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We introduce a new adjusted residual maximum likelihood method
(REML) in the context of producing an empirical Bayes (EB) confidence
interval for a normal mean, a problem of great interest in different small area
applications. Like other rival empirical Bayes confidence intervals such as
the well-known parametric bootstrap empirical Bayes method, the proposed
interval is second-order correct, that is, the proposed interval has a coverage
error of order O(m−3/2). Moreover, the proposed interval is carefully con-
structed so that it always produces an interval shorter than the correspond-
ing direct confidence interval, a property not analytically proved for other
competing methods that have the same coverage error of order O(m−3/2).
The proposed method is not simulation-based and requires only a fraction of
computing time needed for the corresponding parametric bootstrap empirical
Bayes confidence interval. A Monte Carlo simulation study demonstrates the
superiority of the proposed method over other competing methods.

1. Introduction. Fay and Herriot (1979) considered empirical Bayes estima-
tion of small area means θi using the following two-level Bayesian model and
demonstrated, using real life data, that they outperform both the direct and syn-
thetic (e.g., regression) estimators.

The Fay–Herriot model:
For i = 1, . . . ,m,

Level 1 (sampling distribution): yi |θi
ind∼ N(θi,Di);

Level 2 (prior distribution): θi
ind∼ N(x′

iβ,A).

In the above model, level 1 is used to account for the sampling distribution of
the direct survey estimates yi , which are usually weighted averages of the sample
observations in area i. Level 2 prior distribution links the true small area means θi

to a vector of p < m known area level auxiliary variables xi = (xi1, . . . , xip)′, often
obtained from various administrative records. The hyperparameters β ∈ Rp , the p-
dimensional Euclidean space, and A ∈ [0,∞) of the linking model are generally
unknown and are estimated from the available data.
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It is often difficult or even impossible to retrieve all important sample data
within small areas due to confidentiality or other reasons and the only data an
analyst may have access to are aggregate data at the small area level. The Fay–
Herriot model comes handy in such situations since only area level aggregate data
are needed to implement the model. Even when unit level data are available within
small areas, analysts may have some preference for the Fay–Herriot model over a
more detailed (and perhaps more scientific) unit level model in order to simplify
the modeling task. One good feature of the Fay–Herriot model is that the resulting
empirical Bayes (EB) estimators of small area means are design-consistent. In the
Fay–Herriot model, sampling variances Di are assumed to be known, which often
follows from the asymptotic variances of transformed direct estimates [Efron and
Morris (1975), Carter and Rolph (1974)] and/or from empirical variance modeling
[Fay and Herriot (1979)]. This known sampling variance assumption causes un-
derestimation of the mean squared error (MSE) of the resulting empirical Bayes
estimator of θi . Despite this limitation, the Fay–Herriot model has been widely
used in different small area applications [see, e.g., Carter and Rolph (1974), Efron
and Morris (1975), Bell et al. (2007), Fay and Herriot (1979), and others].

Note that the empirical Bayes estimator of θi obtained by Fay and Herriot (1979)
can be motivated as an empirical best prediction (EBP) estimator [in this case same
as the empirical best linear unbiased prediction (EBLUP) estimator] of the mixed
effect θi = x′

iβ + vi , under the following linear mixed model:

yi = θi + ei = x′
iβ + vi + ei, i = 1, . . . ,m,

where the vi ’s and ei ’s are independent with vi
i.i.d.∼ N(0,A) and ei

ind∼ N(0,Di);
see Prasad and Rao (1990) and Rao (2003).

In this paper, we consider interval estimation of small area means θi . An in-
terval, denoted by Ii , is called a 100(1 − α)% interval for θi if P(θi ∈ Ii |β,A) =
1−α, for any fixed β ∈ Rp,A ∈ (0,∞), where the probability P is with respect to
the Fay–Herriot model. Throughout the paper, P(θi ∈ Ii |β,A) is referred to as the
coverage probability of the interval Ii ; that is, coverage is defined in terms of the
joint distribution of y and θ with fixed hyperparameters β and A. Most intervals
proposed in the literature can be written as: θ̂i ± sατ̂i(θ̂i), where θ̂i is an estimator
of θi , τ̂i(θ̂i) is an estimate of the measure of uncertainty of θ̂i and sα is suitably
chosen in an effort to attain coverage probability close to the nominal level 1 − α.

Researchers have considered different choices for θ̂i . For example, the choice
θ̂i = yi leads to the direct confidence interval ID

i , given by

ID
i :yi ± zα/2

√
Di,

where zα/2 is the upper 100(1 −α/2)% point of N(0,1). Obviously, for this direct
interval, the coverage probability is 1−α. However, when Di is large as in the case
of small area estimation, its length is too large to make any reasonable conclusion.
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The choice θ̂i = x′
i β̂ , where β̂ is a consistent estimator of β , provides an interval

based on the regression synthetic estimator of θi . Hall and Maiti (2006) considered

this choice with τ̂i(θ̂i) =
√

Â, Â being a consistent estimator of A, and obtained
sα using a parametric bootstrap method. This approach could be useful when yi is
missing for the ith area.

We call an interval empirical Bayes (EB) confidence interval if we choose an
empirical Bayes estimator for θ̂i . There has been a considerable interest in con-
structing empirical Bayes confidence intervals, starting from the work of Cox
(1975) and Morris (1983a), because of good theoretical and empirical proper-
ties of empirical Bayes point estimators. Before introducing an empirical Bayes
confidence interval, we introduce the Bayesian credible interval in the con-
text of the Fay–Herriot model. When the hyperparameters β and A are known,
the Bayesian credible interval of θi is obtained using the posterior distribu-
tion of θi : θi |yi; (β,A) ∼ N [θ̂B

i , σi(A)], where θ̂B
i ≡ θ̂B

i (β,A) = (1 − Bi)yi +
Bix

′
iβ,Bi ≡ Bi(A) = Di

Di+A
,σi(A) =

√
ADi

A+Di
(i = 1, . . . ,m). Such a credible in-

terval is given by

IB
i (β,A) : θ̂B

i (β,A) ± zα/2σi(A).

The Bayesian credible interval cuts down the length of the direct confidence inter-
val by 100 × (1 −√

1 − Bi)% while maintaining the exact coverage 1 −α with re-
spect to the joint distribution of yi and θi . The maximum benefit from the Bayesian
methodology is achieved when Bi is close to 1, that is, when the prior variance A

is much smaller than the sampling variances Di .
In practice, the hyperparameters are unknown. Cox (1975) initiated the idea of

developing an one-sided empirical Bayes confidence interval for θi for a special
case of the Fay–Herriot model with p = 1, x′

iβ = β and Di = D (i = 1, . . . ,m).
The two-sided version of his confidence interval is given by

ICox
i (β̂, ÂANOVA) : θ̂B

i (β̂, ÂANOVA) ± zα/2σ(ÂANOVA),

where θ̂B
i (β̂, ÂANOVA) = (1 − B̂)yi + B̂β̂ , an empirical Bayes estimator of

θi ; β̂ = m−1 ∑m
i=1 yi and B̂ = D/(D + ÂANOVA) with ÂANOVA = max{(m −

1)−1 ∑m
i=1(yi − β̂)2 − D,0}. An extension of this ANOVA estimator for the Fay–

Herriot model can be found in Prasad and Rao (1990).
Like the Bayesian credible interval, the length of the Cox interval is smaller than

that of the direct interval. However, the Cox empirical Bayes confidence interval
introduces a coverage error of the order O(m−1), not accurate enough in most
small area applications. In fact, Cox (1975) recognized the problem and considered
a different α′, motivated from a higher-order asymptotic expansion, in order to
bring the coverage error down to o(m−1). However, such an adjustment may cause
the interval to be undefined when ÂANOVA = 0 and sacrifices an appealing feature
of ICox

i (μ̂, ÂANOVA), that is, the length of such interval may no longer be less than
that of the direct method.



1236 M. YOSHIMORI AND P. LAHIRI

One may argue that Cox’s method has an undercoverage problem because it
does not incorporate uncertainty due to estimation of the regression coefficients
β and prior variance A in measuring uncertainty of the empirical Bayes estimator
of θi . Morris (1983a) used an improved measure of uncertainty for his empirical
Bayes estimator that incorporates the additional uncertainty due to the estimation
of the model parameters. Similar ideas can be found in Prasad and Rao (1990)
for a more general model. However, Basu, Ghosh and Mukerjee (2003) showed
that the coverage error of the empirical Bayes confidence interval proposed by
Morris (1983a) remains O(m−1). In the context of the Fay–Herriot model, Diao
et al. (2014) examined the higher order asymptotic coverage of a class of empir-
ical Bayes confidence intervals of the form: θEB

i ± zα/2
√

msei , where θEB
i is an

empirical Bayes estimator of θi that uses a consistent estimator of A and msei is
a second-order unbiased estimator of MSE(θEB

i ) given in Datta and Lahiri (2000).
They showed that the coverage error for such an interval is O(m−1). In a simula-
tion study, Yoshimori (2014) observed poor finite sample performance of such em-
pirical Bayes confidence intervals. Furthermore, it is not clear if the length of such
confidence interval is always less than that of the direct method. Morris (1983b)
considered a variation of his (1983a) empirical Bayes confidence interval where
he used a hierarchical Bayes-type point estimator in place of the previously used
empirical Bayes estimator and conjectured, with some evidence, that the coverage
probability for his interval is at least 1 − α. He also noted that the coverage prob-
ability tends to 1 − α as m goes to ∞ or D goes to zero. However, higher-order
asymptotic properties of this confidence interval are unknown.

Using a Taylor series expansion, Basu, Ghosh and Mukerjee (2003) obtained
expressions for the order O(m−1) term of the coverage errors of the Morris’ inter-
val and another prediction interval proposed by Carlin and Louis [(1996), page 98],
which were then used to calibrate the lengths of these empirical Bayes confidence
intervals in order to reduce the coverage errors down to o(m−1). However, it is not
known if the lengths of their confidence intervals are always smaller than that of the
direct method. Using a multilevel model, Nandram (1999) obtained an empirical
Bayes confidence interval for a small area mean and showed that asymptotically
it converges to the nominal coverage probability. However, he did not study the
higher-order asymptotic properties of his interval.

Researchers considered improving the coverage property of the Cox-type em-
pirical Bayes confidence interval by changing the normal percentile point zα/2. For
the model used by Cox (1975), Laird and Louis (1987) proposed a prediction in-
terval based on parametric bootstrap samples. However, the order of their coverage
error has not been studied analytically. Datta et al. (2002) used a Taylor series ap-
proach similar to that of Basu, Ghosh and Mukerjee (2003) in order to calibrate the
Cox-type empirical Bayes confidence interval for the general Fay–Herriot model.
Using mathematical tools similar to Sasase and Sasase and Kubokawa (2005),
Yoshimori (2014) extended the method of Datta et al. (2002) and Basu, Ghosh
and Mukerjee (2003) when REML estimator of A is used.
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For a general linear mixed model, Chatterjee, Lahiri and Li (2008) developed
a parametric bootstrap empirical Bayes confidence interval for a general mixed
effect and examined its higher order asymptotic properties. For the special case,
this can be viewed as a Cox-type empirical Bayes confidence interval where zα/2
is replaced by percentile points obtained using a parametric bootstrap method.
While the parametric bootstrap empirical Bayes confidence interval of Chatterjee,
Lahiri and Li (2008) has good theoretical properties, one must apply caution in
choosing B , the number of bootstrap replications, and the estimator of A. In two
different simulation studies, Li and Lahiri (2010) and Yoshimori (2014) found that
the parametric bootstrap empirical Bayes confidence interval did not perform well
when REML method is used to estimate A. Li and Lahiri (2010) developed an ad-
justed REML estimator of A that works better than the REML in their simulation
setting. Moreover, in absence of a sophisticated software, analysts with modest
computing skills may find it a daunting task to evaluate parametric bootstrap con-
fidence intervals in a large scale simulation experiment. The coverage errors of
confidence intervals developed by Datta et al. (2002), Chatterjee, Lahiri and Li
(2008) and Li and Lahiri (2010) are of the order O(m−3/2). However, there is no
analytical result that suggests the lengths of these confidence intervals are smaller
than the length of the direct method.

In Section 2, we introduce a list of notation and regularity conditions used in the
paper. In this paper, our goal is to find an empirical Bayes confidence interval of θi

that (i) matches the coverage error properties of the best known empirical Bayes
method such as the one proposed by Chatterjee, Lahiri and Li (2008), (ii) has
length smaller than that of the direct method and (iii) does not rely on simulation-
based heavy computation. In Section 3, we propose such a new interval method
for the general Fay–Herriot model by replacing the ANOVA estimator of A in the
Cox interval by a carefully devised adjusted residual maximum likelihood estima-
tor of A. Lahiri and Li (2009) introduced a generalized (or adjusted) maximum
likelihood method for estimating variance components in a general linear mixed
model. Li and Lahiri (2010) and Yoshimori and Lahiri (2014) examined different
adjustment factors for point estimation of the small area means in the context of the
Fay–Herriot model. But none of the authors explored adjusted residual likelihood
method for constructing small area confidence intervals. In Section 4, we compare
our proposed confidence interval methods with the direct, different Cox-type EB
confidence intervals and the parametric bootstrap empirical Bayes confidence in-
terval method of Chatterjee, Lahiri and Li (2008) using a Monte Carlo simulation
study. The proofs of all technical results presented in Section 3 are deferred to the
Appendix.

2. A list of notation and regularity conditions. We use the following nota-
tion throughout the paper:

y = (y1, . . . , ym)′, a m × 1 column vector of direct estimates;
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X′ = (x1, . . . , xm), a p × m known matrix of rank p;
qi = x′

i (X
′X)−1xi , leverage of area i for level 2 model, (i = 1, . . . ,m);

V = diag(A + D1, . . . ,A + Dm), a m × m diagonal matrix;
P = V −1 − V −1X(X′V −1X)−1X′V −1;
LRE(A) = |X′V −1X|−1/2|V |−1/2 exp(−1

2y′Py), the residual likelihood function
of A;

hi(A) is a general area specific adjustment factor;
Li;ad(A) = hi(A) × LRE(A), adjusted residual likelihood function of A with a

general adjustment factor hi(A);
Âhi

= arg maxA∈[0,∞) Li;ad(A), adjusted residual maximum likelihood estimator
of A with respect to a general adjustment factor hi(A);

lRE(A) = log[LRE(A)];
l̃i;ad(A) = loghi(A);
li;ad(A) = logLi;ad(A);

l̃
(k)
i,ad(A) ≡ ∂k l̃i,ad(A)

∂Ak , kth derivative of l̃i,ad(A), (k ≥ 1);

l
(k)
i,ad(A) ≡ ∂kli,ad(A)

∂Ak , kth derivative of li,ad(A), (k ≥ 1);

V̂ = diag(Âh1 + D1, . . . , Âhm + Dm), (i = 1, . . . ,m);
β̃ = (X′V −1X)−1X′V −1y, weighted least square estimator of β when A is known;
β̂ = (X′V̂ −1X)−1X′V̂ −1y, weighted least square estimator of β when A + Di is

replaced by Âhi
+ Di, (i = 1, . . . ,m);

Bi = Di/(Â + Di), shrinkage factor for the i area, (i = 1, . . . ,m);
B̂i ≡ B̂i(Âhi

) = Di/(Âhi
+ Di), estimated shrinkage factor for the i area, (i =

1, . . . ,m);
θ̂B
i ≡ θ̂B

i (β,A) = (1 − Bi)yi + Bix
′
iβ;

θ̂EB
i ≡ θ̂EB

i (Âhi
) ≡ θ̂B

i (β̂, Âhi
) = (1 − B̂i)yi + B̂ix

′
i β̂ , empirical Bayes estimator

of θi, (i = 1, . . . ,m);
ICox
i (β̂, Âhi

) ≡ ICox
i (Âhi

) : θ̂B
i (β̂, Âhi

)±zα/2σi(Âhi
), Cox-type EB confidence in-

terval of θi using adjusted REML Âhi
, where z = zα/2 is the upper 100(1 −

α/2)% point of the normal deviate.

We use the following regularity conditions in proving different results presented in
this paper.

Regularity conditions:

R1: The logarithm of the adjustment term l̃ad(A) [or l̃i,ad(A)] is free of y and is five
times continuously differentiable with respect to A. Moreover, the gth power of
the |l̃(j )

ad (A)| [or |l̃(j )
i,ad(A)|] is bounded for g > 0 and j = 1,2,3,4,5;

R2: rank(X) = p;
R3: The elements of X are uniformly bounded implying supj≥1 qj = O(m−1);
R4: 0 < infj≥1 Dj ≤ supj≥1 Dj < ∞, A ∈ (0,∞);

R5: |Âhi
| < C+mλ, where C+ a generic positive constant and λ is small positive

constant.
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3. A new second-order efficient empirical Bayes confidence interval. We
call an empirical Bayes interval of θi second-order efficient if the coverage error
is of order O(m−3/2) and length shorter than that of the direct confidence inter-
val. The goal of this section is to produce such an interval that requires a fraction
of computer time required by the recently proposed parametric bootstrap empiri-
cal Bayes confidence interval. Our idea is simple and involves replacement of the
ANOVA estimator of A in the empirical Bayes interval proposed by Cox (1975)
by a carefully devised adjusted residual maximum likelihood estimator of A.

Theorem 1 provides a higher-order asymptotic expansion of the confidence in-
terval ICox

i (Âhi
). The theorem holds for any area 1 ≤ i ≤ m, for large m.

THEOREM 1. Under regularity conditions R1–R5, we have

P
{
θi ∈ ICox

i (Âhi
)
} = 1 − α + zφ(z)

ai + bi[hi(A)]
m

+ O
(
m−3/2)

,(3.1)

where

ai = − m

tr(V −2)

[
4Di

A(A + Di)2 + (1 + z2)D2
i

2A2(A + Di)2

]
(3.2)

− mDi

A(A + Di)
x′
i Var(β̃)xi,

bi ≡ bi

[
hi(A)

] = 2m

tr(V −2)

Di

A(A + Di)
× l̃

(1)
i;ad.(3.3)

We can produce higher order asymptotic expansion of the coverage probability
of Cox-type EB confidence interval with any standard likelihood-based estimator
of A available in the literature (e.g., residual maximum likelihood, profile maxi-
mum likelihood, different adjusted residual and profile maximum likelihood, etc.)
simply by choosing an appropriate hi(A) [e.g., for REML, hi(A) = 1] and using
equation (3.1). We have verified that coverage errors for all these Cox-type EB
confidence intervals are of order O(m−1). We can, however, use equation (3.1) to
reduce the coverage error to the order O(m−3/2) by choosing hi(A) such that the
order O(m−1) term in the right-hand side of (3.1) vanishes. More specifically, we
first obtain an expression for hi(A) by finding a solution to the following differen-
tial equation:

ai + bi

[
hi(A)

] = 0(3.4)

and then maximize the adjusted residual likelihood Li;ad(A) with respect to
A ∈ [0,∞) to obtain our adjusted residual maximum likelihood estimator of A,
which is used to construct the desired Cox-type second-order efficient EB confi-
dence interval for θi . Notice that we can produce two different new adjusted REML
estimators of A by using generalized least square (GLS) and ordinary least square
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(OLS) estimators of β in the EB estimator of θi . Let hi;gls(A) and hi;ols(A) de-
note the adjustment factors that are solutions of hi(A) in (3.4) with GLS and OLS
estimators of β in θ̂EB

i , respectively. We denote the corresponding adjusted resid-
ual maximum likelihood estimators of A by Âi;gls and Âi;ols. Note that in general
we cannot obtain hi;ols(A) as a special case of hi;gls(A) except for the balanced
case Di = D, i = 1, . . . ,m when the GLS and OLS estimators of β are identical.
Consequently, Âi;gls is generally different from Âi;ols except for the balanced case
when Âi;gls = Âi;ols = Âi (say).

Theorem 2 provides expressions for hi;gls(A) and hi;ols(A) and states the
uniqueness of Âi for the balanced case. In Theorem 2 and elsewhere in the pa-
per, C is a generic constant free of A.

THEOREM 2. (i) The expressions for hi;gls(A) and hi;ols(A) are given by

hi;gls(A) = CA(1/4)(1+z2)(A + Di)
(1/4)(7−z2)

(3.5)

× exp
[∫ 1

2
tr

(
V −2)

x′
i

(
X′V −1X

)−1
xi dA

]
,

hi;ols(A) = CA(1/4)(1+z2)(A + Di)
(1/4)(7−z2)

[
m∏

i=1

(A + Di)

](1/2)qi

(3.6)

× exp
[
−1

2
tr

(
V −1)

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi

]
.

(ii) For the balanced case Di = D (i = 1, . . . ,m), we have

hi;gls(A) = hi;ols = CA(1/4)(1+z2)(A + D)(1/4)(7−z2)+(1/2)mqi .(3.7)

In this balanced case, the Âi is unique provided m >
4+p
1−qi

.

REMARK 1. Note that hi;gls(A) does not have a closed-form expression in A.
But this is not an issue since finding a root of the corresponding likelihood equa-
tion remains simple in this case because the derivative of log[hi(A)] has a closed-
form expression. Just like the standard residual likelihood, our adjusted residual
likelihood function could have multiple maxima in the general balanced case. We
refer to Searle, Casella and McCulloch [(1992), Section 8.1] who suggested a way
to search for the global maximum. In this connection, we refer to Gan and Jiang
(1999) who proposed a method for testing for the global maximum. Moreover, in
order to reduce the number of iterations, we suggest to use the simple ANOVA
estimator of A proposed by Prasad and Rao (1990) as an initial value.

REMARK 2. In a real data analysis, one should check the condition m > (4 +
p)/(1 − hi) for the existence of strictly positive estimates Âi;gls and Âi;gls. Under
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the regularity conditions R2 and R3, the condition m > (4+p)/(1−hi) reduces to
m > m0, where m0 is a fixed constant depending on p and the leverages qi . Thus,
for sufficiently large m, this condition does not pose any problem.

REMARK 3. One might be tempted to treat our adjustment factor hi(A) as
a prior and conduct a regular hierarchical Bayesian analysis. But hi(A) may not
be treated as a prior since in certain cases this leads to an improper posterior dis-
tribution of A. To illustrate our point, we consider the simple case: Di = D and
hi(A) = hi;gls(A) = hi;ols(A), i = 1, . . . ,m. Since

hi(A)LRE(A) = A(1+z2)/4(A + D)(7−z2)/4+mqi−m/2−p/2

× exp
[
−y′(I − X′(X′X)−1X)y

2(A + D)

]∣∣X′X
∣∣−1/2

C

≥ 0,

under the regularity conditions, and exp[−y′(I−X′(X′X)−1X)y
2(A+D)

] and A/(A + D) are
increasing monotone functions of A, there exists s < ∞ such that

1 − exp
[
−y′(I − X′(X′X)−1X)y

2(s + D)

]
<

1

2

and

1 − s

s + D
<

1

2
.

Using the above results, we have∫ ∞
0

hi(A)LRE dA ≥ C

∫ ∞
s

(A + D)2+1/2[mqi+p]−m/2 dA,(3.8)

if m >
4+p
1−qi

. Hence, if −1 ≤ 2 + 1/2[mqi + p] − m/2 ≤ 0, the right-hand side of

the above equation is infinite, even if m >
4+p
1−qi

. Thus, in this case hi(A) cannot be

treated as a prior since
∫ ∞

0 hi(A)LRE dA = ∞ in case −1 ≤ 2 + 1/2[mqi + p] −
m/2 ≤ 0.

We now propose two empirical Bayes confidence intervals for θi :

IYL
i (Âi;h) : θ̂EB

i (Âi;h) ± zα/2σi(Âi;h),

where h = gls,ols. Since σi(Âi;h) <
√

Di (h = gls,ols), the length of our pro-
posed Cox-type EB intervals, like the original Cox EB interval ICox

i (ÂANOVA), are
always shorter than that of the direct interval ID

i . The following theorem com-
pares the lengths of Cox EB confidence intervals of θi when A is estimated by
ÂRE, Âi;gls and Âi;ols.
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THEOREM 3. Under the regularity conditions R2–R4 and m > (4 + p)/(1 −
qi), we have

Length of ICox
i (ÂRE) ≤ Length of IYL

i (Âi;gls) ≤ Length of IYL
i (Âi;ols).

The following theorem provides the higher order asymptotic properties of a
general class of adjusted residual maximum likelihood estimators of A.

THEOREM 4. Under regularity conditions R1–R5, we have:

(i) E[Âhi
− A] = 2

tr(V −1)
l̃
(1)
i,ad(A) + O(m−3/2),

(ii) E(Âhi
− A)2 = 2

tr(V −1)
+ O(m−3/2).

COROLLARY TO THEOREM 4. Under regularity conditions R2–R5, we have:

(i) Both Âi;gls and Âi;gls are strictly positive if m >
4+p
1−qi

,

(ii) E[Âi;gls − A] = 2
tr(V −2)

l̃
(1)
i,ad;gls(A) + O(m−3/2),

(iii) E[Âi;ols − A] = 2
tr(V −2)

l̃
(1)
i,ad;ols(A) + O(m−3/2),

(iv) E(Âi;h − A)2 = 2
tr(V −2)

+ O(m−3/2),

where

l̃
(1)
i;ad,gls = 2

A + Di

+ (1 + z2)Di

4A(A + Di)
+ 1

2
tr

(
V −2)

x′
i

(
X′V −1X

)−1
xi,

l̃
(1)
i;ad,ols = 2

A + Di

+ (1 + z2)Di

4A(A + Di)
+ 1

2
tr

(
V −2)

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi.

REMARK 4. We reiterate that our true model variance is A, which is not area
specific (i.e., it does not depend on i). However, unlike other likelihood based
estimators of A, our theory driven proposed adjusted REML estimators Âi;ols and
Âi;gls of A are area and confidence level specific. We would like to cite a similar
situation that arises in the Bayesian small area inference. For the same two level
model, flat prior distribution on A is widely accepted [see Morris and Tang (2011)].
However, in order to match the posterior variance with the classical MSE of EB
with REML up to the order O(m−1), Datta, Rao and Smith (2005) proposed a
noncustomary prior for A that is area specific.

REMARK 5. The area and confidence level specific nature of our proposed
estimators of a global parameter A naturally raises a concern that such proposed
estimators may perform poorly when compared to rival estimators of A. To address
this issue, first note that the consistency of the new adjusted REML estimators
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Âi;ols and Âi;gls of A follows from part (iv) of the Corollary to Theorem 4. This
is due to the fact that the leading term in the right-hand side tends to 0 as m tends
to ∞, under the regularity conditions R2–R5. This result also implies that MSEs
of the proposed estimators of A are identical, up to the order O(m−1), to those of
different likelihood based estimators of A such as REML, ML, different adjusted
profile and residual maximum likelihood estimators of Li and Lahiri (2010) and
Yoshimori and Lahiri (2014). Moreover, while such an area and confidence level
specific adjustment causes the resulting proposed adjusted REML estimators to
have more bias than that of REML, the biases remain negligible and are of order
O(m−1), same as the order of the bias of profile maximum likelihood or adjusted
profile maximum likelihood estimators of A proposed by Li and Lahiri (2010) and
Yoshimori and Lahiri (2014). Basically, we introduce this slight bias in Âi;ols and
Âi;gls in order to achieve the desired low coverage error property while maintaining
length always shorter than that of the corresponding direct confidence interval.

REMARK 6. Using the Corollary to Theorem 4 and the mathematical tools
used in Li and Lahiri (2010), we obtain the following second-order approximation
to the mean squared error (MSE) of θ̂EB

i (Âi;gls):

MSE
[
θ̂EB
i (Âi;gls)

] = g1i (A) + g2i (A) + g3i (A) + o
(
m−1)

,

where g1i (A) = ADi

A+Di
, g2i(A) = D2

i

(A+Di)
2 Var(x′

i β̂) = D2
i

(A+Di)
2 x

′
i (

∑m
j=1

xj x′
j

A+Dj
)−1 ×

xi , and g3i (A) = 2D2
i

(A+Di)
3 {∑m

j=1
1

(A+Dj )2 }−1. Thus, in terms of MSE criterion,

θ̂EB
i [Âi;gls] is equally efficient, up to the order O(m−1), as the empirical Bayes

estimators of θi that use standard REML, PML and the adjusted PML and REML
estimators of A proposed by Li and Lahiri (2010) and Yoshimori and Lahiri (2014).

We note that

MSE
[
θ̂EB
i (Âi;ols)

] = g1i (A) + g2i;ols(A) + g3i(A) + o
(
m−1)

,

where g2i;ols(A) = D2
i

(A+Di)
2 x

′
i (X

′X)−1X′V X(X′X)−1xi ≥ D2
i

(A+Di)
2 ×

x′
i (X

′V −1X)−1xi . Thus, in terms of higher order asymptotics θ̂EB
i (Âi;ols) is less

efficient than θ̂EB
i (Âi;gls).

REMARK 7. We suggest the following second-order unbiased estimator of
MSE[θ̂EB

i (Âi;gls)]:
msei = g1i (Âi;gls) + g2i (Âi;gls) + 2g3i (Âi;gls) − [

B̂i(Âi;gls)
]2B̂ias(Âi;gls),

where B̂i(Âi;gls) = Di

Di+Âi;gls
, and B̂ias(Âi;gls) = 2

tr(V −2)
l̃
(1)
i,ad;gls(Âi;gls). We provide

expressions for the second-order MSE approximation and the second-order un-
biased estimator of MSE[θ̂EB

i (Âi;gls)] for the benefit of researchers interested in
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such expressions. However, for the purpose of point estimation and the associated
second-order unbiased MSE estimators, we recommend the estimators proposed
by Yoshimori and Lahiri (2014). We recommend the use of Âi;gls only for the
construction of second-order efficient Cox-type EB confidence intervals.

4. A Monte Carlo simulation study. In this section, we design a Monte
Carlo simulation study to compare finite sample performances of the following
confidence intervals of θi for the Fay–Herriot model: direct, Cox-type EB using
(i) REML estimator of A (Cox.RE), (ii) estimator of A proposed by Wang and
Fuller (2003) (Cox.WF), (iii) estimator of A proposed by Li and Lahiri (2010)
(Cox.LL), parametric bootstrap EB confidence interval of Chatterjee, Lahiri and
Li (2008) using Li–Lahiri estimator of A (CLL.LL), our proposed Cox-type EB
confidence intervals using GLS estimator of β (Cox.YL.GLS) and OLS estimator
of β (Cox.YL.OLS). In Section 4.1, we consider a Fay–Herriot model with a com-
mon mean as in Datta, Rao and Smith (2005) and Chatterjee, Lahiri and Li (2008).
In Section 4.2, we consider a Fay–Herriot model with one auxiliary variable in or-
der to examine the effect of different leverage and sampling variance combinations
on the coverage and average length of different confidence intervals of a small area
mean.

4.1. The Fay–Herriot model with a common mean. Throughout this subsec-
tion, we assume a common mean x′

iβ = 0, which is estimated using data as in
other papers on small area estimation. Specifically, we generate R = 104 indepen-
dent replicates {yi, vi, i = 1, . . . ,m} using the following Fay–Herriot model:

yi = vi + ei,

where vi and ei are mutually independent with vi
i.i.d.∼ N(0,A), ei

ind∼ N(0,Di),

i = 1, . . . ,m. We set A = 1. For the parametric bootstrap method, we consider
B = 6000 bootstrap samples.

In the unbalanced case, for m = 15, we consider five groups, say G ≡
(G1,G2,G3,G4,G5), of small areas, each with three small areas, such that the
sampling variances Di are the same within a given area. We consider the fol-
lowing two patterns of the sampling variances: (a) (0.7,0.6,0.5,0.4,0.3) and
(b) (4.0,0.6,0.5,0.4,0.1). Note that in pattern (a) all areas have sampling vari-
ances less than A. In contrast, in pattern (b), sampling variances of all but one
area are less than A. The patterns (a) and (b) correspond to the sampling variance
patterns (a) and (c) of Datta, Rao and Smith (2005).

The simulation results are displayed in Table 1. First note that while the direct
method attains the nominal coverage most of the time it has the highest length
compared to the other methods considered. The interval Cox.RE cuts down the
length of the direct method considerably at the expense of undercoverage, which
is more severe for pattern (b) than pattern (a). This could be due to the presence
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of three outlying areas (i.e., with respect to the sampling variances) in G1. The
intervals Cox.WF and Cox.LL improve on Cox.RE as both use strictly positive
consistent estimators of A. Our new methods—Cox.YL.GLS and Cox.YL.OLS—
and CLL.LL perform very well in terms of coverage although CLL.LL is showing
a slight undercoverage. The CLL.LL method is slightly better than ours in terms of
average length although we notice that in some simulation replications the length
of the parametric bootstrap EB confidence interval is larger than that of the direct.

4.2. Effect of leverage and sampling variance in a Fay–Herriot model with
one auxiliary variable. We generate R = 104 independent replicates {yi, vi, i =
1, . . . ,m} using the following Fay–Herriot model:

yi = xiβ + vi + ei,

where vi and ei are mutually independent with vi
i.i.d.∼ N(0,A), ei

ind∼ N(0,Di), i =
1, . . . ,m. We set A = 1. For the parametric bootstrap method, we consider B =
6000 bootstrap samples.

In this subsection, we examine the effects of leverage and sampling variance on
different confidence intervals for θi . We consider six different (leverage, sampling
variance) patterns of the first area using leverages (0.07,0.22,0.39) and sampling
variances D1 = (1,5,10). For the remaining 14 areas, we assume equal small sam-
pling variances Dj = 0.01, j ≥ 2 and same leverage. Since the total leverage for
all the areas must be 1, we obtain the common leverage for the other areas from
the knowledge of leverage for the first area.

In Table 2, we report the coverages and average lengths for all the competing
methods for the first area for all the six patterns. We do not report the results for
the remaining 14 areas since they are similar, as expected, due to small sampling
variances in those areas. The use of strictly positive consistent estimators of A such
as WF and LL help bringing coverage of the Cox-type EB confidence interval
closer to the nominal coverage of 95% than the one based on REML. For large
sampling variances and leverages, the Cox-type EB confidence intervals based on
REML, WF and LL methods have generally shorter length than ours or parametric
bootstrap confidence interval but only at the expense of severe undercoverage.
Our simulation results show that our proposed Cox.YL.GLS could perform better
than Cox.YL.OLS and is very competitive to the more computer intensive CLL.LL
method.

5. Concluding remarks. In this paper, we put forward a new simple approach
for constructing second-order efficient empirical Bayes confidence interval for a
small area mean using a carefully devised adjusted residual maximum likelihood
estimator of the model variance in the well-known Cox empirical Bayes confidence
interval. Our simulation results show that the proposed method performs much bet-
ter than the direct or Cox EB confidence intervals with different standard likelihood
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TABLE 1
Simulation results for Section 4.1: Simulated coverage and average length (in parenthesis) of different confidence intervals of small area means; nominal

coverage is 95%

Pattern G Cox.WF Cox.RE Cox.LL CLL.LL Cox.YL.GLS Cox.YL.OLS Direct

a 1 90.6 (2.4) 90.4 (2.4) 94.2 (2.6) 94.9 (2.7) 95.3 (2.8) 95.3 (2.8) 95.1 (3.3)
2 91.2 (2.3) 90.8 (2.3) 94.3 (2.5) 94.9 (2.5) 95.3 (2.6) 95.3 (2.6) 94.9 (3.0)
3 91.5 (2.1) 90.8 (2.1) 94.2 (2.3) 94.9 (2.4) 95.3 (2.4) 95.3 (2.4) 95.1 (2.8)
4 91.8 (2.0) 91.2 (2.0) 94.3 (2.1) 94.9 (2.2) 95.2 (2.2) 95.3 (2.2) 95.2 (2.5)
5 92.4 (1.8) 92.1 (1.8) 94.7 (1.9) 95.1 (1.9) 95.5 (2.0) 95.5 (2.0) 95.1 (2.1)

b 1 88.3 (3.3) 88.1 (3.3) 93.7 (3.8) 94.6 (4.0) 95.6 (4.3) 95.9 (4.3) 94.8 (7.8)
2 90.9 (2.3) 90.0 (2.3) 93.9 (2.5) 94.7 (2.5) 95.2 (2.6) 95.3 (2.6) 94.9 (3.0)
3 91.2 (2.1) 90.2 (2.1) 93.9 (2.3) 94.7 (2.4) 95.0 (2.5) 95.2 (2.5) 95.1 (2.8)
4 91.7 (2.0) 90.9 (2.0) 94.4 (2.1) 95.0 (2.2) 95.3 (2.2) 95.4 (2.3) 95.0 (2.5)
5 93.8 (1.1) 93.1 (1.1) 94.8 (1.2) 94.9 (1.2) 95.0 (1.2) 95.0 (1.2) 94.9 (1.2)

TABLE 2
Simulation results for Section 4.2: Simulated coverage and average length (in parenthesis) of different confidence intervals for the first small area mean

for different combinations of leverage and sampling variance of the first area; nominal coverage is 95%

Leverage D1 Cox.WF Cox.RE Cox.LL CLL.LL Cox.YL.gls Cox.YL.ols Direct

0.39 10 78.1 (3.2) 85.3 (3.6) 88.0 (3.9) 94.7 (5.0) 98.0 (6.9) 98.3 (8.1) 95.1 (12.4)
5 81.5 (3.2) 86.6 (3.5) 89.1 (3.7) 95.0 (4.6) 97.0 (5.8) 97.3 (6.2) 94.9 (8.8)
1 89.7 (2.7) 90.0 (2.7) 91.3 (2.8) 94.9 (3.2) 95.3 (3.4) 95.4 (3.4) 94.8 (3.9)

0.22 10 84.0 (3.4) 89.7 (3.7) 92.2 (3.9) 95.3 (4.5) 96.7 (5.0) 98.5 (5.7) 94.9 (12.4)
5 85.8 (3.3) 89.9 (3.5) 91.9 (3.8) 95.0 (4.2) 96.0 (4.6) 97.1 (4.9) 95.0 (8.8)
1 91.6 (2.7) 91.9 (2.7) 93.0 (2.8) 94.9 (3.0) 95.5 (3.2) 95.5 (3.2) 95.2 (3.9)

0.07 10 87.2 (3.5) 92.2 (3.7) 94.2 (3.9) 95.3 (4.1) 95.7 (4.2) 96.1 (4.3) 95.0 (12.4)
5 89.2 (3.4) 92.7 (3.5) 94.4 (3.7) 95.5 (3.9) 95.8 (4.0) 95.9 (4.0) 94.8 (8.8)
1 93.3 (2.7) 93.3 (2.7) 94.4 (2.8) 95.2 (2.9) 95.4 (3.0) 95.4 (3.0) 95.2 (3.9)
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based estimators of the model variance. In our simulation, the parametric bootstrap
empirical Bayes confidence interval also performs well and it generally produces
intervals shorter than direct confidence intervals on the average. However, to the
best of our knowledge, there is no analytical result that shows that the paramet-
ric bootstrap empirical Bayes confidence interval is always shorter than the direct
interval. In fact, in our simulation we found cases where the length of parametric
bootstrap empirical Bayes confidence interval is higher than that of the direct. In
order to obtain good parametric bootstrap empirical Bayes confidence intervals,
choices of the estimator of A and the bootstrap replication B appear to be impor-
tant. To limit the computing time, we have considered a simple simulation setting
with m = 15. During the course of our investigation, we feel the need for develop-
ing an efficient computer program that allows evaluation of parametric bootstrap
empirical Bayes confidence intervals in a large scale simulation environment. Until
the issues raised for the parametric bootstrap empirical Bayes confidence interval
method are resolved, our proposed simple second-order efficient empirical Bayes
confidence interval could serve as a promising method. The results presented in
this paper is for the well-known Fay–Herriot model. It is not clear at this time
how the results will extend to a general class of small area models—this will be a
challenging topic for future research.

APPENDIX A

In this appendix, we provide an outline of proofs of different results presented in
the paper. In order to facilitate the review, we supply a detailed proof of Theorem 4
in the supplementary material [Yoshimori and Lahiri (2014)].

PROOF OF THEOREM 1. For notational simplicity, we set Âhi
≡ Â throughout

the Appendix. Define

Gi(z, y) = z[σ̂i/σi − 1] + {
(Bi − B̂i)

(
yi − x′

iβ
) + B̂i

[
x′
i (β̂ − β)

]}
/σi.

Using calculations similar to the ones Chatterjee, Lahiri and Li (2008), we have

P
[
θi ≤ θ̂EB

i (Â) + zσ̂i

]
= 
(z) + φ(z)E

[
Gi(z, y) − z

2
G2

i (z, y)

]
(A.1)

+ 1

2
E

[∫ z+Gi(z,y)

z

(
z + Gi(z, y) − t

)2(
t2 − 1

)
φ(t) dt

]
.

We shall first show that the third term of the right-hand side of (A.1) is of order
O(m−3/2). To this end, using

0 ≤ ∣∣z + Gi(z, y) − t
∣∣ ≤ ∣∣Gi(z, y)

∣∣ and
(
t2 − 1

)
φ(t) ≤ 2φ(

√
3),
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in t ∈ (z, z + Gi(z, y)), we have

third term of (A.1) ≤ 1

2
E

[∫ z+Gi(z,y)

z

(
z + Gi(z, y) − t

)2∣∣(t2 − 1
)
φ(t)

∣∣dt

]
≤ Cφ(

√
3)E

[
G3

i (z, y)
]
.

Setting σ 2
i = Si and using the Taylor series expansion, we have

σ̂i(Ŝi) − σi(Si) = 1
2S

−1/2
i (Ŝi − Si) − 1

8S
−3/2
i (Ŝi − Si)

2 + Op

(|Ŝi − Si |3)
,

so that

σ̂i(Ŝi)

σi(Si)
− 1 = 1

2Si

(Ŝi − Si) − 1

8S2
i

(Ŝi − Si)
2 + RA1.

Using

B̂i − Bi = −(Â − A)
Di

(A + Di)2 + (Â − A)2 Di

(A + Di)3 + RA2,

σ̂ 2
i − σ 2

i = (Â − A)
D2

i

(A + Di)2 − (Â − A)2 D2
i

(A + Di)3 + RA3,

we can write Gi(z, y) = G1i (y) + G2i (z, y), where

G1i (y) = 1√
m

û1i + 1

m
û2i + RA4,

G2i (z, y) = z

[
1√
m

v̂1i + 1

m
v̂2i

]
+ RA5,

with

û1i = √
mσ−1

i

[
Bix

′
i (β̂ − β) + (Â − A)

Di

(A + Di)2

(
yi − x′

iβ
)]

,

û2i = mσ−1
i

[
−(Â − A)2 Di

(A + Di)3

(
yi − x′

iβ
)

+ (Â − A)
Di

(A + Di)2 Bix
′
i (β̂ − β)

]
,

v̂1i = √
m

B2
i

2σ 2
i

(Â − A),

v̂2i = m

[
− 1

2σ 2
i

B2
i

A + Di

(Â − A)2 − 1

8σ 4
i

(Â − A)2B4
i

]
.

Using the fact that E[|Â − A|k] = O(m−3/2) for k ≥ 3 [this can be proved
using the mathematical tools used in Li and Lahiri (2010) and Das, Jiang and Rao
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(2004)], we have, for k = 1,2,3,4,5 and large m,

E
[|RAk|] ≤ CE

[|Â − A|3] = O
(
m−3/2)

,∣∣third term of (A.1)
∣∣ ≤ Cφ(

√
3)E

[∣∣G3
i (z, y)

∣∣] ≤ CE
[|Â − A|3] = O

(
m−3/2)

,

where C is a generic constant.
We also note that

E
[
Gi(z, y)

] = m−1/2E[û1i + zv̂1i] + m−1E[û2i + zv̂2i] + O
(
m−3/2)

,

so that

the right-hand side of (A.1) = 
(z)+φ(z)E

[
Gi(z, y)− z

2
G2

i (z, y)

]
+O

(
m−3/2)

.

Similarly,

P
(
θ̂EB
i − zσ̂i ≤ θi

) = 
(−z) + φ(−z)E

[
Gi(−z, y) + z

2
G2

i (−z, y)

]
(A.2)

+ O
(
m−3/2)

,

so that using

Gi(z, y) − Gi(−z, y) − z

2

[
G2

i (z, y) + G2
i (−z, y)

]
= 2G2i (z, y) − z

2

[
G2

1i (y) + G2
2i (z, y)

]
= 2z√

m
v̂1i + z

m

{
2v̂2i − û2

1i − z2v̂2
1i

} + RA6,

where E[|RA6|] = O(m−3/2) since E[|Â − A|k] = O(m−3/2) for k ≥ 3.
We have

P
{
θi ∈ Icox(Â)

}
= 
(z) − 
(−z) + φ(z)E

[
Gi(z, y) − Gi(−z, y)

]
− z

2
φ(z)E

[
G2

i (z, y) + G2
i (−z, y)

] + O
(
m−3/2)

= 1 − α + zφ(z)
{
m−1/2E[2v̂1i] + m−1E

[
2v̂2i − û2

1i − z2v̂2
1i

]}
+ O

(
m−3/2)

.

Using Lemma 1, given below, and considerable algebra, we show that

ai = E
[
2v̂2i − û2

1i − z2v̂2
1i

]
and bi = 2

√
mE[v̂1i].

This completes the proof of equation (3.1). �
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LEMMA 1. Under the regularity conditions R1–R5, we have

E
[
v̂2

1i (Â)
] = m

tr(V −2)

D2
i

2A2(A + Di)2 + O
(
m−1/2)

,(A.3)

E
[
v̂2i (Â)

] = − m

tr(V −2)

[
Di

A(A + Di)2 + D2
i

4A2(A + Di)2

]
(A.4)

+ O
(
m−1/2)

,

E
[
û2

1i (Â)
] = m

Di

A(A + Di)

[
E

[{
x′
i β̃ − β)

}2] + Di

A(A + Di)2

2

tr(V −2)

]
(A.5)

+ O
(
m−1/2)

,

E
[
v̂1i (Â)

] =
√

m

tr(V −2)

Di

A(A + Di)
l̃
(1)
i;ad + O

(
m−1)

.(A.6)

PROOF OF THEOREM 2. First note that solution of hi(A) to the differential
equation (3.4) depends on whether the OLS or GLS method is used to estimate β .
Also note that the solution of hi(A) for the OLS case does not follow as a special
case of GLS. Thus, we treat these two cases separately. The balanced case, that is,
equation (3.7) follows from (3.5) or (3.6).

Case 1: Unbalanced case: OLS [proof of equation (3.6)]
From equation (3.4), we have

l̃
(1)
i;ad(A) = 2

A + Di

+ (1 + z2)Di

4A(A + Di)
+ 1

2
x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi tr

(
V −2)

.

Therefore,

l̃i;ad(A) =
∫

l̃
(1)
i;ad dA

= 2 log(A + Di) + (1 + z2)

4
log

(
A

A + Di

)

+ 1

2
x′
i

(
X′X

)−1
X′JX

(
X′X

)−1
xi + C

= 2 log(A + Di) + (1 + z2)

4
log

(
A

A + Di

)

+ 1

2
x′
i

(
X′X

)−1
X′[−V tr

(
V −1) + tr

(
V −1) + C

]
X

(
X′X

)−1
xi + C

= 2 log(A + Di) + 1 + z2

4
log

(
A

A + Di

)
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− 1

2
x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi tr

(
V −1)

+ 1

2
qi

[
m∑

i=1

log(A + Di)

]
+ C.

In addition,

J = diag
(∫

(A + D1) tr
(
V −2)

dA, . . . ,

∫
(A + Dm) tr

(
V −2)

dA

)
.

Equation (3.6) follows noting that hi(A) = exp[l̃i;ad(A)].
Case 2: Unbalanced case: GLS [proof of (3.5)]
Solving equation (3.4) for l̃

(1)
i;ad(A), we get

l̃
(1)
i;ad(A) = 2

A + Di

+ (1 + z2)Di

4A(A + Di)
+ 1

2
x′
i

(
X′V −1X

)−1
xi tr

(
V −2)

.

Thus,

l̃i;ad(A) =
∫

l̃
(1)
i;ad dA

=
∫ 2

A + Di

dA +
∫

(1 + z2)Di

4A(A + Di)
dA

+ 1

2

∫
x′
i

(
X′V −1X

)−1
xi tr

(
V −2)

dA

= 2 log(A + Di) + 1

4

(
1 + z2)

Di log
A

A + Di

+ 1

2
K + C, say,

where K = ∫
x′
i (X

′V −1X)−1xi tr(V −2) dA.
We now prove part (ii) of the theorem. To this end, note that the adjusted maxi-

mum residual likelihood estimator of A with the adjustment factor (3.7) is obtained
as a solution of

l
(1)
RE + l̃

(1)
i,ad = 0

⇐⇒ f (A) ≡ {−2(m − p) + 8 + 2mqi

}
A2

+ {
2y′(Im − X

(
X′X

)−1
X′)y − 2(m − p)D + 8D

+ (
1 + z2)

D + 2mDqi

}
A

+ (
1 + z2)

D2 = 0.

Therefore, under strict positiveness of the solution and m >
4+p
1−qi

, f (A) is a
quadratic and concave function of A. Thus, due to f (0) > 0, there is a unique
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and strictly positive adjusted residual maximum likelihood estimator of A in the
balanced case. �

PROOF OF THEOREM 3. Note that the length of the Cox-type EB confidence

interval of θi is given by 2σ(Âi), where σ(Âi) =
√

ÂiDi

Âi+Di
and Âi is an estimator

of A used to construct an empirical Bayes confidence interval for θi . We show that
among the three intervals considered the length of the Cox EB confidence interval
is the shortest when ÂRE is used to estimate A, followed by Âi,gls, and Âi,ols. Since
σ(Âi) is a monotonically increasing function of Âi , it suffices to show that

ÂRE ≤ Âi,gls ≤ Âi,ols.

Note that

l
(1)
RE(ÃRE) = 0,

l
(1)
RE(Âi,gls) + l̃

(1)
i;ad,gls(Âi,gls) = 0,

l
(1)
RE(Âi,ols) + l̃

(1)
i;ad,ols(Âi,ols) = 0,

l
(2)
RE(Â) + l̃

(2)
i;ad(Â) < 0,

where Â ∈ {ÃRE, Âi,gls, Âi,ols} and ÃRE is a solution to the REML estimation
equation. Hence, ÂRE is always larger than Âi,gls or Âi,gls using the facts that
ÂRE = max{0, ÃRE} and Âi,gls or Âi,gls are strictly positive if m > (4 + p)/(1 −
qi).

Finally, using that 0 < l̃
(1)
i;ad,gls ≤ l̃

(1)
i;ad,ols for A ≥ 0, we have the result. �

PROOF OF COROLLARY TO THEOREM 4. (i) Since for these two adjustment
terms, hi(A)LRE(A)|A=0 = 0 and hi(A)LRE(A) ≥ 0 for A > 0, it suffices to show
that limA→∞ hi(A)LRE(A) = 0. For hi(A) given by (3.6),

(3.6) ≤ (A + Di)
2
(
A + sup

i≥1
Di

)(1/2)mqi ≤
(
A + sup

i≥1
Di

)2+(1/2)mqi

.

For (3.5), we have

(3.5) ≤ (A + Di)
2 exp

{
1

2

∫ (
A + inf

i≥1
Di

)
qi tr

(
V −2)

dA

}

≤ (A + Di)
2
(
A + sup

i≥1
Di

)(1/2)mqi

exp
[
−m

2
qi

]

× exp
[
−1

2
inf
i≥1

Diqi tr
(
V −1)]

≤
(
A + sup

i≥1
Di

)2+(1/2)mqi

.
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Using the fact LRE(A) < C(A+ supi≥1 Di)
p/2|X′X|−1/2(A+ infi≥1 Di)

−m/2, we
have

0 ≤ hi(A)LRE(A) ≤
(
A + sup

i≥1
Di

)2+(1/2)[mqi+p](
A + inf

i≥1
Di

)−m/2∣∣X′X
∣∣−1/2

,

so that, under mild regularity conditions,

0 ≤ lim
A→∞hi(A)LRE(A) = lim

A→∞A2+(1/2)[mqi+p−m].

Thus, if 2 + 1
2 [mqi + p − m] < 0, we have

lim
A→∞hi(A)LRE(A) = 0.

We first show that Âi;gls and Âi;gls satisfy the regularity conditions of Theo-
rem 3. Since 0 < A < ∞, we claim that l̃ki,ad(A) = O(1) (k = 1,2,3), for large m,
for both the GLS and OLS estimators of β using the following facts.

For the GLS estimator,

l̃
(1)
i,ad(A) =

(
2 − (1 + z2)

4

)
1

A + Di

+ (1 + z2)

4A
+ 1

2
tr

[
V −2]

x′
i

(
X′V −1X

)−1
xi,

l̃
(2)
i,ad(A) = −

(
2 − (1 + z2)

4

)
1

(A + Di)2 − (1 + z2)

4A2

− tr
[
V −3]

x′
i

(
X′V −1X

)−1
xi

+ 1

2
tr

[
V −2]

x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
xi,

l̃
(3)
i,ad(A) =

(
2 − (1 + z2)

4

)
2

(A + Di)3 + (1 + z2)

2A3

+ 3 tr
[
V −4]

x′
i

(
X′V −1X

)−1
xi

− 2 tr
[
V −3]

x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
xi

× tr
[
V −2][

x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1

× X′V −2X
(
X′V −1X

)−1
xi

− x′
i

(
X′V −1X

)−1
X′V −3X

(
X′V −1X

)−1
xi

]
.

For the OLS estimator,

l̃
(1)
i,ad(A) =

(
2 − (1 + z2)

4

)
1

A + Di

+ (1 + z2)

4A

+ 1

2
tr

[
V −2]

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi,
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l̃
(2)
i,ad(A) = −

(
2 − (1 + z2)

4

)
1

(A + Di)2 − (1 + z2)

4A2

− tr
[
V −3]

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi + 1

2
tr

[
V −2]

qi,

l̃
(3)
i,ad(A) =

(
2 − (1 + z2)

4

)
2

(A + Di)3 + (1 + z2)

2A3

+ 3 tr
[
V −4]

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi − 2 tr

[
V −3]

qi.

In addition, For GLS,

l̃
(4)
i,ad(A) = −

(
12 − 3(1 + z2)

2

)
1

(A + Di)4 − 3(1 + z2)

2A4 + l̃
(4)
3,i,ad,gls(A).

For OLS,

l̃
(4)
i,ad(A) = −

(
12 − 3(1 + z2)

2

)
1

(A + Di)4 − 3(1 + z2)

2A4 + l̃
(4)
3,i,ad,ols(A),

where

l̃
(4)
3,i,ad,gls(A) = −12 tr

[
V −5]

x′
i

(
X′V −1X

)−1
xi

+ 6 tr
[
V −3][

x′
i

(
X′V −1X

)−1
X′V −3X

(
X′V −1X

)−1
xi

− x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
X′V −2

× X
(
X′V −1X

)−1
xi

]
+ 9 tr

[
V −4]

x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
xi

+ tr
[
V −2][

3x′
i

(
X′V −1X

)−1
X′V −4X

(
X′V −1X

)−1
xi

− 4x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
X′V −3

× X
(
X′V −1X

)−1
xi

− 4x′
i

(
X′V −1X

)−1
X′V −3X

(
X′V −1X

)−1
X′V −2

× X
(
X′V −1X

)−1
xi

+ 3x′
i

(
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
X′V −2

× X
(
X′V −1X

)−1

× X′V −2X
(
X′V −1X

)−1
xi

]
,

l̃
(4)
3,i,ad,ols(A) = −12 tr

[
V −5]

x′
i

(
X′X

)−1
X′V X

(
X′X

)−1
xi

+ 9 tr
[
V −4]

qi.
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Using the above facts, we can prove that |l̃(j )
i,ad,gls| and |l̃(j )

i,ad,ols| are bounded for
j = 1,2,3,4 under the regularity conditions R2–R4. Similarly, we can show that
the gth powers of supA/2<A∗<2A

1
m

|l̃(5)
i,ad;h(A∗)| with h = gls,ols are bounded for

any fixed g > 0. Thus, the new area specific adjustment terms satisfy the regularity
condition R1. Thus, an application of Theorem 4 leads to (ii)–(iv) of the Corollary
to Theorem 4. �

APPENDIX B: PROOF OF LEMMA 1

The proof of (A.5) is much more complex due to the dependence of Â and yi .
We use the following lemma repeatedly for proving (A.5). For a proof of Lemma 2,
see Srivastava and Tiwari (1976).

LEMMA 2. Let Z ∼ N(0,�). Then for symmetric matrices Q, U and W ,

E
[(

Z′QZ
)(

Z′UZ
)] = 2 tr(Q�U�) + tr(Q�) tr(U�),

E
[(

Z′QZ
)(

Z′UZ
)(

Z′WZ
)] = 8 tr(Q�U�W�)

+ 2
{
tr(Q�U�) tr(W�) + tr(Q�W�) tr(U�)

+ tr(U�W�) tr(Q�)
}

+ tr(Q�) tr(U�) tr(W�).

The proof also needs the following lemma, which is immediate from Theo-
rem 2.1 of Das, Jiang and Rao (2004).

LEMMA 3. Assume the following regularity conditions:

1. l̃i,ad(A), which is free of y, is four times continuously differentiable with
respect to A,

2. the gth power of the following are bounded: 1√
m

|l̃(1)
i,ad(A)|, 1

m
|l̃(2)

i,ad(A)|,
1
m

|l̃(3)
i,ad(A)|, and 1

m
sup

A/2<Ã<2A
|l̃(4)

i,ad(A)|
A=Ã

| (fixed g > 0),
3. A ∈ �0, the interior of �, that is, 0 < A < ∞.

Then:
(i) there is Âi such that for any 0 < ρ < 1, there is a set � satisfying for large

m and on �, Â ∈ �, l(1)(A)|
Â

= 0,
√

m|Âi − A| < m(1−ρ)/2, and

Âi − A = I + II + III + r,

where I = −E[l(2)]−1l(1), II = E[l(2)]−2l(2)l(1) − E[l(2)]−1l(1), III =
−1

2E[l(2)]−3{l(1)}2l(3), and r ≤ m−3ρ/2u with E[|u|g] bounded;
(ii) P(�c) ≤ m−τ/2gC, where τ = 1/4 ∧ (1 − ρ).
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First note that

E
[
û2

1i

] = mσ−2
i

{
B2

i T1 + 2Bi

Di

(A + Di)2 T2 + D2
i

(A + Di)4 T3

}
,

where T1 = E[x′
i (β̂ −β)2], T2 = E[(Â−A)x′

i (β̂ −β)(yi −x′
iβ)] and T3 = E[(Â−

A)2(yi − x′
iβ)2]. We now simplify these three terms.

We first prove that

E[T1] = x′
i Var(β̃)xi + O

(
m−2)

,(B.1)

where Var(β̃) = (X′X)−1X′V X(X′X)−1 if β̃ is the OLS estimator of β and
(X′V −1X)−1 if β̃ is the GLS estimator of β .

Note that

E
[{

x′
i (β̂ − β)

}2] = E
[{

x′
i (β̃ − β)

}2] + E
[{

x′
i (β̂ − β̃)

}2]
= x′

i Var(β̃)xi + E
[{

x′
i (β̂ − β̃)

}2]
,

and we have the following facts:

E
[{

x′
i

(
β̂(Â1, . . . , Âm) − β̃(A)

)}2] ≤ E
[{

x′
i

(
β̂(ÂU ) − β̃

)}2]
,(B.2)

where ÂU = arg max
Âi

|x′
i (β̂(Â1, . . . , Âm) − β̃(A))|.

We have ∂β̃
∂A

= H(y − Xβ), where H = 0 for the OLS estimator of β and

H = (
X′V −1X

)−1
X′V −2X

(
X′V −1X

)−1
X′V −1 − (

X′V −1X
)−1

X′V −2,

the GLS estimators of β .
Using the Taylor series expansion, we have

x′
i

(
β̂(ÂU ) − β̃

) = (ÂU − A)x′
iHy + r1,(B.3)

where |r1| = 1
2(ÂU − A)2x′

i
∂H
∂A

|A=A∗y with A∗ ∈ (A, ÂU ) and

∂H

∂A
= 2

(
X′V −1X

)−1
X′V −2(

X
(
X′V −1X

)−1
X′V −1 − I

)
× V −1(

X
(
X′V −1X

)−1
X′V −1 − I

)
.

Let H
(1)
s be the matrix with (i, j) components given by

sup
A/2<A∗<2A

{
∂H

∂A

∣∣∣∣
A=A∗

}
(i,j)

,

where Q(i,j) is (i, j) component of a matrix Q. Under the regularity condi-

tions R3–R4, we can show that the components of H
(1)
s are bounded and of order
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O(m−1) using an argument similar to that given in Proposition 3.2 of Das, Jiang
and Rao (2004). Using the facts that HX = 0, x′

iHV H ′xi = O(m−1), we have

E
[{

x′
i (β̂ − β̃)

}2] ≤ E
[
(ÂU − A)2(

x′
iHy

)(
y′H ′xi

)]
+ 2E

[
(ÂU − A)3(

x′
iHy

)(
y′[H(1)

s

]′
xi

)]
+ E

[
(ÂU − A)4

(
x′
i

∂H

∂A
y

)(
y′[H(1)

s

]′
xi

)]
≤ E

[
(ÂU − A)2]

x′
iHV H ′xi + E

[|ÂU − A|3]
x′
iHV

[
H(1)

s

]′
xi

+ E
[
(ÂU − A)4]

x′
iH

(1)
s V

[
H(1)

s

]′
xi

= O
(
m−2)

.

Thus, this completes the proof of (B.1).
Next, we simplify E[T2]. Let li;ad denote the adjusted residual log-likelihood

function. Then li;ad = lRE + l̃i;ad, where lRE is the residual log-likelihood function

and l̃i;ad = loghi(A). Define IF = −1/E[ ∂2l
∂A2 ]. For notational simplicity, we set

li;ad ≡ lad and l̃i;ad ≡ l̃ad. Since l̃ad is bounded and free from y, we obtain the
following using Lemma 3,

Â − A = ∂lad

∂A
IF + r2.1 = l

(1)
REIF + r2.2,

where l
(1)
RE = ∂lRE

∂A
= 1

2 [y′P 2y − tr(P )] and E[|r2.2|] = O(m−1) when ρ is taken as
3/4 in Lemma 3.

Since Â is translation invariant and even function, we can substitute Â(Z) − A

for Â(y) − A, where Z = y − Xβ ∼ N(0,V ). Thus,

x′
i (β̂ − β) = x′

i

(
X′V̂ −1X

)−1
X′V̂ −1Z

= λ′
iX

(
X′V̂ −1X

)−1
X′V̂ −1Z

= λ′
iX

(
X′V −1X

)−1
X′V −1Z + r1.2Z,

where λi denotes a m × 1 vector with i component 1 and the rest 0 and r1.2Z ≤
(ÂU − A)x′

iHZ + r1.
Hence,

E[T2] ≤ E
[(

l
(1)
REIF + r2.2

){
λ′

iX
(
X′V −1X

)−1
X′V −1Z + r1.2Z

}(
λ′

iZ
)]

= IF

{
E

[
l
(1)
REZ′EiX

(
X′V −1X

)−1
X′V −1Z

]} + E
[
(ÂU − A)r1.2Z

(
λ′

iZ
)]

+ E
[
r2.2Z

′EiX
(
X′V −1X

)−1
X′V −1Z

]
= IF T2.1 + T2.2 + T2.3,

where Ei denotes a m × m matrix with the (i, i) component one and rest zeroes.
Using Lemma 2 and the following facts:
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(i) PV P = P ,
(ii) tr[CiV ] and tr[P 2V CiV ] are of order O(m−1), under the regularity condi-

tions,

we have

T2.1 = 1
2

{
E

[(
Z′P 2Z

)(
Z′CiZ

)] − tr[P ]E[
Z′CiZ

]}
= tr

[
P 2V CiV

] + 1
2 tr

[
P 2V

]
tr[CiV ] − 1

2 tr[P ] tr[CiV ]
= O

(
m−1)

,

where Ci = EiX(X′V −1X)−1X′V −1.
Using λ′

i
∂H
∂A

= O(m−1), we have

T2.2 = E
[
(ÂU − A)r1.2Z

(
λ′

iZ
)]

= E
[
(ÂU − A)2(

λ′
iXHZ

)(
λ′

iZ
)] + E

[
(ÂU − A)r1

(
λ′

iZ
)]

≤ E
[
(ÂU − A)2]

E
[
Z′H ′X′EiZ

] + E

[
(ÂU − A)3

(
λ′

iX
∂H

∂A

∣∣∣∣
A=A

Z

)(
λ′

iZ
)]

= O
(
m−2)

.

Using E[|r2.2|] = O(m−1),

T2.3 = E
[
r2.2Z

′CiZ
] ≤ E

[|r2.2|] tr[CiV ] = O
(
m−2)

.

Therefore,

E[T2] ≤ O
(
m−2)

.

Hence, using the above results and E[T2] ≥ O(m−2) with same calculation, we
have

E[T2] = O
(
m−2)

.(B.4)

Since IF is of order O(m−1), we have

E[T3] = E
[
(Â − A)2(

yi − x′
iβ

)2]
= E

[(
IF l

(1)
RE + r2.2

)2
λ′

iZZ′λi

]
= I 2

F

{1
4E

[(
Z′P 2Z

)(
Z′P 2Z

)(
Z′EiZ

)] − 1
2E

[(
Z′P 2Z

)(
Z′EiZ

)]
tr[P ]

+ 1
4E

[
Z′EiZ

]
tr[P ]2}

+ IF E
[
r2.2

(
Z′P 2Z − tr[P ])Z′EiZ

] + E
[
r2

2.2Z
′EiZ

]
≤ I 2

F � + IF E[|r2.2|]{2 tr
[
P 2V EiV

] + tr
[
P 2V

]
tr[EiV ] − tr[P ] tr[EiV ]}

+ E
[
r2

2.2
]
tr[EiV ]

= �I 2
F + O

(
m−2)

.

Using Lemma 2 and the following facts:
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(i) PV P = P ,
(ii) tr(EiV ) = (A + Di), and

(iii) | tr(P k) − tr(V −k)| = O(1), for k ≥ 1,

we have

� = {1
4E

[(
Z′P 2Z

)(
Z′P 2Z

)(
Z′EiZ

)] − 1
2E

[(
Z′P 2Z

)(
Z′EiZ

)]
tr[P ]

+ 1
4E

[
Z′EiZ

]
tr[P ]2}

= 1
4

[
8 tr

(
P 2V P 2EiV

) + 2
{
tr

(
P 2V P 2V

)
tr(EiV ) + 2 tr

(
P 2V EiV

)
tr

(
P 2V

)}
+ tr

(
P 2V

)2 tr(EiV )
]

− tr
(
P 2V EiV

)
tr(P ) − 1

2 tr
(
P 2V

)
tr(EiV ) tr(P ) + 1

4 tr(P )2 tr(EiV )

= 2 tr
(
P 3V EiV

) + 1
2 tr

(
P 2)

tr(EiV ) = 1
2 tr

(
P 2)

tr(EiV ) + O(1)

= 1
2 tr

(
V −2)

(A + Di) + O(1).

Hence,

E[T3] = I 2
F

1

2
tr

(
V −2)

(A + Di) + O
(
m−2) = 2(A + Di)

tr(V −2)
+ O

(
m−2)

.(B.5)

Thus, we can show (A.5) using (B.1), (B.4) and (B.5).
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