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NONPARAMETRIC RIDGE ESTIMATION
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We study the problem of estimating the ridges of a density function.
Ridge estimation is an extension of mode finding and is useful for under-
standing the structure of a density. It can also be used to find hidden struc-
ture in point cloud data. We show that, under mild regularity conditions, the
ridges of the kernel density estimator consistently estimate the ridges of the
true density. When the data are noisy measurements of a manifold, we show
that the ridges are close and topologically similar to the hidden manifold. To
find the estimated ridges in practice, we adapt the modified mean-shift algo-
rithm proposed by Ozertem and Erdogmus [J. Mach. Learn. Res. 12 (2011)
1249–1286]. Some numerical experiments verify that the algorithm is accu-
rate.

1. Introduction. Multivariate data in many problems exhibit intrinsic lower
dimensional structure. The existence of such structure is of great interest for di-
mension reduction, clustering and improved statistical inference, and the question
of how to identify and characterize this structure is the focus of active research.
A commonly used representation for low-dimensional structure is a smooth mani-
fold. Unfortunately, estimating manifolds can be difficult even under mild assump-
tions. For instance, the rate of convergence for estimating a manifold with bounded
curvature blurred by homogeneous Gaussian noise, is logarithmic [Genovese et al.
(2012a)], meaning that an exponential amount of data are needed to attain a spec-
ified level of accuracy. In this paper, we offer a way to circumvent this problem.
We define an object, which we call a hyper-ridge set that can be used to approxi-
mate the low-dimensional structure in a data set. We show that the hyper-ridge set
captures the essential features of the underlying low-dimensional structure while
being estimable from data at a polynomial rate.

Let X1, . . . ,Xn be a sample from a probability density p defined on an open
subset of D-dimensional Euclidean space and let p̂ be an estimate of the density.
We will define hyper-ridge sets (called ridges for short) for both p and p̂, which
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FIG. 1. Synthetic data showing lower dimensional structure. The left plot is an example of the hid-
den manifold case. The right plot is an example of a hidden set consisting of intersecting manifolds.

we denote by R and R̂. We consider two cases that make different assumptions
about p. In the hidden manifold case (see Figure 1), we assume that the density
p is derived by sampling from a d < D dimensional manifold M and adding D-
dimensional noise. In the density ridge case, we look for ridges of a density without
assuming any hidden manifold, simply as a way of finding structure in a point
cloud, much like clustering. The goal in both cases is to estimate the hyper-ridge
set. Although in the former case, we would ideally like to estimate M , this is not
always feasible for reasonable sample sizes, so we use the ridge R as a surrogate
for M . We focus on estimating ridges from point cloud data; we do not consider
image data in this paper.

A formal definition of a ridge is given in Section 2. Let 1 ≤ d < D be fixed.
Loosely speaking, we define a d-dimensional hyper-ridge set of a density p to be
the points where the Hessian of p has D − d strongly negative eigenvalues and
where the projection of the gradient on that subspace is zero. Put another way,
the ridge is a local maximizer of the density when moving in the normal direction
defined by the Hessian.

Yet another way to think about ridges is by analogy with modes. We can define
a mode to be a point where the gradient is 0 and the second derivative is negative,
that is, the eigenvalues of the Hessian are negative. The Hessian defines a (D −d)-
dimensional normal space (corresponding to the D − d smallest eigenvalues) and
a d dimensional tangent space. A ridge point has a projected gradient (the gradient
in the direction of the normal) that is 0 and eigenvalues in the normal space that
are negative. Modes are simply 0 dimensional ridges.

EXAMPLE. A stylized example is shown in Figure 2. In this example, the
density is p(x) = ∫

M φ(x − z)w(z) dz where x ∈ R
2, M is a circle in R

2, w is
a smooth (but nonuniform) density supported on M and φ is a two-dimensional
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FIG. 2. An example of a one dimensional ridge defined by a two-dimensional density p. The ridge R

is a circle on the plane. The solid curve is the ridge, lifted onto p, that is, {(x,p(x)) :x ∈ R}.

Gaussian with a variance σ 2 that is much smaller than the radius of the circle. The
ridge R is a one-dimensional subset of R2. The figure has a solid curve to show the
ridge lifted onto p, that is, the curve shows the set {(x,p(x)) :x ∈ R}. The ridge
R does not coincide exactly with M due to the blurring by convolution with the
Gaussian. In fact, R is a circle with slightly smaller radius than M . That is, R is a
biased version of M . Figure 3 shows M and R.

Note that the density is not uniform over the ridge. Indeed, there can be modes
(0-dimensional ridges) within a ridge. What matters is that the function rises
sharply as we approach the ridge (strongly negative eigenvalue).

One of the main points of this paper is that R captures the essential features
of M . If we can live with the slight bias in R, then it is better to estimate R since
R can be estimated at a polynomial rate while M can only be estimated at a log-
arithmic rate. Throughout this paper, we take the dimension of interest d as fixed
and given.

Many different and useful definitions of a “ridge” have been proposed; see the
discussion of related work at the end of this section. We make no claim as to
the uniqueness and optimality of ours. Our definition is motivated by four useful
properties that we demonstrate in this paper:

1. If p̂ is close to p, then R̂ is close to R where R̂ is the ridge of p̂ and R is the
ridge of p.

2. If the data-generating distribution is concentrated near a manifold M , then
the ridge R approximates M both geometrically and topologically.

3. R can be estimated at a polynomial rate, even in cases where M can be
estimated at only a logarithmic rate.
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FIG. 3. The outer circle denotes the manifold M . The dashed circle is the ridge R of the density p.
The ridge is a biased version of M and acts as a surrogate for M . The inner circle Rh shows the
ridge from a density estimator with bandwidth h. R can be estimated at a much faster rate than M .

4. The definition corresponds essentially with the algorithm derived by Ozertem
and Erdogmus (2011). That is, our definition provides a mathematical formaliza-
tion of their algorithm.

Our broad goal is to provide a theoretical framework for understanding the prob-
lem of estimating hyper-ridge sets. In particular, we show that the ridges of a kernel
density estimator consistently estimate the ridges of the density, and we find and
upper bound on the rate of convergence. The main results of this paper are (stated
here informally):

• Stability (Theorem 4). If two densities are sufficiently close together, their
hyper-ridge sets are also close together.

• Estimation (Theorem 5). There is an estimator R̂ such that

Haus(R, R̂) = OP

((
logn

n

)2/(D+8))
,(1)

where Haus is the Hausdorff distance, defined in equation (9). Moreover, R̂ is
topologically similar to R in the sense that small dilations of these sets are topo-
logically similar.

• Surrogate (Theorem 7). In the Hidden Manifold case with small noise variance
σ 2 and assuming M has no boundary, the hyper-ridge set of the density p satis-
fies

Haus(M,R) = O
(
σ 2 log(1/σ)

)
(2)

and R is topologically similar to M . Hence, when the noise σ is small, the ridge
is close to M . Note that we treat M as fixed while σ → 0. It then follows that

Haus(M, R̂) = OP

((
logn

n

)2/(D+8))
+ O

(
σ 2 log(1/σ)

)
.(3)



RIDGE ESTIMATION 1515

This leaves open the question of how to locate the ridges of the density esti-
mator. Fortunately, this latter problem has recently been solved by Ozertem and
Erdogmus (2011) who derived a practical algorithm called the subspace con-
strained mean shift (SCMS) algorithm for locating the ridges. Ozertem and Erdog-
mus (2011) derived their method assuming that the underlying density function is
known (i.e., they did not discuss the effect of estimation error). We, instead, assume
the density is estimated from a finite sample and adapt their algorithm accordingly
by including a denoising step in which we discard points with low density. This
paper provides a statistical justification for, and extension to, their algorithm. We
introduce a modification of their algorithm called SuRF (Subspace Ridge Finder)
that applies density estimation, followed by denoising, followed by SCMS.

Related work. Zero dimensional ridges are modes and in this case ridge finding
reduces to mode estimation and SCMS reduces to the mean shift clustering algo-
rithm [Chacón (2012), Cheng (1995), Fukunaga and Hostetler (1975), Li, Ray and
Lindsay (2007)].

If the hidden structure is a manifold, then the process of finding the structure
is known as manifold estimation or manifold learning. There is a large literature
on manifold estimation and related techniques. Some useful references are Niyogi,
Smale and Weinberger (2008) Caillerie et al. (2011), Genovese et al. (2009, 2012a,
2012b, 2012c), Roweis and Saul (2000), Tenenbaum, de Silva and Langford (2000)
and references therein.

The notion of ridge finding spans many fields. Previous work on ridge finding in
the statistics literature includes Cheng, Hall and Hartigan (2004), Hall, Peng and
Rau (2001), Wegman, Carr and Luo (1993), Wegman and Luo (2002) and Hall,
Qian and Titterington (1992). These papers focus on visualization and exploratory
analysis. An issue that has been discussed extensively in the applied math and com-
puter science literature is how to define a ridge. A detailed history and taxonomy is
given in the text by Eberly (1996). Two important classes of ridges are watershed
ridges, which are global in nature, and height ridges, which are locally defined.
There is some debate about the virtues of various definitions. See, for example,
Norgard and Bremer (2012), Peikert, Günther and Weinkauf (2012). Related def-
initions also appear in the fluid dynamics literature [Schindler et al. (2012)] and
astronomy [Aragón-Calvo et al. (2010), Sousbie et al. (2008)]. There is also a liter-
ature on Reeb graphs [Ge et al. (2011)] and metric graphs [Aanjaneya et al. (2012),
Lecci, Rinaldo and Wasserman (2013)]. Metric graph methods are ideal for rep-
resenting intersecting filamentary structure but are much more sensitive to noise
than the methods in this paper. It is not our intent in this paper to argue that one
particular definition of ridge is optimal for all purposes. Rather, we use a particular
definition which is well suited for studying the statistical estimation of ridges.

More generally, there is a vast literature on hunting for structure in point clouds
and analyzing the shapes of densities. Without attempting to be exhaustive, some
representative work includes Davenport et al. (2010), Adams, Atanasov and Carls-
son (2011), Bendich, Wang and Mukherjee (2012), Chazal et al. (2011), Klemelä
(2009).
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Throughout the paper, we use symbols like C,C0,C1, c, c0, c1, . . . to denote
generic positive constants whose value may be different in different expressions.

2. Model and ridges. In this section, we describe our assumptions about the
data and give a formal definition of hyper-ridge sets, which we call ridges from
now on. Further properties of ridges are stated and proved in Section 4.

We start with a point cloud X1, . . . ,Xn ∈ R
D . We assume that these data com-

prise a random sample from a distribution P with density p, where p has at least
five bounded, continuous derivatives. This is all we assume for the density ridge
case. In the hidden manifold case, we assume further that P and p are derived
from a d-dimensional manifold M by convolution with a noise distribution, where
d < D. Specifically, we assume that M is embedded within a compact subset
K ⊂ R

D and that

P = (1 − η)Unif(K) + η(W � �σ ),(4)

where 0 < η ≤ 1, Unif(K) is a uniform distribution on K, � denotes convolution,
W is a distribution supported on M , and �σ is a Gaussian distribution on R

D with
zero mean and covariance σID . While we could consider a more general noise
distribution in (4), we focus on the common assumption of Gaussian noise. In that
case, a hidden manifold M can only be estimated at a logarithmic rate [Genovese
et al. (2012b)], so ridge estimators are particularly valuable. (Even when M can
be estimated at a polynomial rate, ridge estimators are often easier in practice than
estimating the manifold, which would involve deconvolution.)

The data generating process under model (4) is equivalent to the following
steps:

1. Draw B from a Bernoulli(η).
2. If B = 0, draw X from a uniform distribution on K.
3. If B = 1, let X = Z + σε where Z ∼ W and ε is additional noise.

Points Xi drawn from Unif(K) represent background clutter. Points Xi drawn from
W � �σ are noisy observations from M . When M consists of a finite set of points,
this can be thought of as a clustering model.

2.1. Definition of ridges. As in Ozertem and Erdogmus (2011), our definition
of ridges relies on the gradient and Hessian of the density function p. Recall that
0 < d < D is fixed throughout. Given a function p :RD → R, let g(x) = ∇p(x)

denote its gradient and H(x) its Hessian matrix, at x. Let

λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) > λd+1(x) ≥ · · · ≥ λD(x)(5)

denote the eigenvalues of H(x) and let 	(x) be the diagonal matrix whose diag-
onal elements are the eigenvalues. Write the spectral decomposition of H(x) as
H(x) = U(x)	(x)U(x)T . Let V (x) be the last D − d columns of U(x) (i.e., the
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columns corresponding to the D − d smallest eigenvalues). If we write U(x) =
[V	(x) :V (x)] then we can write H(x) = [V	(x) :V (x)]	(x)[V	(x) :V (x)]T . Let
L(x) ≡ L(H(x)) = V (x)V (x)T be the projector onto the linear space defined by
the columns of V (x). We call this the local normal space and the space spanned by
L⊥(x) = I −L(x) = V	(x)V	(x)T is the local tangent space. Define the projected
gradient

G(x) = L(x)g(x).(6)

If the vector field G(x) is Lipschitz then by Theorem 3.39 of Irwin (1980),
G defines a global flow as follows. The flow is a family of functions φ(x, t) such
that φ(x,0) = x and φ′(x,0) = G(x) and φ(x, s + t) = φ(φ(x, t), s). The flow
lines, or integral curves, partition the space (see Lemma 2) and at each x where
G(x) is nonnull, there is a unique integral curve passing through x. Thus, there is
one and only one flow line through each nonridge point. The intuition is that the
flow passing through x is a gradient ascent path moving toward higher values of p.
Unlike the paths defined by the gradient g which move toward modes, the paths
defined by the projected gradient G move toward ridges. The SCMS algorithm,
which we describe later, can be thought of as approximating the flow with discrete,
linear steps xk+1 ← xk + hG(xk). [A proof that the linear interpolation of these
points approximates the flow in the case d = 0 is given in Arias-Castro, Mason
and Pelletier (2013).]

A map π :R→R
D is an integral curve with respect to the flow of G if

π ′(t) = G
(
π(t)

) = L
(
π(t)

)
g
(
π(t)

)
.(7)

Definition: The ridge R of dimension d is given by R = {x :‖G(x)‖ =
0, λd+1(x) < 0}.

Note that the ridge consists of the destinations of the integral curves: y ∈ R if
limt→∞ π(t) = y for some π satisfying (7).

Our definition is motivated by Ozertem and Erdogmus (2011) but is slightly
different. They first define the d-critical points as those for which ‖G(x)‖ = 0.
They call a critical point regular if it is d-critical but not (d − 1)-critical. Thus,
a mode within a one-dimensional ridge is not regular. A regular point with λd+1 <

0 is called a principal point. According to our definition, the ridge lies between the
critical set and the principal set. Thus, if a mode lies on a one-dimensional ridge,
we include that point as part of the ridge.

2.2. Assumptions. We now record the main assumptions about the ridges that
we will require for the results.

Assumption (A0) differentiability. For all x, g(x), H(x) and H ′(x) exist.
Assumption (A1) eigengap. Let BD(x, δ) denote a D-dimensional ball of radius

δ centered at x and let R ⊕ δ = ⋃
x∈R BD(x, δ). We assume that there exists β > 0

and δ > 0 such that, for all x ∈ R ⊕ δ, λd+1(x) < −β and λd(x) − λd+1(x) > β .
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Assumption (A2) path smoothness. For each x ∈ R ⊕ δ,

∥∥L⊥(x)g(x)
∥∥∥∥H ′(x)

∥∥
max <

β2

2D3/2 ,(A2)

where H ′(x) = d vec(H(x))

dxT , L⊥ = I − L and ‖A‖max = maxj,k |Ajk|.
Condition (A1) says that p is sharply curved around the ridge in the D − d di-

mensional space normal to the ridge. To give more intuition about the condition,
consider the problem of estimating a mode in one dimension. At a mode x, we have
that p′(x) = 0 and p′′(x) < 0. However, the mode cannot be uniformly consis-
tently estimated by only requiring the second derivative to be negative since p′′(x)

could be arbitrarily close to 0. Instead, one needs to assume that p′′(x) < −β for
some positive constant β . Condition (A1) may be thought of as the analogous con-
dition for a ridge. (A2) is a third derivative condition which implies that the paths
cannot be too wiggly. (A2) also constrains the gradient from being too steep in the
perpendicular direction. Note that these conditions are local: they hold in a size δ

neighborhood around the ridge.

3. Technical background. Now we review some background. We recom-
mend that the reader quickly skim this section and then refer back to it as needed.

3.1. Distance function and Hausdorff distance. We let B(x, r) ≡ BD(x, r) de-
note a D-dimensional open ball centered at x ∈ R

D with radius r . If A is a set and
x is a point then we define the distance function

dA(x) = d(x,A) = inf
y∈A

‖x − y‖,(8)

where ‖ · ‖ is the Euclidean norm. Given two sets A and B , the Hausdorff distance
between A and B is

Haus(A,B) = inf{ε :A ⊂ B ⊕ ε and B ⊂ A ⊕ ε} = sup
x

∣∣dA(x) − dB(x)
∣∣,(9)

where

A ⊕ ε = ⋃
x∈A

BD(x, ε) = {
x :dA(x) ≤ ε

}
(10)

is called the ε-dilation of A. The dilation can be thought of as a smoothed version
of A. For example, if there are any small holes in A, these will be filled in by
forming the dilation A ⊕ ε.

We use Hausdorff distance to measure the distance between sets for several
reasons: it is the most commonly used distance between sets, it is a very strict
distance and is analogous to the familiar L∞ distance between functions for sets.
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FIG. 4. A straight line as infinite reach. A line with a corner, as in this figure, has 0 reach but has
positive μ-reach.

3.2. Topological concepts. This subsection follows Chazal, Cohen-Steiner
and Lieutier (2009) and Chazal and Lieutier (2005). The reach of a set K , de-
noted by reach(K), is the largest r > 0 such that each point in K ⊕ r has a unique
projection onto K . A set with positive reach is, in a sense, a smooth set without
self-intersections.

Now we describe a generalization of reach called μ-reach. The key point is
simply that the μ-reach is weaker than reach. The full details can be found in the
aforementioned references. Let A be a compact set. Following Chazal and Lieutier
(2005) define the gradient ∇A(x) of dA(x) to be the usual gradient function when-
ever this is well defined. However, there may be points x at which dA is not differ-
entiable in the usual sense. In that case, define the gradient as follows. For x ∈ A

define ∇A(x) = 0 for all x ∈ A. For x /∈ A, let (x) = {y ∈ A :‖x − y‖ = dA(x)}.
Let �(x) be the center of the unique smallest closed ball containing (x). Define
∇A(x) = x−�(x)

dA(x)
.

The critical points are the points at which ∇A(x) = 0. The weak feature
size wfs(A) is the distance from A to its closest critical point. For 0 < μ <

1, the μ-reach reachμ(A) is reachμ(A) = inf{d :χ(d) < μ} where χ(d) =
inf{‖∇A(x)‖ :dA(x) = d}. It can be shown that reachμ is nonincreasing in μ, that
wfs(A) = limμ→0 reachμ(A) and that reach(A) = limμ→1 reachμ(A).

As a simple example, a circle C with radius r has reach(R) = r . However, if
we bend the circle slightly to create a corner, the reach is 0 but, provided the kink
is not too extreme, the μ-reach is still positive. As another example, a straight line
as infinite reach. Now suppose we add a corner as in Figure 4. This set has 0 reach
but has positive μ-reach.

Two maps f :A → B and g :A → B are homotopic if there exists a continuous
map H : [0,1] × A → B such that H(0, x) = f (x) and H(1, x) = g(x). Two sets
A and B are homotopy equivalent if there are continuous maps f :A → B and
g :B → A such that the following is true: (i) g ◦ f is homotopic to the identity
map on A and (ii) f ◦ g is homotopic to the identity map on B . In this case we
write A ∼= B . Sometimes A fails to be homotopic to B but A is homotopic to
B ⊕ δ for every sufficiently small δ > 0. This happens because B ⊕ δ is slightly
smoother than B . If A ∼= B ⊕ δ for all small δ > 0, we will say that A and B are
nearly homotopic and we will write A ≈∼ B .

The following result [Theorem 4.6 in Chazal, Cohen-Steiner and Lieutier
(2009)] says that if a set K is smooth and K̃ is close to K , then a smoothed version
of K̃ is nearly homotopy equivalent to K .
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THEOREM 1 [Chazal, Cohen-Steiner and Lieutier (2009)]. Let K and K̃ be
compact sets and let ε = Haus(K̃,K). If

ε <
μ2 reachμ(K)

5μ2 + 12
and

4ε

μ2 ≤ α < reachμ(K) − 3ε(11)

then (K̃ ⊕ α) ≈∼ K .

3.3. Matrix theory. We make extensive use of matrix theory as can be found
in Stewart and Sun (1990), Bhatia (1997), Horn and Johnson (2013) and Magnus
and Neudecker (1988).

Let A be an m × n matrix. Let Ajk denote an element of the matrix.

Then the Frobenius norm is ‖A‖F =
√∑

j,k A2
jk and the operator norm is

‖A‖ = sup‖x‖=1 ‖Ax‖. We define ‖A‖max = maxj,k |Ajk|. It is well known that
‖A‖ ≤ ‖A‖F ≤ √

n‖A‖, that ‖A‖max ≤ ‖A‖ ≤ √
mn‖A‖max and that ‖A‖F ≤√

mn‖A‖max.
The vec operator converts a matrix into a vector by stacking the columns. Thus,

if A is m×n then vec(A) is a vector of length mn. Conversely, given a vector a of
length mn, let [[a]] denote the m × n matrix obtained by stacking a columnwise
into matrix form. We can think of [[a]] as the “anti-vec” operator.

If A is m × n and B is p × q then the Kronecker A ⊗ B is the mp × nq matrix⎡⎢⎣ A11B · · · A1nB
...

...

Am1B · · · AmnB

⎤⎥⎦ .(12)

If A and B have the same dimensions, then the Hadamard product C = A ◦ B is
defined by Cjk = AjkBjk .

For matrix calculus, we follow the conventions in Magnus and Neudecker
(1988). If F :RD → R

k is a vector-valued map then the Jacobian matrix will be
denoted by F ′(x) or dF/dx. This is the D×k matrix with F ′(x)jk = ∂Fi(x)/∂xj .
If F :RD →R

m×p is a matrix-valued map then F ′(x) is a mp × D matrix defined
by

F ′(x) ≡ dF

dxT
= d vec(F (x))

dxT
.(13)

If F :Rn×q →R
m×p then the derivative is a mp × nq matrix given by

F ′(X) ≡ dF

dX
= d vec(F (X))

d vec(X)T
.

We then have the following product rule for matrix calculus: if F :RD → R
m×p

and G :RD →R
p×q then

dF(x)G(x)

dx
= (

GT (x) ⊗ Im

)
F ′(x) + (

Iq ⊗ F(x)
)
G′(x).
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Also, if A(x) = f (x)I then A′(x) = vec(I ) ⊗ (∇f (x))T where ∇f denotes the
gradient of f .

The following version of the Davis–Kahan theorem is from von Luxburg (2007).
Let H and H̃ be two symmetric, square D × D matrices. Let 	 be the diagonal
matrix of eigenvalues of H . Let S ⊂ R and let V be the matrix whose columns are
the eigenvectors corresponding to the eigenvalues of H in S and similarly for Ṽ

and H̃ . Let

β = min
{|λ − s| :λ ∈ 	 ∩ Sc, s ∈ S

}
.(14)

According to the Davis–Kahan theorem,∥∥V V T − Ṽ Ṽ T
∥∥ ≤ ‖H − H̃‖F

β
.(15)

Let H be a D × D square, symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λD .
Let H̃ be another square, symmetric matrix with eigenvalues λ̃1 ≥ · · · ≥ λ̃D . By
Weyl’s theorem [Theorem 4.3.1 of Horn and Johnson (2013)], we have that

λn(H̃ − H) + λi(H) ≤ λi(H̃ ) ≤ λi(H) + λ1(H̃ − H).(16)

It follows easily that∣∣λi(H) − λi(H̃ )
∣∣ ≤ ‖H − H̃‖ ≤ D‖H − H̃‖max.(17)

4. Properties of ridges. In this section, we examine some of the properties of
ridges as they were defined in Section 2 and show that, under appropriate condi-
tions, if two functions are close together then their ridges are close and are topo-
logically similar.

4.1. Arclength parameterization. It will be convenient to parameterize the
gradient ascent paths by arclength. Thus, let s ≡ s(t) be the arclength from π(t) to
π(∞):

s(t) =
∫ ∞
t

∥∥π ′(u)
∥∥du.(18)

Let t ≡ t (s) denote the inverse of s(t). Note that

t ′(s) = − 1

‖π ′(t (s))‖ = − 1

‖L(π(t (s)))g(π(t (s)))‖ = − 1

‖G(π(t (s)))‖ .(19)

Let γ (s) = π(t (s)). Then

γ ′(s) = − G(γ (s))

‖G(γ (s))‖ ,(20)

which is a restatement of (7) in the arclength parameterization.
In what follows, we will often abbreviate notation by using the subscript s in

the following way: Gs = G(γ (s)),Hs = H(γ (s)), . . . , and so forth.
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4.2. Differentials. We will need derivatives of g, H , and L. The derivative
of g is the Hessian H . Recall from (13) that H ′(x) = d vec(H(x))

dxT . We also need
derivatives along the curve γ . The derivative of a functions f along γ is

.
fγ (s) ≡ .

fs = lim
ε→0

f (γ (s + ε)) − f (γ (s))

ε
.(21)

Thus, the derivative of the gradient g along γ is

.
gγ (s) ≡ .

gs = lim
ε→0

g(γ (s + ε)) − g(γ (s))

ε
= Hsγ

′
s = −HsGs

‖Gs‖ .(22)

We will also need the derivative of H in the direction of a vector z which we
will denote by

H ′(x; z) ≡ lim
ε→0

H(x + εz) − H(x)

ε
.

We can write an explicitly formula for H ′(x; z) as follows. Note that the elements
of H ′ are the partial derivatives ∂Hjk(x)/∂x� arranged in a D2 ×D matrix. Hence,
H ′(x; z) = [[H ′(x)z]]. (Recall that [[a]] stacks a vector into a matrix.) Note that
[[H ′(x)z]] is a D × D matrix.

Recall that L(x) ≡ L(H(x)) = V (x)V (x)T . The collection {L(x) :x ∈R
D} de-

fines a matrix field: there is a matrix L(x) attached to each point x. We will need
the derivative of this field along the integral curves γ . For any x /∈ R, there is a
unique path γ and unique s > 0 such that x = γ (s). Define

.
Ls ≡ .

L(x) ≡ lim
ε→0

L(H(γ (s + ε))) − L(H(γ (s)))

ε
(23)

= lim
t→0

L(H + tE) − L(H)

t
,

where H = H(γ (s)) and E = (d/ds)H(γ (s)) = H ′(x; z) with z = γ ′(s).

4.3. Uniqueness of the γ paths.

LEMMA 2. Conditions (A0)–(A2) imply that, for each x ∈ (R ⊕ δ)−R, there
is a unique path γ passing through x.

PROOF. We will show that the vector field G(x) is Lipschitz over R ⊕ δ. The
result then follows from Theorem 3.39 of Irwin (1980). Recall that G = Lg and
g is differentiable. It suffices to show that L is differentiable over R ⊕ δ. Now
L(x) = L(H(x)). It may be shown that, as a function of H , L is Frechet differ-
entiable. And H is differentiable by assumption. By the chain rule, L is differen-
tiable as a function of x. Indeed, dL/dx is the D2 × D matrix whose j th column
is vec(L†Ej) where Ej = [[H ′ej ]], L† denotes the Frechet derivative, and ej is
the vector which is 1 in the j th coordinate and zero otherwise. �
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4.4. Quadratic behavior. Conditions (A1) and (A2) imply that the function p

has quadratic-like behavior near the ridges. This property is needed for establishing
the convergence of ridge estimators. In this section, we formalize this notion of
quadratic behavior. Give a path γ , define the function

ξ(s) = p
(
π(∞)

) − p
(
π
(
t (s)

)) = p
(
γ (0)

) − p
(
γ (s)

)
.(24)

Thus, ξ is simply the drop in the function p along the curve γ as we move away
from the ridge. We write ξx(s) if we want to emphasize that ξ corresponds to
the path γx passing through the point x. Since ξ : [0,∞) → [0,∞), we define its
derivatives in the usual way, that is, ξ ′(s) = dξ(s)/ds.

LEMMA 3. Suppose that (A0)–(A2) hold. For all x ∈ R ⊕ δ, the following are
true:

1. ξ(0) = 0.
2. ξ ′(s) = ‖G(γ (s))‖ and ξ ′(0) = 0.
3. The second derivative of ξ is:

ξ ′′(s) = −GT
s HsGs

‖Gs‖2 + gT
s

.
LsGs

‖Gs‖ .(25)

4. ξ ′′(s) ≥ β/2.
5. ξ(s) is nonincreasing in s.
6. ξ(s) ≥ β

4 ‖γ (0) − γ (s)‖2.

PROOF. 1. The first condition ξ(0) = 0 is immediate from the definition.
2. Next,

ξ ′(s) = −dp(γ (s))

ds
= −gsγ

′
s = gT

s Gs

‖Gs‖ = gT
s Lsgs

‖Gs‖

= gT
s LsLsgs

‖Gs‖ = GT
s Gs

‖Gs‖ = ‖Gs‖.

Since the projected gradient is 0 at the ridge, we have that ξ ′(0) = 0.
3. Note that (ξ ′(s))2 = ‖Gs‖2 = GT

s Gs = gT
s Lsgs ≡ a(s). Differentiating both

sides of this equation, we have that 2ξ ′(s)ξ ′′(s) = a′(s), and hence

ξ ′′(s) = a′(s)
2ξ ′(s)

= a′(s)
2‖Gs‖ .

Now

a′(s) = (
.
gs)

T Lsgs + gT
s

.
Lsgs + gT

s Ls
.
gs = 2(

.
gs)

T Lsgs + gT
s

.
Lsgs.(26)

Since LsLs = Ls we have that
.
Ls = Ls

.
Ls + .

LsLs , and hence

gT
s

.
Lsgs = gT

s Ls

.
Lsgs + gT

s

.
LsLsgs = GT

s

.
Lsgs + gT

s

.
LsGs = 2gT

s

.
LsGs.



1524 GENOVESE, PERONE-PACIFICO, VERDINELLI AND WASSERMAN

Therefore,

a′(s) = 2(
.
gs)

T Lsgs + 2gT
s

.
LsGs.(27)

Recall that
.
gs = −HsGs‖Gs‖ . Thus,

ξ ′′(s) = a′(s)
2‖Gs‖ = −GT

s HsGs

‖Gs‖2 + gT
s

.
LsGs

‖Gs‖ .(28)

4. The first term in ξ ′′(s) is −GT
s HsGs

‖Gs‖2 . Since G is in the column space of

V , GT
s HsGs = GT

s (Vs	sV
T
s )Gs where 	s = diag(λd+1(γ (s)), . . . , λD(γ (s))).

Hence, from (A1),

GT
s HsGs

‖Gs‖2 = GT
s (Vs	sV

T
s )Gs

‖Gs‖2 ≤ λmax
(
Vs	sV

T
s

)
< −β

and thus

−GT
s HsGs

‖Gs‖2 ≥ β.

Now we bound the second term gT
s

.
LsGs

‖Gs‖ . Since Ls + L⊥
s = I and LsGs = Gs ,

we have gT
s

.
LsGs = gT

s Ls

.
LsGs + gT

s L⊥
s

.
LsGs = gT

s Ls

.
LsLsGs + gT

s L⊥
s

.
LsLsGs .

Now |gT
s Ls

.
LsLsGs | = 0. To see this, note that LsLs = Ls implies Ls

.
Ls + .

LsLs =.
Ls implies Ls

.
LsLs + .

LsLs = .
LsLs implies Ls

.
LsLs = 0. To bound gT

s L⊥
s

.
LsLsGs

we proceed as follows. Let E = (d/ds)H(π(γ (s))) = H ′(x; z) with z = γ ′(s).
Then, from Davis–Kahan,∣∣gT

s L⊥
s

.
LsLsGs

∣∣ = lim
t→0

|gT
s L⊥

s (L(H + tE) − L(H))LsGs

t

≤ ∥∥L⊥gs

∥∥ lim
t→0

‖(L(H + tE) − L(H))‖
t

‖Gs‖

≤ ‖L⊥gs‖‖E‖‖Gs‖
β

.

Note that ‖H ′(x; z)‖ ≤ D‖H ′(x; z)‖max ≤ D3/2‖H ′(x)‖max‖z‖ = D3/2 ×
‖H ′(x)‖max. So |gT

s

.
LsGs |

‖Gs‖ ≤ D3/2‖L⊥g‖‖H ′‖max/β which is less than β/2
by (A2). Therefore, ξ ′′(s) ≥ β − (β/2) = β/2.

5. Follows from 2.
6. For some 0 ≤ s̃ ≤ s,

ξ(s) = ξ(0) + sξ ′(0) + s2

2
ξ ′′(̃s) = s2

2
ξ ′′(̃s) ≥ βs2

4
from part (4). So

ξ(s) − ξ(0) ≥ β

4
s2 ≥ β

4

∥∥γ (0) − γ (s)
∥∥2

. �
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4.5. Stability of ridges. We now show that if two functions p and p̃ are close,
then their corresponding ridges R and R̃ are close. We use g̃, H̃ , . . . etc. to refer
to the gradient, Hessian and so on, defined by p̃. For any function f :RD →R, let
‖f ‖∞ = supx∈R⊕δ |f (x)|. Let

ε = ‖p − p̃‖∞, ε′ = max
j

‖gj − g̃j‖∞,(29)

ε′′ = max
jk

‖Hjk − H̃jk‖∞, ε′′′ = max
jk

∥∥H ′
jk − H̃ ′

jk

∥∥∞.(30)

THEOREM 4. Suppose that (A0)–(A2) hold for p and that (A0) holds for p̃.
Let ψ = max{ε, ε′, ε′′} and let � = max{ε, ε′, ε′′, ε′′′}. When � is sufficiently
small:

(1) Conditions (A1) and (A2) hold for p̃.
(2) We have: Haus(R, R̃) ≤ 2Cψ

β
.

(3) If reachμ(R) > 0 for some μ > 0, then R̃ ⊕ 4ψ

μ2 ≈∼ R.

PROOF. (1) Write the spectral decompositions H = U	UT and H̃ = Ũ	̃ŨT .
By (17), |λj − λ̃j | ≤ D‖H − H̃‖max ≤ Dε′′. Thus, p̃ satisfies (A1) when ε′′ is
small enough. Clearly, (A2) also holds as long as � is small enough.

(2) By the Davis–Kahan theorem (15),

‖L − L̃‖ ≤ ‖H − H̃‖F

β
≤ D‖H − H̃‖max

β
≤ Dε′′

β
.

For each x,∥∥G(x) − G̃(x)
∥∥ = ∥∥L(x)g(x) − L̃(x)g̃(x)

∥∥
≤ ∥∥(L(x) − L̃(x)

)
g(x)

∥∥ + ∥∥L̃(x)
(
g̃(x) − g(x)

)∥∥
≤ D‖g(x)‖ε′′

β
+ ε′.

It follows that, ‖L − L̃‖ ≤ Cε′′ and supx ‖G(x) − G̃(x)‖ ≤ Cψ .
Now let x̃ ∈ R̃. Thus, ‖G̃(x̃)‖ = 0, and hence ‖G(x̃)‖ ≤ Cψ . Let γ be the path

through x̃ so that γ (s) = x̃ for some s. Let r = γ (0) ∈ R. From part 2 of Lemma 3,
note that ξ ′(s) = ‖G(x̃)‖. We have

Cψ ≥ ∥∥G(x̃)
∥∥ = ξ ′(s) = ξ ′(0) + sξ ′′(u)

for some u between 0 and s. Since ξ ′(0) = 0, from part 4 of Lemma 3, Cψ ≥
sξ ′′(u) ≥ sβ

2 and so ‖r − x̃‖ ≤ s ≤ 2Cψ
β

. Thus, d(x̃,R) ≤ ‖r − x̃‖ ≤ 2Cψ/β .

Now let x ∈ R. The same argument shows that d(x, R̃) ≤ 2Cψ/β since (A1)
and (A2) hold for p̃.

(3) Choose any fixed κ > 0 such that κ <
μ2

5μ2+12
. When � is sufficiently small,

� ≤ κ reachμ(K). Then R̃ ⊕ 4ψ

μ2 ≈∼ R from Theorem 1. �
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5. Ridges of density estimators. Now we consider estimating the ridges in
the density ridge case (no hidden manifold). Let X1, . . . ,Xn ∼ P where P has
density p and let

p̂h(x) = 1

n

n∑
i=1

1

hD
K

(‖x − Xi‖
h

)
(31)

be a kernel density estimator with kernel K and bandwidth h. Let R̂ be the ridge
defined by p̂. In this section, we bound Haus(R, R̂). We assume that P is sup-
ported on a compact set K ⊂ R

D and that p and its first, second and third deriva-
tives vanish on the boundary of K. (This ensures there is no boundary bias in the
kernel density estimator.)

We assume that all derivatives of p up to and including fifth degree are bounded
and continuous. We also assume the conditions on the kernel in Gine and Guillou
(2002) which are satisfied by all the usual kernels. Results on ‖p(x)− p̂h(x)‖∞ are
given, for example, in Prakasa Rao (1983), Giné and Guillou (2002) and Yukich
(1985). The results in those references imply that

ε ≡ sup
x∈K

∥∥p(x) − p̂(x)
∥∥∞ = O

(
h2) + OP

(√
logn

nhD

)
.

For the derivatives, rates are proved in the sense of mean squared error by Chacón,
Duong and Wand (2011). They can be proved in the L∞ norm using the same
techniques as in Prakasa Rao (1983), Giné and Guillou (2002) and Yukich (1985).
The rates are:

ε′ ≡ max
j

sup
x∈K

∣∣gj (x) − ĝj (x)
∣∣ = O

(
h2) + OP

(√
logn

nhD+2

)
,

ε′′ ≡ max
j,k

sup
x∈K

∣∣Hj,k(x) − Ĥj,k(x)
∣∣ = O

(
h2) + OP

(√
logn

nhD+4

)
,

ε′′′ ≡ sup
x∈K

∥∥H ′(x) − Ĥ ′(x)
∥∥

max = O
(
h2) + OP

(√
logn

nhD+6

)
.

[See Arias-Castro, Mason and Pelletier (2013), e.g.] Let ψn = (
logn

n
)2/(D+8).

Choosing h � √
ψn we get that ε � ε′ � ε′′ � OP (ψn) and ε′′′ = oP (1). From

Theorem 4 and the rates above we have the following.

THEOREM 5. Let R̂∗ = R̂ ∩ (R ⊕ δ). Under the assumptions above and as-
suming that (A1) and (A2) hold, we have, with h � √

ψn that

Haus
(
R, R̂∗) = OP (ψn).(32)

If reachμ(R) > 0 then R̂∗ ⊕ O(ψn) ≈∼ R.
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Let ph(x) = E(p̂h(x)) and let Rh be the ridge set of ph. It may suffice for
practical purposes to estimate Rh for some small h > 0. Indeed, as a corollary to
Theorem 9 in the next section (letting R take the role of M and Rh take the role
of Rσ ) it follows that Hausdorff(R,Rh) = O(h2) and Rh is topologically similar
to R. In this case, we can take h fixed rather than letting it tend to 0. For fixed h,
we then have dimension-independent rates.

THEOREM 6. Let h > 0 be fixed and let ψ̃n = √
logn/n. Let R̂∗ = R̂ ∩ (R ⊕

δ). Under the assumptions above and assuming that (A1) and (A2) hold for Rh we
have, that

Haus
(
Rh, R̂

∗) = OP (ψ̃n).(33)

If reachμ(Rh) > 0 then R̂∗ ⊕ O(ψ̃n) ≈∼ R.

6. Ridges as surrogates for hidden manifolds. Consider now the case where
Pσ = (1 − η)Unif(K) + η(W � �σ ) where W is supported on M . We assume in
this section that M is a compact manifold without boundary. We also assume that
W has a twice-differentiable density w respect to the uniform measure on M .
(Here, w is a function on a smooth manifold and the derivatives are defined in
the usual way, that is, with respect to any coordinate chart.) We also assume that
w is bounded away from zero and ∞. In this section, we add the subscript σ to
the density, the gradient, etc. to emphasize the dependence on σ . For example, the
density of Pσ is denoted by pσ , the gradient by gσ and the Hessian by Hσ .

We want to show that the ridge of pσ is a surrogate for M . Specifically, we show
that, as σ gets small, there is a subset R∗ ⊂ R in a neighborhood of M such that
Haus(M,R∗) = O(σ 2 log(1/σ)) and such that R∗ ≈∼ M . We assume that η = 1 in
what follows; the extension to 0 < η < 1 is straightforward. We also assume that
M is a compact d-manifold with positive reach κ . We need to assume that M has
positive reach rather than just positive μ-reach. The reason is that, when M has
positive reach, the measure W induces a smooth distribution on the tangent space
TxM for each x ∈ M . We need this property in our proofs but this property is lost
if M only has positive μ-reach for some μ < 1 due to the presence of unsmooth
features such as corners.

The density of X is

pσ (x) =
∫
M

φσ (x − z) dW(z),(34)

where φσ (u) = (2π)−D/2σ−D exp(−‖u‖2

2σ 2 ). Thus, pσ is a mixture of Gaussians.
However, it is a rather unusual mixture; it is a singular mixture of Gaussians since
the mixing distribution W is supported on a lower dimensional manifold.
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Let TxM be the tangent space4 to M at x and let T ⊥
x M be the normal space to

M at x. Define the fiber at x ∈ M by Fx = T ⊥
x M ∩BD(x, r). A consequence of the

fact that the reach κ is positive and M has no boundary is that, for any 0 < r < κ ,
M ⊕ r can be written as a disjoint union

M ⊕ r = ⋃
x∈M

Fx.(35)

Let rσ > 0 satisfy the following conditions:

rσ < σ,
rσ

σ 2 → ∞, rσ log
(

1

σ 2+D

)
= o(1) as σ → 0.(36)

Specifically, take rσ = ασ for some 0 < α < 1. Fix any A ≥ 2 and define

Kσ =
√

2σ 2 log
(

1

σA+D

)
.(37)

THEOREM 7 (Surrogate theorem). Suppose that κ = reach(M) > 0. Let Rσ be
the ridge set of pσ . Let Mσ = M ⊕ rσ and R∗

σ = Rσ ∩ Mσ . For all small σ > 0:

1. R∗
σ satisfies (A1) and (A2) with β = cσ−(D−d+2) form some c > 0.

2. Haus(M,R∗
σ ) = O(K2

σ ).
3. R∗

σ ⊕ CK2
σ ≈∼ M .

If Rσ is instead taken to be the ridge set of logpσ then the same results are true
with β = cσ−2 and Mσ = M ⊕ κ .

REMARK. Without the assumption that M has no boundary, there would be
boundary effects of order Kσ . That is, the Hausdorff distance behaves like O(Kσ )

for points near the boundary and like O(K2
σ ) for points not near the boundary.

The theorem shows that in a neighborhood of the manifold, there is a well-
defined ridge, that the ridge is close to the manifold and is nearly homotopic to
the manifold. It is interesting to compare the above result to recent work on fi-
nite mixtures of Gaussians [Carreira-Perpinan and Williams (2003), Edelsbrunner,
Fasy and Rote (2012)]. In those papers, it is shown that there can be fewer or more
modes than the number of Gaussian components in a finite mixture. However, for
small σ , it is easy to see that for each component of the mixture, there is a nearby
mode. Moreover, the density will be highly curved at those modes. Theorem 7 can
be thought of as a version of the latter two facts for the case of manifold mixtures.

The theorem refers to the ridges defined by pσ and the ridges defined by logpσ .
Although the location of the ridge sets is the same for both cases, the behavior of

4Recall that the tangent space at a point x is the linear space spanned by the derivative vectors of
smooth curves on the manifold through that point.
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the function around the ridges is different. There are several reasons we might
want to use logp rather than p. First, when p is Gaussian, the ridges of logp

correspond to the usual principal components. Second, the surrogate theorem holds
in an O(1) neighborhood of M for the log-density whereas it only holds in an
O(σ) neighborhood of M for the density.

To prove the theorem, we need a preliminary result. Let

σ̃ = σ log3
(

1

σD+A

)
.(38)

Given a point x let x̂ be its projection onto M . In what follows, if T is a matrix,
then an expression of the form T + O(rn) is to be interpreted to mean T + Bn

where Bn is a matrix whose entries are of order O(rn). Let

φ⊥(u) = e−‖u‖2/(2σ 2)

(2π)(D−d)/2σD−d
, u ∈ R

D−d .(39)

LEMMA 8. For all x ∈ Mσ ,

1. pσ (x) = φ⊥(x − x̂)(1 + O(σ̃ )).
2. Let pσ,B(x) = ∫

M∩B φσ (x − z) dW(Z). Then pσ,B(x) = φ⊥(x − x̂)(1 +
O(σ̃ )).

3. gσ (x) = − 1
σ 2 pσ (x)((x − x̂) + O(K2

σ )) and ‖gσ (x)‖ = O(σ−(D−d−1)).
4. The eigenvalues of Hσ(x) are

λj (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(σ̃ ), j ≤ d,

−pσ (x)

σ 2

[
1 − d2

M(x)

σ 2 + O(σ̃ )

]
, j = d + 1,

−pσ (x)

σ 2

[
1 + O(σ̃ )

]
, j > d + 1.

(40)

5. The projection matrix Lσ satisfies

Lσ (x) =
[(

0d 0d,D−d

0D−d,d ID−d

)]
+ O(σ̃ ).

6. Projected gradient:

Gσ(x) = − 1

σ 2

(
(x − x̂)φ⊥(x − x̂)

(
1 + O(σ̃ )

) + O⊥
(
K2

σ

))
,

where O⊥(K2
σ ) is a term of size O(K2

σ ) in T ⊥
x .

7. Gap:

λd(x) − λd+1(x) ≥ pσ (x)

σ 2

[
1 − α2 + O(σ̃ )

]
and

β ≡ inf
x∈R⊕δ

[
λd(x) − λd+1(x)

] ≥ cσ−(D=d+2)

and λd+1(x) ≤ −β .
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8. ‖H ′
σ‖max = O(σ−(D+3−d)).

PROOF. The proof is quite long and technical and so we relegate it to the
Appendix. �

PROOF OF THEOREM 7. Let us begin with the ridge based on pσ .
(1) Condition (A1) follows from parts 8 and 1 of Lemma 8 together with equa-

tion (49).
To verify (A2), we use parts 3 and 8 of Lemma 8: we get, for all small σ , that

‖L⊥g‖∥∥H ′∥∥
max ≤ ‖g‖∥∥H ′∥∥

max ≤ c

σD−d−1

1

σD+3−d
<

c2σ 2

σ 2(D−d+2)
≤ σ 2β2

≤ β2

2D3/2

as required.
(2) Suppose that x ∈ R∗

σ . Then ‖Gσ(x)‖ = 0. Let x̂ be the unique projection of
x onto M . From part 6 of Lemma 8,∥∥(x − x̂)φ⊥(x − x̂)

(
1 + O(σ̃ )

) + O⊥
(
K2)∥∥ = 0,

and hence x = x̂ + O(K2
σ ).

Now let x̂ ∈ M . From the expression above, we see that ‖Gσ(x̂)‖ = O(K2
σ ). Let

γ be the path through x and let r be the destination of the path. Hence γ (s) = x

for some s and γ (0) = r . Now we use Lemma 3. Then ‖G‖ = ξ ′ and

O
(
K2

σ

) = ξ ′(s) = ξ ′(s) − ξ ′(0) = sξ ′′(̃s) ≥ ‖x − r̂‖ξ ′′(̃s) ≥ ‖x − r̂‖β/2

and so ‖x − r̂‖ = O(K2
σ ). Hence, Haus(Rσ ,M) = O(K2

σ ).
(3) Homotopy. This follows from part (2) and Theorem 1.
Now consider the ridges of logpσ (x). The proof is essentially the same as the

proof above. The main difference is the Hessian as we now explain. Note that the
Hessian H ∗

σ for logpσ (x) is

H ∗
σ (x) = 1

pσ (x)

(
Hσ(x) − 1

pσ (x)
gσ (x)gT

σ (x)

)
.

From Lemma 8, parts 3 and 4, it follows that (after an appropriate rotation),

H ∗
σ (x) = − 1

σ 2

([
Od 0d×D−d

0D−d×d ID−d

]
+ O(σ̃ )

)
.

Hence,

λd+1(x) = − 1

σ 2 + O(σ̃ )

and

λd+1(x) − λd(x) = 1

σ 2 + O(σ̃ ).
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Notice in particular, that the dominant term of the smallest eigenvalue of −βH ∗
σ (x)

is 1 whereas that the dominant term of the smallest eigenvalue of −βHσ (x) is 1
d2
M(x)/σ 2 which is why we required ‖x − x̂‖ to be less than σ in Theorem 7. Here,

we only require that ‖x − x̂‖ ≤ κ . �

We may now combine Theorems 4, 5, 6 and 7 to get the following.

COROLLARY 9. Let R̂∗ be defined as in Theorem 5. Then

Haus
(
R̂∗,M

) = OP

((
logn

n

)2/(D+8))
+ O

(
K2

σ

)
.(41)

Similarly, if R̂∗ be defined as in Theorem 6 then

Haus
(
R̂∗,M

) = OP

(√
logn

n

)
+ O

(
K2

σ + h2).(42)

7. SuRFing the ridge. Here, we discuss Subspace Ridge Finding (SuRF) by
using density estimation, followed by denoising and then followed by the subspace
constrained mean shift (SCMS) algorithm due to Ozertem and Erdogmus (2011).
We will not go into great details about the algorthm; we refer the reader to Ozertem
and Erdogmus (2011).

Let us begin by reviewing the mean shift algorithm. The mean shift algorithm
[Cheng (1995), Comaniciu and Meer (2002), Fukunaga and Hostetler (1975)] is
a method for finding the modes of a density by approximating the steepest ascent
paths. The algorithm starts with a mesh of points and then moves the points along
the gradient ascent trajectories toward local maxima.

Given a sample X1, . . . ,Xn from p, consider the kernel density estimator

p̂h(x) = 1

n

n∑
i=1

1

hD
K

(‖x − Xi‖
h

)
,(43)

where K is a kernel and h > 0 is a bandwidth. Let M = {v1, . . . , vm} be a collec-
tion of mesh points. These are often taken to be the same as the data but in general
they need not be. Let vj (1) = vj and for t = 1,2,3, . . . we define the trajectory
vj (1), vj (2), . . . , by

vj (t + 1) =
∑n

i=1 XiK(‖vj (t) − Xi‖/h)∑n
i=1 K(‖vj (t) − Xi‖/h)

.(44)

It can be shown that each trajectory {vj (t) : t = 1,2,3, . . . , } follows the gradient
ascent path and converges to a mode of p̂h. Conversely, if the mesh M is rich
enough, then for each mode of p̂h, some trajectory will converge to that mode.

The SCMS algorithm mimics the mean shift algorithm but it replaces the gradi-
ent with the projected gradient at each step. The algorithm can be applied to p̂ or
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Subspace Constrained Mean Shift (SCMS)

1. For each x in the mesh, repeat the following steps until convergence:
2. For i = 1, . . . , n define

ui = x − Xi

h2 , ci = K

(
x − Xi

h

)
,

g(x) = −1

n

∑
i

ciui, H(x) = 1

n

∑
i

ci

(
uiu

T
i − 1

h2 I

)
.

3. Decompose H(x) = U(x)	(x)UT (x), U(x) = [V (x)V	(x)] and let L(x) =
V (x)V T (x).

4. Update x: let x ← L(x)[m(x) − x] where

m(x) =
∑

i cixi∑
i ci

.

FIG. 5. SCMS algorithm from Ozertem and Erdogmus (2011).

any monotone function of p̂. As we explained earlier, there are some advantages
to using log p̂. Figure 5 gives the algorithm for the log-density. This is the version
we will use in our examples. Figure 6 gives the full SuRF algorithm.

The SCMS algorithm provides a numerical approximation to the paths γ de-
fined by the projected gradient. We illustrate the numerical algorithm in Section 8.

8. Implementation and examples. Here, we demonstrate ridge estimation in
some two-dimensional examples. In each case, we will find the one-dimensional
ridge set. Our purpose is to show proof of concept; there are many interesting
implementation details that we will not address here. In each case, we use SuRF.

To implement the method requires that we choose a bandwidth h for the kernel
density estimator. There has been recent work on bandwidth selection for multi-
variate density estimators such as Chacón and Duong (2010, 2012) and Panaretos

Subspace Ridge Finder (SuRF)

1. Compute the kernel density estimator p̂(x) and choose a threshold t . By de-
fault, the bandwidth h is selected by Silverman’s rule.

2. Select a mesh M of points. By default, we take M = {X1, . . . ,Xn}.
3. Denoise: remove point m from mesh if p̂(m) < t . Let M′ denote the remain-

ing mesh points.
4. Apply SCMS to each point in M′.

FIG. 6. SuRF algorithm.
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FIG. 7. Estimated hyper-ridge set (red curve) from data generated from a circular manifold M

(blue curve) of radius 3. The sample size is 1000, using Normal noise with σ = 0.5. The estimate is
computed from a kernel density estimator using the Silverman Normal reference rule for the band-
width. The starting points for the modified SCMS algorithm are taken the evaluation points of the
density estimator excluding the points below 25% of the maximum estimated density.

and Konis (2012). For the purposes of this paper, we simply use the Silverman rule
[Scott (1992)].

Figures 7 through 10 show two examples of SuRF. In the first example, the
manifold is a circle. Although the circle example may seem easy, we remind the

FIG. 8. Estimated hyper-ridge set (red curve) from data generated from a circular manifold M

(blue curve) of radius 3. The sample size is 20,000, using Normal noise with σ = 0.5. The estimate
is computed from a kernel density estimator using the Silverman Normal reference rule for the band-
width. The starting points for the modified SCMS algorithm are taken the evaluation points of the
density estimator excluding the points below 25% of the maximum estimated density.
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FIG. 9. Effect of decreasing bandwidth. The data are i.i.d. samples from the same manifold as in
the previous figure. Eventually we reach a phase transition where the structure of the estimator falls
apart.

reader that no existing statistical algorithms that we are aware of can, without prior
assumptions, take a point cloud as input and find a circle, automatically.

The second example is a stylized “cosmic web” of intersecting line segments
and with random background clutter. This is a difficult case that violates the as-

FIG. 10. Data generated from a stylized “cosmic web” consisting of intersecting line segments and
a uniform background clutter. Total sample size is 10,000. The starting points for the modified SCMS
algorithm are taken the evaluation points of the density estimator excluding the points below 5% of
the maximum estimated density.
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sumptions; specifically the underlying object does not have positive reach. The
starting points for the SCMS algorithm are a subset of the grid points at which
a kernel density estimator is evaluated. We select those points for which the esti-
mated density is above a threshold relative to the maximum value.

Figure 9 shows the estimator for four bandwidths. This shows an interesting
phenomenon. When the bandwidth h is large, the estimator is biased (as expected)
but it is still homotopy equivalent to the true M . However, when h gets too small,
we see a phase transition where the estimator falls apart and degenerates into small
pieces. This suggests it is safer to oversmooth and have a small amount of bias. The
dangers of undersmoothing are greater than the dangers of oversmoothing.

The theory in Section 6 required the underlying structure to have positive reach
which rules out intersections and corners. To see how the method fares when
these assumptions are violated, see Figure 10. While the estimator is far from
perfect, given the complexity of the example, the procedure does surprisingly
well.

9. Conclusion. We presented an analysis of nonparametric ridge estimation.
Our analysis had two main components: conditions that guarantee that the esti-
mated ridge converges to the true ridge, and conditions to relate the ridge to an
underlying hidden manifold.

We are currently investigating several questions. First, we are finding the min-
imax rate for this problem to establish whether or not our proposed method is
optimal. Also, Klemelä (2005) has derived mode estimation procedures that adapt
to the local regularity of the mode. It would be interesting to derive similar adap-
tive theory for ridges. Second, the hidden manifold case required that the manifold
had positive reach. We are working on relaxing this condition to allow for corners
and intersections (often known as stratified spaces). Third, we are developing an
extension where ridges of each dimension d = 0,1, . . . are found sequentially and
removed one at a time. This leads to a decomposition of the point cloud into struc-
tures of increasing dimension. Finally, there are a number of methods for speeding
up the mean shift algorithm. We are investigating how to adapt these speedups for
SuRF.

As we mentioned in the Introduction, there is recent work on metric graph re-
construction which is a way of modeling intersecting filaments [Aanjaneya et al.
(2012), Lecci, Rinaldo and Wasserman (2013)]. These algorithms have the advan-
tage of being designed to handle intersecting ridges. However, it appears that they
are very sensitive to noise. Currently, we are investigating the idea of first running
SuRF and then applying metric graph reconstruction. Preliminary results suggest
that this approach may get the best of both approaches.
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APPENDIX

The purpose of this appendix is to prove Lemma 8. Recall that the gradient is
gσ (x) = − 1

σ 2

∫
M(x − z)φσ (x − z) dW(z) and the Hessian is

Hσ(x) = − 1

σ 2

∫
M

(
I − (x − z)(x − z)T

σ 2

)
φσ (x − z) dW(z)

(45)

= − 1

σ 2

[
pσ (x)I − 1

σ 2

∫
M

(x − z)(x − z)T φσ (x − z) dW(z)

]
.

We can partition Mσ into disjoint fibers. Choose an x ∈ Mσ and let x̂ be the
unique projection of x onto M . Let B = B(x̂,Kσ ). For any bounded function
f (x, z),∫

M∩Bc
f (x, z)φσ (x − z) dW(z) ≤ C

(2π)D/2

e−K2
σ /(2σ 2)

σD
W

(
Bc) ≤ CσA.(46)

Let T = Tx̂M denote the d-dimensional tangent space at x̂ and let T ⊥ denote
the (D − d)-dimensional normal space. For z ∈ B ∩ M , let z be the projection of
z onto T . Then

x − z = (x − x̂) + (x̂ − z) + (z − z) = dM(x)u + (x̂ − z) + R,(47)

where u = (x − x̂)/dM(x) ∈ T ⊥ and R = (z − z). [Recall that dM is the distance
function; see (8).] For small enough σ , there is a smooth map h taking z to z

that is a bijection B ∩ M and so the distribution W induces a distribution W , that
is, W(A) = W(h−1(A)). Let w denote the density of W with respect to Lebesgue
measure μd on T . The density is bounded above and below and has two continuous
derivatives.

LEMMA 10. For every x ∈ R ⊕ σ , supz∈B ‖z − z‖ ≤ cK2
σ .

PROOF. Choose any z ∈ B and let z be its projection onto T . Because the
reach is κ > 0, there exists a ball S(a, κ) ⊂ R

D such that a is in the plane defined
x̂, z and z, S(a, κ) is tangent to the manifold at x̂ and S(a, κ) does not intersect
M except at x̂. Consider the line through z and z and let za be the point where
the line intersects S(a, κ). Now ‖za − z‖ ≥ ‖z − z‖ and by elementary geometry,
‖za − z‖ ≤ CK2

σ . �

Recall that rσ = ασ with 0 < α < 1. Define the following quantities:

β = e−α2/2(1 − α2)

2σD−d+2 , σ̃ = σ log3
(

1

σD+A

)
,

φ⊥(u) = e−‖u‖2/(2σ 2)

(2π)(D−d)/2σD−d
, φ‖(w) = e−‖w‖2/(2σ 2)

(2π)d/2σd
,

pσ,B(x) =
∫
M∩B

φσ (x − z) dW(z), B = B(x̂,Kσ ),
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where u ∈R
D−d and w ∈R

d .

LEMMA 11. We have that

φσ (x − z) = φ⊥(x − x̂)φ‖(x̂ − z)
(
1 + O(σ̃ )

)
.(48)

PROOF. First note that, for all x ∈ Rσ ,

1

(2π)(D−d)/2

e−α2/2

σD−d
≤ φ⊥(x − x̂) ≤ 1

(2π)(D−d)/2

1

σD−d
(49)

and so, φ⊥(x − x̂) � σ−(D−d) as σ → 0. Now,

‖x − z‖2 = ‖x − x̂‖2 + ‖x̂ − z‖2 + ‖z − z‖2 + 2〈x − x̂, z − z〉,
we have that

φσ (x − z) = φ⊥(x − x̂)φ‖(x̂ − z)e−‖z−z‖2/(2σ 2)e−〈x−x̂,z−z〉/σ 2
.

Now ‖z − z‖2 = O(K4
σ ) and |〈x − x̂, z − z〉| ≤ ‖x − x̂‖‖z − z‖ = O(σK2

σ ) and so

e−‖z−z‖2/(2σ 2)e−〈x−x̂,z−z〉/σ 2 = (
1 + O(σ̃ )

)
. �

PROOF OF LEMMA 8. 1. From (46), pσ (x) = ∫
M∩B φσ (x − z) dW(z) +

O(σA). Now∫
M∩B

φσ (x − z) dW(z)

= (
1 + O(σ̃ )

)
φ⊥(x − x̂)

∫
M∩B

φ‖(x̂ − z) dW(z)

= (
1 + O(σ̃ )

)
φ⊥(x − x̂)

∫
T M∩B

φ‖(x̂ − z)w(z) dμd(z)

= (
1 + O(σ̃ )

)
φ⊥(x − x̂)

∫
T

1

(2π)d/2 e−‖t‖2/2w(x̂ + σ t) dμd(t),

where A = {t = (z − x̂)/σ : z ∈ B}. The volume of T is O(σD+A) and T →R
d as

σ → 0. Also, w(x̂ + σ t) = w(x̂) + O(σ). Hence,∫
T

w(x̂ + σ t) dμd(t) = (
w(x̂) + O(σ)

)(
1 − O

(
σD+A))

and so∫
M∩B

φσ (x − z) dW(z) = φ⊥(x − x̂)
(
1 + O(σ̃ )

)(
w(x̂) + O(σ)

)(
1 − O

(
σD+A))

and

pσ (x) = φ⊥(x − x̂)
(
1 + O(σ̃ )

)(
w(x̂) + O(σ)

)(
1 − O

(
σD+A)) + O

(
σA)

= φ⊥(x − x̂)
(
1 + O(σ̃ )

)
.
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2. pσ,B(x). This follows since in part 1 we showed that pσ,B(x) = pσ (x) +
O(σA).

3. For the gradient, we have

−σ 2gσ (x) =
∫

(x − z)φσ (x − z) dW(z)

= (x − x̂)

∫
φσ (x − z) dW(z)

+
∫

(x̂ − z)φσ (x − z) dW(z)

+
∫

(z − z)φσ (x − z) dW(z)

= I + II + III.

Now, I = (x − x̂)pσ (x) = (x − x̂)φ⊥(x − x̂)(1 + O(σ̃ )) and

II =
∫
M∩B

(x̂ − z)φσ (x − z) dW(z) + O
(
σA)

= (
1 + O(σ̃ )

)
φ⊥(x − x̂)

∫
M∩B

(x̂ − z)φ‖(x̂ − z) dW(z) + O
(
σA)

.

For some u between x̂ and z, we have∫
M∩B

(x̂ − z)φ‖(x̂ − z) dW(z)

= σ

∫
M∩B

x̂ − z

σ
φ‖(x̂ − z) dW(z)

= σ

∫
h−1(B)

x̂ − z

σ
φ‖(x̂ − z)w(z) dμd(z)

= σ

∫
A

t
1

(2π)d/2 e−‖t‖2/2w(x̂ + σ t) dμd(t)

= σ

∫
A

t
1

(2π)d/2 e−‖t‖2/2[w(x̂) + w′(x̂)σ t + w′′(u)σ 2t2/2
]
dμd(t)

= O
(
σ 2),

where A = {t = (z − x̂)/σ ∈ h−1(B)}. Finally,

III =
∫
M∩B

(z − z)φσ (x − z) dW(z) + O
(
σA)

= φ⊥(x − x̂)O
(
K2

σ

) + O
(
σA)

= O
(
K2

σ

)
φ⊥(x − x̂).
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Hence,

−σ 2gσ (x) = (x − x̂)pσ (x) + O
(
σ 2) + φ⊥(x − x̂)O

(
K2

σ

)
= pσ (x)

(
(x − x̂) + O

(
K2

σ

))
and hence

gσ (x) = − 1

σ 2 pσ (x)
(
(x − x̂) + O

(
K2

σ

))
.

It follow from part 1 that ‖gσ (x)‖ = O(σ−(D−d−1)).
4. To find the eigenvalues, we first approximate the Hessian. Without loss of

generality, we can rotate the coordinates so that T is spanned by e1, . . . , ed , T ⊥ is
spanned by ed+1, . . . , eD and u = (0, . . . ,0,1). Now,

−σ 2Hσ(x)

pσ (x)
= I −

∫
(x − z)(x − z)T φσ (x − z) dW(z)

σ 2
∫

φσ (x − z) dW(z)

and ∫
M∩Bc

(x − z)(x − z)T φσ (x − z) dW(z) = O
(
σA)

.

Let Q = ∫
M∩B(x − z)(x − z)T φσ (x − z) dW(z). Then, from (47), we have Q =

Q1 + Q2 + Q3 + Q4 + Q5 + Q6 where

Q1 = d2
M(x)uuT

∫
M∩B

φσ (x − z) dW(z),

Q2 =
∫
M∩B

(x̂ − z)(x̂ − z)T φσ (x − z) dW(z),

Q3 =
∫
M∩B

(z − z)(z − z)T φσ (x − z) dW(z),

Q4 =
∫
M∩B

(x − x̂)(x̂ − z)T φσ (x − z) dW(z),

Q5 =
∫
M∩B

(x − x̂)(z − z)T φσ (x − z) dW(z),

Q6 =
∫
M∩B

(x̂ − z)(z − z)T φσ (x − z) dW(z).

First, we note that

Q1 = d2
M(x)uuT φ⊥(x − x̂)

(
1 + O(σ̃ )

)
.

Next,

Q2 =
∫
M∩B

(x̂ − z)(x̂ − z)T φσ (x − z) dW(z)

= (
1 + O(σ̃ )

)
φ⊥(x̂ − x)

∫
M∩B

(x̂ − z)(x̂ − z)T φ‖(x̂ − z) dW(z)
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and ∫
M∩B

(x̂ − z)(x̂ − z)T φ‖(x̂ − z) dW(z)

=
∫
h−1(B)

(x̂ − z)(x̂ − z)T φ‖(x̂ − z)w(z) dμd(z)

= w(x̂)

∫
h−1(B)

(x̂ − z)(x̂ − z)T φ‖(x̂ − z) dμd(z) + O
(
K5

σ

)
.

Next, with t = (t1, . . . , td ,0, . . . ,0),∫
h−1(B)

(x̂ − z)(x̂ − z)T φ‖(x̂ − z) dμd(z)

= σ 2
∫
B

ttT (2π)−d/2e−‖t‖2/2 dμd(t)

= σ 2
(∫

t tT (2π)−d/2e−‖t‖2/2 dμd(t)

−
∫
B

c
ttT (2π)−d/2e−‖t‖2/2 dμd(t)

)
= σ 2

([
Id 0
0 0

]
+ O

(
σA+D))

and so

Q2 = (
1 + O(σ̃ )

)
φ⊥(x − x̂)σ 2

×
([

Id 0
0 0

]
+ O

(
σA+D))

.

A similar analysis on the remaining terms yields:

Q3 = (
1 + O(σ̃ )

)
φ⊥(x − x̂)O

(
K4

σ

)
,

Q4 = (
1 + O(σ̃ )

)
φ⊥(x − x̂)O

(
σK2

σ

)
,

Q5 = (
1 + O(σ̃ )

)
φ⊥(x − x̂)O

(
σK2

σ

)
,

Q6 = (
1 + O(σ̃ )

)
φ⊥(x − x̂)O

(
K3

σ

)
.

Combining all the terms, we have

Q = (
1 + O(σ̃ )

)
φ⊥(x − x̂)

×
(
d2
M(x)uuT + σ 2

([
Id 0
0 0

]
+ O

(
σA+D)))

+ O
(
σK2

σ

)
.
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Hence,

Hσ(x) = −(
1 + O(σ̃ )

)pσ (x)

σ 2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · · · · · · · 0
...

. . .
... 0 · · · · · · · · · 0

0 · · · 0 0 · · · · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
0 · · · 0 0 1 · · · · · · 0

0 · · · 0 0 0
. . . · · · 0

0 · · · 0 0 0 · · · 1 0

0 · · · 0 0 0 · · · 0 1 − d2
M(x)

σ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(σ̃ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The result follows.
5. This follows from part 4 and the Davis–Kahan theorem.
6. From part 5, Lσ (x) = L† + E where L† = [ 0d×d 0d,D−d

0D−d,d ID−d
] and E = O(σ̃ ).

Hence, Gσ(x) = Lσ (x)gσ (x) = (L† +E)gσ (x) and the result follows from parts 3
and 4.

7. These follow from part 4.
8. Now we turn to ‖H ′

σ‖. Let � = (x − z). We claim that

H ′ = 1

σ 4

∫ [
(� ⊗ I )(I ⊗ � + � ⊗ I )

− φσ (�)

σ 2

(
I ⊗ ��T )(

vec(I ) ⊗ �T )]
dW(z)

+ 1

σ 4

∫
φσ (�)

(
vec(I ) ⊗ �T )

dW(z).

To see this, note first that H = 1
σ 4 Q − 1

σ 2 A where

Q =
∫

(x − z)(x − z)T φσ (x − z) dW(z) and A = pσ (x)I.(50)

Note that Q = ∫
(x − z)(x − z)T �dW(z) where � = φσ (�)ID . So

Q′ =
∫

(d/dx)
[
(x − z)(x − z)T �

]
dW(z)

and

d

dx

[
(x − z)(x − z)T �

] = d(x − z)(x − z)T �

dx

= d��T �

d�
.
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Now (d/dx)(��T �) = (fg)′ where f = ��T and g = � and so

d

dx

(
��T �

) = (� ⊗ I )
d

dx

(
��T ) + (

I ⊗ ��T ) d

dx
�

= (� ⊗ I )(I ⊗ � + � ⊗ I ) − φσ (�)

σ 2

(
I ⊗ ��T )(

vec(I ) ⊗ �T )
.

Hence,

Q′ =
∫ [

(� ⊗ I )(I ⊗ � + � ⊗ I ) − φσ (�)

σ 2

(
I ⊗ ��T )(

vec(I ) ⊗ �T )]
dW(z).

By a similar calculation,

A′ = − 1

σ 2

∫
φσ (�)

(
vec(I ) ⊗ �T )

dW(z).

Thus,

H ′ = 1

σ 4 Q′ − 1

σ 2 A′

= 1

σ 4

∫ [
(� ⊗ I )(I ⊗ � + � ⊗ I )

− φσ (�)

σ 2

(
I ⊗ ��T )(

vec(I ) ⊗ �T )]
dW(z)

+ 1

σ 4

∫
φσ (�)

(
vec(I ) ⊗ �T )

dW(z).

Each of these terms is of order O(supx∈M ‖w′′(x)‖/σD−d+1). Consider the first
term

1

σ 4

∫
(� ⊗ I )(I ⊗ �)dW(z) = 1

σ 4+D
(2π)D/2

∫
e−‖x−z‖2/(2σ 2)(I ⊗ �)dW(z)

= 1

σ 3+D(2π)D/2

∫
e−‖u‖2/2(I ⊗ u)dW(z),

where u = (x − z)/σ . As in the proof of part 1, we can restrict to B ∩ M , do a
change of measure to W and the term is dominated by

1

σ 3+D−d(2π)D/2

∫
A

e−‖u‖2/2(I ⊗ u)
[
w(x̂) + w′(ũ)σu

]
dμd(t)

= C

σ 3+D−d(2π)D/2 . �

The other terms may be bounded similarly.
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