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ADDENDUM ON THE SCORING OF GAUSSIAN DIRECTED
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We provide a correction to the expression for scoring Gaussian directed
acyclic graphical models derived in Geiger and Heckerman [Ann. Statist. 30
(2002) 1414–1440] and discuss how to evaluate the score efficiently.

Gaussian directed acyclic graph (DAG) models represent a particular type of
Bayesian networks where the node variables are assumed to come from a multi-
variate Gaussian distribution. The Bayesian Gaussian equivalent (BGe) score was
introduced in Geiger and Heckerman (1994, 2002), Heckerman and Geiger (1995)
for learning such networks.

For brevity, we omit formal definitions and refer the reader to Geiger and Heck-
erman (2002), while following their notation in considering DAG models m with n

nodes corresponding to the set of variables X = {X1, . . . ,Xn}. Let mh be the model
hypothesis that the true distribution of X is faithful to the DAG model m, meaning
that it satisfies only and all the conditional independencies encoded by the DAG.
For a complete random data sample d = {x1, . . . ,xN } with N observations and
a complete DAG model mc, the marginal likelihood is [Geiger and Heckerman
(2002), Theorem 2]

p
(
d | mh) =

n∏
i=1

p(dPai∪{Xi} | mh
c )

p(dPai | mh
c )

,(1)

where Pai are the parent variables of the vertex i and dY is the data restricted
to the coordinates in Y ⊆ X. The BGe score is the posterior probability of mh

which is proportional to the marginal likelihood in (1) and the graphical prior; see
equation (2) of Geiger and Heckerman (2002).

Different DAGs which encode the same set of conditional independencies are
said to belong to an equivalence class. Along with ensuring that all DAGs in the
same equivalence class are scored equally, the modularity of the score allows the
steps in structure MCMC [Madigan and York (1995)] to be evaluated much more
efficiently. Order MCMC [Friedman and Koller (2003), on the related space of tri-
angular matrices] as well as the edge reversal move of Grzegorczyk and Husmeier
(2008) would not be possible without it.
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For Gaussian DAG models, the likelihood is a multivariate normal distribution
with mean μ and precision matrix W . The need for global parameter indepen-
dence, so that the expression of the score in (1) holds, implies that the prior dis-
tribution of (μ,W) must be normal-Wishart [Geiger and Heckerman (2002)]. The
parameter μ is taken to be normally distributed with mean ν and precision ma-
trix αμW , for αμ > 0. W is Wishart distributed with positive definite paramet-
ric matrix T (the inverse of the scale matrix) and degrees of freedom αw , with
αw > n − 1. As detailed in the supplementary material [Kuipers, Moffa and Heck-
erman (2014)], one finds

p
(
dY | mh

c

)
(2)

=
(

αμ

N + αμ

)l/2 �l((N + αw − n + l)/2)

πlN/2�l((αw − n + l)/2)

|TYY|(αw−n+l)/2

|RYY|(N+αw−n+l)/2 ,

where l is the size of Y, AYY means selecting the rows and columns corresponding
to Y of a matrix A,

�l

(
x

2

)
= πl(l−1)/4

l∏
j=1

�

(
x + 1 − j

2

)
(3)

is the multivariate Gamma function and

R = T + SN + Nαμ

(N + αμ)
(ν − x̄)(ν − x̄)T(4)

is the posterior parametric matrix involving

x̄ = 1

N

N∑
i=1

xi , SN =
N∑

i=1

(xi − x̄)(xi − x̄)T(5)

the sample mean and sample variance multiplied by (N − 1).
The result in (2) is identical to equation (18) of Geiger and Heckerman (2002),

once some factors are cancelled, apart from the manner in which the matrix ele-
ments are chosen. The result in Geiger and Heckerman (2002) replaces the TYY
and RYY by TY and RY, where AY = ((A−1)YY)−1. Inverting the matrices before
the elements are selected and then inverting again [as in Geiger and Heckerman
(2002)] we found inconsistent behavior on simulated data.

We may further compare to equation (24) of Heckerman and Geiger (1995),
which with the current notation becomes

p
(
dY | mh

c

) =
(

αμ

N + αμ

)l/2 �l((N + αw)/2)

πlN/2�l(αw/2)

|TYY|αw/2

|RYY|(N+αw)/2(6)

while incorrectly defining the SN in the R in (4) as the sample variance. However,
the same terminology, with the correct formula for SN , is used in Geiger and Heck-
erman (1994) whose equation (15) is otherwise identical to (6) aside from having
π replaced by 2π .
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The difference in the powers of the determinants between (2) and (6) could lead
to a subtle, and hard to predict, change in the scores. There is also the same loss
of l-dependence in the arguments of the multivariate gamma functions. The ratio
of gamma functions for each node now actually decreases with l while the ratio
from (2) increases instead. As discussed in the supplementary material [Kuipers,
Moffa and Heckerman (2014)], using (6) instead of (2) effectively penalises each
node with l parents by a factor ∼ Nl , giving a substantial bias toward sparse
DAGs. This bias is likely to be present in early works implementing the score
of Heckerman and Geiger (1995) and possibly remains in legacy code.

SUPPLEMENTARY MATERIAL

Deriving and simplifying the BGe score (DOI: 10.1214/14-AOS1217SUPP;
.pdf). We detail the steps used to derive (2) and simplify the ratios appearing in (1)
to improve the numerical computation of the score.
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