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ON THE PROBABILITY THAT SELF-AVOIDING WALK
ENDS AT A GIVEN POINT

BY HUGO DUMINIL-COPIN∗,1, ALEXANDER GLAZMAN∗,†,1,
ALAN HAMMOND‡,2 AND IOAN MANOLESCU∗,1

Université de Genève∗, Steklov Mathematical Institute† and University of Oxford‡

We prove two results on the delocalization of the endpoint of a uniform
self-avoiding walk on Zd for d ≥ 2. We show that the probability that a walk
of length n ends at a point x tends to 0 as n tends to infinity, uniformly in x.
Also, when x is fixed, with ‖x‖ = 1, this probability decreases faster than
n−1/4+ε for any ε > 0. This provides a bound on the probability that a self-
avoiding walk is a polygon.

1. Introduction. Flory and Orr [10, 23] introduced self-avoiding walk as a
model of a long chain of molecules. Despite the simplicity of its definition, the
model has proved resilient to rigorous analysis. While in dimensions d ≥ 5 lace
expansion techniques provide a detailed understanding of the model, and the case
d = 4 is the subject of extensive ongoing research, very little is known for dimen-
sions two and three.

The present paper uses combinatorial techniques to prove two intuitive results
for dimensions d ≥ 2. We feel that the interest of the paper lies not only in its
results, but also in techniques employed in the proofs. To this end, certain tools are
emphasised as they may be helpful in future works as well.

We mention two results from the early 1960s that stand at the base of our ar-
guments: Kesten’s pattern theorem, which concerns the local geometry of a typi-
cal self-avoiding walk, and Hammersley and Welsh’s unfolding argument, which
gives a bound on the correction to the exponential growth rate in the number of
such walks.

1.1. The model. Let d ≥ 2. For u ∈ Rd , let ‖u‖ denote the Euclidean norm
of u. Let E(Zd) denote the set of nearest-neighbour bonds of the integer lattice Zd .
A walk of length n ∈ N is a map γ : {0, . . . , n} → Zd such that (γi, γi+1) ∈ E(Zd)

for each i ∈ {0, . . . , n − 1}. An injective walk is called self-avoiding. Let SAWn

denote the set of self-avoiding walks of length n that start at 0. We denote by
PSAWn the uniform law on SAWn, and by ESAWn the associated expectation. The
walk under the law PSAWn will be denoted by �.
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1.2. The endpoint displacement of self-avoiding walk. The law of the endpoint
displacement under PSAWn is a natural object of study in an inquiry into the global
geometry of self-avoiding walk. The displacement is quantified by the Flory expo-
nent ν, specified by the conjectural relation ESAWn[‖�n‖2] = n2ν+o(1).

In dimension d ≥ 5, it is rigorously known that ν = 1/2 (see Hara and Slade [13,
14]). When d = 4, ν = 1/2 is also anticipated, though this case is more subtle from
a rigorous standpoint. Recently, some impressive results have been achieved using
a super-symmetric renormalization group approach for continuous-time weakly
self-avoiding walk; see [1, 3, 4] and references therein.

When d = 2, ν = 3/4 was predicted nonrigorously in [21, 22] using the
Coulomb gas formalism, and then in [8, 9] using conformal field theory. It is also
known subject to the assumption of existence of the scaling limit and its conformal
invariance [17]. Unconditional rigorous statements concerning the global geome-
try of the model are almost absent in the low dimensional cases at present. In [6],
sub-ballistic behaviour of self-avoiding walk in all dimensions d ≥ 2 was proved,
in a step toward the assertion that ν < 1.

1.3. Results. This paper is concerned in part with ruling out another extreme
behaviour for endpoint displacement, namely that �n is close to the origin. In [19],
the mean-squared displacement of the walk is proved to exceed n4/(3d). As we will
shortly explain, a variation of that argument shows that PSAWn(‖�n‖ = 1) ≤ 2

3 for
all n high enough. Recently, Benjamini posed the question of strengthening this
conclusion to PSAWn(‖�n‖ = 1) → 0 as n → ∞. In this article, we confirm this
assertion and also investigate the related question of the uniform delocalization
of �n.

The first theorem deals with a quantitative bound on PSAWn(‖�n‖ = 1).

THEOREM 1.1. Let d ≥ 2. For any ε > 0 and n large enough,

PSAWn

(‖�n‖ = 1
) ≤ n−1/4+ε.

Observe that PSAWn(‖�n‖ = 1) equals (n + 1)pn+1/cn, where cn and pn de-
note the number of self-avoiding walks and self-avoiding polygons (such polygons
will be formally introduced in Section 5, and are considered up to translation) of
length n. It is thus natural to think that Theorem 1.1 may be proved by provid-
ing bounds on cn and pn+1 separately. On Z2, the best such rigorous bounds are
cn ≥ μn

c (this follows from sub-multiplicativity) and pn ≤ Cn−1/2μn
c [18], where

μc := limn |cn|1/n is the connective constant. These two bounds do not imply that
PSAWn(‖�‖ = 1) tends to 0. A similar issue arises in dimensions 3 and 4. We will
therefore try to bound the ratio (n + 1)pn+1/cn directly.

For dimensions d ≥ 5, it has been proved in [14], Theorem 1.1, that cn ∼ Aμn
c

for some constant A > 0. It is expected (and proved for high enough dimension
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[20], Theorem 6.1.3) that pn ≤ Cn−d/2−1μn
c for some constant C. This proves

that

PSAWn

(‖�n‖ = 1
) ≤ Cn−d/2,

an inequality which is consistent with the Gaussian behaviour of �n above di-
mension 4. See [5] for an extended discussion of self-avoiding polygons in high
dimensions.

For dimension d = 2, PSAWn(‖�n‖ = 1) is conjectured to behave like
n−59/32+o(1) as n → ∞ through odd values. This follows from the well-known
predictions pn = n−5/2+o(1)μn

c for odd n and cn = n11/32+o(1)μn
c . The first of these

two estimates may be derived from a conjectural hyperscaling relation which ap-
pears as equation (1.4.14) in [20]; the relation links the exponent 5/2 in the first
estimate to the Flory exponent ν. The second estimate was first predicted by Nien-
huis in [21] and can also be deduced from SLE8/3; see [17], Prediction 5.

We expect that Theorem 1.1 may be extended as follows: for any fixed point x,

PSAWn(�n = x) ≤ n−1/4+ε(1.1)

for any n large enough. Indeed, as conjectured in [20], Conjecture 1.4.1, local
surgery arguments are expected to show that, for x ∈ Zd with an odd sum of co-
ordinates, PSAWn(�n = x) is comparable to PSAWn(‖�n‖ = 1). (The mention of
parity is necessary because a walk of even length may not end one step from the
origin.) For Z2, this may potentially be shown by a tedious ad-hoc construction.
For higher dimension, significant difficulties occur and it is unclear how to prove
this result.

We will not extend Theorem 1.1 to arbitrary x, but we prove in the theorem be-
low that �n is not concentrated by providing uniform (yet nonquantitative) bounds
on the probability to end at a given point.

THEOREM 1.2. Let d ≥ 2. As n → ∞, supx∈Zd PSAWn(�n = x) → 0.

The rest of the paper is structured as follows. In Section 2, we lay out some
of the tools used in the proofs, namely the multi-valued map principle, unfolding
arguments and the Hammersley–Welsh bound. The proofs of Theorems 1.1 and 1.2
may be found in Sections 5 and 4, respectively. In spite of the similarity of the
results, the two proofs employ very different techniques, and indeed Sections 4
and 5 may be read independently of each other.

In Section 3, we define and discuss notions revolving around Kesten’s pattern
theorem. Although the material in this section is not original per se, our presenta-
tion is novel and, we hope, may be fruitful for further research. An example of a
consequence is the following delocalization of the midpoint of self-avoiding walk.

PROPOSITION 1.3. There exists a constant C > 0 such that, for n ∈ N,

sup
x∈Zd

PSAWn(�
n/2� = x) ≤ Cn−1/2.
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A comment on notation. The only paths which we consider in this paper are
self-avoiding walks. Thus, we may, and usually will, omit the term “self-avoiding”
in referring to them. In the course of the paper, several special types of walk will be
considered—such as self-avoiding bridges and self-avoiding half-space walks—
and this convention applies to these objects as well.

2. Preliminaries.

2.1. General notation. We denote by 〈·|·〉 the scalar product on Rd , and recall
the notation ‖ ·‖ for the Euclidean norm on this space. Let e1, . . . , ed be the natural
basis of Zd . We will consider e1 to be the vertical direction. The cardinality of a set
E will be denoted by |E|. The length of a walk γ , being the cardinality of its edge-
set, will be denoted by |γ |. For 0 ≤ i ≤ j ≤ n, we write γ [i, j ] = (γi, . . . , γj ).

For m,n ∈N, let γ and γ̃ be two walks of lengths m and n, respectively, neither
of which needs to start at 0. The concatenation γ ◦ γ̃ of γ and γ̃ is given by

(γ ◦ γ̃ )k =
{

γk, k ≤ m,
γm + (γ̃k−m − γ̃0), m + 1 ≤ k ≤ m + n.

2.2. The multi-valued map principle. Multi-valued maps and the multi-valued
map principle stated next will play a central role in our analysis.

A multi-valued map from a set A to a set B is a map � : A →P(B). For b ∈ B ,
let �−1(b) = {a ∈ A : b ∈ �(a)} and

��(b) = ∑
a∈�−1(b)

1

|�(a)| .(2.1)

The quantity ��(b) may be viewed as a (local) contracting factor of the map, as
illustrated by the following statement.

LEMMA 2.1 (Multi-valued map principle). Let A and B be two finite sets and
� : A →P(B) be a multi-valued map. Then

|A| = ∑
b∈B

��(b) ≤ |B|max
b∈B

��(b).

The proof is immediate. We will often apply the lemma in the special situation
where, for any b ∈ B , |�(a)| is independent of a ∈ �−1(b). Then the contracting

factor may be written ��(b) = |�−1(b)|
|�(a)| for any a ∈ �−1(b).

2.3. Unfolding self-avoiding walks. An unfolding operation, similar to the one
used in [12] and more recently in [19], will be applied on several occasions. We
first describe the operation in its simplest form, and then the specific version that
we will use.



THE ENDPOINT OF SELF-AVOIDING WALK 959

For z ∈ Zd , let Rz be the orthogonal reflection with respect to the plane {x ∈
Zd : 〈x|e1〉 = 〈z|e1〉}, that is, the map such that for any x ∈ Zd ,

Rz(x) = x + 2〈z − x|e1〉e1.

For γ ∈ SAWn, let k be any index such that

〈γk|e1〉 = max
{〈γj |e1〉 : 0 ≤ j ≤ n

}
.

The simplest unfoldings of γ are those walks obtained by concatenating γ [0, k]
and Rγk

(γ [k,n]) for such an index k. The condition on k ensures that any such
walk is indeed self-avoiding.

Of the numerous choices of the unfolding point index k, the following seems to
be the most suitable for our purpose.

DEFINITION 2.2. For γ ∈ SAWn, the hanging time hang = hang(γ ) is the
index k ∈ {0, . . . , n} for which γk is maximal for the lexicographical order of Zd .
We call γhang the hanging point and write γ 1 = γ [0,hang] and γ 2 = γ [hang, n].

Here are two essential properties of the hanging point. First, γhang depends only
on the set of points visited by γ , not on the order in which they are visited. Second,
the lexicographical order of Zd is invariant under translations; thus the hanging
time of γ is the same as that of any translate of γ .

In a variation (motivated by technical considerations) of the unfolding proce-
dure, we will sometimes add a short walk between γ [0, k] and Rγk

γ [k,n]. The
specific unfolding that we will use is defined next.

DEFINITION 2.3. For a walk γ ∈ SAWn, define Unf(γ ) ∈ SAWn+1 to be the
concatenation of γ 1, the walk across the edge e1, and the translation of Rγhangγ

2

by e1.

In [19], Madras used an unfolding argument to obtain a lower bound on the
mean-square displacement of a uniform self-avoiding walk. A simple adaptation
of his technique proves that PSAWn(‖�n‖ = 1) ≤ 2

3 for all n ≥ 3d + 1. We now
sketch this argument since, for example, the proof of Theorem 1.1 may be viewed
as an elaboration.

To any walk γ ∈ SAWn with ‖γn‖ = 1, choose an axial direction in which γ

has maximal coordinate at least two—we will assume this to be the e1-direction—
and associate to γ its simple unfolding b ∈ SAWn, given by concatenating the
e1-reflection of γ 2 to γ 1. Any unfolded walk b corresponds to at most two walks
γ with ‖γn‖ = 1. This is because the level at which the unfolding was done is one
among 〈bn|e1〉−1

2 , 〈bn|e1〉
2 and 〈bn|e1〉+1

2 , of which at most two are integers.
Moreover, since the maximal e1-coordinate of γ is at least two, the unfolding

of γ is such that ‖bn‖ > 1. The choice of axial direction for reflection may be
made in such a way that it may be determined from the unfolded walk. Thus,
PSAWn(‖�n‖ = 1) ≤ 2

3 .
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2.4. The Hammersley–Welsh bound. For n ∈ N, let cn = |SAWn| denote the
number of length-n walks that start at the origin. Write μc ∈ (0,∞) for the con-
nective constant, given by μc = limn c

1/n
n . Its existence follows from the sub-

multiplicativity inequality cn+m ≤ cncm and Fekete’s lemma. Furthermore, these
also imply that c

1/n
n converges to μc from above. This provides a lower bound

on cn.
The value of μc is not rigorously known for any lattice Zd with d ≥ 2. The

only nontrivial lattice for which the connective constant (for unweighted self-
avoiding walks) has been rigorously derived is the hexagonal lattice (see [7]) using
parafermionic observables (also see [2, 11] for other applications of parafermionic
observables, including the computation of the connective constant for a model of
weighted walks).

An upper bound for the growth rate of cn is provided by the Hammersley–Welsh
argument of [12] (which is proved by an iterative unfolding procedure). It states
the existence of a constant cHW > 0 such that, for all n ∈ N,

μn
c ≤ cn ≤ ecHW

√
nμn

c .(2.2)

3. The shell of a walk: Definition and applications. The shell of a walk,
defined next, is a notion that appeared implicitly in Kesten’s proof of the pattern
theorem in [16]. In the next subsections, we present two consequences of the pat-
tern theorem which may be of some general use. We illustrate this by the proof of
Proposition 1.3.

DEFINITION 3.1 (Type I/II patterns). A pair of type I and II patterns is a pair
of self-avoiding walks χ I, χ II, both contained in the cube [0,3]d , with the proper-
ties that:

• χ I and χ II both visit all vertices of the boundary of [0,3]d ,
• χ I and χ II both start at (3,1, . . . ,1) and end at (3,2,1, . . . ,1),
• |χ II| = |χ I| + 2.

Figure 1 contains examples of such patterns for d = 2. The existence of such
pairs of walks for any dimension d ≥ 2 may be easily checked, and no details are
given here. Fix a pair of type I and II patterns for the rest of the paper.

A pattern χ is said to occur at step k of a walk γ if γ [k, k + |χ |] is a translate
of χ . In such case call the translate of [0,3]d containing γ [k, k + |χ |] a slot of γ .
A walk may have several occurrences of both type I and II patterns. Note that
occurrences of such patterns are necessarily disjoint.

DEFINITION 3.2 (Shell of a walk). Two self-avoiding walks are equivalent if
one can be obtained from the other by changing some type I patterns into type II
patterns and some type II patterns into type I patterns. Classes for this equivalence
relation are called shells.
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FIG. 1. An example of type I and II patterns for d = 2.

All walks of a given shell have the same slots, thus a shell may be viewed as
a walk with certain slots where type I and II patterns may be inserted. Note that
a shell may contain walks of different lengths, depending on the number of type
I and II patterns inserted in the slots. Shells are convenient to work with as many
interesting events may be written in terms of the shell of the walk (see below for
examples of such events).

The shell of the walk γ is denoted ς(γ ); TI(γ ) and TII(γ ) denote the number
of occurrences for patterns of type I and II in γ . Observe that TI(γ ) and TII(γ ) are
determined by ς(γ ) and the length of γ . When the random variable � is involved,
we will sometimes drop the explicit dependence of T on �.

By Kesten’s pattern theorem [16], Theorem 1, there exist constants c > 0 and
δ > 0 such that, for any n ≥ d3d ,

PSAWn

(
TI(�) ≤ δn

) ≤ e−cn and PSAWn

(
TII(�) ≤ δn

) ≤ e−cn.(3.1)

3.1. Shell probabilities are stable under perturbation of walk length. The fol-
lowing lemma states that, when considering typical events expressed only in terms
of shells, their PSAWn and PSAWn+2k probabilities are comparable for k small
enough. The lemma will be instrumental when applying multi-valued map argu-
ments.

Let A be a collection of shells and let

An = {
γ ∈ SAWn : ς(γ ) ∈ A

}
.

The set A may be chosen as, for example, the set of half-space walks, bridges, ir-
reducible bridges or walks with certain constraints on the number of renewal times
(the definitions of these notions are given below). This flexibility in the choice of
A may render the lemma useful in a broad context. We will use it in the proof of
Theorem 1.2, more precisely in Proposition 4.2.

LEMMA 3.3. For any c > 0, there exists C > 0 such that the following occurs.
Let A be a set of shells and n be an integer such that |An| ≥ e−c

√
nμn

c . Then, for
any 0 ≤ k ≤ n1/5 such that An−2k �=∅,

|An−2k| ≥ C|An|μ−2k
c .(3.2)
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The argument by which we will derive the lemma is a direct adaptation of one
in [16], where the claim is proved for An = SAWn. In this case, the result can be
improved to |k| ≤ n1/3 due to the sub-multiplicativity property of the number of
self-avoiding walks. For the uses we have in mind, n1/5 is sufficient.

PROOF OF LEMMA 3.3. Fix c > 0. It suffices to prove the statement for n

large enough (the specific requirements on n will be indicated in the proof). Fix a
value n.

Let δ, cδ > 0 be constants such that (3.1) holds. For � ∈ Z, define

Ãn+2� = {
γ ∈ An+2� : TII(γ ) > δn/2 + �

}
.

Note that the assumption |An| ≥ e−c
√

nμn
c and the choice of δ yield

|An \ Ãn|
≤ e−cδn|SAWn| ≤ e−cδne(cHW+c)

√
n|An|.

As a consequence, for n larger than some value depending on cδ, cHW and c,

|Ãn| ≥ 1
2 |An| ≥ 1

2e−c
√

nμn
c .(3.3)

This will be useful later, and henceforth we assume that n is sufficiently large
for (3.3) to hold.

We start by proving that, for n large enough and any � ∈ N with |�| ≤ n3/4, when
setting m = n + 2�,

|Ãm+2|
|Ãm| − |Ãm+4|

|Ãm+2|
≤ C′

δ3n
· |Ãm|
|Ãm+2|

,(3.4)

where C′ > 8 is a fixed constant. Note that, for n large enough, δn/2 + � ≤ δm for
all choices of �,m as above, and thus that Ãm and Ãm+2 are not void.

Consider the multi-valued map from Ãm+2 into Ãm that consists of replacing a
type II pattern by a type I pattern. The multi-valued map principle implies

|Ãm+2| =
∑

γ∈Ãm

TI(γ )

TII(γ ) + 1
.(3.5)

Similarly, by considering the multi-valued map from Ãm+4 into Ãm that replaces
two type II patterns by type I patterns, one obtains

|Ãm+4| =
∑

γ∈Ãm

TI(γ )(TI(γ ) − 1)

(TII(γ ) + 1)(TII(γ ) + 2)
.
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It follows that

|Ãm+2|2
|Ãm| − |Ãm+4|

=
( ∑

γ∈Ãm

1
)−1( ∑

γ∈Ãm

TI(γ )

TII(γ ) + 1

)2

− ∑
γ∈Ãm

TI(γ )(TI(γ ) − 1)

(TII(γ ) + 1)(TII(γ ) + 2)

≤ ∑
γ∈Ãm

((
TI(γ )

TII(γ ) + 1

)2

− TI(γ )(TI(γ ) − 1)

(TII(γ ) + 1)(TII(γ ) + 2)

)
≤ C′

δ3n
|Ãm|.

The first inequality is due to Cauchy–Schwarz and the second, valid when n is high
enough, to TII(γ ) ≥ δn/2 − n3/4 and TI(γ ) ≤ m ≤ n + 2n3/4. Dividing the above
by |Ãm+2| yields (3.4).

Let us now show that

|Ãn−2k+2|
|Ãn−2k|

< μ2
c + 1

n1/5 for all 0 ≤ k ≤ n1/5.(3.6)

Assume instead that for some 0 ≤ k ≤ n1/5 and m = n − 2k,

|Ãm+2|
|Ãm| ≥ μ2

c + 1

n1/5 .

In particular, this implies that |Ãm|
|Ãm+2| ≤ 1. Using (3.4), it may be shown by recur-

rence that, for n large enough and 0 ≤ � ≤ n3/4 + k, we have |Ãm+2�|
|Ãm+2�+2| ≤ 1 and

|Ãm+2�+2|
|Ãm+2�|

≥ μ2
c + 1

n1/5 − C′

δ3n

�∑
j=1

|Ãm+2j−2|
|Ãm+2j |

≥ μ2
c + 1

2n1/5 .

Thus,

|Ãn+2n3/4 | ≥ |Ãn|
(
μ2

c + 1

2n1/5

)n3/4

≥ 1

2
e−c

√
nμn

c

(
μ2

c + 1

2n1/5

)n3/4

> ecHW

√
n+2n3/4

μn+2n3/4

c .

In the second inequality, we used (3.3), and, in the third, we assumed that n ex-
ceeds an integer that is determined by c, cHW and μc. The above contradicts the
Hammersley–Welsh bound (2.2), and (3.6) is proved.
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We conclude by observing that (3.6) and (3.3) imply that, for all 0 ≤ k ≤ n1/5,

1

2
|An| ≤ |Ãn| ≤

(
μ2

c + 1

n1/5

)k

|Ãn−2k| ≤ Cμ2k
c |Ãn−2k| ≤ Cμ2k

c |An−2k|,
where C is some constant depending only on μc. �

REMARK 3.4. If one assumes that |Am| ≥ e−c
√

mμm
c for any m ∈ [n −

n3/4, n + n3/4], then the same technique implies a stronger result. In addition
to (3.6), a converse inequality may be obtained by a similar argument. Assuming
|Am+2|/|Am| ≤ μ2

c − 1
n1/5 for some m ∈ [n−2n1/5, n+2n1/5] leads to a contradic-

tion by going backward instead of forward. It follows that there exists a constant
C > 0 such that the ratio μ2k

c |An|/|An+2k| is contained between 1/C and C for all
|k| ≤ n1/5. We expect that in most applications, the important bound will be the
one given by Lemma 3.3.

3.2. Redistribution of patterns. We present a technical result, Lemma 3.5,
concerning the distribution of patterns of type I and II within a given typical shell.
Roughly speaking, when considering walks of a given length with a given shell,
there is a specified number of type I patterns to be allocated into the available slots,
and this allocation occurs uniformly. For a typical shell, the number of slots, and
the number of type I patterns to be allocated into them, are macroscopic quantities,
of the order of the walk’s length. Thus, conditionally on a typical shell, the number
of type I patterns in a macroscopic part of the walk has a Gaussian behaviour, with
variance of the order of the walk’s length.

Lemma 3.5 will prove to be very useful: after its proof, we will derive Proposi-
tion 1.3, our result concerning midpoint delocalization, as a corollary. The lemma
will also play an important role in our quantitative study of endpoint delocalization
in Section 5.

Consider a shell σ and (S1, S2) a partition of its slots. For a walk γ ∈ σ and
i = 1,2, let T i

I (γ ) [and T i
II(γ )] be the number of type I (and type II) patterns in Si .

With this notation, TI = T 1
I + T 2

I and TII = T 1
II + T 2

II .

LEMMA 3.5. Let δ, ε, ε′,C > 0. There exists N > 0 such that the follow-
ing occurs. Let n ≥ N , σ be a shell and (S1, S2) be a partition of its slots with
|S1|, |S2| ≥ δn. Suppose that n and σ are such that TI and TII are both larger than
δn (and recall that TI and TII are determined by n and σ ). Then

PSAWn

(∣∣∣∣T 1
I (�) − TI|S1|

|S1| + |S2|
∣∣∣∣ ≥ √

n(logn)1/2+ε|ς(�) = σ

)
≤ 1

nC
.(3.7)

Moreover, if k1, k2 are such that |ki − TI|S1||S1|+|S2| | ≤ 2
√

n(logn)1/2+ε and |k1 − k2| ≤√
n, then

PSAWn(T
1
I (�) = k1|ς(�) = σ)

PSAWn(T
1
I (�) = k2|ς(�) = σ)

≥ n−ε′
.(3.8)
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Before the technical proof, we give a heuristic explanation. For simplicity, sup-
pose that S1 comprises the first K slots of σ , and S2 the remainder.

Consider the random process W : {0, . . . , TI + TII} → {0, . . . , TI} whose value
at 0 ≤ k ≤ TI + TII is the number of type I patterns allocated into the first k slots
of σ . Under PSAWn(·|ς(�) = σ), W is uniform in the set of trajectories of length
TI + TII, with steps 0 or 1, starting at 0 and ending at TI.

In other words, consider the random walk with increments zero with probability
TII

TI+TII
and one with probability TI

TI+TII
. Then W has the law of this walk, condi-

tioned on arriving at TI at time TI + TII. The assumptions on TI and TII ensure that
the variance of the increment of W is bounded away from 0.

With this notation T 1
I = WK . The inequalities for |S1| and |S2| ensure that the

point K is not too close to the endpoints of the range of W . It follows from standard

estimates on random walk bridges that T 1
I√

TI+TII
follows an approximately Gaus-

sian distribution. If this approximation is used, then Lemma 3.5 follows by basic
computations. Also, the probability that WK equals � is at most Cn−1/2 for some
constant C > 0 and any � ∈ Z. This last observation will be used in the proof of
Proposition 1.3.

Finally, we mention that a similar idea was used in [15] to obtain n−1/2 varia-
tions for the writhe of self-avoiding polygons of length n.

PROOF OF LEMMA 3.5. Fix δ, ε, ε′ and C strictly positive. Let n, σ and
(S1, S2) be as in the lemma. The parameter n will be assumed to be large in the
sense that n ≥ N for some N = N(δ, ε, ε′,C).

If � is distributed according to PSAWn(.|ς(γ ) = σ), then the TI type I patterns
and TII type II patterns are distributed uniformly in the slots of σ . Thus, for k ∈
{0, . . . , |S1|},

PSAWn

(
T 1

I (�) = k|ς(�) = σ
) =

(|S1|
k

)( |S2|
TI−k

)
(|S1|+|S2|

TI

) .(3.9)

Write m = |S1|+ |S2|, |S1| = αm and TI = βm. By assumption α,β ∈ [δ,1− δ]
and m ≥ 2δn. Let Z = T 1

I
αβm

−1. Under PSAWn(·|ς(�) = σ), Z is a random variable
of mean 0, such that αβ(1 + Z)m ∈ Z∩ [0,min{|S1|, TI}].

First, we investigate the case where Z is close to its mean, corresponding to
the second part of the lemma. By means of a computation which uses Stirling’s
approximation and the explicit formula (3.9), we find that

PSAWn

(
Z = z|ς(�) = σ

)
(3.10)

= (
1 + o(1)

)exp(−(αβ)/(2(1 − α)(1 − β))mz2)√
2παβ(1 − α)(1 − β)m

,

where o(1) designates a quantity tending to 0 as n tends to infinity, uniformly in

the acceptable choices of σ , S1, S2 and z, with |z| ≤ 2
√

n(logn)1/2+ε

αβm
.
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Consider now k1, k2 be as in the second part of the lemma. Define the corre-

sponding zi = ki

αβm
− 1, and note that |zi | ≤ 2

√
n(logn)1/2+ε

αβm
and |z1 − z2| ≤

√
n

αβm
.

By (3.10),

PSAWn(Z = z1|ς(�) = σ)

PSAWn(Z = z2|ς(�) = σ)
= (

1 + o(1)
)

exp
(
− 1

2δ5 (logn)1/2+ε

)
≥ n−ε′

,

for n large enough. This proves (3.8).
We now turn to the deviations of Z from its mean (this corresponds to the first

part of the lemma). From (3.9), one can easily derive that PSAWn(Z = z|ς(�) = σ)

is unimodal in z with maximum at the value closest to 0 that Z may take (we
remind the reader that Z takes values in 1

αβm
Z−1, which contains 0 only if αβm ∈

Z). For |z| ≥
√

n(logn)1/2+ε

αβm
, (3.10) implies the existence of constants c0, c1 > 0

depending only on δ such that, for n large enough,

PSAWn

(
Z = z|ς(�) = σ

) ≤ exp(−c0(logn)1+2ε)

c1
√

n
≤ n−C−1.(3.11)

Since T 1
I takes no more than n values, (3.11) implies (3.7). �

We are now in a position to prove Proposition 1.3.

PROOF OF PROPOSITION 1.3. It suffices to prove the statement for n large.
Let n ∈N and x ∈ Zd .

Consider a shell σ with x ∈ γ for some walk γ ∈ σ . Let S1 be the slots of σ

before x and let S2 be the ones after. We will omit here the case where x is a point
contained in one of the slots; this is purely a technical issue and does not change
the proof in any significant way.

Consider walks γ ∈ SAWn with ς(γ ) = σ . Let tσ be the number of type I pat-
terns that such a walk needs to have in S1 so that γ
n/2� = x, if such a number
exists and is contained in [0,min{|S1|, TI}]. Denote S the set of shells for which tσ
is well defined. Thus, if γ has midpoint x, then ς(γ ) ∈ S . We may therefore write

PSAWn(�
n/2� = x) = ∑
σ∈S

PSAWn

(
T 1

I = tσ , ς(�) = σ
)
.(3.12)

There exist constants δ, c > 0 such that

PSAWn

(
�

[
0,

n

4

]
contains fewer than δn type I patterns

)

≤ cn/4c3n/4

cn

PSAWn/4(� contains fewer than δn type I patterns)(3.13)

≤ e2cHW
√

nPSAWn/4(� contains fewer than δn type I patterns) < e−cn,
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where the second inequality comes from the Hammersley–Welsh bound (2.2), and
the third from (3.1). The same holds for type II patterns, and for �[3n

4 , n] instead
of �[0, n

4 ]. It follows that

PSAWn

(
min

(|S1|, |S2|, TI, TII
)
< δn

)
< 4e−cn.(3.14)

For shells σ ∈ S such that |S1| ≥ δn and |S2| ≥ δn, (3.10) gives

PSAWn

(
T 1

I = k|ς(�) = σ
) ≤ Cn−1/2,(3.15)

for some C > 0, any k ∈ N and n sufficiently large (i.e., larger than some value
depending only on δ).

By applying (3.14) and (3.15) to (3.12), we obtain

PSAWn(�
n/2� = x) ≤ 4e−cn + Cn−1/2 ≤ 2Cn−1/2,

for n sufficiently large. �

4. Delocalization of the endpoint. This section is devoted to the proof of
Theorem 1.2. Let us begin with some general definitions. A walk γ ∈ SAWn is
called a bridge if

〈γ0|e1〉 < 〈γk|e1〉 ≤ 〈γn|e1〉 for 0 < k ≤ n.

Write SABn for the set of bridges of length n and PSABn for the uniform measure
on SABn.

For γ ∈ SAWn, an index k ∈ [0, n] is a renewal time if 〈γi |e1〉 ≤ 〈γk|e1〉 for
0 ≤ i < k and 〈γi |e1〉 > 〈γk|e1〉 for n ≥ i > k. Because it simplifies the proof of
the next subsection in a substantial way, we introduce the notion of z-renewal; see
Figure 2. An index k ∈ [0, n − 2] is a z-renewal time if:

• 〈γi |e1〉 < 〈γk+1|e1〉 for 0 ≤ i < k + 1,
• 〈γk+1|e1〉 = 〈γk+2|e1〉,

FIG. 2. A walk γ with a renewal point γk , a z-renewal point γ� and hanging point γhang. The bold
structure beyond the point γ� helps to ensure that � is a z-renewal time. Both γ [k, �] and γ [k,hang]
are bridges.
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• 〈γi |e1〉 > 〈γk+1|e1〉 for n ≥ i > k + 2.

Note that a z-renewal time is necessarily a renewal time. Let zRγ denote the set of
z-renewal times of γ . A (z-)renewal point is a point of the form γk where k is a
(z-)renewal time.

4.1. The case of bridges. Let π1 be the orthogonal projection from Zd onto
the hyperplane H= {x ∈ Zd : 〈x|e1〉 = 0}, that is, for any x ∈ Zd ,

π1(x) = x − 〈x|e1〉e1.

Our first step on the route to Theorem 1.2 is its analogue for bridges. Bridges
are easier to handle due to their renewal and z-renewal points.

PROPOSITION 4.1. We have that limn supv∈H PSABn(π1(�n) = v) = 0.

This proposition follows from the next two statements. The first shows that typ-
ical bridges have many z-renewal times, and the second that the endpoint of a
bridge with many z-renewal times is delocalized.

PROPOSITION 4.2. For any M ∈ N, limn PSABn(|zR�| < M) = 0.

PROOF. Fix ε > 0 and M ∈ N and let us show that, for n large enough,
PSABn(|zR�| < M) < ε.

Let SABM
n be the set of bridges of length n with strictly fewer than M z-renewal

times. If |SABM
n | < e−2cHW

√
nμn

c , we may use (2.2) to deduce that PSABn(|zR�| <
M) < e−cHW

√
n ≤ ε, provided n is large enough.

From now on, assume
∣∣SABM

n

∣∣ ≥ e−2cHW
√

nμn
c .(4.1)

Let k = 
n1/5�, and define the map

� :
k⋃

j=1

SABM
n−2j × SAB2j−2 −→ SABn

that maps (γ1, γ2) to the concatenation of γ1, the walk whose consecutive edges
are e1 and e2, and γ2. Each γ ∈ SABn has at most M pre-images under �, because,
if � maps (γ1, γ2) to γ , then the endpoint of the copy of γ1 in γ is one of the first
M z-renewal points of γ . We deduce that

k∑
j=1

∣∣SABM
n−2j

∣∣ × |SAB2j−2| ≤ M|SABn|.
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Lemma 3.3 applied with A = ⋃
k≥0 SABM

k , along with (4.1), provides the exis-

tence of a constant C > 0 for which |SABM
n−2j | ≥ Cμ

−2j
c |SABM

n | for all 0 ≤
j ≤ k. Thus,

PSABn

(|zR�| < M
) = |SABM

n |
|SABn| ≤ M

C
∑k

j=1 |SAB2j−2|μ−2j
c

.

However, it is a classical fact that the generating function for bridges diverges at
criticality, that is

∑∞
j=1 |SAB2j |μ−2j

c = ∞. This is shown for instance in [20],
Corollary 3.1.8. As n tends to infinity, so does k and, therefore, for n sufficiently
large, PSABn(|zR�| < M) < ε. �

PROPOSITION 4.3. For any ε > 0, there exists M > 0 such that, for any
n,h > 0 and x ∈ Zd ,

PSABn

(
�n = x||zR�| ≥ M, 〈�n|e1〉 = h

) ≤ ε.

PROOF. If k is a z-renewal time of a walk γ , and if the edge (γk+1, γk+2) is
modified to take any one of the 2d − 2 values ±e2,±e3, . . . , the outcome remains
self-avoiding and shares γ ’s height. In light of this, the proof is a routine exercise.

�

4.2. The case of half-space walks. Next, we prove delocalization for walks
confined to a half-space. The set of half-space walks of length n is

SAHSWn = {
γ ∈ SAWn : 〈γk|e1〉 > 0 for all 1 ≤ k ≤ n

}
.

Let PSAHSWn denote the uniform measure on SAHSWn.

PROPOSITION 4.4. We have that limn supx∈Zd PSAHSWn(γn = x) = 0.

PROOF. Let ε > 0 and note that Proposition 4.1 ensures the existence of H ∈
N such that

sup
k≥H,v∈H

PSABk

(
π1(�k) = v

) ≤ ε.(4.2)

First note that PSAHSWn(〈γhang|e1〉 ≤ H) decays exponentially as n → ∞. In-
deed, the pattern theorem [16], Theorem 1, implies that, with probability exponen-
tially close to one, a walk in SAHSWn contains H + 1 consecutive edges e1. We
may therefore restrict our attention to walks going above height H .

Let x ∈ Zd and define a multi-valued map � : {γ ∈ SAHSWn : γn = x} →
SAHSWn+1 as follows. Let ren be the last renewal time of Unf(γ ) (recall the
definition of Unf from Section 2.3) and let �(γ ) be the set of all half-space
walks which can be represented as the concatenation of some bridge of length
ren and Unf(γ )[ren, n]. See Figure 3. Note that hang is a renewal time for Unf(γ )
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FIG. 3. Left: A walk γ ∈ SAHSWn ending at x. Middle: The unfolding of γ , Unf(γ ), and its last
renewal point Unf(γ )ren. Notice the bold edge e1 added between γ 1 and the reflection of γ 2. Right:
A walk b ∈ �(γ ). Its last renewal point is bren; b[0, ren] is a bridge and b[ren, n + 1] is equal up to
translation to Unf(γ )[ren, n+1] (bold). The choice of b[0, ren] may be such that π1(bn+1) �= π1(x).

(this is due to the edge e1 added between the two walks), hence ren is well defined
and ren ≥ hang. For any γ ∈ SAHSWn, |�(γ )| = |SABren|.

In the other direction, let b ∈ SAHSWn+1 and γ ∈ �−1(b). The time ren of γ

can be determined, since it is the last renewal time of b. As such, γ [ren, n] is
determined by b. Thus, γ [0, ren] is a bridge with

π1(γren) = π1(x + bren − bn+1).

Furthermore, Unf is an injective function from {χ ∈ SAHSWn : χn = x} to
SAHSWn+1 (indeed, the vertical coordinate of the hanging point of the original
walk can be determined from knowing that the original walk ended at x). In con-
clusion, ∣∣�−1(b)

∣∣ ≤ ∣∣{χ ∈ SABren : π1(χren) = π1(x + bren − bn+1)
}∣∣.

As mentioned before, we may suppose 〈γhang|e1〉 ≥ H and, therefore, ren ≥ H .
The set �(γ ) is independent of γ ∈ �−1(b). Thus, for any choice of b, the con-
tracting factor of � appearing in the multi-valued principle satisfies

��(b) ≤ max
k≥H,v∈HPSABk

(
π1(�k) = v

) ≤ ε.

The multi-valued map principle and the trivial inequality |SAHSWn+1| ≤
2d|SAHSWn| yield PSAHSWn(γn = x) ≤ 2dε, and the proof is complete. �

4.3. The case of walks (proof of Theorem 1.2). Fix ε > 0. Proposition 4.3
yields the existence of M > 0 such that, for any n,h ≥ 0,

sup
x∈Zd

PSABn

(
�n = x||zR�| ≥ M, 〈�n|e1〉 = h

) ≤ ε

2d
.(4.3)
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Fix such a value of M . Recall the notation (γ 1, γ 2) = (γ [0,hang], γ [hang, n]).
We divide the proof in two cases, depending on whether �1 possesses at least or
fewer than M z-renewal times. The next two lemmas treat the two cases.

LEMMA 4.5 (Many z-renewal times for �1). For n large enough,

sup
x∈Zd

PSAWn

(
�n = x and |zR�1 | ≥ M

) ≤ ε.

In the case where the first part contains few z-renewal times, we further demand
that the hanging time be smaller than n/2.

LEMMA 4.6 (Few z-renewal times for �1). For n large enough,

sup
x∈Zd

PSAWn

(
�n = x,hang ≤ n/2 and |zR�1 | < M

) ≤ ε.

Theorem 1.2 follows from the two lemmas because, as we now see, they imply
that

sup
x∈Zd

PSAWn(�n = x) ≤ 4ε.

Indeed, the lemmas clearly yield

sup
x∈Zd

PSAWn(hang ≤ n/2 and �n = x) ≤ 2ε,

for n large enough. The counterpart inequality with hang ≥ n/2 may be obtained
by reversing the walk’s orientation (and translating it to start at the origin).

Thus the proof of Theorem 1.2 is reduced to demonstrating the two lemmas.

PROOF OF LEMMA 4.5. For n ∈ N, let EM(x) be the set of walks γ ∈ SAWn

with γn = x and |zRγ 1 | ≥ M . For such walks, let ren be the smallest renewal
time of γ 1. Split γ 1 in two parts γ 11 = γ [0, ren], γ 12 = γ [ren,hang] and set
k = hang − ren.

We define a multi-valued map � : EM(x) → SAWn+1 under which γ ∈ EM(x)

is unfolded about hang and the sub-bridge γ 12 is substituted by any bridge sharing
γ 12’s length and e1-displacement (but not necessarily its displacement in other
directions) and having at least M z-renewal points. More precisely, for γ ∈ EM(x),
�(γ ) is the set of walks b ∈ SAWn+1 with the properties that:

• b[0, ren] is equal to γ 11;
• b[ren,hang] is the translate of a bridge of length k and e1-displacement

〈γhang − γren|e1〉,
and which has at least M z-renewal times;
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FIG. 4. Left: A walk γ ∈ EM(x). Right: A walk b ∈ �(γ ). The first and last parts of b (bold) are
the same as those of γ (up to translation and reflection). Its middle part is a bridge with appropriate
length and e1-displacement.

• and b[hang, n + 1] is equal to Unf(γ 2) (up to translation).

By construction, such walks are indeed self-avoiding, so that �(γ ) is well-defined.
See Figure 4.

Let us now estimate the contracting factor �� of �. For γ ∈ EM(x),∣∣�(γ )
∣∣ = ∣∣{χ ∈ SABk : |zRχ | ≥ M and 〈χk|e1〉 = 〈γhang − γren|e1〉}∣∣.(4.4)

For the number of pre-images, consider γ ∈ �−1(b) for some b ∈ SAWn+1
[note that �−1(b) could be empty, in which case the conclusion is trivial]. Since
γ ends at x and the e1-displacement of the bridge which replaces γ 12 in b is the
same as that of γ 12, the e1-coordinate of the hanging point of γ is determined by b.
Namely,

〈γhang|e1〉 = 〈bhang(γ )|e1〉 = 〈x|e1〉 + 〈bn+1|e1〉 − 1

2
.

But hang is a renewal time for b, hence the above determines hang. It follows
that γ 2 is also determined by b (including its positioning which is given by the
fact that γn = x). Moreover, since ren is the first renewal time of γ , it is also the
first renewal time of b[0,hang]. Thus, b determines γ 11 as well. Finally, γ 12 is a
bridge with at least M z-renewals, between the determined points γren and γhang.
It follows that∣∣�−1(b)

∣∣ ≤ ∣∣{χ ∈ SABk : |zRχ | ≥ M and χk = γhang − γren
}∣∣.(4.5)

Since γ 11 and γ 2 are determined by b, any γ ∈ �−1(b) has the same number of
images under �. Equations (4.4), (4.5) and the choice of M [see (4.3)] imply that
��(b) is bounded by ε

2d
uniformly in γ , which immediately yields

∣∣EM(x)
∣∣ ≤ ε

2d
|SAWn+1| ≤ ε|SAWn|. �
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FIG. 5. Left: A self-avoiding walk γ ∈ Fj . Right: A walk b ∈ �(γ ). The point bhang(γ ) is the
(j + 1)st z-renewal point of b; it is followed by the edges e1, e2 (in bold), then by a half-space walk
of length n − hang + 1.

We finish with the easier proof of Lemma 4.6.

PROOF OF LEMMA 4.6. Let Fj (x) be the set of walks γ ∈ SAWn such that
γn = x, hang ≤ n/2 and |zRγ 1 | = j .

We construct once again a multi-valued map �, this time from Fj (x) to
SAWn+3. For γ ∈ Fj (x), �(γ ) comprises the walks formed by concatenating γ 1,
the walk whose consecutive edges are e1 and e2, and any half-space walk of length
n − hang + 1. See Figure 5.

The number of images through � satisfies |�(γ )| = |SAHSWn−hang+1|. To
determine the number of pre-images, note that, if b ∈ �(γ ), then bhang(γ ) is the
(j + 1)st z-renewal point of b. Also, γ 2 is contained in the half-space {y ∈ Zd :
〈y|e1〉 ≤ 〈γhang|e1〉} and ends at the point x. Such walks can easily be transformed
into half-space walks of length n−hang+1 by reflecting them and adding an edge
e1 at the beginning. Note that the endpoint of such a walk is then determined by γ 1

and x. Using Proposition 4.4, we find that, for any b ∈ SAWn+3, the contracting
factor of � satisfies

��(b) ≤ sup
k≥n/2+1

z∈Zd

PSAHSWk(�k = z) ≤ ε

(2d)3M
,

provided that n is large enough. By the multi-valued map principle and
|SAWn+3| ≤ (2d)3|SAWn|, we obtain that PSAWn(Fj (x)) ≤ ε/M . By taking the
union of the Fj (x) over j < M , we obtain Lemma 4.6. �

5. Quantitative decay for the probability of ending at x. We say that a walk
γ = γ [0, n] closes if γ0 and γn are neighbours; a closing walk is one that closes.
Theorem 1.1 claims that for any ε > 0 and n large enough, PSAWn(� closes) ≤
n−1/4+ε .

A little notation is in order as we prepare to prove Theorem 1.1.
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DEFINITION 5.1. Two closing walks are said to be equivalent if the sequence
of vertices visited by one is a cyclic shift of this sequence for the other. A (self-
avoiding) polygon is an equivalence class for this equivalence relation. The length
of a polygon is equal to the length of any member closing walk plus one. For n ∈ N,
let SAPn be the set of polygons of length n + 1.

The following trivial lemma will play an essential role.

LEMMA 5.2 (Polygonal invariance). For n ∈ N, let χ and χ ′ be two equivalent
length-n closing walks. Then

PSAWn(� is a translate of χ) = PSAWn

(
� is a translate of χ ′).

5.1. An overview of the proof of Theorem 1.1. We start by a nonrigorous
overview of the proof of Theorem 1.1. The actual proof is in Section 5.2.

The proof will proceed by contradiction. Suppose that the statement of Theo-
rem 1.1 is false, and let n be a large integer such that PSAWn(� closes) ≥ n−1/4+5ε .
The factor 5ε in the exponent will be used as a margin of error which will decrease
at several steps of the proof.

Fix an index �0 ∈ [n
4 , 3n

4 ] such that PSAWn(� closes|hang = �0) ≥ n−1/4+4ε .
(The existence of such an index is proved in Lemma 5.3 and relies solely on polyg-
onal invariance and the hypothesis that Theorem 1.1 is false.)

A walk ending at its hanging point will be called good if, when completed by
n − �0 steps in such a way that the hanging point is left unchanged, the resulting
walk has probability at least n−1/4+3ε of closing. When thinking of walks as being
built step by step, good walks should be thought of as first parts that leave a good
chance for the walk to finally close. Since we assume that the walk closes with
good probability, it is natural to expect that its first part is good with reasonable
probability, and indeed one may prove (using polygonal invariance once again)
that for our choice of �0,

PSAWn

(
�1 is good|� closes,hang = �0

) ≥ n−1/4+3ε.

Here, the notation �1 = �[0,hang] for the walk’s first part was introduced in Def-
inition 2.2.

This estimate can be improved in the following way: one may change the value
of the hanging time and prove that for 0 ≤ k ≤ √

n,

PSAWn

(
�1 is good|� closes,hang = �0 − 2k

) ≥ n−1/4+2ε.(5.1)

This part of the proof is heavily based on the resampling of patterns described in
Lemma 3.5 and illustrated in Figure 6.

This study shows that, when considering closing walks as polygons, the �0 − 2k

steps before the hanging point have reasonable probability of forming a good walk,
for k = 0, . . . ,

√
n. The correspondence between closing walks and polygons is
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FIG. 6. In a closing walk the �0 steps up to the hanging point form a good walk (bold). By ex-
changing type I and II patterns between the bold and regular part of the walk in a way that increases

by order n1/2 the number of type II patterns in the bold part, we may effectively shorten the good
part by an amount of this order.

essential here, as is the fact that the hanging point only depends on the polygon,
not on the starting point of the closing walk.

Call a point whose index lies in [hang− �0,hang] of a closing walk ticked if the
section of the walk between that point and the hanging point is good. Since each
of

√
n points have chance at least n−1/4+2ε to be ticked, the expected number of

ticked points in a closing walk is at least n1/4+2ε . It follows that, with probability
greater than n−1/4+ε , a closing walk has more than n1/4+ε ticked points.

We now reach the crucial part of the proof. Fix a walk with T ≥ n1/4+ε ticked
points. By considering the portions of the walk between the ticked points and the
hanging point, we obtain a family of good walks {χi : i = 1, . . . ,T}, with χi ⊂
χi+1. See also Figure 7.

The existence of this family of good walks implies a very strong property of
χT. Indeed, let � be a uniform self-avoiding walk of length n − �0, starting at
the (common) end-point z of the χi’s and with hanging point z (in words, it stays
in the half-space “below” z). Note three properties. First, the events that � ends
next to the starting point of χi , for i = 1, . . . ,T, are mutually exclusive (in fact,
this is not quite true, as we will discuss in the proof). Second, the events that �

avoids χi are decreasing with i (since χi is a portion of χi+1). Third, note that
χi being good means that, when conditioning � to avoid χi , there is probability
at least n−1/4+3ε that χi ends next to the starting point of χi . By using these three
facts alongside T ≥ n1/4+ε , the probability that � avoids χT can be proved to be
stretched exponentially small, that is, at most e−cn4ε

for some small constant c > 0.
Using an unfolding argument, this implies that, when conditioning on the �0

first steps of the walk to satisfy T ≥ n1/4+ε and resampling the end of the walk,
the newly obtained walk has stretched exponentially small chance of having �0 as
its hanging time. It is therefore also stretched exponentially unlikely for a walk to
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FIG. 7. Left: The final portion of χ in bold, and a walk contained in C1 and in A1 but not in A2.
Right: A walk γ ∈ W \ A (gray) may be reflected and added to χ�0 (black) to create a walk starting
with χ�0 , with hanging point different from χn. When concatenating Rχn(γ ) to χ�0 , an extra vertical
edge is added in to ensure nonintersection, and the last edge is deleted to preserve length n.

have n1/4+ε ticked points in its first �0 steps and to have �0 as its hanging time.
But by assumption, with probability n−1/4+5ε , a walk is closing; moreover, by
polygonal invariance, it has conditional probability 1/n to have �0 as its hanging
time; and finally, as we have discussed, with a further conditional probability of
at least n−1/4+ε , its first �0 steps have T ≥ n1/4+ε . Thus, the above event is both
of probability at most stretched exponential and of probability at least n−3/2+6ε ,
which of course is a contradiction if n is large enough.

5.2. Proof of Theorem 1.1. We now elaborate the heuristic argument presented
in Section 5.1. As mentioned before, we will proceed by contradiction. Suppose
that there exists ε > 0 such that

PSAWn(� closes) ≥ n−1/4+5ε(5.2)

for an infinite number of values of n ∈ N. (In particular ε ≤ 1/20.)
Fix n ≥ max{2,41/ε +1} for which (5.2) holds. Further bounds on n (depending

only on ε) will be imposed. The next lemma and the bound n > 41/ε permit us to
fix an integer �0 ∈ [n

4 , 3n
4 ] such that

PSAWn(� closes|hang = �0) ≥ n−1/4+4ε.(5.3)

LEMMA 5.3. The number of � ∈ {0, . . . , n} such that

PSAWn(� closes|hang = �) ≤ n−1/4+4ε

is at most 2n1−ε .
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PROOF. By the polygonal invariance (Lemma 5.2), hang(�) conditionally
on � closing is uniform in {0, . . . , n}, so that, for each � ∈ {0, . . . , n},

PSAWn(� closes,hang = �) = 1

n + 1
PSAWn(� closes).(5.4)

Hence, by (5.2),

PSAWn(� closes|hang = �) = PSAWn(� closes,hang = �)

PSAWn(hang = �)

≥ n−1/4+5ε

n + 1

1

PSAWn(hang = �)
,

which in turn gives

n + 1 =
n∑

�=0

(n + 1)PSAWn(hang = �) ≥
n∑

�=0

n−1/4+5ε

PSAWn(� closes|hang = �)
.

Since n ≥ 2, the lemma follows. �

DEFINITION 5.4. A walk γ ∈ SAW� with hang(γ ) = � is said to be good if

PSAWn+�−�0

(
� closes|�1 = γ

) ≥ n−1/4+3ε.

Any translate of a good walk is also called good.

Thus, γ is good if, when completed with n − �0 steps in such a way that the
resulting walk has hanging time �, the resulting walk has a reasonable chance of
closing. Note that the above definition is specific to the values of n and �0 fixed
before.

In the next lemma, we bound from below [still under the assumption that in-
equality (5.2) holds] the probability of being good for the first part of a walk with
hang close to �0. We start with the case hang = �0, then we resample patterns
using Lemma 3.5 to change hang by an additive constant smaller than

√
n.

LEMMA 5.5. For n large enough and any 0 ≤ k ≤ √
n,

PSAWn

(
�1 is good|� closes,hang = �0 − 2k

) ≥ n−1/4+2ε.(5.5)

PROOF. We start with the case k = 0. First note that

ESAWn

[
PSAWn

(
� closes|�1)|∣∣�1∣∣ = �0

]
= PSAWn(� closes|hang = �0) ≥ n−1/4+4ε.

Since we may assume that n ≥ 21/ε ,

PSAWn

(
�1 is good|hang = �0

)
(5.6)

= PSAWn

(
PSAWn

(
� closes|�1) ≥ n−1/4+3ε|∣∣�1∣∣ = �0

) ≥ n−1/4+3ε.
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But

PSAWn(�
1 is good|hang = �0;� closes)

PSAWn(�
1 is good|hang = �0)

(5.7)

= PSAWn(� closes|�1 is good;hang = �0)

PSAWn(� closes|hang = �0)
≥ 1.

The inequality is a direct consequence of the definition of a good walk. From (5.6)
and (5.7), we deduce that

PSAWn

(
�1 is good|� closes;hang = �0

) ≥ n−1/4+3ε,(5.8)

which is an improved version of (5.5) for k = 0.

Now we extend the result to general values of k. For this, we will use
Lemma 3.5.

First observe that, for a shell σ and a walk γ ∈ σ , the hanging point of γ is
entirely determined by σ (beware of the fact that this is only true for the point, not
the index).

For a walk γ , let S1 denote the slots of ς(γ ) between the origin and γhang

and S2 those after γhang. (The type I and II patterns are such that γhang cannot
be a vertex belonging to a pattern of either type.) We say that γ is balanced if
|T 1

I (γ ) − TI|S1||S1|+|S2| | ≤
√

n(logn)1/2+ε .
Fix δ, c > 0 for which (3.13) holds. Let G be the set of shells satisfying the

assumptions of Lemma 3.5 and such that, if γ ∈ SAWn satisfies ς(γ ) ∈ G, then γ 1

is good and γ closes. Call Gbal the set of shells σ ∈ G such that any γ ∈ σ with
hang(γ ) = �0 is balanced.

Note that S1 and S2 depend on γ only via ς(γ ). Also, whether γ 1 is good and
whether γ is closing may each be determined from ς(γ ) alone. Thus, ς(γ ) ∈ G
as soon as ς(γ ) satisfies the assumptions of Lemma 3.5, γ 1 is good and γ closes.
Moreover, any two walks from SAWn with the same shell and hanging time are
either both balanced or both not balanced. Hence, for γ ∈ SAWn with hang = �0
and ς(γ ) ∈ G, the shell ς(γ ) is in Gbal as soon as γ is balanced.

It will be useful to note that, by (5.2), (5.8) and polygonal invariance,

PSAWn

(
�1 is good,� closes and hang = �0

) ≥ n−3/2+7ε.

Thus, by the choice of δ,

PSAWn

(
ς(�) /∈ G|�1 is good,� closes and hang = �0

) ≤ 4e−cnn3/2.

Using (5.8) again, this implies that for n large enough,

PSAWn

(
ς(�) ∈ G|� closes and hang = �0

) ≥ 1
2n−1/4+3ε.

By the first part of Lemma 3.5, for n large enough,

PSAWn

(
� not balanced|ς(�) = σ

) ≤ n−7/4 ∀σ ∈ G.
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Thus,

PSAWn

(
ς(�) ∈ G \ Gbal|� closes and hang = �0

)

≤ PSAWn(� not balanced|ς(�) ∈ G)

PSAWn(ς(�) ∈ G and hang = �0)
≤ 2n−1/4−7ε.

The above inequalities yield

PSAWn

(
ς(�) ∈ Gbal|� closes,hang = �0

) ≥ 1
4n−1/4+3ε,

for n large enough.
Let σ ∈ Gbal and λ be the number of type I patterns needed in the first part of a

walk γ ∈ σ so that hang(γ ) = �0. By (3.8), for 0 ≤ k ≤ √
n and n large enough,

PSAWn(hang = �0 − 2k|ς = σ)

PSAWn(hang = �0|ς = σ)
= PSAWn(T

1
I (�) = λ + k|ς = σ)

PSAWn(T
1
I (�) = λ|ς = σ)

≥ 4n−ε.

But

PSAWn

(
�1 is good|� closes,hang = �0 − 2k

)
≥ ∑

σ∈Gbal

PSAWn

(
ς(�) = σ |� closes,hang = �0 − 2k

)

= ∑
σ∈Gbal

PSAWn

(
hang = �0 − 2k|ς(�) = σ

)

× PSAWn(ς(�) = σ)

PSAWn(� closes,hang = �0 − 2k)

≥ 4n−ε
∑

σ∈Gbal

PSAWn

(
hang = �0|ς(�) = σ

) PSAWn(ς(�) = σ)

PSAWn(� closes,hang = �0)

= 4n−εPSAWn

(
ς(�) ∈ Gbal|� closes,hang = �0

)
≥ n−1/4+2ε.

Here, we used polygonal invariance (Lemma 5.2) to assert that

PSAWn(� closes,hang = �0 − 2k) = PSAWn(� closes,hang = �0). �

DEFINITION 5.6. For a closing walk γ ∈ SAWn, an index � is said to be ticked
if γ [hang − �,hang] is good.

In this definition, closing walks are viewed as polygons and we use the modulo
n + 1 notation for their indices. Thus, γ [hang − �,hang] may contain the edge
(γn, γ0). Note that the hanging point and the ticked indices of a closing walk only
depend on the corresponding polygon.

Let T = T(γ ) be the number of ticked indices in {�0 − 2k,0 ≤ k ≤ √
n}. The

next lemma shows that the probability of having many ticked points is not too
small.
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LEMMA 5.7. For n large enough,

PSAWn

(
T(�) ≥ n1/4+ε|� closes

) ≥ n−1/4+ε.

PROOF. Consider n large enough so that Lemma 5.5 holds. For 0 ≤ k ≤ √
n,

PSAWn(�0 − 2k is ticked|� closes)

= PSAWn

(
�1 is good|� closes,hang = �0 − 2k

) ≥ n−1/4+2ε,

where the equality is due to polygonal invariance (Lemma 5.2) and the inequality
to Lemma 5.5. It follows that

ESAWn

[
T(�)|� closes

] =
√

n∑
k=0

PSAWn(�0 − 2k is ticked|� closes) ≥ n1/4+2ε.

Since T is bounded by 1 + √
n and n ≥ 41/ε , we find that

PSAWn

(
T(�) ≥ n−1/4+ε

√
n|� closes

) ≥ n−1/4+ε. �

The next lemma shows that a portion of walk with many ticked indices, ending
at some site z, is very unlikely to be the beginning of a self-avoiding walk whose
hanging point is z.

LEMMA 5.8. For a closing walk χ ∈ SAWn with T(χ) ≥ n1/4+ε ,

PSAWn

(
hang(�) = �0|�[0, �0] = χ [hang − �0,hang]) ≤ e−nε

.(5.9)

PROOF. Let χ ∈ SAWn be a closing walk with T(χ) ≥ n1/4+ε and assume
without loss of generality that hang(χ) = n.

For the purpose of this proof only, let W be the set of walks γ of length n − �0,
originating at χn, with hang(γ ) = 0. Let P denote the uniform measure on the
set W. When working with P , � denotes a random variable distributed according
to P . In particular, � is contained in the half-space below and including χn.

We now extend the notion of closing walk by saying that γ ′ closes γ if γ|γ | = γ ′
0

and γ ′|γ ′| is adjacent to γ0. We say that γ ′ avoids γ if γ ′ ∩ γ = {γ ′
0}.

Let t1 < · · · < tT be the ticked indices of χ contained in {�0 − 2k,0 ≤ k ≤ √
n}.

Consider the walks χj = χ [n − j, n] for 0 ≤ j ≤ n. They all end at χn and χj �

χj+1. For 1 ≤ i ≤ T, define

Ai = {
� avoids χti

}
and Ci = {

� closes χti
}
.

Also, let A = {γ ∈ W : γ avoids χ�0}.
Since χti is good,

P
(
� closesχti |� avoids χti

) = P(Ci |Ai) ≥ n−1/4+3ε.(5.10)
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Write k = �4dn1/4−3ε� and suppose that k ≤ T. Any realization � ∈ W is in at
most 2d events Ci . Hence, by (5.10) and the fact that the Aj are decreasing,

2d ≥
k∑

i=1

P(Ci) ≥
k∑

i=1

P(Ci |Ai)P (Ak) ≥ 4dP (Ak).

Therefore, P(Ak) ≤ 1
2 . If the procedure is repeated between k + 1 and 2k, one

obtains

2d ≥
2k∑

i=k+1

P(Ci |Ak)

≥
2k∑

i=k+1

P(Ci |Ai)P (A2k|Ak) ≥ 4dP (A2k|Ak),

and thus P(A2k|Ak) ≤ 1/2. Since A2k ⊂ Ak , we find

P(A2k) = P(Ak)P (A2k|Ak) ≤ 1
4 .

This procedure may be repeated 
T
k
� times. Since T ≥ n1/4+ε , we obtain

|A|
|W| = P

(
� avoids χ�0

) ≤ P(AT) ≤ 2−
T/k� ≤ 2−n4ε/(2(4d+1)),

for n large enough and ε ≤ 1/12, which can be harmlessly assumed.
Let us now express the probability in (5.9) in terms of the ratio |A|/|W|. The

set A contains all the possible continuations γ of χ�0 for which χ�0 ◦ γ is a self-
avoiding walk of length n with hang = �0. On the other hand, for γ ∈ W, the walk
obtained by concatenating to χ�0 an edge e1 followed by Rχn(γ ) is a self-avoiding
walk of length n + 1 with hang > �0. By deleting the last edge of such walks, we
obtain at least |W|/2d walks of length n, starting with χ�0 and having hang �= �0.
See Figure 7. Thus,

PSAWn

(
hang(�) = �0|�[0, �0] = χ�0

) ≤ 2d|A|
|W| ≤ 2d2−n4ε/(2(4d+1)) ≤ e−nε

for n large enough. This proves (5.9). �

We are now ready to conclude the proof of Theorem 1.1. A walk χ ∈ SAW�0 is
called untouchable if hang(χ) = �0 and

PSAWn

(
hang(�) = �0|�[0, �0] = χ

) ≤ e−nε

.

By Lemmas 5.7, 5.8 and polygonal invariance,

PSAWn

(
�1 is untouchable|� closes,hang = �0

) ≥ n−1/4+ε.
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Hence,

n−1/4+5ε

n + 1
≤ PSAWn(� closes,hang = �0)

≤ PSAWn(� closes,hang = �0)

PSAWn(�[0, �0] is untouchable)

× PSAWn(�[0, �0] is untouchable,hang = �0)

PSAWn(�[0, �0] is untouchable,� closes,hang = �0)

= PSAWn(hang = �0|�[0, �0] is untouchable)

PSAWn(�[0, �0] is untouchable|� closes,hang = �0)

≤ e−nε

n1/4−ε.

This is a contradiction for n large enough, and the proof of Theorem 1.1 is com-
plete. �
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