods. To approximate an integral, Monte Carlo
methods evaluate the integrand at a set of points selected randomly, whereas
quasi-Monte Carlo methods do so at a set of points selected in a deterministic
fashion. Specifically, to approximate

∫
[0,1]m f (x) dx, quasi-Monte Carlo methods

use
∑n

i=1 f (xi)/n where x1, . . . , xn are a set of points in [0,1]m that are selected
deterministically and judiciously. The Koksma–Hlawka inequality [Niederreiter
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(1992), Theorem 2.11] states that∣∣∣∣∣
n∑

i=1

f (xi)/n −
∫
[0,1]m

f (x) dx

∣∣∣∣∣ ≤ V (f )D∗
n(P ),

where V (f ) is the bounded variation of f in the sense of Hardy and Krause;
D∗

n(P ) is the star discrepancy of the set P of points x1, . . . , xn, which is defined
as the maximum absolute difference between the uniform distribution function and
the empirical distribution function based on the point set. According to this result,
the set of points for quasi-Monte Carlo methods should therefore be chosen to
have a small star discrepancy. When an infinite sequence of points is considered,
we use D∗

n(S) to denote the star discrepancy given by the first n points of the
sequence. The best general lower bounds on D∗

n(P ) and D∗
n(S) are those of Roth

(1954) stating that D∗
n(P ) ≥ Cmn−1(logn)(m−1)/2 for a point set and D∗

n(S) ≥
Cmn−1(logn)m/2 for an infinite sequence, where Cm is a constant independent
of n. But it is widely believed, though yet to be proved, that

D∗
n(P ) ≥ Cmn−1(logn)m−1, D∗

n(S) ≥ Cmn−1(logn)m.(2)

Halton sequences and corresponding Hammersley point sets attain the lower
bounds in (2), but the implied constants Cm grow superexponentially as m → ∞
[Niederreiter (1992), Chapter 4]. What makes (t,m, s)-nets and (t, s)-sequences
attractive is that they have much smaller implied constants while satisfying the
lower bounds in (2). Moreover, (t,m, s)-nets and (t, s)-sequences contain an or-
thogonal array structure, which was pointed out by Owen (1995) and used by
Haaland and Qian (2010) to construct nested space-filling designs for multi-fidelity
computer experiments.

In what follows, we write (w, k,m)-nets for (t,m, s)-nets and (w,m)-sequences
for (t, s)-sequences so as to be consistent in our notation for this paper. An ele-
mentary interval in base s is an interval in [0,1]m of form

E =
m∏

j=1

[
cj

sdj
,
cj + 1

sdj

)
,

where nonnegative integers cj and dj satisfy 0 ≤ cj < sdj . For 0 ≤ w ≤ k, a
(w, k,m)-net in base s is a set of sk points in [0,1]m such that every elemen-
tary interval in base s of volume sw−k contains exactly sw points. Nets and related
(w,m)-sequences were first defined by Sobol’ (1967) for base s = 2 and later by
Niederreiter (1987) for general base s.

A deeper connection of nets with orthogonal arrays was established by
Lawrence (1996) and independently by Mullen and Schmid (1996). These authors
showed that a (w, k,m)-net is equivalent to a generalized orthogonal array. In-
spired by this equivalence result, He and Tang (2013) proposed and studied strong
orthogonal arrays for computer experiments. Unlike generalized orthogonal ar-
rays, strong orthogonal arrays are in the ready-to-use format and directly capture
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the space-filling properties of (w, k,m)-nets. The following result is from He and
Tang (2013).

LEMMA 2. If λ = sw for integer w, then the existence of an SOA(λst ,m, st , t)

is equivalent to that of a (w, k,m)-net in base s where k = w + t .

As strong orthogonal arrays are defined without restricting the index to be a
power of s, they provide a more general concept than (w, k,m)-nets. This is in the
same spirit as the generalization of orthogonal Latin squares to orthogonal arrays
of strength two. He and Tang (2013) discussed several families of strong orthog-
onal arrays that cannot be obtained from (w, k,m)-nets. Because of Lemma 2, it
is not unreasonable to expect that the star discrepancy of strong orthogonal arrays
would also be O(n−1(logn)m−1) just like nets, although a precise presentation and
rigorous derivation of this result may require some serious work. Since our focus
is the finite sample space-filling properties of strong orthogonal arrays, we choose
not to dwell any further on the issue of discrepancy in this paper.

3. Characterizing strong orthogonal arrays of strength three. Central to
our characterizing result is the notion of embeddability and semi-embeddability
for orthogonal arrays.

DEFINITION 1. An orthogonal array OA(n,m, s, t) is said to be embeddable
if it can be obtained by deleting one column from an OA(n,m + 1, s, t).

Consider the first column of an OA(n,m, s, t). Then the s levels in this first col-
umn divide the whole array into s sub-arrays, which are not orthogonal arrays but
all become OA(n/s,m−1, s, t −1)’s if their first columns are deleted. We say that
these s arrays of strength t − 1 are obtained by branching the first column. Sim-
ilarly, branching any other column also produces s orthogonal arrays of strength
t − 1. In total, ms such arrays of strength t − 1 can be obtained. For easy refer-
ence, they are called child arrays or simply children of the OA(n,m, s, t) under
consideration.

DEFINITION 2. An OA(n,m, s, t) is said to be semi-embeddable if all of its
ms children are embeddable.

The following result is immediate.

LEMMA 3. If an OA(n,m, s, t) is embeddable, then it must be semi-
embeddable.

The converse of Lemma 3 is not always true, and we will see many examples in
the rest of the paper. One result in He and Tang (2013) states that if an embeddable
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OA(n,m, s,3) is available, then an SOA(n,m, s3,3) can be constructed. The main
result of this paper, the following Theorem 1, provides a complete characterization
for the existence of an SOA(n,m, s3,3).

THEOREM 1. An SOA(n,m, s3,3) exists if and only if a semi-embeddable
OA(n,m, s,3) exists.

The proof, as given in Appendix, is actually constructive, and it shows how to
construct an SOA(n,m, s3,3) from a semi-embeddable OA(n,m, s,3) and vice
versa. While the characterization is fundamental of a strong orthogonal array
through a generalized orthogonal array as in He and Tang (2013), Theorem 1 does
provide a more direct and penetrating characterization for strong orthogonal arrays
of strength three.

As an immediate application of Theorem 1, we present the following result on
the maximum number of constraints on strong orthogonal arrays.

THEOREM 2. We have h(n, s,3) = f (n, s,3) − 1, provided that

f (n, s,3) = f (n/s, s,2) + 1,(3)

where h(n, s, t) and f (n, s, t) are the largest m for an SOA(n,m, st , t) and an
OA(n,m, s, t) to exist, respectively.

We know from He and Tang (2013) that f (n, s,3)− 1 ≤ h(n, s,3) ≤ f (n, s,3).
Theorem 2 then follows from Theorem 1 if we can show that, under the condi-
tion in (3), any OA(n,m′, s,3) with m′ = f (n, s,3) is not semi-embeddable. This
is obvious as none of its child arrays, which are OA(n/s,m′ − 1, s,2)’s, can be
embeddable due to m′ − 1 = f (n/s, s,2).

For s = 2, the condition in (3) is always met, and this special case of Theorem 2
was obtained in He and Tang (2013). Another important case where the condition
in (3) holds is when n = s3 and s is an even prime power, in which case we have
f (n, s,3) = s + 2 and f (n/s, s,2) = s + 1 [Hedayat, Sloane and Stufken (1999)].

The results of Bierbrauer, Edel and Schmid [(2002), Section 7] can be regarded
as a linear version of Theorem 1. As such, the following Propositions 1 and 2 have
also been established by these authors albeit in different terminology.

PROPOSITION 1. A linear orthogonal array OA(sk,m, s,3) is semi-
embeddable, so long as m ≤ (sk−1 − 1)/(s − 1).

An orthogonal array OA(n,m, s, t) is said to be linear if its runs, as vectors
based on a finite field GF(s), form a linear space. Proposition 1 can also be es-
tablished directly. We omit the details but provide the following pointers for those
readers who are interested in a direct proof. Any linear OA(sk−1,m − 1, s,2) is
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a sub-array of the saturated linear OA(sk−1, (sk−1 − 1)/(s − 1), s,2) from Rao–
Hamming construction [Cheng (2014), Chapter 9]. Permuting the levels within a
column of this saturated linear array generates another OA(sk−1, (sk−1 − 1)/(s −
1), s,2), which is not linear in general. Any child of a linear OA(sk,m, s,3) is an
OA(sk−1,m− 1, s,2), which is either linear or can be obtained from a linear array
by permuting the levels in its columns.

Bush construction gives a linear OA(s3, s + 1, s,3), which can be embedded
into an OA(s3, s + 2, s,3) when s is an even prime power. For odd prime power s,
this OA(s3, s + 1, s,3) is not embeddable as in this case f (s3, s,3) = s + 1. How-
ever, according to Proposition 1, it is semi-embeddable. Therefore, an SOA(s3, s +
1, s3,3) can always be constructed when s is a prime power. Examples are
SOA(27,4,27,3), SOA(64,5,64,3), SOA(125,6,125,3), SOA(343,8,343,3)

and so on. We summarize the above discussion in the next result.

PROPOSITION 2. For any prime power s, we have that h(s3, s,3) = s + 1.

Consider a linear OA(s4, s2 + 1, s,3) based on an ovoid; see Hedayat, Sloane
and Stufken [(1999), Section 5.9]. This array satisfies the condition in Proposi-
tion 1 and is therefore semi-embeddable. As such, an SOA(s4, s2 + 1, s3,3) can
be constructed by Theorem 1. Note that the OA(81,10,3,3) resulting from taking
s = 3 is not embeddable as f (81,3,3) = 10.

If a run occurs more than once in an orthogonal array, it is called a repeated
run. The following Theorem 3 asserts that certain orthogonal arrays are not semi-
embeddable if they have repeated runs. The proof of Theorem 3 requires the use of
a result on orthogonal arrays with repeated runs, and this is presented in Lemma 4.

LEMMA 4. If there exists an OA(2st ,m, s, t) with a repeated run, then we
must have m ≤ s + t − 1.

THEOREM 3. For s ≥ 3, an OA(2s3, s + 2, s,3) containing a repeated run is
not semi-embeddable.

The proofs of Lemma 4 and Theorem 3 are given in Appendix. The bound in
Lemma 4 is quite sharp. For example, taking t = 2 gives m ≤ s + 1, which is
attainable by the OA(2s2, s + 1, s,2) from juxtaposing two identical OA(s2, s +
1, s,2)’s where s is a prime power.

4. Construction of SOA(54,5,27,3). In the present section, we discuss
the application of the results in Section 3 to the existence and construction of
SOA(54,5,27,3)’s. According to Hedayat, Seiden and Stufken (1997), the maxi-
mum number m of factors in an orthogonal array OA(54,m,3,3) is five and there
are exactly four nonisomorphic OA(54,5,3,3)’s. These four arrays, labeled as I,
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II, III and IV, are available in explicit form in their paper. To study the existence
and construction of SOA(54,5,27,3)’s, Theorem 1 says that it suffices to examine
the semi-embeddability of these four nonisomorphic OA(54,5,3,3)’s.

Array I has two repeated runs and array II has one repeated run. By Theorem 3,
neither array is semi-embeddable. Thus, no SOA(54,5,27,3) can be constructed
from array I or array II. Both arrays III and IV have no repeated run. It is thus
possible for them to be semi-embeddable. Our direct computer search shows that
this is indeed the case. The two SOA(54,5,27,3)’s constructed from these two
arrays using Theorem 1 are given in Tables 1 and 2, respectively. To save space,
both of them are presented in transposed forms, with the top half of each table
displaying runs 1–27 and the bottom half runs 28–54.

From Proposition 2, we know that h(s3, s,3) = s + 1 if s is a prime power.
Construction of SOA(54,5,27,3) establishes the following result.

THEOREM 4. We have that h(54,3,3) = f (54,3,3) = 5.

To gain some insights into the semi-embeddability and nonsemi-embeddability
of the four nonisomorphic OA(54,5,3,3)’s, we make use of the enumeration
results on orthogonal arrays of 18 runs. Schoen (2009) enumerated all nonisomor-
phic orthogonal arrays of 18 runs and he found that there are exactly 12 noniso-
morphic OA(18,4,3,2)’s, which he labeled as 4.0.i for i = 1, . . . ,12 in his paper.
Among these 12 arrays, five of them are nonembeddable and the other seven are
embeddable. The nonembeddable ones are 4.0.5, 4.0.7, 4.0.10, 4.0.11 and 4.0.12.

For a given OA(54,5,3,3), three child arrays can be obtained by branching
each of the five columns. For the first OA(54,5,3,3), array I, among the three
child arrays from branching each column, one is isomorphic to 4.0.1 and the other
two are isomorphic to 4.0.5. For array II, one of the three arrays from branching
each column is isomorphic to 4.0.5 and the other two are isomorphic to 4.0.2.
Thus, the early conclusion that arrays I and II are not semi-embeddable can also
be drawn from the fact that array 4.0.5 is not embeddable. For array III, all the 12
child arrays from branching columns 1 through 4 are isomorphic to 4.0.4, and the
three child arrays from branching column 5 are isomorphic to 4.0.1. For array IV,
the 9 child arrays from branching columns 1, 2 and 5 are isomorphic to 4.0.2, and
the 6 child arrays from branching columns 3 and 4 are isomorphic to 4.0.4. Since
all these child arrays are embeddable, arrays III and IV are semi-embeddable.

5. Discussion and future work. He and Tang [(2013), Theorem 1] presented
a general method of constructing strong orthogonal arrays from ordinary orthogo-
nal arrays. For the case of strength three, this result means that an SOA(n,m, s3,3)

can be constructed from an OA(n,m+1, s,3). Specifically, let (a1, . . . , am, am+1)

be an OA(n,m + 1, s,3). Then B = {(a1, b1, c1); . . . ; (am, bm, cm)} is a
GOA(n,m, s,3) and D = (d1, . . . , dm) is an SOA(n,m, s3,3), where (b1, . . . ,

bm) = (am+1, . . . , am+1), (c1, . . . , cm) = (a2, . . . , am, a1), and di = ais
2 +bis +ci
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TABLE 1
SOA(54,5,27,3) constructed from the third OA(54,5,3,3), array III

0 3 0 8 8 18 24 16 3 7 7 9 12 23 6 6 1 5 1 5 9 18 15 21 13 26 4
0 3 1 18 26 6 8 15 5 9 13 6 7 21 7 8 9 18 17 22 0 3 2 4 12 24 13
0 3 10 8 21 5 24 6 20 1 9 7 9 6 13 23 8 4 18 15 2 7 24 15 3 0 17
1 5 10 22 7 25 4 7 20 11 2 11 8 8 12 21 18 15 6 3 24 15 0 6 3 0 25
9 18 9 15 15 14 14 10 18 21 21 25 25 20 0 0 3 6 3 6 7 5 7 5 1 2 12

4 12 15 14 22 11 19 2 2 24 21 25 17 19 11 10 23 26 20 16 13 10 17 14 20 22 25
17 4 5 21 12 19 10 26 22 2 1 15 24 11 20 11 23 25 19 16 14 10 25 23 20 14 16
25 17 19 1 4 12 12 25 14 22 14 2 5 21 18 23 20 10 16 16 26 13 11 22 26 19 11
16 19 16 13 13 1 4 14 26 14 23 23 20 2 5 22 19 10 17 17 26 12 21 9 24 9 18
12 16 16 13 17 13 17 24 24 23 23 26 22 26 22 10 11 11 20 19 19 1 4 4 2 8 8

TABLE 2
SOA(54,5,27,3) constructed from the fourth OA(54,5,3,3), array IV

0 3 0 8 8 18 24 16 3 7 7 9 12 23 6 6 1 5 1 5 9 18 15 21 13 26 4
0 3 1 18 26 6 8 15 5 9 13 6 7 21 7 8 9 18 17 22 0 3 2 4 12 24 16
0 3 10 8 21 5 24 6 23 1 9 7 9 6 14 19 8 4 18 15 2 7 24 12 3 0 13
1 5 10 22 7 25 4 7 23 11 2 11 8 8 18 12 18 15 6 3 24 12 0 6 3 0 13
9 18 9 15 15 14 14 10 18 21 21 25 25 20 0 0 3 6 3 6 7 5 7 5 1 2 12

4 12 15 14 22 11 19 2 2 21 24 25 17 19 11 10 23 26 20 16 13 10 17 14 25 20 22
14 4 5 21 12 19 10 26 22 2 1 15 24 11 20 11 23 25 19 13 17 10 25 23 14 20 16
26 17 22 1 4 12 15 25 17 20 16 2 5 21 18 20 19 11 13 14 25 16 10 23 22 26 11
25 22 16 13 16 1 4 17 26 20 17 23 20 2 5 19 10 19 14 26 14 15 9 21 9 24 21
12 16 16 13 17 13 17 24 24 23 23 26 22 26 22 10 11 11 20 19 19 1 4 4 8 2 8
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for i = 1, . . . ,m. Note that the same am+1 is taken for all bi ’s. This simple
construction of strong orthogonal arrays from orthogonal arrays should be suf-
ficient for most practical purposes because only one column is lost during the
construction. In the terminology of the present paper, semi-embeddability of
A = (a1, . . . , am) is automatic due to its embeddability into (a1, . . . , am, am+1).

The above construction also says that embeddability of an OA(n,m, s,3) is suf-
ficient for the existence of an SOA(n,m, s3,3). The present paper strengthens this
result by proving that an SOA(n,m, s3,3) exists if and only if a semi-embeddable
OA(n,m, s,3) exists. The path of constructing an SOA(n,m, s3,3) from a semi-
embeddable OA(n,m, s,3) is still via a GOA(n,m, s,3), but there is some dif-
ference. To illustrate, let A = (a1, . . . , am) be a semi-embeddable OA(n,m, s,3).
Then in forming B = {(a1, b1, c1); . . . ; (am, bm, cm)}, a GOA(n,m, s,3), although
we still take (c1, . . . , cm) = (a2, . . . , am, a1), the columns bi ’s as obtained in the
proof of Theorem 1 in the Appendix cannot be all the same unless the semi-
embeddable A = (a1, . . . , am) is also embeddable. This is because if the bi ’s equal
the same column, say b, then (a1, . . . , am, b) must be an OA(n,m + 1, s,3) due to
the fact that B = {(a1, b, c1); . . . ; (am, b, cm)} is a GOA(n,m, s,3).

The question arises of if a given orthogonal array is semi-embeddable. The sim-
plest case is to consider sub-arrays of the available orthogonal arrays by deleting
one or more columns. All arrays obtained this way are embeddable, and hence
semi-embeddable. In Section 3, we have presented two further results for judging
whether or not an orthogonal array is semi-embeddable. Proposition 1 tells us that a
linear orthogonal array OA(sk,m, s,3) is semi-embeddable, provided m ≤ (sk−1−
1)/(s − 1). This result has led to the conclusion that OA(s3, s + 1, s,3) from Bush
construction and OA(s4, s2 + 1, s,3) base on an ovoid are both semi-embeddable,
where s is any prime power. Theorem 3 states that an OA(2s3, s + 2, s,3) is not
semi-embeddable for s ≥ 3 if it has a repeated run, allowing us to immediately
identify two nonsemi-embeddable OA(54,5,3,3)’s in Section 4. When none of
the above methods can give a definitive answer, one can make use of relevant enu-
meration results if they are available or conduct a complete search as a last resort.
In Section 4, we have done it both ways in determining the semi-embeddability of
the other two OA(54,5,3,3)’s.

One obvious future direction is to study to what extent the current work can
be extended to strong orthogonal arrays of strength four or higher. Although such
extension work may not be as neat as what we have done for strong orthogonal
arrays of strength three, some useful results are still possible. We leave this to the
future.

A more promising direction is what can be done when orthogonal arrays of
strength three or higher are too expensive to use for given resources. As discussed
in He and Tang (2013), strong orthogonal arrays of strength two can be straightfor-
wardly constructed from ordinary orthogonal arrays of strength two but the former
do not improve upon the latter in terms of lower dimensional space-filling. The
question then is if we can construct designs that, although not strong orthogonal
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arrays of strength three, are better than strong orthogonal arrays of strength two.
Some preliminary results have been obtained, and we hope to write a future paper
along this direction.

APPENDIX

PROOF OF THEOREM 1. We first prove that the existence of an
SOA(n,m, s3,3) implies the existence of a semi-embeddable OA(n,m, s,3).
Suppose there exists an SOA(n,m, s3,3). Then Lemma 1 implies the exis-
tence of a GOA(n,m, s,3), B = {(a1, b1, c1); . . . ; (am, bm, cm)}. We will show
that array A = (a1, . . . , am) is a semi-embeddable OA(n,m, s,3). That A is
an OA(n,m, s,3) follows directly from the definition of generalized orthog-
onal arrays. By Definition 2, what remains to be shown is that the children
of A are all embeddable. Now consider array P = (a1, . . . , am, b1). That B =
{(a1, b1, c1); . . . ; (am, bm, cm)} is a GOA(n,m, s,3) dictates that (a1, aj , b1) is
an OA(n,3, s,3) for any j = 2, . . . ,m. This implies that the array Q obtained by
selecting the n/s rows of (a2, . . . , am, b1) that correspond to a given level in a1
must be an OA(n/s,m, s,2). Clearly, array Q becomes a child of A if the last col-
umn is deleted. This shows that all the s children of A from branching column a1
are embeddable. The same argument also applies to the children from branching
other columns of A.

We next show that an SOA(n,m, s3,3) can be constructed from a semi-
embeddable OA(n,m, s,3). Suppose that A = (a1, . . . , am) be a semi-embeddable
OA(n,m, s,3). We will construct a GOA(n,m, s,3), B = {(a1, b1, c1); . . . ;
(am, bm, cm)}. Then Lemma 1 allows an SOA(n,m, s3,3) to be constructed
from B . The last paragraph shows that if (a1, aj , b1) for any j = 2, . . . ,m is an
OA(n,3, s,3), then all the children of A from branching column a1 are embed-
dable. We observe that this argument is entirely reversible, meaning that if all the
children of A from branching column a1 are embeddable, then a column b1 can be
obtained so that (a1, aj , b1) is an OA(n,3, s,3) for any j = 2, . . . ,m. Similarly, a
column bi for i = 2, . . . ,m can be obtained so that (ai, aj , bi) is an OA(n,3, s,3)

for any j = 1, . . . , i − 1, i + 1, . . . ,m. Take (c1, . . . , cm) = (a2, . . . , am, a1). Now
it is evident that array B = {(a1, b1, c1); . . . ; (am, bm, cm)} is a GOA(n,m, s,3).

�

PROOF OF LEMMA 4. Let c be a repeated run of an OA(2st ,m, s, t). For
i = 0,1, . . . ,m, let ni be the number of other runs that have exactly i coincidences
with c. As c is a repeated run, we must have nm ≥ 1. A result from Bose and Bush
(1952) states that

m∑
i=j

(
i

j

)
ni =

(
m

j

)(
2st−j − 1

)
where j = 0,1, . . . , t.(4)
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Choosing j = t in (4) gives
∑m

i=t

(i
t

)
ni = (m

t

)
. Combining this equation with the

fact that nm ≥ 1, we must have nt = · · · = nm−1 = 0 and nm = 1. Now consider
the two equations given by setting j = t −1 and j = t −2 in (4). Solving these two
equations, we obtain nt−1 = 2(s−1)

( m
t−1

)
and nt−2 = 2(s−1)(s+ t −1−m)

( m
t−2

)
.

As nt−2 ≥ 0, we must have s + t − 1 − m ≥ 0, implying that m ≤ s + t − 1.
Lemma 4 is proved. �

PROOF OF THEOREM 3. An OA(2s3, s + 2, s,3) containing a repeated run
gives rise to many children that have repeated runs. Let A0 be any such child
array OA(2s2, s + 1, s,2) with a repeated run. By Definition 2, Theorem 3 will be
established if we can show that A0 is not embeddable. Let c be a repeated run of A0
and ni be the number of other runs of A0 that have exactly i coincidences with c.
Applying the results in the proof of Lemma 4 to the case t = 2 and m = s + 1, we
obtain

n0 = n2 = · · · = ns = 0, n1 = 2
(
s2 − 1

)
, ns+1 = 1.(5)

We will prove that A0 is not embeddable by the method of contradiction. Sup-
pose that A0 is embeddable and let A+

0 be an OA(2s2, s + 2, s,2) obtained from
A0 by adding one column. Recall that c is a repeated run of A0. Let c+ be the run
of A+

0 corresponding to c. Let n+
i be the number of other runs of A+

0 that have
exactly i coincidences with c+. By Lemma 4, array A+

0 cannot have a repeated
run, implying that n+

s+2 = 0. Noting that A0 is a sub-array of A+
0 , and combining

n+
s+2 = 0 with the results in (5), we obtain n+

0 = n+
3 = · · · = n+

s = 0, n+
s+1 = 1 and

n+
1 + n+

2 = n1 = 2
(
s2 − 1

)
.(6)

On the other hand, the coincidence equation in (4) becomes

s+2∑
i=j

(
i

j

)
n+

i =
(

s + 2
j

)(
2s2−j − 1

)
where j = 0,1,2.(7)

Using the two equations from taking j = 1,2 in (7) and the already obtained results
about n+

i for i = 3, . . . , s +2, we obtain n+
1 = 2s2 −5 and n+

2 = s +1, which gives
n+

1 + n+
2 = 2s2 + s − 4. But this contradicts (6) for s ≥ 3 because (2s2 + s − 4) −

2(s2 − 1) = s − 2 ≥ 1 for any s ≥ 3. The proof is complete. �
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