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ZERO-SUM REPEATED GAMES: COUNTEREXAMPLES TO THE
EXISTENCE OF THE ASYMPTOTIC VALUE AND THE

CONJECTURE maxmin = limvn

BY BRUNO ZILIOTTO1

GREMAQ, Université Toulouse 1 Capitole

Mertens [In Proceedings of the International Congress of Mathemati-
cians (Berkeley, Calif., 1986) (1987) 1528–1577 Amer. Math. Soc.] proposed
two general conjectures about repeated games: the first one is that, in any two-
person zero-sum repeated game, the asymptotic value exists, and the second
one is that, when Player 1 is more informed than Player 2, in the long run
Player 1 is able to guarantee the asymptotic value. We disprove these two
long-standing conjectures by providing an example of a zero-sum repeated
game with public signals and perfect observation of the actions, where the
value of the λ-discounted game does not converge when λ goes to 0. The
aforementioned example involves seven states, two actions and two signals
for each player. Remarkably, players observe the payoffs, and play in turn.

Notations. The notation “X := Y ” means “X is defined by the expression Y .”
The set of nonnegative integers is denoted by N, and N

∗ := N \ {0}. The set of
real numbers is denoted by R.

The complementary of B in A is denoted by A \ B .
If x ∈ R, the integer part of x is denoted by �x�.
If (C,C) is a measurable space, we denote by �(C) the set of probability mea-

sures on C, and �f (C) the set of probability measures on C with finite support.
We call δc the Dirac measure at c.

If C0 ⊂ C is a finite set and (αc)c∈C0 ∈ �(C0), then we write
∑

c∈C0
αc · c for∑

c∈C αcδc.
If X is a bounded real random variable, E(X) is the expectation of X.
If f :A → R is a bounded function, ‖f ‖∞ is supx∈R |f (x)|, and if B ⊂ A,

argmaxx∈B f := {x ∈ B|∀y ∈ Bf (x) ≥ f (y)}.
If f :R→R is differentiable, df

dx
is the derivative of f .

Let a ∈ R and f , g and h be real functions. If f (x) − g(x) is little-o of h(x)

when x goes to a, we write f (x) =
x→a

g(x)+o(h(x)). If f (x) is equivalent to g(x)

when x goes to a, we write f (x) ∼
x→a

g(x).
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Introduction. The general model of two-person zero-sum repeated game was
introduced in Mertens, Sorin and Zamir (1994), Chapter IV. Such a game is de-
scribed by a finite set of states K , a finite set of actions I (resp., J ) for Player 1
(resp., 2), a finite set of signals A (resp., B) for Player 1 (resp., 2), a payoff function
g :K × I ×J →R, and a transition function q :K × I ×J → �(K ×A×B). The
game proceeds as follows. Before the game starts, a triplet (k1, a0, b0) is drawn
according to an initial probability distribution p ∈ �(K × A × B). The state k1
is the initial state, and Player 1 (resp., 2) receives the private signal a0 (resp.,
b0). At stage m ≥ 1, both players choose an action simultaneously and indepen-
dently, im ∈ I (resp., jm ∈ J ) for Player 1 (resp., 2). The payoff at stage m is
gm := g(km, im, jm). A triplet (km+1, am, bm) is drawn from the probability distri-
bution q(km, im, jm). The signal am (resp., bm) is announced to Player 1 (resp., 2).
The game then moves on to state km+1, and enters the next stage.

For λ ∈ (0,1], in the λ-discounted game, the goal of Player 1 (resp., 2) is to
maximize (resp., minimize) the expected Abel mean of stage payoffs

∑
m≥1 λ(1 −

λ)m−1gm. For n ∈ N
∗, in the n-stage game, the goal of Player 1 (resp., 2) is to max-

imize (resp., minimize) the expected Cesaro-mean of stage payoffs 1/n
∑n

m=1 gm.
These two games have a value, denoted, respectively, by vλ(p) and vn(p). Two
important conjectures were stated by Mertens [see Mertens (1987), page 1572 and
Mertens, Sorin and Zamir (1994), Chapter VIII, pages 378 and 386].

CONJECTURE 1. In a zero-sum repeated game, the asymptotic value exists,
that is, the sequences of functions (vn) and (vλ) converge pointwise to the same
limit, when n goes to infinity and λ goes to 0.

CONJECTURE 2. In a zero-sum repeated game where Player 1 is more in-
formed than Player 2 (i.e., Player 1 observes what Player 2 observes), (vn) and
(vλ) converge pointwise to the maxmin of the game, which is the maximal amount
that Player 1 can guarantee to herself in long games.

The Mertens’ conjectures have been proven true in numerous particular classes
of zero-sum repeated games [see Aumann and Maschler (1995), Bewley and
Kohlberg (1976), Gensbittel, Oliu-Barton and Venel (2014), Mertens and Ney-
man (1981), Mertens and Zamir (1971), Neyman (2008), Renault (2006, 2012),
Rosenberg (2000), Rosenberg, Solan and Vieille (2002, 2003, 2004), Rosenberg
and Vieille (2000), Sorin (1984, 1985)].

In zero-sum repeated games with symmetric information [the particular class of
zero-sum repeated games in which players observe the actions perfectly and re-
ceive a public signal about the state, i.e., for all m ∈ N

∗, am = bm and (im, jm)

is am-measurable], Conjectures 1 and 2 were not proven [see Forges (1982),
Kohlberg and Zamir (1974), Venel (2015) for a proof of the conjectures under ad-
ditional assumptions on the transition function]. Note that in this class of games,
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Player 1 has the same information as Player 2, and in particular she is more in-
formed than Player 2.

The main contribution of this paper is to provide an example of a zero-sum re-
peated game with symmetric information where (vλ) does not converge when λ

goes to 0, thus contradicting both conjectures. Our example also shows that there
is no hope of obtaining an existence result for the asymptotic value in zero-sum re-
peated games, unless we make a very strong assumption on the transition function.
Indeed, the structure of the example is very simple: at each stage, the action of
one player only influences their stage payoff and the transition; moreover, players
observe the payoff. In addition, since the information is symmetric, the belief hier-
archy [belief of Player 1 about the state or actions played, belief of Player 2 about
the belief of Player 1 about the state or actions played, and so on; see Mertens and
Zamir (1985) for more details] is straightforward: players know the past actions
and have the same belief about the state.

In addition, using the example we will construct a second example of a zero-sum
repeated game with symmetric information where neither (vλ) nor (vn) converge.

Lastly, we will provide an example of a state-blind zero-sum repeated game (the
particular class of zero-sum repeated games with symmetric information where
players get no signals about the state) and an example of a zero-sum repeated
game with one state-blind player (one player observes the state but the other gets
no signal about it) without an asymptotic value. We will also give an example of a
standard zero-sum stochastic game with compact action sets without an asymptotic
value, providing an alternative counterexample to Vigeral (2013). Note that this
last class of zero-sum repeated games does not concern the two conjectures, since
the action sets are not finite. Nonetheless, the example is interesting because it has
a simpler structure than the one given in Vigeral (2013) (players play in turn) and
is thus easier to analyze.

The paper is organized as follows. In Section 1, we explain the model of zero-
sum repeated game with symmetric information and some basic concepts. In Sec-
tion 2, we present our main counterexample and show that (vλ) does not converge.
In Section 3, we construct a similar game where neither (vλ) nor (vn) converge. In
Section 4, we show how our counterexample adapts to other classes of zero-sum
repeated games.

1. Zero-sum repeated games with symmetric information.

1.1. The model. A zero-sum repeated game with symmetric information � is
defined by the following elements:

– State space K .
– Action set I (resp., J ) for Player 1 (resp., 2).
– Signal set A.
– Transition function q :K × I × J → �(K × A).
– Payoff function g :K × I × J →R.
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We assume K , I , J and A to be finite. Both players know K,I, J,A,g, q .
Given an initial probability p ∈ �(K) known by both players, the game �p

proceeds as described below:

– Before the game starts, an initial state k1 is drawn according to p. The quantity
k1 is the initial state. Players do not know k1.

– At stage m ≥ 1, both players choose an action simultaneously and indepen-
dently, im ∈ I (resp., jm ∈ J ) for Player 1 (resp., 2). The payoff at stage m is
g(km, im, jm). A pair (km+1, am) is drawn from q(km, im, jm). Both players re-
ceive the public signal am, which contains the actions im and jm. The game
moves on to state km+1, and then continues to the next stage.

Compared to the model of general repeated game described in the Introduction,
when the game has symmetric information, one has am = bm and (im, jm) is
am-measurable for all m ≥ 1, and the players do not receive a signal at the out-
set of the game. The history of the game before stage m is the random sequence
(k1, i1, j1, a1, k2, . . . , im−1, jm−1, am−1, km).

The set of all possible histories before stage m is Hm := K × (I × J × A ×
K)m−1.

The set of all possible plays is H∞ := K × (I × J × A × K)N
∗
.

At the beginning of stage m, both players know (i1, j1, a1, . . . , im−1, jm−1,

am−1).
A pure strategy for Player 1 (resp., 2) is a map s :

⋃
m≥1(I × J × A)m−1 → I

[resp., t :
⋃

m≥1(I × J × A)m−1 → J ].
A behavior strategy for Player 1 (resp., 2) is a map σ :

⋃
m≥1(I ×J ×A)m−1 →

�(I) [resp., τ :
⋃

m≥1(I × J × A)m−1 → �(J)]. The set of all behavior strategies
for Player 1 (resp., 2) is denoted 	 (resp., T ).

An initial probability p ∈ �(K) and a pair of (pure or behavior) strategies
(σ, τ ) ∈ 	 × T naturally induce a probability measure P

p
σ,τ on the set of all fi-

nite histories
⋃

m≥1 Hm [for more details, see Sorin (2002), Appendix D]. By the
Kolmogorov extension theorem, this probability measure uniquely extends to H∞.
We denote E

p
σ,τ the expectation with respect to the probability measure P

p
σ,τ . Let

gm be the random payoff at stage m ≥ 1: gm := g(km, im, jm).
For λ ∈ (0,1], the λ-discounted game is the strategic-form game �

p
λ with strat-

egy set 	 for Player 1 and T for Player 2, and payoff function γ
p
λ :	 × T → R

defined by

γ
p
λ (σ, τ ) := E

p
σ,τ

(∑
m≥1

λ(1 − λ)m−1gm

)
·

The goal of Player 1 (resp., 2) is to maximize (resp., minimize) γ
p
λ .

For n ∈ N
∗, the n-stage repeated game is the strategic-form game �

p
n with strat-

egy set 	 for Player 1 and T for Player 2, and payoff function γ
p
n :	 × T → R
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defined by

γ p
n (σ, τ ) := E

p
σ,τ

(
1

n

n∑
m=1

gm

)
·

The goal of Player 1 (resp., 2) is to maximize (resp., minimize) γ
p
n .

The games �
p
λ and �

p
n have a value, denoted, respectively, by vλ(p) and vn(p)

[see Mertens, Sorin and Zamir (1994), Chapter IV]. That is, there are real numbers
vλ(p) and vn(p) satisfying

vλ(p) = max
σ∈	

min
τ∈T γ

p
λ (σ, τ ) = min

τ∈T max
σ∈	

γ
p
λ (σ, τ ),

vn(p) = max
σ∈	

min
τ∈T γ p

n (σ, τ ) = min
τ∈T max

σ∈	
γ p
n (σ, τ ).

In the game �
p
λ , a strategy σ ∗ ∈ 	 (resp., τ ∗ ∈ T ) is optimal if for all τ ∈ T (resp.,

σ ∈ 	) we have γλ(σ
∗, τ ) ≥ vλ(p) [resp., γλ(σ, τ ∗) ≤ vλ(p)]. Optimal strategies

in �
p
n are defined in the same way, replacing λ by n.

1.2. Asymptotic approach.

DEFINITION 1.1. � has an asymptotic value if the sequences of functions (vn)

and (vλ) converge pointwise to the same limit (when n → +∞ and λ → 0).

REMARK 1.2. For all (n,λ) ∈ N
∗ × (0,1], vn :�(K) → R and vλ :�(K) →

R are ‖g‖∞-Lipschitz [see Mertens, Sorin and Zamir (1994), Chapter V, page 184].
Thus, as far as these sequences are concerned, pointwise and uniform convergence
are equivalent. In what follows, we will simply write “(vn) converges” or “(vλ)

converges,” whenever these sequences of functions converge pointwise.

1.3. Equivalent repeated game with perfect observation of the state. Let �

be a repeated game with symmetric information. For m ≥ 1, we denote pm the
conditional probability on the state km at stage m, given the random past history of
the players (i1, j1, a1, . . . , im−1, jm−1, am−1). The random variable pm represents
the common belief at stage m about the current state km. The triplet (pm+1, im, jm)

is the only relevant information conveyed by the signal am, and pm plays the role
of a state variable. Indeed, extend q and g linearly to �(K) × I × J : q(p, i, j) :=∑

k∈K p(k)q(k, i, j) and g(p, i, j) := ∑
k∈K p(k)g(k, i, j).

Assume that at some stage of the game, players have a common belief p about
the current state. If they play (i, j) and receive the signal a ∈ A, then their posterior
belief about the next state will be q�(K)|A(p, i, j, a) ∈ �(K), where

∀k ∈ K q�(K)|A(p, i, j, a)(k) := q(p, i, j)(k, a)∑
k′∈K q(p, i, j)(k′, a)

.



1112 B. ZILIOTTO

Let qA(p, i, j) ∈ �(A) be the marginal on A of q(p, i, j). We define q̃ :�(K) ×
I × J → �f (�(K)) by

q̃(p, i, j) := ∑
a∈A

qA(p, i, j)(a) · q�(K)|A(p, i, j, a).(1.1)

If players have a common belief p about the current state and play (i, j), then for
all a ∈ A, their posterior belief about the next state will be q�(K)|A(p, i, j, a) with
probability qA(p, i, j)(a).

Fix λ ∈ (0,1]. The function vλ :�(K) →R is the unique solution of the follow-
ing functional equation [see Mertens, Sorin and Zamir (1994), Chapter IV, Theo-
rem 3.2, page 158]:

f (p) = max
x∈�(I)

min
y∈�(J )

{
λg(p, x, y) + (1 − λ)Ep

x,y(f )
}

(1.2)

= min
y∈�(J )

max
x∈�(I)

{
λg(p, x, y) + (1 − λ)Ep

x,y(f )
}
,(1.3)

where the unknown is a continuous function f :�(K) →R,

E
p
x,y(f ) := ∑

(p′,i,j)∈�(K)×I×J

x(i)y(j)q̃(p, i, j)
(
p′)f (

p′)
and

g(p, x, y) := ∑
(i,j)∈I×J

x(i)y(j)g(p, i, j).

The game that is equivalent to � is the repeated game �̃ with state space �(K),
action sets I and J , transition function q̃ :�(K)×I ×J → �f (�(K)) and payoff
function g.

Given an initial state p ∈ �(K), the game �̃p proceeds as follows. Players
know p, and at each stage m ≥ 1, they choose an action simultaneously and in-
dependently, im ∈ I (resp., jm ∈ J ) for Player 1 (resp., 2). The payoff at stage m

is g(pm, im, jm), and pm+1 is drawn from q̃(pm, im, jm), and announced to both
players. The game moves on to state pm+1, and then continues to the next stage.
Note that pm can only take a countable number of values.

Given λ ∈ (0,1] and n ∈ N
∗, the λ-discounted game �̃

p
λ and the n-stage repeated

game �̃
p
n are defined as in Section 1.1. The games �̃

p
λ (resp., �̃

p
n ) and �

p
λ (resp.,

�
p
n ) have the same value, and optimal strategies in the first game induce optimal

strategies in the second one, and vice versa.

DEFINITION 1.3. A strategy in �̃ is stationary if it only depends on the state
variable pm. Such a strategy can be seen as a map from �(K) to �(I) or �(J).

There exists stationary strategies which are optimal in �̃
p
λ for any p ∈ �(K)

[see Mertens, Sorin and Zamir (1994), Chapter VII, Proposition 1.4, page 326].
We have the following refinement, which follows from Shapley (1953) and the
compactness of �(K):
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DEFINITION 1.4. A player is said to control p ∈ �(K) if in this state the
transition q̃(p, ·) and the payoff g(p, ·) do not depend on the action of the other
player.

LEMMA 1.5. Assume that each state in �(K) is controlled by one player.
Then both players have pure stationary strategies which are optimal in �̃

p
λ for any

p ∈ �(K).

2. A repeated game with symmetric information where (vλ) does not con-
verge. First we present the main counterexample of the paper. We then describe
the equivalent game with perfect observation of the state and actions. This game
might seem intricate, but it turns out that for each discount factor λ in (0,1], the
discounted game is equivalent to a strategic-form game with strategy sets N for
Player 1 and 2N for Player 2. From the analysis of this last game, we deduce that
the discounted value of the main counterexample does not converge.

2.1. Description of the example. Consider the following repeated game with
symmetric information �, with state space K = {1∗,1++,1T ,1+,0∗,0++,0+},
action sets I = J = {C,Q}, and signal set A = {D,D′}. The payoff function does
not depend on the actions, and is equal to 1 in states 1∗, 1++, 1T and 1+, and to 0 in
states 0∗, 0++ and 0+. Player 2 controls states 1++, 1T and 1+. Player 1 controls
states 0++ and 0+. Lastly, states 1∗ and 0∗ are absorbing states: once 1∗ or 0∗ is
reached, the game remains forever in this state, and the payoff does not depend on
the actions (absorbing payoff). Figure 1 describes the transition function.

We have adopted the following notation: an arrow going from state k ∈ K to
state k′ ∈ K with the caption (i,p, a) ∈ {C,Q} × [0,1] × {D,D′} indicates that
if the player who controls state k plays action i, then with probability p the state
moves to state k′ and the signal is a. For example, if the state is 1++ and Player 2
plays action C, then with probability 1/2 the game moves to state 1T and the signal
is D, and with probability 1/2 the game stays in state 1++ and the signal is D′.

The action Q causes absorption or switching from {1++,1T ,1+} to {0++,0+}
and vice versa. In particular, the players know in which of the following subsets of
K the current state is: {1++,1T ,1+}, {0++,0+}, {1∗} or {0∗}.

2.2. Equivalent repeated game with perfect observation. In this subsection,
we give the exact expression of the transition function q̃ of the equivalent repeated
game with perfect observation of the state and actions �̃. We denote by 12n, 12n+1,
0n ∈ �(K) (n ∈ N

∗) the possible beliefs of the players along the game. Starting
from the prior belief 0++, 0n is the belief after n consecutive stages in which
Player 1 played C and the signal was D; starting from the prior belief 1++, 1n

is the belief after n consecutive stages in which Player 2 played C and the signal
was D.
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FIG. 1. Transitions in the game �.

Formally, given n ∈ N
∗, we define the beliefs 12n,12n+1,0n ∈ �(K) by:

12n := 2−2n · 1++ + (
1 − 2−2n) · 1+,

12n+1 := 2−2n · 1T + (
1 − 2−2n) · 1+,

0n := 2−n · 0++ + (
1 − 2−n) · 0+.

Let us suppose that at some stage of �, the belief of the players about the current
state is 1n, for some n ∈ N. Player 1’s action has no influence on the transition
and both players know it. If Player 2 plays C, then with probability 1/2 the signal
is D (resp., D′), and by Bayes rule the posterior belief about the next state will be
1n+1 (resp., 10 = 1++). Now let us suppose that the belief is 12n or 12n+1. If he
plays Q, then with probability 1 − 2−2n (resp., 2−2n) the signal is D (resp., D′),
and the posterior belief about the next state will be 0++ (resp., 1∗). Thus, in �̃, the
transition function q̃ in the states 12n and 12n+1 can be described by Figure 2.

Let us suppose that at some stage of �, the belief of the players about the current
state is 0n. Player 2’s action has no influence on the transition and both players
know it. If Player 1 plays C, then with probability 1/2 the signal is D (resp., D′),
and by Bayes rule the posterior belief about the next state will be 0n+1 (resp.,
00 = 0++). Now let us suppose that the belief is 0n. If she plays Q, then with
probability 1 − 2−n (resp., 2−n) the signal is D (resp., D′), and the posterior belief
about the next state will be 1++ (resp., 0∗). Thus, in �̃, the transition function q̃ in
the state 0n can be described by Figure 3.
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FIG. 2. Transitions in the states 12n and 12n+1.

Let P1 := ⋃
n∈N{1n}, P0 := ⋃

n∈N{0n}, and P = P1 ∪ P0 ∪ {1∗,0∗}. Note that
in �̃, Player 1 controls all the states in P0, and Player 2 controls all the states
in P1. The set of states which can be reached with positive probability under some
strategy vector in �̃1++

is exactly P .
Now let us explain the dynamics of the game informally. Assume that the game

starts in state p = 00 = 0++. Since the payoff is 1 in states lying in P1 and 0 in
states lying in P0, and since Player 1 maximizes the payoff, Player 1 wants to go to
state 10 = 1++. If she plays Q immediately, the game is absorbed in state 0∗, which
is the worst state for her. If she never plays Q, the payoff is 0 forever, which is also
an unfavorable outcome for her. If she plays C until the state is 0n, and then she
plays Q, then the game is absorbed in state 0∗ with probability 2−n (we will often
call absorbing risk taken by Player 1 the probability that the game is absorbed in
state 0∗), and the game goes to state 1++ with a probability of (1 − 2−n).

To reach state 0n from state 0++, Player 1 needs 2n stages on average. Hence,
Player 1 has to make a trade-off between staying not too long in states of type 0,

FIG. 3. Transitions in the state 0n.
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and having a low probability of being absorbed in 0∗ when she plays Q. Basically,
Player 1 needs to wait on average 2n stages to reduce the absorbing risk to 2−n.

The same principle applies to Player 2. Assume that the game starts in state
p = 10 = 1++. Player 2 plays C until reaching state 12n, and then Q. The game is
absorbed in state 1∗ with a probability of 2−2n, and it goes to state state 0++ with
a probability of (1 − 2−2n).

To reach state 12n, Player 2 needs on average 22n stages. Player 2 can also play
Q in state 12n+1, but this is not a good strategy, since such a state is harder to
reach than state 12n (22n+1 stages on average) but leads to the same absorbing risk
2−2n. Note that the time needed by Player 2 to go from state 1++ to state 12n is on
average the same as the time needed by Player 1 to go from state 0++ to state 02n.
The state of the game oscillates between states of type 0 and states of type 1 as
long as it does not reach an absorbing state. The only asymmetry of the game is
that Player 1 can take any absorbing risks of the form 2−n, whereas Player 2 can
only take absorbing risks of the form 2−2n.

2.3. Equivalent strategic-form game. Fix λ ∈ (0,1]. Let (a, b) ∈ N× 2N. Let
s(a) ∈ 	 be the following pure stationary strategy for Player 1: for every n ≥ a,
play Q in state 0n; otherwise play C.

Let t (b) ∈ T be the following pure stationary strategy for Player 2: for every
n ≥ b, play Q in state 1n; otherwise play C.

The aim of this section is to prove the following proposition.

PROPOSITION 2.1. The game �̃
p
λ for p = 1++ has the same value as the

strategic-form game Gλ with action set N for Player 1, 2N for Player 2, and payoff
function

gλ(a, b) := 1 − fλ(b)

1 − fλ(a)fλ(b)
,(2.1)

where

fλ(n) := (1 − 2−n)(1 − λ2)

1 + 2n+1λ(1 − λ)−n − λ
.

Moreover, (a, b) ∈N×2N are optimal strategies in Gλ if and only if s(a) and t (b)

are optimal strategies in �̃1++
λ .

PROOF. First note that by Lemma 1.5, there exists pure optimal stationary
strategies in �̃1++

λ . A pure stationary strategy for Player 1 corresponds to a strategy
s(a), where a ∈ N is the smallest integer for which Player 1 plays Q in state 1a .
Note that Player 2 is better off quitting in state 12n rather than in state 12n+1.
Indeed, state 12n+1 is harder to reach than state 12n, but the probability of being
absorbed in state 1∗ when playing Q is the same in both states. Thus, Player 2 has
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an optimal strategy of the form t (b), for some b ∈ 2N. Fix now a, b ∈ N× 2N, and
let us compute the payoff γ 1++

λ (s(a), t (b)) given by these strategies.
Let Tb = inf{m ≥ 1|jm = Q} and Ta = inf{m ≥ Tb + 1|im = Q} − Tb. The ran-

dom variable Tb (resp., Ta) represents the time spent by Player 2 (resp., Player 1)
in states of type 1 (resp., 0) before quitting. The payoff γ 1++

λ (s(a), t (b)) is equal
to

2−b + (
1 − 2−b)

E

(
Tb∑

m=1

λ(1 − λ)m−11 +
Ta+Tb∑

m=Tb+1

λ(1 − λ)m−10

)

+ (
1 − 2−b)(

1 − 2−a)(
(1 − λ)Ta+Tb

)
γ 1++
λ

(
s(a), t (b)

)
,

where E
1++
s(a),t (b) is denoted by E. The quantity 2−b corresponds to the probability

that the game is absorbed in state 1∗ when Player 2 plays Q: in this case the payoff
is 1 at every stage. If the game is not absorbed at that point, then the payoff from
stage 1 until the stage when Player 1 plays Q is the second term of the equation.
When Player 1 plays Q, the game is absorbed in state 0∗ with probability 2−a ,
and goes back to state 1++ with probability (1 − 2−a); this is the third term of the
equation.

We deduce that

γ 1++
λ

(
s(a), t (b)

) = 1 − (1 − 2−b)E((1 − λ)Tb)

1 − (1 − 2−a)(1 − 2−b)E((1 − λ)Ta+Tb)
.(2.2)

Under s(a) and t (b), the stopping times Ta and Tb are independent. Thus, we have

E
(
(1 − λ)Ta+Tb

) = E
(
(1 − λ)Ta

)
E

(
(1 − λ)Tb

)·(2.3)

Under s(a) [resp., t (b)], Ta − 1 (resp., Tb − 1) is a random variable denoting the
number of trials needed to have a (resp., b) consecutive successes in independent
trials with a success probability of 1/2. Thus, this random variable follows the
generalized geometric distribution of order a (resp., b) and parameter 1/2 stud-
ied in Philippou, Georghiou and Philippou (1983). By Lemma 2.2 in Philippou,
Georghiou and Philippou (1983), we get

E
(
(1 − λ)Tn

) = (1 + λ)/
(
1 + 2n+1λ(1 − λ)−n − λ

)
.(2.4)

Combining (2.2), (2.3) and (2.4), we get the desired result. �

2.4. Asymptotic study of Gλ and proof of the main theorem. We first determine
optimal strategies in Gλ.

PROPOSITION 2.2. Let (a∗, b∗) ∈ argmaxn∈N fλ × argmaxn∈2N fλ. Then a∗
(resp., b∗) is a dominant strategy for Player 1 (resp., 2) in Gλ. In particular, they
are optimal strategies in �̃1++

λ .
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PROOF. We have limn→+∞ fλ(n) = 0, therefore, a∗ and b∗ are well defined.
Observe that the function (x, y) → (1 − y)(1 − xy)−1, defined on [0,1)2, is in-
creasing in x for every fixed y, and decreasing in y for every fixed x, and that
fλ(N) ⊂ [0,1). Hence, a∗ and b∗ are dominant strategies in Gλ, and by Proposi-
tion 2.1 they are optimal strategies in �̃1++

λ . �

REMARK 2.3. The existence of dominant strategies in Gλ can be explained
without any computation. Indeed, in �̃1++

λ , the maximization problem faced by
Player 2 does not depend on the payoff he receives once reaching state 10, as
long as this payoff is positive. Therefore, whichever stationary strategy Player 1
chooses, the best-response for Player 2 is always the same. The same argument
applies to Player 1.

To study fλ, it is convenient to make the change of variables r = 2−n. Let
f̂λ : [0,1] → R be the function defined for r ∈ (0,1] by

f̂λ(r) := (1 − r)
(
1 + 2λr−s − λ

)−1
,

where s := 1 − ln(2)−1 ln(1 − λ) > 1, and f̂λ(0) := 0. Note that for all n ∈ N,
fλ(n) = (1 − λ2)f̂λ(2−n).

LEMMA 2.4. The function f̂λ reaches its maximum at a unique point r∗(λ),
is strictly increasing on [0, r∗(λ)], and strictly decreasing on [r∗(λ),1]. Moreover,
for all c > 0,

f̂λ(c
√

2λ) =
λ→0

1 − (
c + c−1)√

2λ + o(
√

λ)(2.5)

and

r∗(λ) ∼
λ→0

√
2λ.(2.6)

PROOF. Differentiating f̂λ yields

f̂ ′
λ(r) = −(1 + 2λr−s − λ) − (1 − r)(−2λsr−s−1)

(1 + 2λr−s − λ)2 .

The numerator of this expression is equal to hλ(r) := λ − 1 + 2λ(−(1 + s)r +
s)r−s−1. Note that

h′
λ(r) = −2λ

(
s(1 + s)(1 − r)

)
r−s−2.

We have h′
λ < 0 on (0,1), limr→0 hλ(r) = +∞, and hλ(1) = −(1 + λ). Hence

there exists r∗(λ) ∈ (0,1) such that hλ is strictly positive on (0, r∗(λ)], and strictly
negative on [r∗(λ),1]. Thus, f̂λ is strictly increasing on [0, r∗(λ)], and strictly
decreasing on [r∗(λ),1].
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If c > 0, we have

f̂λ(c
√

2λ) =
λ→0

1 − (
c + c−1)√

2λ + o(
√

λ).

Let ε > 0. Applying the last relation to c = 1 − ε, c = 1, and c = 1 + ε shows that
for λ small enough, f̂λ(

√
2λ) > f̂λ((1 − ε)

√
2λ) and f̂λ(

√
2λ) > f̂λ((1 + ε)

√
2λ).

Thus, for λ small enough, r∗(λ) ∈ [(1 − ε)
√

2λ, (1 + ε)
√

2λ]. We deduce that
r∗(λ) ∼

λ→0

√
2λ. �

We can now prove our main result.

THEOREM 2.5. In �, (vλ) does not converge when λ goes to 0.

PROOF. We are going to show that the sequence (vλ(1++)) does not converge
when λ goes to 0.

Set λm = 2−4m−1 and μm = 2−4m−3. Hence
√

2λm = 2−2m and
√

2μm =
2−2m−1. By Lemma 2.4, for m large enough,

argmax
n∈N

fλm = argmax
n∈2N

fλm = {2m}.

Thus, for the discount factors (λm)m∈N, the fact that Player 1 has a wider set of
strategies than Player 2 does not affect the outcome of the game. By Proposi-
tion 2.2, we have

vλm

(
1++) = (

1 − fλm(2m)
)(

1 − fλm(2m)2)−1 = (
1 + fλm(2m)

)−1
.

By Lemma 2.4, (fλm(2m)) converges to 1 when m goes to infinity, thus
(vλm(1++)) converges to 1/2.

By Lemma 2.4 again, for m large enough, we have

argmax
n∈N

fμm = {2m + 1} and argmax
n∈2N

fμm ⊂ {2m,2m + 2}.

Contrary to the previous situation, Player 1 has an advantage over her opponent:
Player 2 cannot choose 2m + 1. In �̃1++

μm
, choosing t (2m) or t (2m + 2) instead of

t (2m+1) changes the dynamics of the state, and makes this advantage substantial.
Formally, we have

vμm

(
1++) = min

(
1 − fμm(2m)

1 − fμm(2m)fμm(2m + 1)
,

1 − fμm(2m + 2)

1 − fμm(2m + 2)fμm(2m + 1)

)
.

By Lemma 2.4, we have

fμm(2m + 1) =
m→+∞ 1 − 2

√
2μm + o(

√
μm),

fμm(2m) =
m→+∞ 1 − 5/2

√
2μm + o(

√
μm),

fμm(2m + 2) =
m→+∞ 1 − 5/2

√
2μm + o(

√
μm).
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Hence,

1 − fμm(2m)

1 − fμm(2m)fμm(2m + 1)
∼

m→+∞
5/2

√
2μm

(2 + 5/2)
√

2μm

= 5/9

and similarly

1 − fμm(2m + 2)

1 − fμm(2m + 2)fμm(2m + 1)
∼

m→+∞
5/2

√
2μm

(2 + 5/2)
√

2μm

= 5/9.

The sequences (vλm(1++)) and (vμm(1++)) converge to different limits, hence
(vλ) does not converge. �

REMARK 2.6. More generally, for every initial state p ∈ P \ {1∗,0∗}, (vλ(p))

does not converge. Consider, for example, the case p = 0n, for some n ∈ N.
Let N ≥ n. Consider the following strategy σ for Player 1 in �

0n

λ : play C un-
til pm = 0N , then play Q, and then play optimally in �1++

λ if the state 1++ is

reached. For λ small enough, the strategy σ guarantees vλ(1++) − 2/N in �
0n

λ .
We deduce that limλ→0 |vλ(0n) − vλ(1++)| = 0. With a similar argument, one can
show that for all (p,p′) ∈ P 2 \ {1∗,0∗}, limλ→0 |vλ(p)− vλ(p

′)| = 0, which gives
the result.

In this section, we have shown that Conjectures 1 and 2 are false, by presenting
an example of a repeated game with public signals and perfect observation of the
actions where (vλ) does not converge. In the following section, we construct a
repeated game belonging to the same class, where neither (vλ) nor (vn) converge.

3. From (vλ) to (vn).

3.1. Motivation of the example. The idea of the construction of the game is
based on the following lemma, which can be deduced from the proof of Sorin
(2002), Theorem C.8, page 177. We provide the proof for completeness.

LEMMA 3.1. Let � be any repeated game with symmetric information, and
p ∈ �(K). Let P ⊂ �(K) be the set of states which can be reached with positive
probability under some strategy vector in the game �̃p . Let n0, n ∈ N

∗, and for
m ∈ N

∗ set wm := v1/m. Let ‖ · ‖ denote the supremum over P . Then the following
inequality holds:

‖vn − wn‖ ≤ n0

n
‖vn0 − wn0‖ +

n−1∑
m=n0

‖wm − wm+1‖.
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PROOF. Let m ≥ 1 and p ∈ P . We have the following dynamic programming
principle [see Sorin (2002), Properties C.13, page 181]:

vm(p) = max
x∈�(I)

min
y∈�(J )

{
m−1g(p, x, y) + (m − 1)m−1

E
p
x,y(vm−1)

}
(3.1)

= min
y∈�(J )

max
x∈�(I)

{
m−1g(p, x, y) + (m − 1)m−1

E
p
x,y(vm−1)

}
(3.2)

and

wm(p) = max
x∈�(I)

min
y∈�(J )

{
m−1g(p, x, y) + (m − 1)m−1

E
p
x,y(wm)

}
(3.3)

= min
y∈�(J )

max
x∈�(I)

{
m−1g(p, x, y) + (m − 1)m−1

E
p
x,y(wm)

}
.(3.4)

Let x ∈ �(I) be optimal in (3.1) and y ∈ �(J) be optimal in (3.4). We have

vm(p) ≤ m−1g(p, x, y) + (m − 1)m−1
E

p
x,y(vm−1),

wm(p) ≥ m−1g(p, x, y) + (m − 1)m−1
E

p
x,y(wm).

The combination of these two inequalities gives

vm(p) − wm(p) ≤ (m − 1)m−1‖vm−1 − wm‖.
Taking x′ ∈ �(I) optimal in (3.2) and y′ ∈ �(J) optimal in (3.3) gives the sym-
metric inequality:

wm(p) − vm(p) ≤ (m − 1)m−1‖vm−1 − wm‖.
Hence,

‖vm − wm‖ ≤ (m − 1)m−1‖vm−1 − wm‖
and

m‖vm − wm‖ ≤ (m − 1)‖vm−1 − wm−1‖ + (m − 1)‖wm−1 − wm‖.
Let n,n0 ≥ 1. Summing the last inequality from n0 + 1 to n yields

n‖vn − wn‖ ≤ n0‖vn0 − wn0‖ +
n−1∑

m=n0

m‖wm − wm+1‖.

Dividing by n gives the desired result. �

We construct a family of repeated games with symmetric information (�(r))r≥1,
such that the value (vr

λ) of �λ(r) does not converge. Moreover, for all p ∈ �(K),
the derivative function of vr

λ(p) with respect to λ is bounded by C(r)λ−1 for λ

sufficiently small, where C(r) > 0 is independent of p and goes to 0 as r goes to
infinity. Applying Lemma 3.1, we are then able to show that for r large enough,
(vr

n) does not converge.
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FIG. 4. Transitions in the states controlled by Player 1.

3.2. Description of the game. Let r ≥ 1. Consider the following repeated
game with symmetric information �(r). The state space is

K = {
1++,1T1,1T2, . . . ,1T2r−1,1+,1∗,0++,0T1,0T2, . . . ,0Tr−1,0+,0∗}

,

the actions sets are I = J = {C,Q}, and the signal set is A = {D,D′}.
Payoffs are independent of actions, and are 1 in states belonging to {1∗,1++,

1T1, . . . ,1T2r−1,1+}, and 0 in states belonging to {0∗,0++,0T1, . . . ,0Tr−1,0+}.
Player 2 controls the states 1++,1T1, . . . ,1T2r−1,1+, and Player 1 controls the

states 0++,0T1, . . . ,0Tr−1,0+. Hence, q can be seen as a map from K × {C,Q}
to �(K × {D,D′}). Lastly, states 1∗ and 0∗ are absorbing states. The next figure
describes the transitions in the state 0Tl , where l ∈ {0,1, . . . , r − 2}, and in the
states 0Tr−1 , 0+ and 0∗ (by convention 0T0 := 0++). To simplify Figure 4, the
transitions in states 0T0 = 0++ and 0Tl+1 are not represented.

In the states controlled by Player 2, the transitions are analog: one replaces 0
by 1 and r − 1 by 2r − 1 (with the convention 1T0 := 1++).

REMARK 3.2. The case r = 1 corresponds to the example of Section 2.

We now argue that the game �̃(r) presents strong similarities with the game �̃

introduced in Section 2. Let m ∈ N and l ∈ {0,1, . . . , r − 1}.
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Let 0mr+l := 2−mr · 0Tl + (1 − 2−mr) · 0+, and for l ∈ {0,1, . . . ,2r − 1} let
12mr+l := 2−2mr · 1Tl + (1 − 2−2mr) · 1+. Let

P := ⋃
n∈N

{1n,0n} ∪ {
1∗,0∗}

.

The set P is the set of all states which can be reached with positive probability in
�̃(r)1++

(note that P has the same formal definition as the set P in Section 2.2).
Moreover, when a player plays C in some state p ∈ P , the transition is identical
to the transition in our first example �̃ (see Section 2.2). When Player 1 (resp., 2)
plays Q at state 0mr+l (resp., 12mr+l), the state is absorbed in state 0∗ (resp., 1∗)
with probability 2−mr (resp., 2−2mr ). Thus the only difference with �̃ is that in
�̃(r), Player 1 can only take absorbing risks in the set {2−mr,m ∈N}, and Player 2
can only take absorbing risks in the set {2−2mr,m ∈ N}. The next proposition is
the equivalent of Proposition 2.1, and its proof is identical.

PROPOSITION 3.3. The game �̃(r)1++
λ has the same value as the strategic-

form game Gλ(r), with action set rN for Player 1, 2rN for Player 2, and payoff

gr
λ(a, b) := gλ(a, b),

where gλ is defined in (2.1). Moreover, optimal strategies in Gλ(r) induce optimal

strategies in �̃(r)1++
λ .

3.3. Asymptotic study of Gλ(r). Let r ≥ 2. For m ≥ 1, let λm := 2−4mr−1 and
μm := 2−4mr−2r−1. Hence,

√
2λm = 2−2mr and

√
2μm = 2−(2m+1)r . Proceeding

exactly the same way as in Section 2.4, we get the following proposition.

PROPOSITION 3.4.

lim
m→+∞vr

λm

(
1++) = 1/2 and lim

m→+∞vr
μm

(
1++) = 2r + 2−r

2r + 2−r + 2
.

SKETCH OF PROOF. For m large enough, we have by Lemma 2.4

argmax
n∈rN

fλm = argmax
n∈2rN

fλm = {2mr}.

We deduce (see the proof of Theorem 2.5) that (vr
λm

)(1++) converges to 1/2.
By Lemma 2.4 once again, for m large enough, we have

argmax
n∈rN

fμm = {
(2m + 1)r

}
and

argmax
n∈2rN

fμm ⊂ {
2mr,2(m + 1)r

}
.
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We deduce (see the proof of Theorem 2.5) that vr
μm

(1++) converges to (2r +
2−r )/(2r + 2−r + 2). �

We now use Lemma 3.1 to show that the value (vr
n) of the game �(r)n does

not converge. We adopt the following notation: if (λ,p) ∈ (0,1] × �(K), we call
(vr

λ)
′(p) the derivative of vr

λ(p) with respect to λ, evaluated in λ. Analogously,
f ′

λ(p) is the derivative of fλ with respect to λ, evaluated in λ.
The following lemma gives a majorization of (vr

λ)
′(p) on certain subintervals.

LEMMA 3.5. There exists m0 ≥ 1 such that for all m ≥ m0, there exists μ0
m ∈

[μm,2r/2−1μm] such that for all p ∈ P and for all μ ∈ [μm,2r/2−1μm] \ {μ0
m},

vr
μ(p) is differentiable at μ and∣∣(vr

μ

)′
(p)

∣∣ ≤ 2−r/2μ−1,(3.5)

and for all λm ≤ λ ≤ 2r−1λm, vr
λ(p) is differentiable at λ and∣∣(vr
λ

)′
(p)

∣∣ ≤ 2r/2+2λ−1/2.(3.6)

PROOF. We start by proving inequality (3.5). The proof proceeds in three
steps.

STEP 1 [Computation of vr
μ(1++)]. By Lemma 2.4, there exists m1 ∈N

∗ such
that for all m ≥ m1 and μ ∈ [μm,2r/2−1μm],

argmax
n∈rN

fμ = {2mr + r}.

Hence, for such m and μ, a(μ) := 2mr + r is an optimal strategy for Player 1
in Gμ(r).

By Lemma 2.4 once again, there exists m2 ∈ N
∗ such that for all m ≥ m2, there

exists μ0
m ∈ [μm,2r/2−1μm] such that for all μ ∈ (μ0

m,2r/2−1μm]
argmax
n∈2rN

fμ = {2mr},

and for all μ ∈ [μm,μ0
m)

argmax
n∈2rN

fμ = {2mr + 2r}.

Hence, for all m ≥ m2 and μ ∈ (μ0
m,2r/2−1μm], the integer b1(μ) := 2mr is

an optimal strategy for Player 2 in Gμ(r), and for all μ ∈ [μm,μ0
m), the integer

b2(μ) := 2mr + 2r is an optimal strategy for Player 2 in Gμ(r). Thus, for all
m ≥ max(m1,m2) := m3 and μ ∈ (μ0

m,2r/2−1μm], we have

vr
μ

(
1++) = gλ

(
a(μ), b1(μ)

)
(3.7)

= [
1 − fλ

(
b1(μ)

)][
1 − fλ

(
a(μ)

)
fλ

(
b1(μ)

)]−1
,
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and for μ ∈ [μm,μ0
m)

vr
μ

(
1++) = gλ

(
a(μ), b2(μ)

)
(3.8)

= [
1 − fλ

(
b2(μ)

)][
1 − fλ

(
a(μ)

)
fλ

(
b2(μ)

)]−1
.

STEP 2 [Asymptotic expansion of (vr
μ)′(1++) as μ → 0]. Fix m ≥ m3 and

μ ∈ (μ0
m,2r/2−1μm]. Define C1 : (0,1] → R

∗+ and C2 : (0,1] → R
∗+ by

C1(μ) := 2−2mr−r (2μ)−1/2 = (μm)1/2μ−1/2(3.9)

and

C2(μ) := 2−2mr(2μ)−1/2 = 2r (μm)1/2μ−1/2·(3.10)

Note that 2−a(μ) = C1(μ)
√

2μ and 2−b1(μ) = C2(μ)
√

2μ. Moreover, 1 ≤
‖C1‖∞ ≤ 2r and 2r ≤ ‖C2‖∞ ≤ 22r . The last two inequalities show that the func-
tions C1 and C2 are bounded and bounded away from 0, which will be useful in
the following asymptotic expansions.

Since the functions λ → a(λ) and λ → b1(λ) are constant on (μ0
m,2r/2−1μm],

λ → fλ(a(λ)) and λ → fλ(b1(λ)) are differentiable at μ, and we have

f ′
μ

(
a(μ)

) = (
1 − 2−a(μ))(1 + 2a(μ)+1μ(1 − μ)−a(μ) − μ

)−2

× [−2μ
(
1 + 2a(μ)+1μ(1 − μ)−a(μ) − μ

)
− (

1 − μ2)(
2a(μ)+1[

(1 − μ)−a(μ) − a(μ)μ(1 − μ)a(μ)−1] − 1
)]

.

We deduce that

f ′
μ

(
a(μ)

) =
μ→0

−2C1(μ)−1(2μ)−1/2 + o
(
μ−1/2)

,(3.11)

and likewise

f ′
μ

(
b1(μ)

) =
μ→0

−2C2(μ)−1(2μ)−1/2 + o
(
μ−1/2)

.(3.12)

The same computation as in Lemma 2.4 gives

fμ

(
a(μ)

) =
μ→0

1 − (
C1(μ) + C1(μ)−1)

(2μ)1/2 + o
(
μ1/2)

,

fμ

(
b1(μ)

) =
μ→0

1 − (
C2(μ) + C2(μ)−1)

(2μ)1/2 + o
(
μ1/2)

.

Now we differentiate vr
μ(1++) in (3.7) (we omit the dependence of a and b1 on μ).

The derivative (vr
μ)′(1++) = g′

μ(a, b1) is equal to

−f ′
μ(b1)(1 − fμ(a)fμ(b1)) + (1 − fμ(b1))(f

′
μ(a)fμ(b1) + fμ(a)f ′

μ(b1))

(1 − fμ(a)fμ(b1))2

= f ′
μ(a)fμ(b1)(1 − fμ(b1)) − f ′

μ(b1)(1 − fμ(a))

(1 − fμ(a)fμ(b1))2 .
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When μ goes to 0, the numerator of this expression is (we omit the dependence
on μ)

−2C−1
1

(
C2 + C−1

2

) + 2C−1
2

(
C1 + C−1

1

) + o(1) = 2
(
C−1

2 C1 − C−1
1 C2

) + o(1).

Hence,

(
vr
μ

)′(1++) =
μ→0

(C−1
2 C1 − C−1

1 C2)

(C1 + C−1
1 + C2 + C−1

2 )2
μ−1 + o

(
μ−1)

.

Since μ ≤ 2r/2−1μm, we have∣∣∣∣ (C−1
2 C1 − C−1

1 C2)

(C1 + C−1
1 + C2 + C−1

2 )2

∣∣∣∣ ≤ C−1
1 C−1

2 = 2−r μ

μm

≤ 2−r/2−1.

The last two relations show that for m large enough and μ0
m < μ ≤ 2r/2−1μm∣∣(vr

μ

)(
1++)∣∣ ≤ 2−r/2−1μ−1.(3.13)

Equation (3.8) and similar computations show that the last inequality is also true
for m large enough and μ ∈ [μm,μ0

m).

STEP 3 [Computation of (vr
μ)′(p) for p ∈ P and proof of inequality (3.5)].

For a ∈ N and n ≤ a, let T n
a be the random time needed by Player 1 to go from state

0n to state 0a , when she plays strategy s(a). Let m ≥ m3 and μ ∈ (μ0
m,2r/2−1μm].

If n < a(μ), then

vr
μ(0n) = (

1 − 2−a(μ))
E

(
(1 − μ)

T n
a(μ)+1)

vr
μ

(
1++)

.(3.14)

If n ≥ a(μ), then

vr
μ(0n) = (

1 − 2−n)
(1 − μ)vr

μ

(
1++)

.(3.15)

Thus, for all n ∈ N ∣∣(vr
μ

)′
(0n)

∣∣ ≤ E
(
T n

a(μ) + 1
) + ∣∣(vr

μ

)′(1++)∣∣
(3.16)

≤ E(Ta(μ)) + ∣∣(vr
μ

)′(1++)∣∣.
Similar arguments lead to∣∣vr

μ(1n)
∣∣ ≤ E(Tb1(μ)) + ∣∣(vr

μ

)′(0++)∣∣.(3.17)

By (2.4), E(Ta(μ)) = o(μ−1) and E(Tb1(μ)) = o(μ−1) when μ goes to 0.
Combining inequalities (3.13), (3.16) and (3.17), we get inequality (3.5) for m

large enough and μ ∈ (μ0
m,2r/2−1μm]. For m large enough and μ ∈ (μm,μ0

m], the
computations are similar.
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Let us now prove inequality (3.6). By Lemma 2.4, there exists m4 ∈ N
∗ such

that for all λ ∈ [λm,2r−1λm], a(λ) := 2mr is an optimal strategy for both players
in Gλ(r), and (

vr
λ

)′(1++) = − fλ(a(λ))′

(1 + fλ(a(λ)))2 .

For m ≥ m4 and λ ∈ [λm,2r−1λm], let C(λ) :=
√

λm

λ
. Then as in (3.11)

f ′
λ

(
a(λ)

) =
λ→0

−2C(λ)−1(2λ)−1/2 + o
(
λ−1/2)

.

Since C(λ)−1 ≤ 2(r−1)/2 and fλ(a(λ)) goes to 1 when λ goes to 0, we get inequal-
ity (3.6) for (vr

λ)
′(1++) and it extends to (vr

λ)
′(p) with the method used in Step 3.

�

THEOREM 3.6. There exists r0 ∈ N
∗ such that for all r ≥ r0, (vr

n) and (vr
λ) do

not converge.

PROOF. Let r ≥ 2. Recall that from Proposition 3.4,

lim
m→+∞vr

λm

(
1++) = 1/2 and lim

m→+∞vr
μm

(
1++) = 2r + 2−r

2r + 2−r + 2
:= w(r).

In particular, (vr
λ) does not converge. We are going to show that for r big enough,

(vr
n(1

++)) does not converge.
Let m0 be as in Lemma 3.5 and let m ≥ m0. Let n(m) := μ−1

m = 24mr+2r+1 and
n0(m) := 2−�r/2�+1n(m). We now compare vr

n(m) and vr
μm

. Using Lemma 3.1, we
get

∥∥vr
n(m) − vr

μm

∥∥ ≤ n0(m)

n(m)

∥∥vr
n0(m) − vr

2�r/2�−1μm

∥∥ +
n(m)−1∑

m′=n0(m)

∥∥vr
1/m′ − vr

1/(m′+1)

∥∥.
Since the payoff function is bounded by 1, we have

n0(m)

n(m)

∥∥vr
n0(m) − vr

2�r/2�−1μm

∥∥ ≤ 2−�r/2�+1.

By inequality (3.5) in Lemma 3.5 and the mean value theorem, we have

n(m)−1∑
m′=n0(m)

∥∥vr
1/m′ − vr

1/(m′+1)

∥∥ ≤ 2−r/2+1
n(m)−1∑

m′=n0(m)

∫ 1/m′

1/(m′+1)

1

x
dx

= 2−r/2+1
∫ (n0(m))−1

(n(m))−1

1

x
dx

= 2−r/2+1(�r/2� − 1
)
.
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Letting m going to infinity, we deduce that

lim sup
n→+∞

vr
n

(
1++) ≥ w(r) − 2−�r/2�+1 − 2−r/2+1(�r/2� − 1

)
.

Note that limr→+∞ w(r) = 1 and that the term on the right goes to 0 when r goes
to infinity.

Lemma 3.1 for n(m) := λ−1
m and n0(m) := 2−�r/2�+1n(m) gives also an inequal-

ity of the form

lim inf
n→+∞vr

n

(
1++) ≤ 1/2 + t (r),

where limr→+∞ t (r) = 0. Hence, for r large enough, (vr
n(1

++)) does not con-
verge, thus (vr

n) does not converge. �

We have proved in this section that in a repeated game with symmetric infor-
mation, the value of the n-stage repeated game might not converge. To do so, we
have exploited the very flexible structure of the first example of Section 2. Indeed,
we have managed to slow down the oscillations of vλ, without changing much the
dynamics of the game.

In the next section, we again take advantage of the flexibility of the game, to
provide other examples of repeated games without an asymptotic value.

4. Extension to other classes of repeated games.

4.1. State-blind repeated games. Consider the following state-blind repeated
game �, with state space K = {1∗,1++,1T ,1+,0∗,0++,0+}, action sets I =
{T ,B,Q} for Player 1 and J = {L,R,Q} for Player 2. The states 0∗ and 1∗ are
absorbing states. The payoff is 1 in states 1++, 1T , 1+ and 1∗, and 0 in states 0++,
0+ and 0∗. The transitions are described in Tables 1–5.

Recall that in this model, the players do not observe any signal about the state,
and only observe past actions.

The idea of this example is to artificially recreate the dynamics of the example
of Section 2, replacing signals by the mixed actions of one player.

Formally, let a∗(λ) [resp., b∗(λ)] be defined as in Proposition 2.2.
Let σ ∗ ∈ 	 be the following strategy for Player 1 in �1++

λ : play 1/2 ·T +1/2 ·B
if P(km = 0+|km /∈ {0∗,1∗}) ≤ 1 − 2−a∗(λ), otherwise play Q.

Let τ ∗ ∈ T be the following strategy for Player 2: play 1/2 · L + 1/2 · R if
P(km = 1+|km /∈ {0∗,1∗}) ≤ 1 − 2−b∗(λ), otherwise play Q.

Proceeding as in Section 2, one can show that σ ∗ and τ ∗ are optimal strategies,
respectively, for Player 1 and 2 in �1++

λ . Moreover, the probability measure on
the histories of the game induced by these strategies is the same as the probability
measure induced by s(a∗(λ)) and t (b∗(λ)) in the example of Section 2. In partic-
ular, the two examples have the same discounted value, thus (vλ(1++)) does not
converge.
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TABLE 1
State 1++

L R Q

T 1++ 1T 1∗
B 1T 1++ 1∗
Q 0∗ 0∗ 0∗

TABLE 2
State 1T

L R Q

T 1++ 3/4 · 1+ + 1/4 · 1++ 1∗
B 3/4 · 1+ + 1/4 · 1++ 1++ 1∗
Q 0∗ 0∗ 0∗

TABLE 3
State 1+

L R Q

T 1++ 1+ 0++
B 1+ 1++ 0++
Q 0∗ 0∗ 0∗

TABLE 4
State 0++

L R Q

T 1/2 · 0++ + 1/2 · 0+ 0++ 1∗
B 0++ 1/2 · 0++ + 1/2 · 0+ 1∗
Q 0∗ 0∗ 1∗

TABLE 5
State 0+

L R Q

T 0+ 0++ 1∗
B 0++ 0+ 1∗
Q 1++ 1++ 1∗
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4.2. Repeated games with one informed player. We now investigate a repeated
game with perfect observation of the actions, where Player 2 is fully informed
about the state, while Player 1 has no information about it. As usual, both players
observe past actions.

The state space is K = {1∗,1,0∗,0++,0+}, action sets are I = {T ,B,Q} for
Player 1 and J = {L,R} for Player 2. The states 0∗ and 1∗ are absorbing states.
The payoff is 1 in states 1 and 1∗, and 0 in states 0++, 0+ and 0∗. The transitions
are described in the following Tables 6–8.

Compared to the game of Section 4.1, states 1++, 1T and 1+ have been replaced
by a single state 1, which is similar to the state ω+ in Vigeral (2013). The other
states have not been changed.

Let σ ∗ be the following strategy for Player 1: in state 1, play (1 − √
λ) · T +√

λ · B , and when the belief is in �({0++,0+}), play the same strategy as in the
preceding example.

Let τ ∗ be the following strategy for Player 2: in state 1, play (1−√
λ) ·L+√

λ ·
R, and in states 0++ and 0+, play (1/2 · L + 1/2 · R). Proceeding the same way

TABLE 6
State 1

L R

T 1 0++
B 0++ 1∗
Q 0∗ 0∗

TABLE 7
State 0++

L R

T 1/2 · 0++ + 1/2 · 0+ 0++
B 0++ 1/2 · 0++ + 1/2 · 0+
Q 0∗ 0∗

TABLE 8
State 0+

L R

T 0+ 0++
B 0++ 0+
Q 1 1
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as in Section 2, one can show that σ ∗ and τ ∗ are asymptotically optimal strategies
in �1

λ, and that (vλ(1)) does not converge.

4.3. Stochastic games with compact action sets. We now study a repeated
game with perfect observation (states and actions are known by both players) but
where I and J are compact. As mentioned in the Introduction, this example does
not relate to the two conjectures, because I and J are not finite. But it yields a
simpler alternative counterexample to Vigeral (2013). This example is similar to
the example of Section 2 in terms of dynamics.

The state space is K = {1∗,1,0∗,0}, and actions sets are I = [0,1] and J =
{0} ∪ ⋃

m∈N 4−m. The transition q is defined by

q(1, x, y) := (1 − y) · 1 + (
y − y2) · 0 + y2 · 1∗,

q(0, x, y) := (1 − x) · 0 + (
x − x2) · 1 + x2 · 0∗.

Hence, Player 1 controls state 0 and Player 2 controls state 1.
Let λ ∈ (0,1]. A pure stationary strategy in �λ for Player 1 (resp., 2) can be

seen as an element of I (resp., J ).

REMARK 4.1. The real number x ∈ I corresponds to the absorbing risk 2−a

in the example of Section 2. Indeed, when Player 1 plays x in state 0, she waits
on average x−1 stages before switching to state 1, and the probability of absorbing
in 0∗ before reaching state 1 is approximately x. Recall that in the example of Sec-
tion 2, when Player 1 plays a ∈ N, she waits on average 2a stages before quitting,
and when she plays Q the game is absorbed in state 0∗ with probability 2−a . It is
the same for Player 2. As in our first example, Player 2 cannot take any absorbing
risk: only y = 4−m for some m ∈N, or y = 0. But Player 1 can take any absorbing
risk in [0,1]. That is why we expect (vλ) to oscillate, just as in the first example.

The payoff in �1
λ given by a pair of strategies (x, y) ∈ I × J is

γ 1
λ (x, y) = (1 − (1 − λ)(1 − y2))(1 − (1 − λ)(1 − x))

(1 − (1 − λ)(1 − xy))(1 − (1 − λ)(1 − x)(1 − y))
.

For any x ∈ [0,1] (resp., y ∈ [0,1]) γ 1
λ (x, ·) [resp., γ 1

λ (·, y)] is convex (resp., con-
cave) and reaches its minimum (resp., its maximum) at y∗ (resp., x∗) such that

x∗ = y∗ = (
√

λ − λ)(1 − λ)−1.

For m ≥ 1, we define λm := 2−2m and μm := 2−2m−1. Then for m large enough,
xm = ym = √

λm are asymptotically optimal strategies in �1
λm

. Thus,

lim
m→+∞vλm(1) = lim

m→+∞γ 1
λm

(xm, ym) = 1/2.
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For m large enough, xm = √
μm is an asymptotically optimal strategy for

Player 1 in �1
μm

, and either ym = 2
√

μm or y′
m = 1/2

√
μm is an optimal strategy

for Player 2 in �1
μm

. We have

lim
m→+∞γ 1

μm
(xm, ym) = lim

m→+∞γ 1
μm

(
xm,y′

m

) = 5/9.

Thus, limm→+∞ vμm(1) = 5/9, and (vλ(1)) does not converge.
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