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DISCOVERY PROPORTION
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The probability of false discovery proportion (FDP) exceeding γ ∈
[0,1), defined as γ -FDP, has received much attention as a measure of false
discoveries in multiple testing. Although this measure has received accep-
tance due to its relevance under dependency, not much progress has been
made yet advancing its theory under such dependency in a nonasymptotic set-
ting, which motivates our research in this article. We provide a larger class of
procedures containing the stepup analog of, and hence more powerful than,
the stepdown procedure in Lehmann and Romano [Ann. Statist. 33 (2005)
1138–1154] controlling the γ -FDP under similar positive dependence condi-
tion assumed in that paper. We offer better alternatives of the stepdown and
stepup procedures in Romano and Shaikh [IMS Lecture Notes Monogr. Ser.
49 (2006a) 33–50, Ann. Statist. 34 (2006b) 1850–1873] using pairwise joint
distributions of the null p-values. We generalize the notion of γ -FDP making
it appropriate in situations where one is willing to tolerate a few false rejec-
tions or, due to high dependency, some false rejections are inevitable, and
provide methods that control this generalized γ -FDP in two different scenar-
ios: (i) only the marginal p-values are available and (ii) the marginal p-values
as well as the common pairwise joint distributions of the null p-values are
available, and assuming both positive dependence and arbitrary dependence
conditions on the p-values in each scenario. Our theoretical findings are be-
ing supported through numerical studies.

1. Introduction. The idea of improving the traditional and often too conser-
vative notion of familywise error rate (FWER) has been one of the main moti-
vations behind much of the methodological developments taking place in modern
multiple testing. One particular direction in which this idea has flourished is gener-
alizing the FWER from its original definition of the probability of at least one false
discovery or a nonzero fraction of false discoveries to one that allows more, yet
tolerable, number or fraction of false discoveries and developing procedures that
control these generalized error rates. The rationale behind taking this direction is
that in many situations where a large number of hypotheses are tested one is often
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willing to tolerate more than one false discovery, controlling of course too many
of them. Moreover, due to high positive dependency among a group or groups
of p-values corresponding to true null hypotheses, as in microarray experiments
where the genes involved in the same biological process or pathway are highly
dependent on each other and exhibit similar expression patterns, it is extremely
unlikely that exactly one null p-value will be significant given that at least one of
them will be significant. In such cases, a procedure controlling the probability of
at least k false discoveries, the k-FWER, for some fixed k > 1, or the probability
of the false discovery proportion (FDP) exceeding γ , the γ -FDP, for some fixed
0 < γ < 1, will have a better ability to detect more false null hypotheses than the
corresponding FWER procedure (i.e., when k = 1 or γ = 0).

Thus, the consideration of the k-FWER or γ -FDP seems more relevant than
that of the FWER when controlling false discoveries in multiple testing of a large
number of hypotheses under dependency. In fact, it has been noted that the de-
pendency gets naturally factored into the constructions of procedures control-
ling the k-FWER or γ -FDP. For instance, the k-dimensional joint distributions
of the null p-values can be explicitly used while constructing procedures con-
trolling the k-FWER [Sarkar (2007, 2008a)]. Also, since the FDP becomes more
variable and gets more skewed with increasing dependence among the p-values
[Efron (2007), Kim and van de Wiel (2008), Korn et al. (2004), Owen (2005), and
Schwartzman and Lin (2011)], by controlling the tail end probabilities of the FDP,
the γ -FDP, one considers controlling a quantity that is more relevant under de-
pendency than the expected FDP, the false discovery rate (FDR) [Benjamini and
Hochberg (1995)], which is even less conservative than the FWER.

A number of papers have been written over the years on k-FWER and γ -FDP
[Dudoit, van der Laan and Pollard (2004), Genovese and Wasserman (2004), Guo
and Rao (2010), Guo and Romano (2007), Hommel and Hoffmann (1987), Korn
and Freidlin (2008), Korn et al. (2004), Lehmann and Romano (2005), Romano
and Shaikh (2006a, 2006b), Romano and Wolf (2005), Roquain and Villers (2011),
Sarkar (2007, 2008a) and van der Laan, Dudoit and Pollard (2004)]. Among these,
Lehmann and Romano (2005), and Romano and Shaikh (2006a, 2006b) are worth
mentioning as they have made some fundamental contributions to the development
of theory and methodology of γ -FDP. A part of our research is motivated by these
papers, and aims at extending, and often improving, some results in those papers
under certain dependence situations. The motivation of the other part of our re-
search comes from the realization that if one indeed is willing to tolerate a few
false rejections, the premise under which one would seek to use a generalized er-
ror rate, the notion of γ -FDP does not completely take that into account unless
it is further generalized accordingly. In other words, one should consider in this
case a generalized form of the FDP that accounts for k or more false rejections,
and control the probability of this generalized FDP, rather than the original FDP,
exceeding γ . So, we introduce such a generalized notion of γ -FDP, called the
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γ -kFDP, and propose procedures that control it under different dependence sce-
narios in this paper.

The paper is organized as follows. We provide some preliminaries in Section 2,
including the definition of our proposed notion of γ -kFDP. Section 3 contains
our main results on controlling the γ -FDP and γ -kFDP, developed assuming both
positive dependence (Section 3.1) and arbitrary dependence (Section 3.2) condi-
tions on the p-values in each of the following two scenarios: (i) only the marginal
p-values are available and (ii) the marginal p-values as well as the common pair-
wise joint distributions of the null p-values are available. We obtain a number of
newer results on γ -FDP than what are available in the literature. We construct a
larger class of procedures controlling the γ -FDP under positive dependence than
the stepdown procedure given in Lehmann and Romano (2005). This class includes
the stepup analog of, and hence more powerful than, this Lehmann–Romano step-
down procedure. We offer better alternatives of the stepdown and stepup proce-
dures in Romano and Shaikh (2006a, 2006b), given pairwise joint distributions of
the null p-values. Most of our main results have been obtained through a general
framework that allows us not only to develop procedures controlling the newly
proposed notion of γ -kFDP, for k ≥ 1, but also to produce the aforementioned
new results on γ -FDP by taking k = 1. The performances of the proposed γ -FDP
and γ -kFDP procedures, individual as well as relative to relevant competitors, are
numerically investigated through extensive simulations and reported in Section 4.
Concluding remarks are made in Section 5. Proofs of some supporting results are
given in the Appendix.

The supplementary material [Guo, He and Sarkar (2014)] is added due to space
constraints to include some additional figures related to the numerical investiga-
tions in Section 4. Also presented in this section are the findings of simulation
studies conducted to examine the effect of k on a γ -kFDP controlling procedure
(see Remark 2.1) and to provide an insight into the choice of k under varying
dependence.

2. Preliminaries. Suppose that Hi, i = 1, . . . , n, are the n null hypotheses to
be tested based on their respective p-values Pi, i = 1, . . . , n. Let P(1) ≤ · · · ≤ P(n)

be the ordered versions of all the p-values and H(1), . . . ,H(n) be their correspond-
ing null hypotheses. There are n0 null hypotheses that are true. For notational con-
venience, the p-values corresponding to these true null hypotheses will be denoted
by P̂i , i = 1, . . . , n0, and their ordered versions by P̂(1) ≤ · · · ≤ P̂(n0).

Multiple testing is typically carried out using a stepwise or single-step pro-
cedure. Given a nondecreasing set of critical values 0 < α1 ≤ · · · ≤ αn < 1,
a stepdown procedure rejects the set of null hypotheses {H(i), i ≤ i∗SD}, where
i∗SD = max{1 ≤ i ≤ n :P(j) ≤ αj ∀j ≤ i} if the maximum exists, otherwise ac-
cepts all the null hypotheses. A stepup procedure, on the other hand, rejects the set
of null hypotheses {H(i), i ≤ i∗SU}, where i∗SU = max{1 ≤ i ≤ n :P(i) ≤ αi} if the
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maximum exists, otherwise accepts all the null hypotheses. A stepdown or stepup
procedure with the same critical values is referred to as a single-step procedure.

Let V be the number of falsely rejected and R be the total number of rejected
null hypotheses. Then, with V/R, which is zero if R = 0, defining the false dis-
covery proportion (FDP), and given a fixed γ ∈ (0,1), the γ -FDP is defined as the
probability of the FDP exceeding γ ; that is, γ -FDP = Pr(FDP > γ ). Its general-
ized version introduced in this paper, which we call γ -kFDP, is defined as follows:
let

kFDP =
⎧⎨⎩

V

R
, if V ≥ k,

0, otherwise.

Then γ -kFDP = Pr(kFDP > γ ). Since γ -kFDP is 0, and hence trivially controlled,
for any procedure if n0 < k, we assume throughout the paper that k ≤ n0 ≤ n when
controlling this error rate. Also, while constructing a γ -kFDP controlling stepwise
procedure, we will consider the first k − 1 critical constants to be the same as the
kth one, as in k-FWER procedures, since their choice does not matter in calculating
the γ -kFDP.

REMARK 2.1. It should be noted that since V and FDP are likely to be highly
correlated the distribution of kFDP may be very similar to that of FDP with a
small portion of its lower tail set to 0. Therefore, the difference between γ -kFDP
and γ -FDP may be realized, with the control over γ -kFDP providing the stipulated
power improvement, only when k/n exceeds a certain value. Of course, this value,
given a specified γ , would depend on the type and strength of dependence. We did
a numerical study to verify this intuition and offer an insight into the choice of k

under different types and varying strengths of dependence, and report its findings
in the supplementary material [Guo, He and Sarkar (2014)].

The following is the basic assumption regarding the marginal distributions of
the p-values made throughout the paper.

ASSUMPTION 1. P̂i ∼ U(0,1).

3. Main results. In this section, we present the developments of our step-
wise procedures controlling the γ -FDP and the newly proposed γ -kFDP under
both positive dependence and arbitrary dependence conditions on the p-values.
Typically, only the marginal distributions of the null p-values are used when con-
structing multiple testing procedures. However, in practice, the null p-values often
have a known common pairwise joint distribution, and it would be worthwhile to
consider developing γ -FDP or γ -kFDP stepwise procedures explicitly utilizing
such additional dependence information, which could potentially produce more
powerful procedures than just using the marginal p-values. With that in mind,
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we construct our procedures in the following two different scenarios under each
dependence condition: (i) only the marginal p-values are available, and (ii) the
marginal p-values as well as the common pairwise joint distributions of the null
p-values are available.

3.1. Procedures under positive dependence. We will make one of the follow-
ing two commonly used assumptions characterizing a positive dependence struc-
ture among the p-values.

ASSUMPTION 2(a). The conditional expectation E{φ(P1, . . . ,Pn)|P̂i ≤ u} is
nondecreasing in u ∈ (0,1) for each P̂i and any nondecreasing (coordinatewise)
function φ.

ASSUMPTION 2(b). The conditional expectation E{φ(P̂1, . . . , P̂n0)|P̂i ≤ u}
is nondecreasing in u ∈ (0,1) for each P̂i and any nondecreasing (coordinatewise)
function φ.

Assumption 2(a) is slightly weaker than that characterized by the property:
E{φ(P1, . . . ,Pn)|P̂i = u} ↑ u ∈ (0,1), referred to as the positive regression de-
pendence on subset (PRDS) (of the null p-values); see, for example, Benjamini
and Yekutieli (2001) or Sarkar (2002). Assumption 2(b), less restrictive than As-
sumption 2(a), is a weaker version of the property: E{φ(P̂1, . . . , P̂n0)|P̂i = u} ↑
u ∈ (0,1), known as the positive dependence (among the null p-values) through
stochastic ordering (PDS) due to Block, Savits and Shaked (1985); see also Sarkar
(2008b).

3.1.1. Based on marginal p-values. Under a positive dependence assumption,
Lehmann and Romano (2005) gave a stepdown procedure controlling the γ -FDP.
We improve this work in two different ways. First, we consider the stepup ana-
log of this stepdown procedure, which is known to be always more powerful in
the sense of discovering more, and prove that it also controls the γ -FDP under
the same assumption. Second, we offer larger class of stepdown and stepup pro-
cedures controlling the γ -FDP under similar assumption. The procedures in this
larger class are presented in a general framework allowing us to propose proce-
dures controlling not only the γ -FDP but also the γ -kFDP for k ≥ 2.

THEOREM 3.1. The stepup or stepdown procedure with the critical constants

αi = (	γ i
 + 1)α

n + 	γ i
 + 1 − i
, i = 1, . . . , n,(1)

controls the γ -FDP at α under Assumptions 1 and 2(b).
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PROOF. Let g(R) = 	γR
 + 1. Then first note that

{
V ≥ g(R)

} =
n0⋃

v=1

{
P̂(v) ≤ αR,g(R) ≤ v,V = v

}

=
n0⋃

v=1

{
P̂(v) ≤ g(R)α

n − R + g(R)
, g(R) ≤ v,V = v

}
(2)

⊆
n0⋃

v=1

{
P̂(v) ≤ vα

n − R + v
,V = v

}

⊆
n0⋃

v=1

{
P̂(v) ≤ vα

n0
,V = v

}
⊆

n0⋃
v=1

{
P̂(v) ≤ vα

n0

}
.

The probability of the event in the right-hand side of (2) is known to be less than
or equal to α under Assumptions 1 and 2(b) from the so-called Simes’ inequality
[Simes (1986), Sarkar (1998), Sarkar and Chang (1997)]. Thus, we get the desired
result noting that γ -FDP = Pr(V ≥ g(R)). �

REMARK 3.1. Lehmann and Romano (2005) proposed only the stepdown
procedure considered in Theorem 3.1 under the same assumptions. Thus, Theo-
rem 3.1 provides an improvement of the Lehmann–Romano result, since we now
have an alternative procedure under the same assumptions, the stepup one, which
is theoretically known to be more powerful. Moreover, not only our proof of the
γ -FDP control is much simpler but also it covers both ours and the Lehmann–
Romano original stepdown procedures. Our simulation studies indicate that this
power improvement can be obvious when the underlying test statistics are highly
correlated (see Figure 1 and Figures S.1–S.3 in the supplementary material [Guo,
He and Sarkar (2014)]).

There are more general results than Theorem 3.1 in terms of deriving procedures
controlling the γ -FDP under Assumptions 1 and 2(a) or 2(b). More specifically, we
can start with any stepdown or stepup procedure, which may or may not control
the γ -FDP to begin with, and rescale its critical values using a suitable upper
bound for its γ -FDP derived under Assumptions 1 and 2(a) or 2(b) so that the
γ -FDP based on these modified critical values is ultimately controlled. Romano
and Shaikh (2006a, 2006b) first developed this idea, but they did it without any
positive dependence assumption. We are now going to present these results in the
general framework of controlling the γ -kFDP.

Our next main result is obtained with the idea of constructing a stepdown proce-
dure controlling the γ -kFDP under Assumptions 1 and 2(a). The following lemma,
to be proved in the Appendix, will provide the starting point for the development
of this procedure.
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(a) Simulated γ -FDP

FIG. 1. Simulated values of γ -FDP and average power of the original Lehmann–Romano stepdown
procedure (LR SD) and its stepup analogue (LR SU), for n = 100 and α = 0.05.

LEMMA 3.1. With n1 = n − n0, let M = min{n0, 	γ n1/(1 − γ )
 + 1}, and
m(i) = max{0 ≤ j ≤ n1 : 	γj/(1 − γ )
 + 1 = i}, for each i = 1, . . . ,M , where
m(0) = 0. Consider a stepdown procedure with critical values α1 ≤ · · · ≤ αn. Let
S be the number of rejected false null hypotheses. Then

I
(
V > max[γR, k − 1])

(3)

≤
M∑
i=1

I
(
P̂(i∨k) ≤ αi∨k+m(i),

⌊
γ S/(1 − γ )

⌋ + 1 = i
)
,

for any fixed 1 ≤ k ≤ n0.

Taking expectations of both sides in (3), we note that

γ -kFDP = Pr
{
V > max[γR, k − 1]}

≤
M∑
i=1

Pr
(
P̂(i∨k) ≤ αi∨k+m(i),

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

(4)
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(b) Simulated average power

FIG. 1. (Continued).

≤
n0∑

j=1

M∑
i=1

1

i ∨ k
Pr

(
P̂j ≤ αi∨k+m(i),

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

=
n0∑

j=1

M∑
i=1

αi∨k+m(i)

i ∨ k
Pr

(⌊
γ S/(1 − γ )

⌋ + 1 = i|P̂j ≤ αi∨k+m(i)

)
≤ max

1≤i≤M

{
αi∨k+m(i)

i ∨ k

}

×
n0∑

j=1

M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 = i|P̂j ≤ αi∨k+m(i)

)
,

with the second inequality following from this:

I (P̂(i) ≤ t) ≤ 1

i

n0∑
j=1

I (P̂j ≤ t) for any constant 0 < t < 1,(5)

which can be obtained from Markov’s inequality.
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Now, for each 1 ≤ j ≤ n0, we have

M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 = i|P̂j ≤ αi∨k+m(i)

)

=
M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i|P̂j ≤ αi∨k+m(i)

)

−
M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i + 1|P̂j ≤ αi∨k+m(i)

)
(6)

≤
M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i|P̂j ≤ αi∨k+m(i)

)

−
M∑
i=1

Pr
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i + 1|P̂j ≤ α(i+1)∨k+m(i+1)

)
≤ Pr

(⌊
γ S/(1 − γ )

⌋ + 1 ≥ 1|P̂j ≤ αk+m(1)

) = 1.

The first inequality follows from Assumption 2(a), since I (	γ S/(1 − γ )
+ 1 ≥ i)

is a decreasing function of all the p-values. Applying (6) to (4), we finally note

γ -kFDP ≤ max
1≤i≤M

{
n0αi∨k+m(i)

i ∨ k

}
,

and thus we have our next main result as follows.

THEOREM 3.2. Let M and m(i), for i = 1, . . . ,M , be defined as in
Lemma 3.1. Then, given any set of constants 0 = α′

0 ≤ α′
1 ≤ · · · ≤ α′

n, the stepdown

procedure with the critical values αi∨k = αα′
i∨k/C

(1)
k,n,SD, i = 1, . . . , n, where

C
(1)
k,n,SD = max

k≤n0≤n
max

1≤i≤M

{n0α
′
i∨k+m(i)

i ∨ k

}
,

controls the γ -kFDP at α under Assumptions 1 and 2(a).

A stepup analog of Theorem 3.2 can be developed starting from the following
lemma, whose proof again is given in the Appendix.

LEMMA 3.2. Let m̃(i) = min{m∗(i), i + n1}, where m∗(i) = max{1 ≤ j ≤
n : 	γj
+ 1 ≤ i}, for each i = 1, . . . , n0, and m∗(0) = 0. Consider a stepup proce-
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dure with critical values α1 ≤ · · · ≤ αn. Then, for any fixed 1 ≤ k ≤ n0,

I
(
V > max[γR, k − 1]) ≤

n0∑
j=1

n0∑
i=k

I (P̂j ≤ αm̃(i), R̂2 = i)

i

≤
n0∑

j=1

I (P̂j ≤ αm̃(k), R̂2 ≥ k)

k
(7)

+
n0∑

j=1

n0∑
i=k+1

I (αm̃(i−1) < P̂j ≤ αm̃(i), R̂2 ≥ i)

i
,

with the double summation in the right-hand side of the second inequality being
zero if n0 = k, where R̂2 is the number of rejections in a stepup procedure based
on the p-values P̂i , i = 1, . . . , n0, and the critical values αm̃(i), i = 1, . . . , n0.

REMARK 3.2. If we let n0 = n in the above lemma, we note that I (V >

max[γR, k − 1]) = I (V ≥ k) and m̃(i) = i. In other words, the above lemma pro-
duces inequalities similar to (7) for I (R̂2 ≥ k), with R̂2 representing the number of
rejections in a stepup procedure based on the null p-values P̂i , i = 1, . . . , n0, and
critical values αi , i = 1, . . . , n0. For instance, from the second inequality in (7),
we have

I (R̂2 ≥ k) ≤
n0∑

j=1

I (P̂j ≤ αk)

k
+

n0∑
j=1

n0∑
i=k+1

I (αi−1 < P̂j ≤ αi)

i
,(8)

which will be of use later. Of course, the first inequality in this case becomes an
equality.

Taking expectations of both sides of the first inequality in (7), we get

γ -kFDP ≤
n0∑

j=1

n0∑
i=k

αm̃(i)

i
Pr(R̂2 = i|P̂j ≤ αm̃(i))

(9)

≤ max
k≤i≤n0

{
αm̃(i)

i

} n0∑
j=1

n0∑
i=k

Pr(R̂2 = i|P̂j ≤ αm̃(i)).

Making the same kind of arguments as in (6), we note that
n0∑
i=k

Pr(R̂2 = i|P̂j ≤ αm̃(i)) ≤ Pr(R̂2 ≥ k|P̂j ≤ αm̃(k)) ≤ 1,

for each 1 ≤ j ≤ n0, using the fact that I (R̂2 ≥ i) is a decreasing function of the
null p-values and applying Assumption 2(b). Hence,

γ -kFDP ≤ max
k≤i≤n0

{
n0αm̃(i)

i

}
,
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which provides the following result.

THEOREM 3.3. Let m̃(i) be defined as in Lemma 3.2 for i = 1, . . . , n0. Then,
given any set of constants 0 = α′

0 ≤ α′
1 ≤ · · · ≤ α′

n, the stepup procedure with the

critical values αi∨k = αα′
i∨k/C

(1)
k,n,SU, i = 1, . . . , n, where

C
(1)
k,n,SU = max

k≤n0≤n
max

k≤i≤n0

{n0α
′
m̃(i)

i

}
,

controls the γ -kFDP at α under Assumptions 1 and 2(b).

REMARK 3.3. Theorems 3.2 and 3.3 not only provide general approaches to
constructing stepdown and stepup γ -kFDP controlling procedures, respectively,
using only the marginal p-values under independence or certain positive depen-
dence condition on the p-values, but also produce results when k = 1 that improve
some previous works on controlling the γ -FDP [Lehmann and Romano (2005),
Romano and Shaikh (2006a, 2006b)]. For instance, if we choose the α′

i ’s in these
theorems as follows: α′

i = {	γ i
+1}α/{n+	γ i
+1−i}, i = 1, . . . , n, then we get

the original Lehmann–Romano procedure and its stepup analog, since both C
(1)
1,n,SD

and C
(1)
1,n,SU are equal to α (see Proposition A.1 and its proof in the Appendix).

However, there are other stepdown and stepup procedures controlling the γ -FDP
under these assumptions, such as those obtained by re-scaling the critical values,
α′

i = iα/n, i = 1, . . . , n, of the BH [Benjamini and Hochberg (1995)] stepup or
the critical values, α′

i = iα/[n− i(1 −α)+ 1], i = 1, . . . , n, of the GBS [Gavrilov,
Benjamini and Sarkar (2009)] stepdown methods, that can be constructed using the
above theorems. Our simulation studies indicate that a stepwise procedure based
on the rescaled versions of the BH or GBS critical values is less powerful than that
based on the rescaled version of the Lehmann–Romano critical values (see Fig-
ures S.4–S.7 in the supplementary material [Guo, He and Sarkar (2014)]). There-
fore, the interest of Theorems 3.2 and 3.3 with respect to Theorem 3.1 seems to be
mainly theoretical when k = 1.

3.1.2. Based on marginal and pairwise null distributions of the p-values. In
practice, the null p-values often have a known common pairwise joint distribution,
and by explicitly utilizing such correlation information better adjustments can be
made, potentially resulting in more powerful γ -FDP stepwise procedures. So, with
that in mind, we present some results here and in Section 3.2.2 under the following
assumption along with Assumptions 1 and 2(b) or only Assumption 1.

ASSUMPTION 3. The null p-values P̂1, . . . , P̂n0 have a known common pair-
wise joint distribution function F(u, v) = Pr(P̂i ≤ u, P̂j ≤ v).
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We consider generalizing the Lehmann–Romano stepwise procedure in Theo-
rem 3.1, for any fixed 2 ≤ k ≤ n0. The γ -kFDP of this procedure is given by

γ -kFDP = Pr
{
V ≥ max

[
g(R), k

]}
= Pr

(
n0⋃

v=k

{
P̂(v) ≤ αR,g(R) ≤ v,V = v

})
(10)

≤ Pr

(
n0⋃

v=k

{
P̂(v) ≤ vα

n0

})
= Pr(R̂n0 ≥ k),

where R̂n0 is the number of rejections in the stepup procedure based on all the n0
null p-values and the critical values βi = iα/n0, i = 1, . . . , n0. The γ -kFDP can be
bounded above using the following inequality which holds under Assumptions 1
and 2(b):

Pr(R̂n0 ≥ k) ≤ α

n0

n0∑
i=1

Pr
(
R̂

(−i)
n0−1 ≥ k − 1|P̂i ≤ βk

)
,(11)

for any fixed 1 ≤ k ≤ n0, where R̂
(−i)
n0−1 is the number of rejections in the stepup

procedure based on the n0 − 1 null p-values {P̂1, . . . , P̂n0} \ {P̂i} and the critical
values βi , i = 2, . . . , n0. This can be proved using arguments similar to those used
above while proving Theorems 3.2 or 3.3; see the Appendix, for a proof.

As seen from (11), if we rely only on the marginal distributions of the null
p-values, we simply get γ -kFDP ≤ α, and thus our attempt to generalize the
Lehmann–Romano procedure to a γ -kFDP controlling procedure under Assump-
tion 2(b) does not work in the sense that it takes us back to the original Lehmann–
Romano procedure, which is trivially known to control the γ -kFDP. Hence, we
consider utilizing also the pairwise distributions of the null p-values to obtain a
nontrivial generalization of the Lehmann–Romano procedure. More specifically,
we use the following inequality provided by (8):

I
(
R̂

(−i)
n0−1 ≥ k − 1

)
(12)

≤
n0∑

j ( �=i)=1

I (P̂j ≤ βk)

k − 1
+

n0∑
j ( �=i)=1

n0−1∑
l=k

I (βl < P̂j ≤ βl+1)

l
,

and apply it to the right-hand side of (11) to get the following upper bound for the
γ -kFDP of the Lehmann–Romano stepwise procedure under Assumption 2(b):

γ -kFDP ≤ α

n0

n0∑
i=1

n0∑
j ( �=i)=1

(
Pr(P̂j ≤ βk|P̂i ≤ βk)

k − 1
(13)

+
n0−1∑
l=k

Pr(βl < P̂j ≤ βl+1|P̂i ≤ βk)

l

)
.
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Based on this upper bound and that the γ -kFDP of the Lehmann–Romano step-
wise procedure is ≤ α under Assumptions 1 and 2(b), we now have the following
theorem providing the desired generalized version of the Lehmann–Romano pro-
cedure controlling the γ -kFDP.

THEOREM 3.4. Let 2 ≤ k ≤ n0 and Assumption 3 hold. Given βi = iα/n0,
i = 1, . . . , n0, let

Ck,n = max
k≤n0≤n

{
(n0 − 1)

(
F(βk|βk)

k − 1
+

n0−1∑
l=k

F (βl+1|βk) − F(βl|βk)

l

)}
(14)

with the summation within parentheses being zero if n0 = k, where F(u|v) =
F(u, v)/v. Then the stepup or stepdown procedure with the critical constants αi∨k ,
i = 1, . . . , n, where

αi = (	γ i
 + 1)α

(Ck,n ∧ 1)(n + 	γ i
 + 1 − i)
, i = 1, . . . , n,(15)

controls the γ -kFDP at α under Assumptions 1 and 2(b).

3.2. Procedures under arbitrary dependence. We now present some γ -kFDP
controlling procedures under arbitrary dependence of the p-values. By arbitrary
dependence, we mean that these p-values are not known to have any specific type
of dependence structure, like positive or other, even though their joint distributions
of some particular orders might be known. We will assume, as in Section 3.1.2,
that the null p-values have a common pairwise joint distribution of a known form
F(u, v). Our procedures are developed relying either only on the marginal p-
values or on the marginal as well as this common pairwise joint null distribution of
the p-values. We can obtain some new results on controlling the γ -FDP by taking
k = 1.

3.2.1. Based on marginal p-values. First, let us consider a stepdown proce-
dure with critical values αi∨k , i = 1, . . . , n. Starting from Lemma 3.1 and pro-
ceeding as in proving Theorem 3.2, we have, with i ∨ k + m(i) defined as m̄(i)

[where m̄(0) = 0] for notational convenience,

I
(
V > max[γR, k − 1])

≤
n0∑

j=1

M∑
i=1

I (P̂j ≤ αm̄(i))

i ∨ k
I
(⌊

γ S/(1 − γ )
⌋ + 1 = i

)
(16)

≤
n0∑

j=1

M∑
i=1

[
I (P̂j ≤ αm̄(i))

i ∨ k
− I (P̂j ≤ αm̄(i−1))

(i − 1) ∨ k

]
I
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i

)

≤
n0∑

j=1

M∑
i=1

I (αm̄(i−1) < P̂j ≤ αm̄(i))

i ∨ k
.
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Taking expectations of both sides in (16), we get

γ -kFDP = Pr
{
V ≥ max

[
g(R), k

]} ≤ n0

M∑
i=1

αm̄(i) − αm̄(i−1)

i ∨ k
.(17)

From this, we get the following theorem.

THEOREM 3.5. Let M and m(i), for i = 1, . . . ,M , be defined as in
Lemma 3.1, and m̄(i) = i ∨ k + m(i) [where m̄(0) = 0]. Then, given any set
of constants α′

k ≤ · · · ≤ α′
n, the stepdown procedure with the critical values

αi = αα′
i∨k/C

(2)
k,n,SD, i = 1, . . . , n, where

C
(2)
k,n,SD = max

k≤n0≤n

{
n0

(
M∑
i=1

α ′̄
m(i) − α ′̄

m(i−1)

i ∨ k

)}
,

controls the γ -kFDP at α under Assumption 1.

We now present the development of a stepup analog of Theorem 3.5. From
Lemma 3.2, we note that for a stepup procedure with critical values αi∨k , i =
1, . . . , n,

I
(
V > max[γR, k − 1])

(18)

≤
n0∑

j=1

I (P̂j ≤ αm̃(k))

k
+

n0∑
j=1

n0∑
i=k+1

I (αm̃(i−1) < P̂j ≤ αm̃(i))

i
.

Taking expectations of both sides in (18), we get

γ -kFDP = Pr
{
V ≥ max[γR, k − 1]}

(19)

≤ n0

(
αm̃(k)

k
+

n0∑
i=k+1

αm̃(i) − αm̃(i−1)

i

)
,

which gives the following theorem.

THEOREM 3.6. Let m̃(i) be defined as in Lemma 3.2 for i = 1, . . . , n0. Then,
given any set of constants α′

k ≤ · · · ≤ α′
n, the stepup procedure with the critical

values αi = αα′
i∨k/C

(2)
k,n,SU, i = 1, . . . , n, where

C
(2)
k,n,SU = max

k≤n0≤n

{
n0

(
α′

m̃(k)

k
+

n0∑
i=k+1

α′
m̃(i)

− α′
m̃(i−1)

i

)}
,

controls the γ -kFDP at α under Assumption 1.

REMARK 3.4. When k = 1, the results in Theorems 3.5 and 3.6 reduce to
those given by Romano and Shaikh in (2006a) and (2006b), respectively, although
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our expressions of the upper bounds given in these theorems are different from
theirs. Thus, our results generalize those of Romano and Shaikh from control-
ling the γ -FDP to γ -kFDP under arbitrary dependence and relying only on the
marginal null distributions of the p-values. However, we should emphasize that
we provide alternative, much simpler proofs for these results.

3.2.2. Based on marginal and pairwise distributions of the null p-values. We
will start again from Lemma 3.1 towards constructing a stepdown procedure. Con-
sider splitting the sum in the right-hand side of (3) in two parts, with the summa-
tion taken over i from 1 to K in the first part and over i from K + 1 to M in the
second, for some fixed K , where 1 ≤ K ≤ M . The idea behind this splitting is to
utilize the marginal distributions of the null p-values from the first part through
the inequality (5), as we did before, and the pairwise joint distributions of these
p-values from the second part through the following new inequality (to be proved
in the Appendix):

I (P̂(i) ≤ t) ≤ 1

i(i − 1)

n0∑
j=1

n0∑
j ′( �=j)=1

I
(
max{P̂j , P̂j ′ } ≤ t

)
,(20)

where 0 < t < 1 is fixed, for all i such that 2 ≤ i ≤ n0,

I
(
V > max[γR, k − 1])

≤
K∑

i=1

n0∑
j=1

1

i ∨ k
I (P̂j ≤ αm̄(i))I

(⌊
γ S/(1 − γ )

⌋ + 1 = i
)

(21)

+
M∑

i=K+1

n0∑
j=1

n0∑
l( �=j)=1

1

(i ∨ k)(i ∨ k − 1)
I
(
max(P̂j , P̂l) ≤ αm̄(i)

)
× I

(⌊
γ S/(1 − γ )

⌋ + 1 = i
)
.

Now, for each j = 1, . . . , n0, the summation over i in the double-summation
in (21) is equal to

K∑
i=1

[
I (P̂j ≤ αm̄(i))

i ∨ k
− I (P̂j ≤ αm̄(i−1))

(i − 1) ∨ k

]
I
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ i

)

− I (P̂j ≤ αm̄(K))

K ∨ k
I
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ K + 1

)
(22)

≤
K∑

i=1

I (αm̄(i−1) < P̂j ≤ αm̄(i))

i ∨ k

− I (P̂j ≤ αm̄(K))

K ∨ k
I
(⌊

γ S/(1 − γ )
⌋ + 1 ≥ K + 1,M ≥ K + 1

)
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with I (P̂j ≤ αm̄(0))/0 ∨ k = 0, and similarly for each j �= l, the summation over i

in the triple-summation in (21) is less than or equal to

M∑
i=K+2

[
I (max(P̂j , P̂l) ≤ αm̄(i))

(i ∨ k)(i ∨ k − 1)
− I (max(P̂j , P̂l) ≤ αm̄(i−1))

((i − 1) ∨ k)((i − 1) ∨ k − 1)

]
× I

(⌊
γ S/(1 − γ )

⌋ + 1 ≥ i
)

+ I (max(P̂j , P̂l) ≤ αm̄(K+1))

((K + 1) ∨ k)[(K + 1) ∨ k − 1]
× I

(⌊
γ S/(1 − γ )

⌋ + 1 ≥ K + 1,M ≥ K + 1
)

(23)

≤
M∑

i=K+2

I (αm̄(i−1) < max(P̂j , P̂l) ≤ αm̄(i))

(i ∨ k)(i ∨ k − 1)

+ I (max(P̂j , P̂l) ≤ αm̄(K+1))

((K + 1) ∨ k)[(K + 1) ∨ k − 1]
× I

(⌊
γ S/(1 − γ )

⌋ + 1 ≥ K + 1,M ≥ K + 1
)
.

In addition, by simple algebraic calculation, we have

I (P̂j ∨ P̂l ≤ αm̄(K+1))

((K + 1) ∨ k)((K + 1) ∨ k − 1)
− I (P̂j ≤ αm̄(K))

(K ∨ k)(n0 − 1)

≤ (n0 − (K + 1) ∨ k)I (P̂j ≤ αm̄(K), P̂l ≤ αm̄(K+1))

((K + 1) ∨ k)((K + 1) ∨ k − 1)(n0 − 1)
(24)

+ I (αm̄(K) < P̂j ≤ αm̄(K+1), P̂l ≤ αm̄(K+1))

((K + 1) ∨ k)((K + 1) ∨ k − 1)
.

Applying (22)–(24) to (21) and taking expectations of both sides in (21), we get

γ -kFDP ≤
K∑

i=1

n0(αm̄(i) − αm̄(i−1))

i ∨ k

+
M∑

i=K+2

n0(n0 − 1)[F(αm̄(i), αm̄(i)) − F(αm̄(i−1), αm̄(i−1))]
(i ∨ k)(i ∨ k − 1)

(25)

+ n0(n0 − 1)F (αm̄(K+1), αm̄(K+1))

((K + 1) ∨ k)((K + 1) ∨ k − 1)
I (M ≥ K + 1)

− n0F(αm̄(K), αm̄(K+1))

(K + 1) ∨ k
I (M ≥ K + 1).
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This inequality produces the next theorem, one of our main results in this sub-

section, with C
(3)
n,SD(β) in that theorem being defined as follows:

C
(3)
k,n,SD(β)

= max
k≤n0≤n

min
1≤K≤M

{
K∑

i=1

n0[α ′̄
m(i)(β) − α ′̄

m(i−1)(β)]
i ∨ k

+
M∑

i=K+2

(
n0(n0 − 1)

[
F

(
α ′̄

m(i)(β),α ′̄
m(i)(β)

)
− F

(
α ′̄

m(i−1)(β),α ′̄
m(i−1)(β)

)])
/
(
(i ∨ k)(i ∨ k − 1)

)
+ n0(n0 − 1)F (α ′̄

m(K+1)(β),α ′̄
m(K+1)(β))

((K + 1) ∨ k)((K + 1) ∨ k − 1)

× I (M ≥ K + 1)

− n0F(α ′̄
m(K)(β),α ′̄

m(K+1)(β))

(K + 1) ∨ k
I (M ≥ K + 1)

}
,

given a sequence of constants 0 = α′
0(β) ≤ α′

1(β) ≤ · · · ≤ α′
n(β) with a fixed

β ∈ (0,1).

THEOREM 3.7. Given any sequence of critical constants 0 = α′
0(β) ≤

α′
1(β) ≤ · · · ≤ α′

n(β), for a fixed β ∈ (0,1), the stepdown procedure with the criti-

cal values αi∨k, i = 1, . . . , n, satisfying αi∨k = α′
i∨k(β

∗
SD) and C

(3)
k,n,SD(β∗

SD) = α,
controls the γ -kFDP at α under Assumptions 1 and 3.

We now derive a stepup analog of Theorem 3.7 starting from the following
inequality, which is obtained from Lemma 3.2 by splitting the right-hand sum in
the second inequality of that lemma into two parts, as before, for a fixed 1 ≤ k ≤
K ≤ n0:

I
(
V > max[γR, k − 1])

≤
n0∑

j=1

I (P̂j ≤ αm̃(k−1))

k
+

n0∑
j=1

K∑
i=k

I (αm̃(i−1) < P̂j ≤ αm̃(i))

i

+
n0∑

j=1

n0∑
i=K+1

I (R̂2 ≥ i)I (αm̃(i−1) < P̂j ≤ αm̃(i))

i
.

Again, the idea behind this splitting is to capture the pairwise joint distributions of
the null p-values from the second part, and for that, we use the following inequal-
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ity, which can be seen to follow from Lemma 3.2 (see Remark 3.2):

I (R̂2 ≥ r) ≤
n0∑
l=1

(
I (P̂l ≤ αm̃(r))

r
+

n0∑
s=r+1

I (αm̃(s−1) < P̂l ≤ αm̃(s))

s

)
.(26)

Thus, we get

I
(
V > max[γR, k − 1])

≤
n0∑

j=1

I (P̂j ≤ αm̃(k−1))

k

+
n0∑

j=1

K∑
r=k

I (αm̃(r−1) < P̂j ≤ αm̃(r))

r

(27)

+
n0∑

j=1

n0∑
r=K+1

I (αm̃(r−1) < P̂j ≤ αm̃(r))

r2

+
n0∑

j=1

n0∑
l( �=j)=1

n0∑
r=K+1

n0∑
s=r+1

I (αm̃(r−1) < P̂j ≤ αm̃(r), αm̃(s−1) < P̂l ≤ αm̃(s))

rs

+
n0∑

j=1

n0∑
l( �=j)=1

n0∑
r=K+1

I (αm̃(r−1) < P̂j ≤ αm̃(r), P̂l ≤ αm̃(r))

r2 .

Taking expectations of both sides in (27), we finally have

γ -kFDP ≤ n0αm̃(k−1)

k

+
K∑

r=k

n0(αm̃(r) − αm̃(r−1))

r

+
n0∑

r=K+1

n0(αm̃(r) − αm̃(r−1))

r2(28)

+
n0∑

r=K+1

n0∑
s=r+1

n0(n0 − 1)G(αm̃(r), αm̃(s))

rs

+
n0∑

r=K+1

n0(n0 − 1)(F (αm̃(r), αm̃(r)) − F(αm̃(r), αm̃(r−1)))

r2 ,

where

G(αr,αs) = F(αr,αs) − F(αr−1, αs) − F(αr,αs−1) + F(αr−1, αs−1).
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Our next main result of this subsection follows from the inequality (28), with
C

(3)
n,SU(β) in that result being defined as follows:

C
(3)
k,n,SU(β)

= max
k≤n0≤n

min
k≤K≤n0

{
n0α

′
m̃(k−1)

(β)

k
+

K∑
r=k

n0[α′
m̃(r)

(β) − α′
m̃(r−1)

(β)]
r

+
n0∑

r=K+1

(
n0[α′

m̃(r)
(β) − α′

m̃(r−1)
(β)]

r2

+
n0∑

s=r+1

n0(n0 − 1)G(α′
m̃(r)

(β),α′
m̃(s)

(β))

rs

+ (
n0(n0 − 1)

× [
F

(
α′

m̃(r)(β),α′
m̃(r)(β)

)
− F

(
α′

m̃(r)(β),α′
m̃(r−1)(β)

)])
/r2

)}
,

for any given sequence of constants 0 = α′
0(β) ≤ α′

1(β) ≤ · · · ≤ α′
n(β), for a fixed

β ∈ (0,1).

THEOREM 3.8. Given any sequence of critical constants 0 = α′
0(β) ≤

α′
1(β) ≤ · · · ≤ α′

n(β), for a fixed β ∈ (0,1), the stepup procedure with the critical

values αi∨k, i = 1, . . . , n, satisfying αi = α′
i (β

∗
SU) and C

(3)
k,n,SU(β∗

SU) = α, controls
the γ -kFDP at α under Assumptions 1 and 3.

REMARK 3.5. Romano and Shaikh proved the following two results in
(2006a) and (2006b), respectively, based on marginal p-values under arbitrary
dependence: the γ -FDP of the stepdown procedure with critical values αi, i =
1, . . . , n, satisfies

γ -FDP ≤ max
1≤n0≤n

{
n0

M∑
i=1

αm̄(i) − αm̄(i−1)

i

}
;(29)

whereas the γ -FDP of the stepup procedure with the same set of critical values
satisfies

γ -FDP ≤ max
1≤n0≤n

{
n0

n0∑
i=1

αm̃(i) − αm̃(i−1)

i

}
.(30)

These upper bounds are always larger than the corresponding upper bounds of the
γ -FDP we derive here, as seen by letting k = 1,K = M in (25) and k = 1,K = n0
in (28), respectively. Thus, theoretically, the stepdown and stepup γ -FDP control-
ling procedures introduced in Theorems 3.7 (with k = 1) and 3.8 (with k = 1),
respectively, are always more powerful than the corresponding ones given by
Romano and Shaikh in (2006a) and (2006b), respectively.
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4. Simulation studies. We ran extensive simulations numerically examining
the performances of different procedures proposed in the above section in compar-
ison with their relevant competitors under different settings for the parameters, π0,
γ , k and the strength of positive dependence, and having considered all or just one
of three special types of positive dependence structure—uniform pairwise depen-
dence, clumpy dependence and autoregressive of order one [AR(1)] dependence.
The results were graphically summarized in twelve figures, and the main findings
in those graphs are described in this section. However, we present here the figures
that pertain to the uniform pairwise dependence, while the rest are presented, for
lack of space here, in the supplementary material [Guo, He and Sarkar (2014)].

Note that, except in the procedures in Theorems 3.1 and 3.4, which have
been developed directly from the Lehmann–Romano (LR) critical values α′

i (β) =
(	γ i
+1)β

n+	γ i
+1−i
, i = 1, . . . , n, the critical values in all other procedures can be chosen

arbitrarily before being rescaled appropriately to ensure a control over the γ -FDP
or γ -kFDP. In many of our simulations, we had chosen the same LR critical values
α′

i (β) in these other procedures with β being rescaled according to the formulas in
the corresponding theorems. We will refer to a procedure, except the stepwise one
in Theorem 3.1, as simply LR-type procedure whenever it is directly or indirectly
based on the LR critical values. Similarly, by BH- and GBS-type stepwise pro-
cedures that we will use in some simulations, we mean that the critical values of
the procedure in that procedure are obtained by rescaling the original BH or GBS
critical values according to the formula given in the corresponding theorem.

A part of our simulation study was geared toward answering the following two
questions:

(Q1) When controlling the γ -FDP assuming positive dependence, how good is
the improvement supposedly offered by the newly proposed LR stepup procedure
in Theorem 3.1 over the original LR stepdown procedure?

(Q2) When controlling the γ -FDP assuming arbitrary dependence, how do
the newly suggested LR-type stepdown and stepup procedures in Theorems 3.7
and 3.8, respectively, with k = 1, incorporating pairwise correlation information
perform compared to the corresponding existing LR-type stepdown and stepup
procedures in Romano and Shaikh (2006a, 2006b) that do not incorporate such
pairwise correlation information?

The performance of each procedure is judged, while answering (Q1) and (Q2),
in terms of how well the γ -FDP is controlled at the desired level and also the
average power, which is the expected proportion of false nulls that are rejected,
under varying π0, γ , and the strength of positive dependence.

To simulate the values of γ -FDP and average power for each of the methods
referred to in (Q1) and (Q2), we first generated n dependent normal random vari-
ables N(μi,1), i = 1, . . . , n, with π0n of the μi’s being equal to 0 and the rest
being equal to d = √

10, and a correlation matrix �. The following three different
types of � were considered for (Q1): (i) � = (1−ρ)In +ρ1n1′

n, in case of uniform
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pairwise dependence, (ii) γ = In/s ⊗ [(1 − ρ)Is + ρ1s1′
s], in case of block depen-

dence with the block size s, and (iii) � = ((ρ|i−j |)), in case of AR(1) dependence,
where 1n = (1, . . . ,1)′; whereas, for (Q2), the � of the type (i) was considered.
In each case, ρ was nonnegative. We then applied each method to the generated
data to test Hi :μi = 0 against Ki :μi �= 0 simultaneously for i = 1, . . . , n, at level
α = 0.05. We repeated the above two steps 2000 times.

Figure 1 and Figures S.1–S.3 (in the supplementary material [Guo, He and
Sarkar (2014)]) provide an answer to (Q1) and Figure 2 answers (Q2). As seen
from Figure 1, when the underlying test statistics have a common positive correla-
tion, the newly introduced stepup γ -FDP procedure in Theorem 3.1 improves the
power of the original Lehmann–Romano stepdown procedure. This improvement
is quite noticeable when the correlation is high. When the underlying test statistics
are block or AR(1) dependent, the stepup procedure, as expected, does still have
better power, as seen from Figures S.1–S.3. However, in case of block dependence,
the larger the block size, the more significant seems to be the power improvement;
whereas, in case of AR(1) dependence, the power improvement seems to be only

(a) Simulated γ -FDP

FIG. 2. Simulated values of γ -FDP and average power of the existing LR-type stepdown (LR SD)
and stepup (LR SU) γ -FDP procedures in Theorems 3.5 and 3.6 (with k = 1) and the newly suggested
LR-type stepdown (Pair SD) and stepup (Pair SU) γ -FDP procedures in Theorems 3.7 and 3.8 (with
k = 1), all developed assuming arbitrary dependence, for n = 50 and α = 0.05.
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(b) Simulated average power

FIG. 2. (Continued).

significant when the dependence is high and the proportion of true nulls is not
large. In addition, as seen from Figure 1, for the original LR stepdown procedure
and its stepup analogue, they behave very differently when correlation ρ is close to
one, which corroborates the observation of Roquain and Villers (2011), and their
apparent worst performances in terms of the γ -FDP control seem to depend on the
values of π0 and γ .

From Figure 2, we see that when controlling the γ -FDP assuming arbitrary de-
pendence, the performances of the existing LR-type Romano–Shaikh stepdown
and stepup procedures can be significantly improved by utilizing the pairwise cor-
relation information via the use of the newly suggested LR-type stepdown and
stepup γ -FDP procedures in Theorems 3.7 and 3.8, respectively, with k = 1, when
the underlying test statistics are slightly or moderately correlated with a common
correlation.

Our next set of simulations was run with a view to investigating the perfor-
mances of the proposed stepwise γ -kFDP controlling procedures in the setting of
a common pairwise positive dependence. Specifically, we investigated the follow-
ing two questions:

(Q3) When controlling the γ -kFDP assuming positive dependence, how well
the LR-type stepdown and stepup procedures in Theorem 3.4 incorporating pair-
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wise correlation information perform compared to the LR-type stepdown and
stepup procedures in Theorems 3.2 and 3.3, respectively, that do not incorporate
such pairwise correlation information?

(Q4) When controlling the γ -kFDP assuming arbitrary dependence, how well
do the LR-type stepdown and stepup procedures in Theorems 3.7 and 3.8, respec-
tively, incorporating pairwise correlation information perform compared to the
LR-type stepdown and stepup procedures in Theorems 3.5 and 3.6, respectively,
that do not incorporate such pairwise correlation information?

The performance of each procedure is judged, while answering (Q3) and (Q4),
in terms of how well the γ -kFDP is controlled at the desired level and also the
average power under varying π0, k and the strength of positive dependence. We
used the simulation settings for (Q3) and (Q4) that are same as in answering (Q1)
and (Q2), respectively, but considering only the equi-correlated normal case.

Figures 3 and 4 provide answers to (Q3) and (Q4), respectively. From Fig-
ure 3, we see that when controlling the γ -kFDP assuming positive dependence,

(a) Simulated γ -kFDP

FIG. 3. Simulated values of γ -kFDP and average power of the LR stepdown (LR SD) and stepup
(LR SU) γ -kFDP procedures in Theorems 3.2 and 3.3 and the LR-type stepdown (Pair SD) and
stepup (Pair SU) γ -kFDP procedures in Theorem 3.4, all developed assuming positive dependence,
for n = 100, γ = 0.1 and α = 0.05.
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(b) Simulated average power

FIG. 3. (Continued).

the stepwise γ -kFDP procedure in Theorems 3.2 or 3.3, which is based only on
the marginal p-values, seem to perform well, but it can be significantly improved
by utilizing the pairwise correlation information via the use of the corresponding
stepwise procedure in Theorem 3.4 when the underlying test statistics are weakly
correlated. However, when the test statistics are strongly correlated, this stepwise
procedure incorporating such pairwise correlations has almost the same power per-
formance as the corresponding stepwise procedure based only on the marginal
p-values. Of course, such phenomenon has been noted before in the context of
other generalized error rates [Sarkar and Guo (2010)]. Figure 4, however, reveals
an interesting picture. It seems to say that when controlling the γ -kFDP assum-
ing arbitrary dependence, the LR-type stepwise procedure in Theorems 3.5 or 3.6
based only on the marginal p-values can be made consistently more powerful by
utilizing the pairwise correlation information through the use of the correspond-
ing LR-type stepwise procedure in Theorems 3.7 or 3.8, with the power gaps still
being quite significant even when the test statistics are highly correlated.

Looking at all the these seven figures, it becomes clear that given a choice of γ ,
the performance of an LR-type stepwise procedure, particulary in terms of con-
trolling the γ -FDP or γ -kFDP, is affected not only by dependence but also by π0.

We also did some simulations to examine the following question:
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(a) Simulated γ -kFDP

FIG. 4. Simulated values of γ -kFDP and average power of the LR-type stepdown (LR SD) and
stepup (LR SU) γ -kFDP procedures in Theorems 3.5 and 3.6 and the LR-type stepdown (Pair SD)
and stepup (Pair SU) γ -kFDP procedures in Theorems 3.7 and 3.8, all developed assuming arbitrary
dependence, for n = 50, γ = 0.1 and α = 0.05.

(Q5) How do the newly suggested BH- and GBS-type γ -FDP stepup proce-
dures assuming positive dependence in Theorem 3.3 with k = 1 perform compared
to the corresponding BH- and GBS-type γ -FDP stepdown procedures obtained
from Theorem 3.2?

We used the same simulation settings involving three different types of positive
dependence structure as in answering (Q1). From Figures S.4–S.7 (in the supple-
mentary material [Guo, He and Sarkar (2014)]) that answers (Q5), we see that the
BH- or GBS-type stepup and stepdown procedures have the similar behaviors as
the LR-type procedures. Generally, when the underlying test statistics are highly
correlated, the power improvements of the stepup procedures over the correspond-
ing stepdown procedures are always quite significant. For other cases, the power
improvement depends on the dependence structure of the test statistics. In addi-
tion, an interesting observation is that the BH-type stepwise procedures are always
more powerful than the corresponding GBS-type procedures.

Our last set of simulations was carried out to investigate the following:
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(b) Simulated average power

FIG. 4. (Continued).

(Q6) As a γ -kFDP procedure under positive dependence, how does the
LR-type stepwise procedure in Theorem 3.4 incorporating pairwise correlation
perform in terms of power with increasing k and strength of dependence, com-
pared to the corresponding LR-type stepwise procedure in Theorems 3.2 or 3.3
that do not incorporate such pairwise correlation information?

We used the same simulation setting as in answering (Q3). From Figure 5
that answers this question, we see that the power of each of these LR-type step-
wise γ -kFDP procedures increases with k, as expected. The power gap between
the stepwise γ -kFDP procedure in Theorem 3.4 and the corresponding step-
wise γ -kFDP procedure in Theorems 3.2 or 3.3 gets wider with increasing k.
The stepwise procedures in Theorem 3.4 are more powerful than the correspond-
ing stepwise procedures in Theorems 3.2 and 3.3, irrespective of choice of k if the
underlying test statistics are weakly correlated and with properly chosen k if these
statistics are moderately correlated.

5. Concluding remarks. The paper is motivated by the need to advance the
theory of FDP control which is still underdeveloped despite being well accepted
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FIG. 5. Simulated average power of the LR stepdown (LR SD) and stepup (LR SU) γ -kFDP pro-
cedures in Theorems 3.2 and 3.3 and the LR-type stepdown (Pair SD) and stepup (Pair SU) γ -kFDP
procedures in Theorem 3.4 with respect to different values of k, all developed assuming positive
dependence, for n = 100,π0 = 0.8, γ = 0.1 and α = 0.05.

by the multiple testing research community. Our focus has been two-fold: (i) en-
larging the class of procedures controlling the γ -FDP, the existing notion of FDP
control, and (ii) generalizing this notion to one that is often more appropriate and
powerful—with improving some of the currently available results under certain
dependence situations being the overreaching goal. We have given a large class
of procedures controlling the γ -FDP and its generalization under different depen-
dence assumptions, and numerical evidences showing superior performances of
the proposed procedures compared to those they intend to improve under some
dependence cases, although these proposed procedures themselves, like their com-
petitors, are still quite conservative.

There is scope of doing further research in the context of what we discuss in
this paper. We have defined the γ -kFDP, for the first time in this paper, with the
idea of introducing a more powerful notion of error rate than the γ -FDP under de-
pendence. We have proposed several procedures controlling the γ -kFDP and given
numerical evidence of their power superiority over the corresponding γ -FDP con-
trolling procedures for some specific values of k and under certain dependence
situations. Although a deeper understanding of γ -kFDP under dependence, partic-
ularly, how the choice of k depends on correlations, would require studying distri-
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butional properties of FDP or kFDP under dependence, an area still less developed,
we have provided some insight into it through additional simulations whose find-
ings are reported in the supplementary material [Guo, He and Sarkar (2014)]. In
particular, it has been noted that the difference between controlling γ -kFDP and
γ -FDP and the stipulated power gain in using a γ -kFDP procedure over the corre-
sponding γ -FDP procedure may not be realized until k/n reaches a certain critical
point. Once this point is reached, the power gain can be expected to steadily in-
crease with k/n. Some idea about the choice of k relative to n under different types
and varying strengths of dependence has also been provided.

APPENDIX

PROOF OF LEMMA 3.1. First, note that

I
(
V > max[γR, k − 1])

= I
(
V > max

[
γ (V + S), k − 1

])
(31)

= I
(
V ≥ max

{⌊
γ S/(1 − γ )

⌋ + 1, k
})

=
M∑
i=1

I
(
V ≥ i ∨ k,

⌊
γ S/(1 − γ )

⌋ + 1 = i
)
.

Also, for a stepdown procedure with the critical constants αi’s, we have

I
(
V ≥ i ∨ k,

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

= I
(
R ≥ i ∨ k + S,

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

= I
(
P(1) ≤ α1, . . . ,P(i∨k+S) ≤ αi∨k+S,

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

(32)
≤ I

(
P̂(1) ≤ α1+S, . . . , P̂(i∨k) ≤ αi∨k+S,

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

≤ I
(
P̂(1) ≤ α1+m(i), . . . , P̂(i∨k) ≤ αi∨k+m(i),

⌊
γ S/(1 − γ )

⌋ + 1 = i
)

≤ I
(
P̂(i∨k) ≤ αi∨k+m(i),

⌊
γ S/(1 − γ )

⌋ + 1 = i
)
.

Combining (31) and (32), we get the lemma. �

PROOF OF LEMMA 3.2. Since V ≥ R − n1, we have

I
(
V > max[γR, k − 1])

= I
(
V ≥ max

{	γR
 + 1, k
}
,V ≥ R − n1

)
= I

(
n0⋃

j=k

{
P̂(j) ≤ αR,V = j, 	γR
 + 1 ≤ j,R ≤ j + n1

})

≤ I

(
n0⋃

j=k

{
P̂(j) ≤ αR,R ≤ m̃(j)

})
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≤ I

(
n0⋃

j=k

{P̂(j) ≤ αm̃(j)}
)

=
n0∑
i=1

n0∑
j=k

I (P̂i ≤ αm̃(j), R̂2 = j)

j
.

This is the first inequality. The second inequality can be proved as follows:
n0∑
i=1

n0∑
j=k

I (P̂i ≤ αm̃(j), R̂2 = j)

j

=
n0∑
i=1

n0∑
j=k

I (P̂i ≤ αm̃(j), R̂2 ≥ j)

j
−

n0∑
i=1

n0∑
j=k

I (P̂i ≤ αm̃(j), R̂2 ≥ j + 1)

j

≤
n0∑
i=1

I (P̂i ≤ αm̃(k), R̂2 ≥ k)

k
+

n0∑
i=1

n0∑
j=k+1

I (αm̃(j−1) < P̂i ≤ αm̃(j), R̂2 ≥ j)

j
.

Thus, the lemma is proved. �

PROPOSITION A.1. Let M and m(i), for i = 1, . . . ,M , be defined as in
Lemma 3.1 and m̃(i) for i = 1, . . . , n0 be defined as in Lemma 3.2. Then, for given
set of critical constants,

α′
i = (	γ i
 + 1)α

n + 	γ i
 + 1 − i
, i = 1, . . . , n,

we have C
(1)
k,n,SD = C

(1)
k,n,SU = α when k = 1, where C

(1)
k,n,SD and C

(1)
k,n,SU are, re-

spectively, defined as in Theorems 3.2 and 3.3.

PROOF. We first prove that C
(1)
k,n,SD = α when k = 1. From the definition of

m(i), we have

i − 1 ≤ γm(i)

1 − γ
< i.

Thus,

i − 1 ≤ i − (1 − γ ) ≤ γ
(
i + m(i)

)
< i.

Hence, ⌊
γ

(
i + m(i)

)⌋ + 1 = i.(33)

Based on (33), we have

n0α
′
i+m(i)

i
= n0(	γ (i + m(i))
 + 1)α

i(n + 	γ (i + m(i))
 + 1 − i − m(i))
= n0α

n − m(i)
≤ α.(34)
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Here, the inequality follows from the facts that m(i) ≤ n1 and n0 + n1 = n.
Note that when n0 ≥ 	γ n1/(1 − γ )
 + 1, M = 	γ n1/(1 − γ )
 + 1, and hence
max1≤i≤M m(i) = n1. Combining (34) with the above fact, we have

C
(1)
1,n,SD = max

1≤n0≤n
max

1≤i≤M

{n0α
′
i+m(i)

i

}
= α.

Second, we prove that C
(1)
k,n,SU = α when k = 1. Note that for i = 1, . . . , n0,⌊

γ m̃(i)
⌋ + 1 ≤ ⌊

γm∗(i)
⌋ + 1 ≤ i.(35)

Thus,

n0α
′
m̃(i)

i
= n0(	γ m̃(i)
 + 1)α

i(n + 	γ m̃(i)
 + 1 − m̃(i))
≤ n0α

n + i − m̃(i)
≤ α.(36)

Here, the first inequality follows from (35) and the second follows from the fact
m̃(i) ≤ i +n1. In addition, it is easy to see that when i = 	γ n
+ 1 and i +n1 = n,
we have m∗(i) = n and n0 = i. Thus, m̃(i) = n and 	γ m̃(i)
 + 1 = i. By using
the first equality of (36), n0α

′
m̃(i)

/i = α. Combining (36) and the above fact, we
have

C
(1)
1,n,SU = max

1≤n0≤n
max

1≤i≤n0

{n0α
′
m̃(i)

i

}
= α. �

PROOF OF (11). As in proving Lemma 3.2,

Pr(R̂n0 ≥ k)

= Pr

(
n0⋃

v=k

{P̂(v) ≤ βv}
)

=
n0∑
i=1

n0∑
r=k

Pr(R̂n0 = r, P̂i ≤ βr)

r

=
n0∑
i=1

n0∑
r=k

Pr(R̂(−i)
n0−1 = r − 1, P̂i ≤ βr)

r

= α

n0

n0∑
i=1

{
n0∑

r=k

Pr
(
R̂

(−i)
n0−1 ≥ r − 1|P̂i ≤ βr

) −
n0−1∑
r=k

Pr
(
R̂

(−i)
n0−1 ≥ r|P̂i ≤ βr

)}

≤ α

n0

n0∑
i=1

{
n0∑

r=k

Pr
(
R̂

(−i)
n0−1 ≥ r − 1|P̂i ≤ βr

) −
n0−1∑
r=k

Pr
(
R̂

(−i)
n0−1 ≥ r|P̂i ≤ βr+1

)}

= α

n0

n0∑
i=1

Pr
(
R̂

(−i)
n0−1 ≥ k − 1|P̂i ≤ βk

)
,

where the first inequality follows from (A.3) and (A.4) of Sarkar and Guo (2010)
and the second follows from Assumption 2(b). �
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PROOF OF (20). Consider a single-step test based on the p-values P̂1, . . . , P̂n0

and the constant threshold t . Let R̂1 denote the number of rejections. Then we have
for each i = 2, . . . , n0,

I (P̂(i) ≤ t) ≤ I
(
R̂1(R̂1 − 1) ≥ i(i − 1)

) ≤ 1

i(i − 1)

n0∑
j=1

n0∑
l( �=j)=1

I (P̂j ≤ t, P̂l ≤ t),

which proves the desired inequality. �
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SUPPLEMENTARY MATERIAL

Supplement to “Further results on controlling the false discovery propor-
tion” (DOI: 10.1214/14-AOS1214SUPP; .pdf). Due to space constraints, we have
relegated to the supplemental article [Guo, He and Sarkar (2014)] the remaining
figures generated from the simulations in Section 4 and the findings of additional
simulations mentioned in Remark 2.1.
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