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We discuss stochastic calculus for large classes of Gaussian processes,
based on rough path analysis. Our key condition is a covariance measure
structure combined with a classical criterion due to Jain and Monrad [Ann.
Probab. 11 (1983) 46–57]. This condition is verified in many examples, even
in absence of explicit expressions for the covariance or Volterra kernels. Of
special interest are random Fourier series, with covariance given as Fourier
series itself, and we formulate conditions directly in terms of the Fourier co-
efficients. We also establish convergence and rates of convergence in rough
path metrics of approximations to such random Fourier series. An applica-
tion to SPDE is given. Our criterion also leads to an embedding result for
Cameron–Martin paths and complementary Young regularity (CYR) of the
Cameron–Martin space and Gaussian sample paths. CYR is known to imply
Malliavin regularity and also Itô-like probabilistic estimates for stochastic in-
tegrals (resp., stochastic differential equations) despite their (rough) pathwise
construction. At last, we give an application in the context of non-Markovian
Hörmander theory.

Introduction. There is a lot of interest, from financial mathematics to nonlin-
ear SPDE theory, in having a stochastic calculus for nonsemimartingales. In the
past, much emphasis was laid upon stochastic integration (resp., stochastic differ-
ential equations) driven by fractional Brownian motion (fBm), and then general
Volterra processes; cf., for example [42], Section 5, [9]. More recently, an effort
was made to dispense with the Volterra structure (cf. [35, 36]) leading to a key con-
dition of finite planar (or 2D) variation of the covariance. A completely different
approach was started by Lyons [39]; cf. also [19, 20, 38, 40]. In essence, it suffices
to have a.s. enough p-variation regularity of sample paths X·(ω) and existence of
stochastic area(s), also subject to some variation-type regularity. The problem is
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then shifted away from developing a general stochastic integration theory to the
(arguably) much simpler task of constructing the first few iterated (stochastic) in-
tegrals; the rest then follows from deterministic rough path integration theory.

In the case of Gaussian sample paths, a general sufficient condition for the
existence of stochastic areas was introduced in [20]. Namely, it was shown that
if the covariance of the underlying process is sufficiently regular in terms of fi-
nite two-dimensional ρ-variation, the process can be enhanced with stochastic ar-
eas in a canonical way. The point is that uniform L2-estimates on the stochas-
tic areas (more precisely, smooth approximations thereof) are possible, thanks
to two-dimensional Young estimates, as long as ρ < ρ∗ = 2. It is then fairly
straightforward and carried out in detail in [20], Chapter 15 (cf. also [19]) to
construct a (random) rough path X associated to X. This setup has proven rather
useful, applications include non-Markovian Hörmander theory ([3, 5], more be-
low) and Hairer’s construction [22, 23] of a spatial rough path associated to the
stochastic heat equation (in one space dimension) which laid the foundation to
prove well-posedness of certain nonlinear SPDEs. However, finding bounds for
the ρ-variation of the covariance of a stochastic process in concrete examples is
not an easy task, and checkable conditions have been dearly missing in the litera-
ture.2 Providing such conditions is the first main contribution of the present work.

These conditions immediately apply to known examples such as fractional
Brownian motion with Hurst parameter H . In this case, it is known that ρ =
1/(2H)∨1 and the critical ρ < 2 corresponds to H > 1/4; sharpness of this condi-
tion follows from the well-documented divergence of the Lévy area for H ∗ = 1/4.

Knowing the precise parameter ρ also has other benefits: it was shown (cf. [17])
that finite ρ-variation of the covariance of a Gaussian process implies that the
Cameron–Martin space H can be continuously embedded in the space of paths
with finite ρ-variation; in other words,

H ↪→ Cρ-var

holds. In the case ρ < 3/2, this embedding assures that the mixed iterated integral
between a Gaussian sample path and a Cameron–Martin path can be defined via
Young’s integration theory, and we thus speak of “complementary Young regular-
ity” (CYR) here. CYR has many consequences: for instance, it allows for a Malli-
avin calculus [3, 4], [20], Chapters 15, 20, w.r.t. Gaussian rough paths. In fact, SDE
solutions—by which we mean solutions to rough differential equations driven by
X(ω) for a.e. ω—will a.s. be Fréchet-smooth in Cameron–Martin directions as
long as CYR holds. This led to the development of non-Markovian Hörmander
theory [3, 5], a significant extension of previous work [1] specific to fBm with
H > 1/2. CYR is important also for other reasons. It is the condition under which

2The situation is easier when ρ = 1. In this case, the covariance has finite 1-variation if and only
if its mixed distributional derivative is a finite signed measure. In the fBm case this means precisely
H ≥ 1/2.
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one has Stroock–Varadhan-type support theorems (see [20], Chapter 19, and the
references therein). It is also the key to good probabilistic estimates in (Gaussian)
rough path theory. To appreciate this, note that the available pathwise estimates in
rough path theory are ill-suited to see the probabilistic cancellations which are the
heart of the Itô theory. It was only recently understood that Gaussian isoperime-
try (in the form of the Borell–Sudakov–Tsirelson inequality) can bridge this gap
(cf. [6] and also [13]): in the generic setting of ρ = 1, if applied to stochastic in-
tegrals (cf. [14]) of Lip 1-forms (as it is typical in rough path integration theory),
one obtains identical (Gaussian) moment estimates as in the Itô theory. This deteri-
orates as ρ increases, but exponential integrability—and even better, depending on
ρ—remains true.3 A natural question is whether one can extend CYR to processes
which have finite ρ-variation for ρ ≥ 3/2. In the case of fractional Brownian mo-
tion, a direct analysis of its Cameron–Martin paths (using the Volterra structure of
fBm) reveals that in this special case the stronger embedding

HH ↪→ Cq-var for any q >
1

H + (1/2)

holds (cf. [16]) which implies CYR for all H > 1/4. Another contribution of the
present work is to show that this stronger embedding holds in much greater gener-
ality and, in particular, even in absence of a Volterra structure of the process under
consideration, which readily implies CYR for all ρ < 2 and thus closes this gap.

The structure of our article is as follows. In Section 1 we answer in the affir-
mative the following question: given a multidimensional Gaussian process with
covariance of finite ρ-variation, ρ < 2, does CYR hold? The caveat here is that
the ρ is not related anymore to the ρ-variation of the covariance but instead to
finite mixed (1, ρ)-variation, a mild strengthening that we prove not to be restric-
tive at all in applications. The usefulness of such a result stands and falls with
one’s ability to verify this condition in concrete cases. The situation is aggravated
by the examples from random Fourier series (rFs) where the covariance itself is
not known explicitly, but only given as a Fourier series in its own right. A gen-
eral and checkable condition for finite mixed (1, ρ)-variation is the main result
of Section 2; see Theorem 2.2. Loosely speaking, our condition is a combination
of a classical criterion for Gaussian processes to have p-variation sample paths
due to Jain–Monrad, with a covariance measure structure condition (the distribu-
tional mixed derivative is assumed to be Radon away from the diagonal). We then
run through a (long) list of examples (see Examples 2.4–2.16) which illustrate the
wide applicability of our criterion. (This way, we also recover from general prin-
ciples previously-known results on fBM, such as [16].) In Section 3 we apply the
results of Section 2 to study rFs in greater depth. In particular, once we have es-
tablished finite ρ-variation for the covariance of rFs and therefore the existence of

3Such integrability properties can be crucial in SPDE theory [10, 14, 22] and in robust filtering
theory [7, 11].
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associated (random) rough paths, we ask for convergence (with rates in rough path
metrics) of natural approximations given in terms of Fourier multipliers.4 The best
rates are obtained by considering the rough paths under consideration as p-rough
paths with large p, which also means that one has to go beyond level 2,3 consid-
erations. Thankfully, we can rely here on general results for Gaussian rough paths
established in [15]. The main results in Section 3 are Theorems 3.2 and 3.17. In
Sections 4 and 5, we discuss some concrete rFs (resp., random Fourier transforms)
arising from (fractional) stochastic heat equations in the study of the stochastic
Burgers’s [22] and the KPZ [23] equation. Namely, we show how to regard a
[fractional, with dissipative term−(−∂xx)

α,α ≤ 1] heat equation with space–time
white noise, on bounded intervals subject to various boundary conditions (resp.,
the entire real line) as an evolution in rough path space. The key here is spatial co-
variance of finite ρ-variation, where 2α = 1+1/ρ. Note ρ = 1 if and only if α = 1
and that α > 3/4 is handled by our theory.5 This type of spatial rough path was
first used by Hairer (with α = 1, and periodic boundary conditions) to analyze the
stochastic Burgers equation [22]; a similar construction with other boundary con-
ditions (incl. those we handle here) was left as open (technical) problem in [22].
In a recent preprint, Gubinelli et al. [21] consider the fractional stochastic Burgers
equation, also with periodic boundary conditions, when α > 5/6 based on a direct
spatial rough path construction.6 Finally, in Section 6 we illustrate (by the example
of a driving rFs) how our results can be used to check the technical conditions put
forward in [5] (cf. also [3, 24]), under which differential equations driven by such
Gaussian signals and along Hörmander vector fields possess a smooth density at
positive times.

Notation. Let I = [S,T ] ⊂ R be a closed interval. We define the simplex by
�I := {(s, t)|s ≤ t ∈ I }. A dissection D of an interval I = [S,T ] is of the form

D = (S = t0 ≤ t1 ≤ · · · ≤ tn = T ),

and we write D(I ) for the family of all such dissections.
We will now very briefly recall the elements of rough paths theory used in this

paper. For more details we refer to [20]. Let T N(Rd) = R⊕ R
d ⊕ (Rd ⊗ R

d)⊕
· · ·⊕ (Rd)⊗N be the truncated step-N tensor algebra. For paths in T N(Rd) starting
at the fixed point e := 1+ 0+ · · · + 0, one may define β-Hölder and p-variation

4Rough path convergence of piecewise linear-, mollifier, Karhunen–Loeve approximation follows
from general Gaussian rough path theory [20] and requires no further discussion.

5The covariance structure, including local decorrelation as measured by mixed variational regular-
ity, of the fractional SHE in the space variables is similar to fBm with H = α− 1/2.

6In absence of ρ-variation estimates, no conclusions toward CYR and its numerous consequences
are drawn in [21], nor do the results allow one to use the general body of Gaussian rough path
approximation theory [15, 17, 20] based on uniform ρ-variation estimates. That said, the overall aim
of [21] was quite different.



688 FRIZ, GESS, GULISASHVILI AND RIEDEL

metrics, extending the usual metrics for paths in R
d starting at zero: the homoge-

neous β-Hölder and p-variation metrics will be denoted by dβ-Höl and dp-var, the
inhomogeneous ones by ρβ-Höl and ρp-var, respectively. Note that both β-Hölder
and p-variation metrics induce the same topology on the path spaces. Corre-
sponding norms are defined by ‖ · ‖β-Höl = dβ-Höl(·,0) and ‖ · ‖p-var = dp-var(·,0)

where 0 denotes the constant e-valued path.
A geometric β-Hölder rough path x is a path in T �1/β(Rd) which can be ap-

proximated by lifts of smooth paths in the dβ-Höl metric; geometric p-rough paths
are defined similarly. Given a rough path x, the projection on the first level is an
R

d -valued path and will be denoted by π1(x). It can be seen that rough paths ac-
tually take values in the smaller set GN(Rd)⊂ T N(Rd), where GN(Rd) denotes
the free step-N nilpotent Lie group with d generators. The Carnot–Caratheodory
metric turns (GN(Rd), d) into a metric space. Consequently, we denote by

C
0,β-Höl
0

(
I,G�1/β(

R
d)) and C

0,p-var
0

(
I,G�p

(
R

d))
the rough paths spaces where β ∈ (0,1] and p ∈ [1,∞). Note that both spaces are
Polish spaces.

1. Complementary Young regularity under mixed (1,ρ)-variation as-
sumption. Let X : [0, T ] → R be a real-valued, centered, continuous Gaussian
process with covariance

RX(s, t)= EXsXt .

We will denote the associated Cameron–Martin space by H. It is well known that
H ⊂ C([0, T ],R) and each h ∈ H is of the form ht = EZXt with Z being an
element of the L2-closure of span{Xt |t ∈ [0, T ]}, a Gaussian random variable. If
ht = EZXt , h′t = EZ′Xt , 〈h,h′〉H = EZZ′.

For any function h : [0, T ] → R we define hs,t := ht − hs for all s, t ∈ [0, T ].
We recall the definition of mixed right (γ, ρ)-variation given in [46]: for γ,ρ ≥ 1
let

Vγ,ρ

(
RX; [s, t] × [u, v])

(1.1)

:= sup
(ti )∈D([s,t])
(t ′j )∈D([u,v])

(∑
t ′j

(∑
ti

∣∣∣∣RX

(
ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

,

where D([s, t]) denotes the set of all dissections of [s, t] and

RX

(
ti , ti+1
t ′j , t ′j+1

)
= EXti,ti+1Xt ′j ,t ′j+1

.

The notion of the 2D ρ-variation is recovered as Vρ = Vρ,ρ . Recall that
Vρ-regularity plays a key role in Gaussian rough path theory [17, 19, 20] and
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in particular yields a stochastic integration theory for large classes of multidimen-
sional Gaussian processes. Clearly, Vγ∨ρ(R;A) ≤ Vγ,ρ(R;A) ≤ Vγ∧ρ(R;A) for
all rectangles A ⊆ [0, T ]2. As the main result of this section, we present the fol-
lowing embedding theorem for the Cameron–Martin space.

THEOREM 1.1. Assume that the covariance RX has finite mixed (1, ρ)-
variation in 2D sense. Then there is a continuous embedding

H ↪→Cq-var with q = 1

1/(2ρ)+ 1/2
< 2.

More precisely,

‖h‖q-var;[s,t] ≤ ‖h‖H
√

V1,ρ

(
RX; [s, t]2) ∀[s, t] ⊆ [0, T ].

The following is then immediate.

COROLLARY 1.2. Assume ρ ∈ [1,2). Then complementary Young regularity
holds, that is, we can choose p > 2ρ small enough such that X has a.s. p-variation
sample paths, h ∈H has finite q-variation with 1/p+ 1/q > 1.

We shall in see in Section 2 (as one of many examples) that the assumption
of mixed (1, ρ)-variation is met in the case of fBm in the rough regime H ≤ 1/2
with ρ = 1/(2H). (E.g., Example 2.9 applies with k = 0 and in fact gives a neat
criterion for processes with stationary increments.) It then follows that fractional
Cameron–Martin paths enjoy finite q = 1

H+1/2 -variational regularity, which is con-

sistent (and in fact a mild sharpening) of q > 1
H+1/2 , previously obtained in [16]

with methods specific to fBm. Let us also note that, for the sole purpose of The-
orem 1.1, it would have been enough to consider identical dissections (ti) ≡ (t ′j )
in the definition of mixed variation Vγ,ρ in (1.1). The criteria in Theorem 2.2 be-
low would then allow for a mildly simplified proof. On the other hand, this cri-
teria derived in Theorem 2.2 below are also sufficient (and interesting) for finite
ρ-variation Vρ = Vρ,ρ which is the key condition for the construction of Gaussian
rough paths needed later on, hence the additional generality of different vertical
and horizontal dissections.

REMARK 1.3. Let X: [0, T ] → R
d be a multidimensional centered Gaussian

process. Then every path h in the associated Cameron–Martin space H is of the
form ht = EZXt with Z being an element of the L2-closure of span{Xi

t |t ∈ I, i =
1, . . . , d} and ‖h‖H = ‖Z‖L2 . The q-variation of h is finite if and only if the
q-variation of every hi· = EZXi· is finite, and we obtain the bound

‖h‖q-var;[s,t] ≤ C‖h‖H max
i=1,...,d

√
V1,ρ

(
RXi ; [s, t]2),

where C is a constant depending only on the dimension d .
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We now give the proof of Theorem 1.1. In fact, having identified the importance
of mixed variation, the proof is pleasantly short.

PROOF OF THEOREM 1.1. Let h = EZX· ∈H. Fix a dissection D = (tj ) ⊂
[s, t], write hj ≡ htj ,tj+1,Xj =Xtj ,tj+1 and also ‖h‖qq :=∑

j |hj |q . Let q ′ and ρ′
be the conjugate exponents of q and ρ. An easy calculation shows that ρ ′ = q ′/2.
By duality,

‖h‖q = sup
β : ‖β‖q′≤1

∑
βjhj = sup

β : ‖β‖q′≤1
E

(
Z
∑
j

βjXj

)
,

and so by Cauchy–Schwarz

‖h‖2
q ≤ ‖h‖2

H sup
β : ‖β‖q′≤1

∑
j,k

βjβkEXjXk.

Set Rj,k = EXjXk . Then, using the symmetry of R and Hölder’s inequality,

∑
k,j

βjβkRk,j ≤ 1

2

∑
j,k

β2
j |Rj,k| + 1

2

∑
j,k

β2
k |Rj,k|

=∑
j

β2
j

∑
k

|Rk,j |

≤ ‖β‖2
2ρ′

(∑
j

(∑
k

|Ri,k|
)ρ)1/ρ

≤ V1,ρ

(
R; [s, t]2)

when ‖β‖2ρ′ = ‖β‖q ′ ≤ 1 which shows the claim. �

2. Jain–Monrad revisited.

2.1. Preliminaries and motivation from fBm. Let I ⊂R be a compact interval
and R: I × I →R be a symmetric, continuous function. We set T = |I |,

Dh := {
(s, t) ∈ I 2 : |s − t | ≤ h

}
(2.1)

and let D :=D0 be the diagonal of I 2. In this section we will give conditions under
which R has finite ρ-variation on I 2 = I × I . For a rectangle [s, t] × [u, v] ⊆ I 2,
we define the rectangular increment by

R

(
s, t

u, v

)
=R(s,u)−R(s, v)−R(t, u)+R(t, v),

and we set

σ 2(s, t) :=R

(
s, t

s, t

)
=R(s, s)+R(t, t)− 2R(s, t),(2.2)
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where symmetry of R was used in the last step. Note that

∂s,tσ
2 =−2∂s,tR

whenever these mixed derivatives make sense. In many applications R is the co-
variance function of a zero mean stochastic process X, that is, R(s, t)= EXsXt ,
and in this case σ 2(s, t)= Var(Xt −Xs)≥ 0 is the variance of increments. How-
ever, it will be important to conduct the present discussion in a generality that goes
beyond covariance functions.

Given a dissection (ti) of I = [0, T ], the square [0, T ]2 can be decomposed into
little squares

⋃
j [ti , ti+1]2 and off-diagonal rectangles, say {Qj }. Then∑

i

σ 2(ti, ti+1)+
∑
j

R(Qj )=R

(
0, T

0, T

)
= σ 2(0, T ) <∞,

and the right-hand side is independent of the dissection. Depending on the behavior
of σ 2(s, t), we can or cannot ignore the on-diagonal contributions in the limit
mesh(ti)→ 0. For instance, if σ 2(s, t)= |t − s|2H with H > 1/2, then

lim
mesh(ti )→0

∑
i

σ 2(ti, ti+1)= 0

and with R(Qj)≈ ∂s,tR.�j for small Qj , or by direct calculus, we find

σ 2(0, T )= T 2H =−1

2

∫ T

0

∫ T

0
∂s,t |t − s|2H ds dt

(2.3)

=H(2H − 1)

∫ T

0

∫ T

0
|t − s|2H−2 ds dt,

noting that |t− s|2H−2 = |t− s|−1+2(H−1/2) is integrable at the diagonal (and then
everywhere on [0, T ]2) if and only if H > 1/2. When H = 1/2 this computation
fails. Indeed, the prefactor 2H − 1 = 0 combined with the diverging integral ef-
fectively leaves us with 0 ·∞. The reason of course is that R(Qj)= 0 in this case
(Brownian increments are uncorrelated), and everything hinges on the (nonvanish-
ing) on-diagonal contribution∑

i

σ 2(ti, ti+1)=
∑
i

(ti+1 − ti)= T .

As a Schwartz distribution ∂s,tR = ∂s,t min(s, t)= δ{s=t} is a “Dirac” on the diag-
onal and indeed with this interpretation as a measure,

σ 2(0, T )=R

(
0, T

0, T

)
=

∫ T

0

∫ T

0
δ{s=t} ds dt = T .

When H < 1/2, σ 2(s, t) = |t − s|2H , the on-diagonal contributions are not only
nonvanishing but divergent [as the mesh of (ti) goes to zero]. That is,

σ 2(0, T )= T 2H =∑
i

σ 2(ti, ti+1)

︸ ︷︷ ︸
→∞

+∑
j

R(Qj )
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and so, necessarily,
∑

j R(Qj ) → −∞. Translated to the calculus setting, this
causes (2.3) to fail. Indeed, ignoring the infinite contribution from the diagonal
leaves us with

T 2H �=H(2H − 1)

∫ T

0

∫ T

0
|t − s|2H−2 ds dt︸ ︷︷ ︸
=+∞

=−∞ for H < 1/2.

Let us remark that, with our standing assumption R ∈ C([0, T ]2) the (distribu-
tional) mixed derivative ∂s,tR always exists, that is,

〈∂s,tR,ϕ〉 :=
∫ T

0

∫ T

0
R(s, t) ∂s,tϕ(s, t) ds dt ∀ϕ ∈ C∞c

(
(0, T )2).

One can ask if, or when, ∂s,tR is given by a signed and finite (i.e., of finite total
variation) Borel measure μ on [0, T ]2, say

〈∂s,tR,ϕ〉 =
∫
[0,T ]2

ϕ dμ,

with associated Hahn–Jordan decomposition μ= μ+ − μ−. When H > 1/2, the
answer is affirmative with μ= μ+ = H(2H − 1)|t − s|2H−2 ds dt . For H = 1/2,
the answer is also affirmative with μ = μ+ = δ{s=t}. For H < 1/2, the answer is
negative.

However, for all values of H ∈ (0,1) it is possible to define a (signed) σ -finite
measure by

μ(A) :=
∫
A

H(2H − 1)|t − s|2H−2 ds dt

which we shall regard as a signed Radon measure on (0, T )2 \D. Note

μ≡ μ+, μ≡ 0, μ≡−μ−
for H > 1/2,H = 0,H < 1/2, respectively.

In general, as seen when H < 1/2, μ does not need to be a finite measure on
(0, T )2 \D. On the other hand, its restriction to any compact in (0, T )2 \D is finite
so that μ defines a signed Radon measure on (0, T )2 \D. Hence, for all values of
H ∈ (0,1) the (distributional) mixed derivative ∂s,tR on (0, T )2 \D is given by
the Radon measure μ. (This was certainly observed previously, e.g., in [35].)

Care is necessary, for important information has been lost by the restriction to
(0, T )2 \D. For instance, nothing was left of Brownian motion (μ= 0). It follows
that when H ≤ 1/2, and in particular in the case H < 1/2 where |μ| = μ− has
infinite mass on (0, T )2 \D, the on-diagonal information must be captured differ-
ently. We shall achieve this by a somewhat classical condition due to Jain–Monrad
[12, 30] which imposes “on-diagonal” ρ-variation of σ 2 by

vρ

(
σ 2; [s, t]) := sup

D=(ti )∈D([s,t])

(∑
i

∣∣σ 2(ti, ti+1)
∣∣ρ)1/ρ

<∞.
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Clearly ρ = 1/2H ≥ 1 in the fBm example with H ≤ 1/2, but the concept is much
more general.

2.2. Main result of the section. Throughout we work on some closed interval
I ⊂R with length T = |I |.

CONDITION 2.1 (Jain–Monrad). Let ρ ≥ 1 and ω:�I → R+ be a super ad-
ditive function [i.e., w(s, r) + w(r, t) ≤ w(s, t) for all s ≤ r ≤ t]. We say that
(JM)ρ,ω holds if ∣∣σ 2(s, t)

∣∣≤ ω(s, t)1/ρ

holds for all s < t .

If vρ(σ 2; I ) <∞, we can always set ω(s, t) = vρ(σ 2; [s, t])ρ . Conversely, if
(JM)ρ,ω holds, we have vρ(σ 2; [s, t])≤ ω(s, t)1/ρ for all [s, t] ⊆ I .

Recall the definition of mixed right (γ, ρ)-variation given in (1.1), noting in
particular the triangle inequality: for all rectangles A⊆ I 2,

Vγ,ρ(R1 +R2;A)≤ Vγ,ρ(R1;A)+ Vγ,ρ(R2;A).(2.4)

Recall that a signed Radon measure μ is a locally finite signed Borel measure
with decomposition μ= μ+ −μ− where μ± are locally finite, nonnegative Borel
measures, one of which has finite mass. For a finite measure μ on (0, T )2 \ D

we will consider its extension to [0, T ]2 by μ(A) := μ(A ∩ (0, T )2 \D) without
further notice. We now give the main theorem of this section. For simplicity, we
only formulate it for the case I = [0, T ].

THEOREM 2.2. Let R: [0, T ]2 → R be a symmetric, continuous function
and σ as in (2.2). Assume that the (Schwartz) distributional mixed derivative
μ := ∂2R

∂t ∂s
= −1

2
∂2σ 2

∂t ∂s
is a Radon measure on (0, T )2 \ D with decomposition

μ= μ+ −μ−.

Part A. Assume that:

(A.i) μ− has finite mass and a continuous distribution function.
(A.ii) There exists an h > 0 such that σ 2(s, t)≥ 0 whenever |t − s| ≤ h.7

Then

V1
(
R; [s, t] × [u, v])≤R

(
s, t

u, v

)
+ 2μ−

([s, t] × [u, v])
∀[s, t] × [u, v] ⊆ [0, T ]2.

7Automatically true if R is a covariance function.
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Part B. Assume that:

(B.i) μ+ has finite mass and a continuous distribution function.
(B.ii) There exists an h > 0 such that8

2R

(
s, t

u, v

)
= σ 2(s, v)− σ 2(s, u)+ σ 2(u, t)− σ 2(v, t)≥ 0

∀[u, v] ⊆ [s, t] ⊆ I s.t. |t − s| ≤ h.

(B.iii) (JM)ρ,ω holds.

Then for all [s, t]2 ⊂Dh, as defined in (2.1), we have

V1,ρ

(
R; [s, t]2)≤ C

(
ω1/ρ(s, t)+μ+

([s, t]2)),(2.5)

for some constant C = C(ρ).
If, in addition, R: [0, T ]2 → R satisfies a Cauchy–Schwarz inequality9 then,

more generally, there is a constant C = C(ρ,h,T ) such that

V1,ρ

(
R; [s, t] × [u, v])

(2.6)
≤ C

(
ω1/(2ρ)(s, t)ω1/(2ρ)(u, v)+μ+

([s, t] × [u, v])),
for all rectangles [s, t] × [u, v] ⊂ [0, T ]2.

The interest in Theorem 2.2 is two-fold. First, it has far-reaching conclusions:
mixed (1, ρ)-variation controls ρ-variation which, if applied (componentwise) to
the covariance of a Gaussian process (multidimensional, with independent com-
ponents), is the key quantity for the existence of associated rough paths; here one
needs ρ < 2 (which corresponds to H > 1/4; cf. Example 2.8 below).

Let us state the consequence in terms of rough paths construction specifically
as a corollary.

COROLLARY 2.3. Assume (Xt : 0 ≤ t ≤ T ) is a d-dimensional, centered
Gaussian process with independent components. For each component Xi , assume
that either the assumptions of part A of Theorem 2.2 are satisfied, in which case
we set ρi = 1, or those of part B for some ρi < 2. Set ρ := maxi=1,...,d ρi < 2.

8With the exception of bi-fBm, Example 2.12, we typically check (B.ii) by simply showing that

τ �→ σ 2(τ, t + τ ), respectively, σ 2(t − τ, t) are nondecreasing for all t and τ < h. In particular, in
stationary situations where σ 2(s, t) = F(t − s) this amounts for F to be nondecreasing on [0, h];
conversely it is not hard to see (2.5) implies F nondecreasing on [0, h/2].

9That is, |R( s,t
u,v

)| ≤ |R(s,t
s,t

)|1/2|R(u,v
u,v

)|1/2, for all [s, t] × [u,v] ⊆ I2, which is automatically true
if R is a covariance function.
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Then, for any p > 2ρ, it follows that X admits a “canonical” lift X= X(ω) to a
random geometric p-rough path.10

Moreover, mixed (1, ρ)-variation was seen in Section 1 to imply complementary
Young regularity, an extremely important property leading to good probabilistic
estimates of rough integrals, as explained in the Introduction. It is also required for
Stroock–Varadhan-type support theorems and is one of the key conditions for the
applicability of Malliavin calculus and then non-Markovian Hörmander theory; cf.
[3, 5].

Secondly, the theorem is practical because its conditions are easy to check
and widely applicable. To illustrate this we now run through a list of examples.
Roughly speaking, part A handles situations similar or nicer than Brownian mo-
tion, whereas part B handles situations similar or worse than Brownian motion.
The finite measure m= μ− (resp., μ+) in part A (resp., B) should be considered
as (harmless) perturbation which adds some extra flexibility. Typically m is given
by a density, that is, by the (integrable) negative (resp., positive) part of some lo-
cally integrable function. Continuity of the distribution function is then trivial. In
fact, m= 0 in many interesting examples.

2.3. Examples.

2.3.1. Examples handled by part A.

EXAMPLE 2.4 (Fractional Brownian motion H ≥ 1/2). Consider a (standard)
fractional Brownian motion BH , with σ 2(s, t)= |t − s|2H in the regime H > 1/2.
We have, as a measure on [0, T ]2 \D,

μ= μ+ =H(2H − 1)|t − s|2H−2 ds dt ≥ 0 if H > 1/2,

μ= 0 if H = 1/2,

which clearly yields a Radon measure on [0, T ]2 \D (and even a finite Borel mea-
sure on [0, T ]2). Note that μ− ≡ 0 in the decomposition μ= μ+−μ−; hence (A.i)
holds trivially. Also, since R(s, t)= 1

2(s2H + t2H −|t − s|2H) is a genuine covari-
ance function, (A.ii) comes for free. It follows that R has finite “Hölder controlled”
1-variation, in the sense that

V1
(
R; [s, t]2)≤R

(
s, t

s, t

)
= |t − s|2H =O

(|t − s|).
10By “canonical” we mean that X is the limit, in probability and p-variation rough path metric,

of standard approximations procedures including piecewise linear, mollifications and of Karhunen–
Loeve type. We also note that the estimates of Theorem 2.2 allow us to show, under natural as-
sumptions on the quantities appearing on the right-hand side, that the covariances of X have finite
“Hölder-controlled” ρ-variation, thereby allowing us to conclude that X is a random geometric
α-Hölder rough path, for α < 1

2ρ
. See [19, 20] for more details.
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EXAMPLE 2.5 (Brownian bridge). Given a standard Brownian motion B , the
Brownian bridge over [0, T ] can be defined as

Xt = Bt − t

T
BT �⇒ R(s, t)=min(s, t)− st/T .

It follows that μ = ∂s,tR, as a measure on [0, T ]2 \D, decomposes into μ+ = 0
and μ− with (constant) density 1/T . Part A applies and immediately gives “Hölder
controlled” 1-variation, that is, V1(R; [s, t]2)=O(|t − s|).

EXAMPLE 2.6 (Stationary increments I, Brownian and better regularity).
Consider a process with stationary increments in the sense that the variance of
its increments is given by

σ 2(s, t)= F
(|t − s|)≥ 0,

for some F ∈ C2([0, T ]). A concrete (Gaussian) example is the stationary
Ornstein–Uhlenbeck process with F(x)= 1− e−x . In any case, we may expand

F(h)= F ′(0)h+ F ′′(0)h2/2+ o
(
h2).

We compute

∂s,tσ
2(s, t)=−F ′′

(|t − s|)+ F ′(0)2δ(t − s)

so that

∂2R

∂s ∂t
=−1

2

∂2σ 2

∂s ∂t
= 1

2
F ′′

(|t − s|) on (0, T )2 \D.

It then follows that (A.i) holds with

μ(A)= 1

2

∫
A

F ′′
(|t − s|)ds dt,

and we immediately obtain finite (Hölder controlled) 1-variation,

V1
(
R; [s, t]2)≤ σ 2(s, t)+ ∣∣F ′′∣∣∞|t − s|2 =O

(|t − s|).
For a concrete F , of course, one can compute μ− and obtain sharper conclusions.
This may also be possible if we are in a “better than Brownian” setting, namely
F ′(0)= 0, in which case σ 2(s, t)=O(|t − s|2). Note that in this case F ′′(0) > 0,
unless F is trivial.11 It follows that, in a neighborhood of the diagonal, μ > 0, and
so μ− ≡ 0. We then have

V1
(
R; [s, t]2)≤ σ 2(s, t)=O

(|t − s|2),
for |t − s| ≤ sup{h > 0 :F ′′(h) > 0}.

11Indeed, if F ′(0)= F ′′(0)= 0, then ‖Xt −Xs‖L2 = o(t − s) which is enough to conclude that Xt

is a constant in L2, but then σ 2(s, t)= ‖Xt −Xs‖2
L2 = 0.
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EXAMPLE 2.7 (Volterra processes I; Brownian and better regularity). Assume
Xt = ∫ t

0 K(t, r) dBr where K(t, ·) is assumed to be square-integrable. For s < t ,
we have

Xs,t =
∫ t

0

(
K(t, r)−K(s, r)1{r≤s}

)
dBr,

σ 2(s, t)= EX2
s,t =

∫ s

0

(
K(t, r)−K(s, r)

)2
dr +

∫ t

s
K(t, r)2 dr.

We assume a regular situation, by which we shall mean here that K is continuous
on the simplex {0≤ s ≤ t ≤ T }, and assuming suitable differentiability properties
of K , one computes

∂s,tR =K(s, s) ∂tK(t, s)+
∫ s

0
∂sK(s, r) ∂tK(t, r) dr =: f (s, t).

If μ := f (s, t) ds dt defines a Radon measure on [0, T ]2 \ D, with μ− having
finite mass, part A is applicable. Rather than imposing technical conditions on K ,
we verify this in the model case of Volterra fBm, K(t, s)= (t − s)H−1/2,H > 1/2
(As above, there is nothing to do in the Brownian case H = 1/2 since then f ≡ 0
and so μ≡ 0.) Specializing the above formula for ∂s,tR, we have

∂s,tR = (H − 1/2)2
∫ s

0
(t − r)H−3/2(s − r)H−3/2 dr =: f (s, t)≥ 0.

Since f remains bounded away from the diagonal, it clearly defines a (nonnega-
tive!) Radon measure. Trivially, μ− ≡ 0, and so thanks to part A,

V1
(
R; [s, t]2)≤ σ 2(s, t)=O

(|t − s|).
2.3.2. Examples handled by part B.

EXAMPLE 2.8 (Fractional Brownian motion H ≤ 1/2). Consider a (standard)
fractional Brownian motion BH , with σ 2(s, t)= |t − s|2H in the regime H ≤ 1/2.
We compute μ= ∂s,tR = (−1/2) ∂s,tσ

2 away from the diagonal and find

μ=−μ− =−H(1− 2H)|t − s|2H−2 ds dt ≤ 0

which clearly yields a Radon measure on [0, T ]2 \ D. Note that μ+ ≡ 0 in the
decomposition μ = μ+ − μ−. Conditions (B.ii) and (B.iii) with ρ = 1/(2H),
ω(s, t) = t − s are clear. It follows that the fBm covariance function, R(s, t) =
1
2(s2H + t2H − |t − s|2H), has finite “Hölder controlled” mixed (1, ρ)-variation,
in the sense that

V1,ρ

(
R; [s, t]2)≤O

(|t − s|1/ρ).
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EXAMPLE 2.9 (Stationary increments II, Brownian and worse regularity).
Consider the case

σ 2(s, t)= F
(|t − s|)≥ 0,

with F continuous, nonnegative and with F(0) = 0. A simple condition on F

which generalizes at once the above fBm example and the previous Example 2.6
is semi-concavity, that is,

F ′′ ≤ k in distributional sense on (0, T ) for some k ∈R,

which is tantamount to say that −F ′′ + k is a (nonnegative) Radon measure on
(0, T ), which in turn induces a signed Radon measure on [0, T ]2 \D, given by

A �→
∫
A

(−F ′′
(|t − s|)+ k

)
ds dt − kλ(A),

where λ is the two-dimensional Lebesgue measure. Then μ := ∂s,tR =−1
2∂s,tσ

2

is also a signed Radon measure, with μ+ ≤ k
2λ. Clearly, there will always be some

h > 0 (depending on F ) such that (B.ii) holds. Under the additional assumption
F(t)=O(t1/ρ) for some ρ ≥ 1, we then have (B.iii), with ω(s, t)= C(t − s) and
conclude that, with changing constants,

V1,ρ

(
R; [s, t]2)≤ C

(
|t − s|1/ρ + k

2
|t − s|2

)
≤O

(|t − s|1/ρ).
EXAMPLE 2.10 (Sums of fBm). In the previous example, F ′′ was bounded, as

a Schwartz distribution, by an L∞-function on [0, T ]2, namely by the constant k.
But L1 would be enough. Consider X = BH1 + BH2 , a sum of two independent
fBm with Hurst parameters H1 ≥ 1/2 ≥H2. A look at our two previous fBm ex-
amples reveals that

μ=H1(2H1 − 1)|t − s|2H1−2 ds dt︸ ︷︷ ︸
=:μ+

−H2(1− 2H2)|t − s|2H2−2 ds dt︸ ︷︷ ︸
=:μ−

.

We easily check all conditions, in particular (B.iii) holds with ρ = 1/(2H2) ≥ 1
and ω(s, t)= t − s. As a consequence,

V1,ρ

(
R; [s, t]2)≤ C

(
|t − s|1/ρ +H1(2H1 − 1)

∫
[s,t]2

∣∣t ′ − s′
∣∣2H1−2

ds′ dt ′
)

≤ C
(|t − s|1/ρ + |t − s|2H1

)=O
(|t − s|1/ρ).

(Of course, the same conclusion can be obtained from our previous fBm examples,
using RX =RBH1 +RBH2 and then the triangle inequality for the semi-norm V1,ρ .)

EXAMPLE 2.11 (Volterra processes II). Volterra fBm with H < 1/2, that is,
singular kernel K(t, s)= (t − s)H−1/2 is also covered by part B. More generally,
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it is possible (thanks to the robustness of the conditions of part B), if tedious, to
give technical assumptions on K which guarantee that (B.i)–(B.iii) are satisfied.
We note that ρ ≥ 1 of condition (B.iii) is determined from the blow-up behavior
of K near the diagonal.

2.3.3. Further examples handled by part B. (This section may be skipped at
first reading. In particular, the reader may want to read Section 3 on random Fourier
series before looking in detail at the “Fourier-based” examples below. Related ap-
plications to SPDEs are discussed in Section 4.)

EXAMPLE 2.12 (Bifractional Brownian motion). Consider a bifractional
Brownian motion (cf., e.g., [29, 36, 44]), that is, a centered Gaussian process BH,K

on [0, T ] with covariance function given by12

R(s, t)= 1

2K

((
s2H + t2H )K − |t − s|2HK)

,

for some H ∈ (0,1) and K ∈ (0,1]. It is known (cf. [29], Proposition 3.1) that
whenever s < t ,

2−K |t − s|2HK ≤ σ 2(s, t)≤ 21−K |t − s|2HK.(2.7)

We claim that the case HK ≥ 1
2 (resp., ≤ 1

2 ) is handled by part A (resp., B) of
Theorem 2.2. To this end, first note that

∂s,tR(s, t)= (2H)2K(K − 1)

2K

s2H−1t2H−1

(s2H + t2H )2−K

+ 2HK(2HK − 1)

2K
|t − s|2HK−2.

The measure

ν := −(2H)2K(K − 1)

2K

s2H−1t2H−1

(s2H + t2H )2−K
ds dt

has finite mass. Indeed, it is enough to show that∫
Bδ(0)

|st |2H−1

(|s|2H + |t |2H )2−K
ds dt

is finite for some δ > 0, where Bδ(0) denotes the closed ball around 0 with radius δ.
Introducing polar coordinates, this integral equals∫ δ

0

∫ 2π

0
r2HK−1 | sin(θ) cos(θ)|2H−1

(| sin(θ)|2H + | cos(θ)|2H )2−K
dθ dr

(2.8)

≤ 21−2H
∫ 2π

0

∣∣sin(2θ)
∣∣2H−1

dθ

∫ δ

0
r2HK−1 dr

12As pointed out, for example, in [36] this process does not fit in the Volterra framework.
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and both integrals are finite for H,K > 0. Note that estimate (2.8) also implies
that ν([s, t]2)≤ C|t − s|2HK for some constant C depending of H , K and T .

Hence we obtain that ∂s,tR(s, t) := μ is a Radon measure on (0, T )2 \ D. If
HK ≥ 1

2 , we have the decomposition μ = μ+ − μ− with μ− = ν, and we have
already seen that (A.i) holds. (A.ii) is trivially satisfied, and with (2.7) we may
conclude that

V1
(
R; [s, t]2)≤ 21−K |t − s|2HK + 2ν

([s, t]2)≤ C|t − s|2HK

for all [s, t] ⊆ [0, T ].
If HK ≤ 1

2 , μ+ ≡ 0 on (0, T )2 \D, thus (B.i) is satisfied in both cases. (B.ii) is
also easy to see. Indeed, since BH,K is a self-similar process with index HK , one
can use scaling to see that it is enough to show that for all t0 ∈R+ and h0 ∈ [0,1],
the function

h �→R

(
t0, t0 + 1

t0 + h0, t0 + h0 + h

)
=: φ(h)

is nonnegative on [0,1− h0]. Since φ(0)= 0, it is enough to show that φ′ ≥ 0 on
(0,1− h0) which follows by a simple calculation. Finally, from (2.7) we see that
(B.iii) holds with ρ = 1

2HK
and ω(s, t)= |t − s|, therefore

V1,ρ

(
R; [s, t]2)=O

(|t − s|1/ρ).
EXAMPLE 2.13 (Random Fourier series I: stationary). Consider a stationary

random Fourier series13

�(t)=
∞∑

k=1

αkY
k sin(kt)+ α−kY

−k cos(kt), t ∈ [0,2π ],

with zero-mean, independent Gaussians {Y k|k ∈ Z} with unit variance. We com-
pute

R(s, t)=∑
α2

k sin(ks) sin(kt)+ α2−k cos(ks) cos(kt)

= 1

2

∑(
α2

k + α2−k

)
cos

(
k(t − s)

)+ (
α2

k − α2−k

)
cos

(
k(t + s)

)
and note that α2

k ≡ α2−k due to the assumed stationarity of � . This leaves us with

R(s, t)=K
(|t − s|),

σ 2(s, t)= 2
(
K(0)−K

(|t − s|))=: F (|t − s|),
13We may ignore the (constant, random) zero-mode in the series since we are only interested in

properties of the increments of the process.
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where

K(t) :=
∞∑

k=1

α2
k cos(kt).

In special situations, for example, when α2
k = 1/k2, one can find K ∈ C2([0,2π ])

in closed form, which brings us back to Example 2.6. This is not possible in
general, but in view of Example 2.9 above, it would suffice to know that K is
convex and 1/ρ-Hölder. Conditions on the Fourier-coefficients for this to hold
true are known from Fourier analysis (recalled in detail in Section 3 below).
For instance, given (eventually) decreasing (α2

k ), K is 1/ρ-Hölder if and only if
α2

k =O(k−(1+1/ρ)). In particular, in the model case

α2
k =

1

k2α
,

the desired decay holds true if and only if

2α = 1+ 1/ρ↔ ρ = 1

2α − 1
≥ 1 (for α ≤ 1).

Convexity also holds true here and we conclude that for all [s, t] ⊂ [0,2π ],
V1,ρ

(
R; [s, t]2)=O

(|t − s|1/ρ).
EXAMPLE 2.14 (Random Fourier series II: nonstationary, general case). As

seen in the previous example, the covariance may be written as

R(s, t) = K
(|t − s|)+K

(|t + s|)+ K̃
(|t − s|)− K̃

(|t + s|)(2.9)

=: R−(s, t)+R+(s, t)+ R̃−(s, t)− R̃+(s, t),(2.10)

where R± and K are as before and

K̃(t) :=
∞∑

k=1

α2−k cos(kt).

Under the assumption that K,K̃ are convex and 1/ρ-Hölder, the cases R ∈
{R−, R̃−} were already handled in the previous example, where we established

V1,ρ

(
R; [s, t]2)=O

(|t − s|1/ρ).
We claim that R+ can be handled with part A. R̃+ may then be treated analogously.
Condition (A.i) is simple: using convexity of K ,

∂s,tR
+ =K ′′(t + s)≥ 0 on [0, T ]2 \D,
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so that μ := ∂s,tR
+ = μ+ is a nonnegative (but in general not finite) Radon-

measure on [0, T ]2 \D. Unlike in previous examples, condition (A.ii) is not trivial,
since R+ is not a covariance function in general. Nonetheless, we have

R+
(

s, t

s, t

)
=K(2t)+K(2s)− (

2K(t + s)
)

(2.11)

= 2
(

K(2t)+K(2s)

2
−K

(
2t + 2s

2

))
(2.12)

≥ 0 ∀0≤ s ≤ t ≤ π,(2.13)

thanks to convexity of K on [0,2π ]. This settles condition (A.ii). We conclude that
R+ has finite 1-variation,14

V1
(
R+; [s, t]2) ≤ R

(
s, t

s, t

)
=K(2t)+K(2s)− 2K(t + s)

(2.14)
=O

(|t − s|1/ρ).
Since R = R− + R+ + R̃− − R̃+, we can now conclude with V1,ρ ≤ V1 and the
triangle inequality to see that R has (Hölder controlled) mixed (1, ρ)-variation, in
the sense that

V1,ρ

(
R; [s, t]2)=O

(|t − s|1/ρ),
for all [s, t] ⊂ [0, π]. (The extension of this estimate to [0,2π ] is not difficult.15)

EXAMPLE 2.15 (Fourier fractional Brownian bridge). Fourier fractional
Brownian bridge is the Gaussian process given by the random Fourier series

Wα
t =

∞∑
k=1

Yk sin((k/2)t)

kα
for t ∈ [0,2π ], α ∈

(
1

2
,1
]
,

with Yk as above. This process arises by replacing the covariance operator of Brow-
nian bridge (the Dirichlet Laplacian −�) by its fractional power (−�)α . Clearly,
this is a special case of the previous example.

EXAMPLE 2.16 (Stationary processes: spectral measure). Let Xt be a station-
ary, zero-mean process with covariance

R(s, t)=K
(|t − s|)

14The situation here is reminiscent of absolutely continuous paths x = x(t) on [0, T ] with ẋ ∈ Lp

where 1/ρ + 1/p = 1. Indeed, as may be seen from Hölder’s inequality, the L1-norm of ẋ|[s,t],
which equals the 1-variation of x over [s, t], is finite and of order |t − s|1/ρ .

15Considering the Fourier series with argument shifted by π , gives the same estimate on [π,2π ]2.
In fact, one can also handle the mixed (1, ρ)-variation of R+ on [0,π ] × [π,2π ] by playing it back
to the mixed variation of R− on [0,π ]× [0,π ], using the fact that K is given by cosine series, hence
is even around π .



JAIN–MONRAD FOR ROUGH PATHS 703

for some continuous function K . By a well-known theorem of Bochner,

K(t) =
∫

cos(tξ)μ(dξ),

σ 2(t) := σ 2(0, t)= 2
(
K(0)−K(t)

)= 4
∫

sin2(tξ/2)μ(dξ),

where μ is a finite positive symmetric measure on R (“spectral measure”). The
case of discrete μ corresponds to Example 2.13. Another example is given by the
fractional Ornstein–Uhlenbeck process,

Xt =
∫ t

−∞
e−λ(t−u) dBH

u , t ∈R,

which should be viewed as the stationary solution to dX =−λX dt+dBH . In this
case, it is known that X has a spectral density of the form16

dμ

dξ
= cH

|ξ |1−2H

λ2 + ξ2 .

Clearly, the decay of the density is related to the regularity of K . More precisely,
writing

K̂(ξ) := |ξ |
1−2H

λ2 + ξ2 ∼ 〈ξ〉−1−2H where 〈ξ〉 = (
1+ ξ2)1/2

,

〈ξ〉sK̂(ξ) ∼ 〈ξ〉s−1−2H ∈ L2 iff 2(s − 1− 2H) <−1,

that is, if and only if s < s∗ := 1/2+ 2H . It follows that K ∈Hs for any s < s∗
and thus by a standard Sobolev embedding, K is α-Hölder for α < s∗ − 1/2 =
2H . Alternatively, and a little sharper, Theorem 7.3.1 in [41] tells us that if K̂ is
regularly varying at ∞, then

σ 2(t)∼CK̂(1/t)/t as t → 0.

Applied to the situation at hand we see that σ 2(t) = O(t2H ), since K̂(ξ) ∼
(1/ξ)1+2H . With focus on the rough case H ≤ 1/2, this gives condition (B.iii)
with ρ = 1/(2H), ω(s, t)= t − s. Moreover, it can be seen that there is a T > 0
such that K is convex on [0, T ] (cf. Example 5.3 below), which implies (B.i) and
(B.ii) as in Example 2.9. Hence it follows that V1,ρ(R; [s, t]2)=O(|t − s|2H) for
all [s, t] ⊆ [0, T ′].

16This generalizes the well-known fact that the spectral density of the classical OU process is of
Cauchy type.
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2.4. Proof of Theorem 2.2, part A. From (A.i), the distributional mixed deriva-
tive of R on (0, T )2 \D is given by

∂2R

∂s ∂t
= μ+ −μ−,(2.15)

where μ− (trivially extended to [0, T ]2 whenever convenient) has finite mass. By
assumption, the distribution function of μ−

R−(s, t) := μ−
([0, s] × [0, t]),

is continuous. We may then define R+ ∈C([0, T ]) by imposing the decomposition

R =R+ −R−.

Clearly, the distributional mixed derivatives of R± on (0, T )2 \D are given by

∂2R±

∂t ∂s

= μ±.(2.16)

Noting that all rectangular increments of R− are nonnegative, R−(A)= μ−(A)≥
0, we immediately have

V1
(
R−;A)=R−(A)= μ−(A)

for all A= [s, t] × [u, v] ⊂ [0, T ]2. On the other hand, any such rectangle A may
be split up in finitely many “small squares,” say Qi = [ti , ti+1]2 with ti+1− ti ≤ h

for all i, and a (finite) number of “off-diagonal” rectangles Aj , whose interior
does not intersect the diagonal. Since R(Qi) = σ 2(ti, ti+1) ≥ 0, by (A.ii), and
R(Aj )≥−R−(Aj )=−μ−(Aj ), we have

R(A)=∑
i

R(Qi)+
∑
j

R(Aj )

≥ −∑
j

μ−(Aj )≥−μ−(A),

for all rectangles A. This implies finite 1-variation over every rectangle A =
[s, t] × [u, v]. Indeed, for any dissections (ti) of [s, t] and (t ′j ) of [u, v] we have

∑
ti ,t

′
j

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣ ≤∑
ti ,t

′
j

{∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)
+μ−

([ti , ti+1] × [
t ′j , t ′j+1

])∣∣∣∣
+μ−

([ti , ti+1] × [
t ′j , t ′j+1

])}

= R

(
s, t

u, v

)
+ 2μ−

([s, t] × [u, v]),
and so, for all rectangles A,

V1(R;A)≤R(A)+ 2μ−(A).
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2.5. Proof of Theorem 2.2, part B. Let us start with a few definitions.

DEFINITION 2.17. For γ,ρ ≥ 1 set

V +γ,ρ

(
R; [s, t] × [u, v])
:= sup

(t ′j )∈D([u,v])

(∑
t ′j

sup
(ti )∈D([s,t])

(∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

and

V +γ,ρ(R;U[s,t]) := sup
(t ′j )∈D([s,t])

(∑
t ′j

sup
(ti )∈D([s,t ′j ])

(∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

,

V +γ,ρ(R;L[s,t]) := sup
(t ′j )∈D([s,t])

(∑
t ′j

sup
(ti )∈D([t ′j+1,t])

(∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

,

V +γ,ρ(R;D[s,t]) := sup
(t ′j )∈D([s,t])

(∑
t ′j

sup
(ti )∈D([t ′j ,t ′j+1])

(∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

.

For any rectangle A⊆ I 2 it is easy to see that

Vγ,ρ(R;A)≤ V +γ,ρ(R;A)

and also (e.g., as a consequence of [18], Theorem 1.i)

V1(R;A)= V +1,1(R;A).

The main reason for introducing V + as above is the following lemma:

LEMMA 2.18 (Concatenation Lemma 1). Let R be as before. Then

V +γ,ρ

(
R; [s, t]2)≤ C

(
V +γ,ρ(R;U[s,t])+ V +γ,ρ(R;D[s,t])+ V +γ,ρ(R;L[s,t]))

∀[s, t] ⊆ I,

for some constant C =C(ρ, γ ).

PROOF. Let (t ′j ) be a partition of [s, t]. Fix [t ′j , t ′j+1], and let (ti) be a partition
of [s, t]. By subdividing rectangles which lie on the diagonal into at maximum
three parts, we see that

31−γ
∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ

≤ sup
(ti )∈D([s,t ′j ])

∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ + sup
(ti )∈D([t ′j ,t ′j+1])

∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ

+ sup
(ti )∈D([t ′j+1,t])

∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ .
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Now we take the supremum, sum over t ′j and take the supremum again to see that

sup
(t ′j )∈D([s,t])

(∑
t ′j

sup
(ti )∈D([s,t])

(∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ)1/ρ

≤ C
(
V +γ,ρ(R;U[s,t])+ V +γ,ρ(R;D[s,t])+ V +γ,ρ(R;L[s,t])). �

LEMMA 2.19 (Concatenation Lemma 2). Assume that there is an h > 0 such
that

Vγ,ρ

(
R; [s, t] × [u, v])≤�(s, t;u, v)

holds for all squares [s, t] × [u, v] = [s, t]2 ⊆Dh and all off-diagonal rectangles
(s, t)× (u, v)⊆ I 2 \D, where �:�I ×�I →R+ is a nondecreasing function in
t − s and v− u. Then there is a constant C =C(γ,ρ,h,T ) such that

Vγ,ρ

(
R; [s, t] × [u, v])≤ C�(s, t;u, v)

holds for all rectangles [s, t]×[u, v]. The constant C can be chosen independently
of h and T when considering only rectangles [s, t]× [u, v] ⊂Dh. The same is true
if one replaces Vγ,ρ by V +γ,ρ .

PROOF. Step 1. Consider any square of the form [s, t]2 ⊆ I 2. Then we can
subdivide this square into N2 smaller squares (Ai,j )

N
i,j=1 with equal side length h̃,

which can be chosen such that h/2 ≤ h̃ ≤ h and N ≤M where M is a number
depending on T and h; see Figure 1. Each of these small squares does either lie on
the diagonal, or its inner part does not intersect with the diagonal. Hence

Vγ,ρ

(
R; [s, t]2)≤ c1(N,γ,ρ)

N∑
i,j=1

Vγ,ρ(R;Ai,j )≤ c2(N,γ,ρ)�(s, t;u, v)

FIG. 1. Subdivision of square as used in step 1 of Lemma 2.19.
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FIG. 2. Subdivision of square as used in step 2 of Lemma 2.19.

by monotonicity.
Step 2. Let [s, t] × [u, v] be any rectangle in I 2. Then we can subdivide it into

one square lying on the diagonal and three rectangles for which the inner part does
not intersect with the diagonal; see Figure 2. We conclude as in step 1. �

LEMMA 2.20. Let R as before and σ as in (2.2). Then the following two
assertions are equivalent:

(i) ∂2σ 2

∂t ∂s
=−2 ∂2R

∂t ∂s
≥ 0 in the sense of distributions, that is, for every nonneg-

ative φ ∈C∞c (I 2 \D),∫
I 2

∂2φ

∂t ∂s

(s, t)σ 2(s, t) ds dt =−2
∫
I 2

∂2φ

∂t ∂s

(s, t)R(s, t) ds dt ≥ 0.

(ii) For all off-diagonal rectangles (s, t)× (u, v)⊆ I 2 \D, we have

R

(
s, t

u, v

)
≤ 0.

In addition, if either of the above conditions is satisfied, then

R

(
s, t

u, v

)
≤ σ 2(u, v) ∀[u, v] ⊆ [s, t] ⊆ I.

All assertions remain true if we substitute ≤ by ≥ in the three inequalities.

PROOF. We will only consider the ≤-case. Let ϕ ∈ Cc(B1(0)) nonnegative
with ‖ϕ‖L1(R2) = 1. We then define the standard Dirac sequence ϕε((s, t)) :=
ε−2ϕ(1

ε
(s, t)) and observe supp(ϕε)⊆ Bε(0). We extend R by 0 to all of R2 and
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set Rε :=R ∗ ϕε . Then

∂2Rε

∂t ∂s

(a, b)=
∫
I 2

R(s, t)
∂2

∂t ∂s

(
ϕε(s − a, t − b)

)
ds dt.

For (a, b) ∈ ◦
�I = {(s, t)|s < t ∈ ◦

I }, we note

supp
(
ϕε(s − a, t − b)

)⊆ Bε

(
(a, b)

)⊆ ◦
�I

for all ε small enough. Hence, ϕε(· − a, · − b) is an admissible test-function for:

(i) and thus ∂2Rε

∂t ∂s
(a, b)≤ 0. Since

Rε

(
s, t

u, v

)
=

∫
I 2

1[s,t](x)1[u,v](y)
∂2Rε

∂t ∂s

(x, y) dx dy ∀s ≤ t ≤ u≤ v ∈ I,

(ii) follows using continuity of R.

Suppose now that (ii) is satisfied. We may approximate R by Rε ∈ C∞(�I )

such that ∥∥R−Rε
∥∥
C(�I )

≤ ε

4
.

By (ii) we have∫
I 2

1[s,t](x)1[u,v](y)
∂2Rε

∂t ∂s

(x, y) dx dy =Rε

(
s, t

u, v

)
≤ ε,

for all s ≤ t ≤ u≤ v ∈ I . We note that the set of nonnegative f ∈ L1(�I ) satisfy-
ing ∫

�I

f (x, y)
∂2Rε

∂t ∂s

(x, y) dx dy ≤ ε

is a monotone class. By the monotone class theorem, we thus have∫
�I

f (x, y)
∂2Rε

∂t ∂s

(x, y) dx dy ≤ ε

for all nonnegative f ∈ L1(�I ). Considering nonnegative f ∈ C∞c (
◦
�I), a partial

integration and letting ε→ 0 yields (i).
To prove the remaining inequality we note

R

(
s, t

u, v

)
=R

(
s, u

u, v

)
+R

(
u, v

u, v

)
+R

(
v, t

u, v

)
≤R

(
u, v

u, v

)
. �

We are now able to prove part B of our main theorem.

PROOF OF THEOREM 2.2, PART B. We decompose R as in (2.15), (2.16). We
start by proving (2.5) by an application of Lemma 2.18: let (t ′j ) be a partition of
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[s, t]. Fix [t ′j , t ′j+1], and let (ti) be a partition of [s, t ′j ]. Apply Lemma 2.20 with R

equal to −R− and then −R+ to get

−R−(Ai,j )≤ 0≤R+(Ai,j )= μ+(Ai,j )

for all Ai,j = [t ′j , t ′j+1] × [ti , ti+1]. Hence, with condition (B.ii) we have

∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣ ≤∑
ti

∣∣∣∣R−
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣+
∣∣∣∣R+

(
ti , ti+1
t ′j , t ′j+1

)∣∣∣∣
= R−

(
s, t ′j

t ′j , t ′j+1

)
+R+

(
s, t ′j

t ′j , t ′j+1

)

=−R

(
s, t ′j

t ′j , t ′j+1

)
+ 2R+

(
s, t ′j

t ′j , t ′j+1

)

=−R

(
s, t ′j+1

t ′j , t ′j+1

)
+R

(
t ′j , t ′j+1

t ′j , t ′j+1

)
+ 2R+

(
s, t ′j

t ′j , t ′j+1

)

≤ σ 2(t ′j , t ′j+1
)+ 2R+

(
s, t ′j

t ′j , t ′j+1

)

≤ ω
(
t ′j , t ′j+1

)1/ρ + 2μ+
([

s, t ′j
]× [

t ′j , t ′j+1
])

.

Taking the supremum over (ti), then the ρth power, summing over (t ′j ) and
finally taking the supremum over (t ′j ) gives

V +1,ρ(R;U[s,t])≤ C
(
ω(s, t)+μ+

({
(u, v) ∈ [s, t]2|u≤ v

})ρ)1/ρ

≤ C
(
ω(s, t)1/ρ +μ+

([s, t]2)),
for some constant C depending on ρ only. Similarly,

V +1,ρ(R;L[s,t])≤ C
(
ω(s, t)1/ρ +μ+

([s, t]2)).
Now let (t ′j ) be a partition of [s, t], fix [t ′j , t ′j+1] and let (ti) be a partition of
[t ′j , t ′j+1]. By (B.ii), R(Ai,j )≥ 0 for all Ai,j = [t ′j , t ′j+1] × [ti , ti+1], thus

∑
ti

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣=
∣∣∣∣R

(
t ′j , t ′j+1

t ′j , t ′j+1

)∣∣∣∣= σ 2(t ′j , t ′j+1
)

and hence

V +1,ρ(R;D[s,t])≤ ω(s, t)1/ρ.

By Lemma 2.18 we conclude

V +1,ρ

(
R; [s, t]2)≤ C

(
V +1,ρ(R;U[s,t])+ V +1,ρ(R;D[s,t])+ V +1,ρ(R;L[s,t]))

≤ C
(
ω(s, t)1/ρ +μ+

([s, t]2))
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and (2.5) has been shown.17

We now establish (2.6). Let (s, t)× (u, v)⊆ I 2 \D, and let (ti) be a partition of
[s, t] and (t ′j ) be a partition of [u, v]. By nonnegativity of nonoverlapping incre-
ments, ∑

ti ,t
′
j

∣∣∣∣R
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣ ≤∑
ti ,t

′
j

∣∣∣∣R−
(

ti , ti+1
t ′j , t ′j+1

)∣∣∣∣+
∣∣∣∣R+

(
ti , ti+1
t ′j , t ′j+1

)∣∣∣∣
= R−

(
s, t

u, v

)
+R+

(
s, t

u, v

)

≤
∣∣∣∣R

(
s, t

u, v

) ∣∣∣∣+ 2R+
(

s, t

u, v

)
.

Taking the supremum over all partitions, the Cauchy–Schwarz inequality∣∣∣∣R
(

s, t

u, v

) ∣∣∣∣≤
∣∣∣∣R

(
s, t

s, t

) ∣∣∣∣1/2∣∣∣∣R
(

u, v

u, v

) ∣∣∣∣1/2

gives

V1,ρ

(
R; [s, t] × [u, v])≤ ∣∣∣∣R

(
s, t

u, v

) ∣∣∣∣+ 2R+
(

s, t

u, v

)

≤ C
(
ω(s, t)1/(2ρ)ω(u, v)1/(2ρ) +μ+

([s, t] × [u, v])),
and Lemma 2.19 completes the proof. �

3. Random Fourier series. Let us now consider a (formal) random Fourier
series

�(t)= α0Y0

2
+

∞∑
k=1

αkY
k sin(kt)+ α−kY

−k cos(kt),(3.1)

where Y k are real-valued, centered random variables with EY kY l = δk,l for all
k, l ∈ Z and αk are real-valued coefficients. Since we are interested in properties
of the covariance of � , we will formulate our conditions in terms of the squared
coefficients ak := α2

k , k ∈ Z.

REMARK 3.1. Assume that α2
k =O(|k|−(1+1/ρ)) for some ρ > 0. Then (3.1)

converges uniformly almost surely, and the limit yields a continuous function.
Moreover, if the Yk are Gaussian, � has β-Hölder continuous trajectories18 al-
most surely for all β < 1

2ρ
. This follows from [31], Theorems 7.4.3 and 5.8.3.

17Note that in fact we may deduce the somewhat stronger conclusion

V+1,ρ

(
R; [s, t]2)≤ C

(
ω(s, t)1/ρ + V+1,ρ

(
R+; [s, t]2)) ∀[s, t]2 ⊆Dh.

18If β = n+ β̃ for some β̃ ∈ (0,1], this means that the trajectories are n-times differentiable and

the nth derivative is β̃-Hölder continuous.
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Our main theorem on random Fourier series follows:

THEOREM 3.2. Consider the random Fourier series (3.1) with (ak) satisfying
�2(k2ak)≤ 0 for all k ∈ Z,

lim
k→±∞k3∣∣�2ak

∣∣+ k2|�ak| = 0,

ak =O(|k|−(1+1/ρ)) for some ρ ≥ 1 for k→±∞ and ak , a−k nonincreasing19 for
k ≥ 1. Then the covariance R� of � has finite Hölder controlled (1, ρ)-variation,
and there is a constant C > 0 such that

V1,ρ

(
R�; [s, t] × [u, v])≤ C|t − s|1/(2ρ)|v− u|1/(2ρ)

(3.2)
∀[s, t] × [u, v] ⊆ [0,2π ]2.

The constant C depends only on ρ and C1, where C1 ≥ supk∈Z ak|k|1+1/ρ .

Note that the model case (ak)= (|k|−2α) for α ∈ (1
2 ,1] is contained as a special

case in Theorem 3.2.

PROOF OF THEOREM 3.2. Note first that, as already seen in Remark 3.1,
� exists as a uniformly almost sure limit. Since (ak) ∈ l1(Z) we have (αk) ∈ l2(Z).
Thus for fixed t ∈ [0,2π ], � exists also as a convergent sum in L2(�). Set
Q1 = [0, π]2, Q2 = [0, π] × [π,2π ], Q3 = [π,2π ]2 and Q4 = [π,2π ] × [0, π].
We first show that (3.2) holds provided [s, t] × [u, v] ⊆Qi for some i = 1, . . . ,4.
Recall from (2.9) that we can decompose the covariance as

R�(s, t) = K
(|t − s|)+K

(|t + s|)+ K̃
(|t − s|)+ K̃

(|t + s|)
(3.3)

=: R−(s, t)+R+(s, t)+ R̃−(s, t)− R̃+(s, t),

where

K(t)=
∞∑

k=1

α2
k cos(kt) and K̃(t)=

∞∑
k=1

α2−k cos(kt).

Using the triangle inequality it is enough to show the estimate (3.2) for R±, R̃±
separately. From Lemma 3.3 below we know that K and K̃ are convex on [0,2π ]
and nonincreasing on [0, π]. By Lemma 3.4 below, K and K̃ are 1

ρ
-Hölder con-

tinuous. Convexity implies that

∂s,tR
− =−K ′′ ≤ 0.

19The monotonicity of ak , a−k is required for the sole purpose of using Lemma 3.4 below. In fact,
it can be dropped when we use Sobolev embeddings instead; cf. Remark 3.5 below. However, we
may only conclude finite (1, ρ′)-variation for any ρ′ > ρ in this case.
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Therefore μ := −μ− := ∂2
s,tR

− yields a Radon measure on (0,1)2 \D and condi-
tion (B.i) of Theorem 2.2 is satisfied. Condition (B.ii) holds for h= π since K is
nonincreasing. (JM)ρ,ω follows from Hölder-continuity with ω(s, t)= C|t − s|.
Since R− is a covariance function, it satisfies the Cauchy–Schwarz inequality.
Thus we may apply part B in Theorem 2.2 to conclude that there is a constant
C such that

V1,ρ

(
R−; [s, t] × [u, v])≤ C|t − s|1/(2ρ)|v− u|1/(2ρ)

holds for all [s, t] × [u, v] ∈Q1. The same reasoning works for R̃−. Using again
convexity of K , we have ∂2

s,tR
+ = K ′′ ≥ 0 which shows that ν := ν+ := ∂2

s,tR
+

is a Radon measure on (0, T ) \ D. Hence condition (A.i) of Theorem 2.2 holds
for R+. In (2.13) we have seen that also (A.ii) is satisfied for R+ on Q1, and we
may conclude, using part A of Theorem 2.2, that

V1,ρ

(
R+; [s, t] × [u, v])≤ V1

(
R+; [s, t] × [u, v])≤R+

(
s, t

u, v

)
holds for all [s, t] × [u, v] ∈Q1. R+ will in general not be a covariance function,
but we may use the 2π -periodicity of K to deduce the Cauchy–Schwarz inequality
for R+ as well. Indeed,

R+(s, t)=K(t + s)=K
(
t − (2π − s)

)=R−(2π − s, t),

and using the Cauchy–Schwarz inequality for R− implies that

R+
(

s, t

u, v

)
≤
√

R+
(

s, t

s, t

)√
R+

(
u, v

u, v

)

≤ ‖K‖1/ρ-Höl|t − s|1/(2ρ)|u− v|1/(2ρ),

where the second estimate follows from Hölder continuity of K as seen in (2.14).
The same is true for R̃+ which shows (3.2) for R+, R̃+ and [s, t] × [u, v] ⊆Q1.
The process t �→ �t+π has the same covariance as � . Thus estimate (3.2) also
holds for [s, t] × [u, v] ⊆Q3. By symmetry considerations, if E is any rectangle
in Q2 or Q4, there is a rectangle Ē in Q1 (or in Q3) with the same side length such
that R+(E) = R−(Ē), R̃+(E) = R̃−(Ē) and vice versa for R−, R̃−. Thus (3.2)
also holds for [s, t] × [u, v] ⊂ Qi for i = 2,4. The general case just follows by
subdividing a given rectangle [s, t]× [u, v] in at maximum four rectangles lying in
Q1, . . . ,Q4 and using the estimates above (which only leads to a larger constant).
This proves the theorem. �

3.1. Convexity, monotonicity and Hölder regularity of cosine series. We start
by deriving conditions for convexity and monotonicity of cosine series

K(t)= a0

2
+

∞∑
k=1

ak cos(kt).(3.4)
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In the following let �, �2 be the first and second forward-difference operators,
that is, for a sequence {ak}k∈N

�ak := ak+1 − ak

and �2 :=� ◦�. Moreover, let

Dn(t) := 1+ 2
n∑

k=1

cos(kt), t ∈R,

be the Dirichlet kernel and

Fn(t) :=
n∑

k=0

Dk(t), t ∈R,

be the unnormalized Fejér kernel.

LEMMA 3.3. Let {ak}k∈N be such that

�2(k2ak

)≤ 0, k ∈N(3.5)

and

lim
k→∞k3∣∣�2ak

∣∣+ k2|�ak| + k|ak| = 0.(3.6)

Then the cosine series (3.4) exists locally uniformly in (0,2π), is convex on [0,2π ]
and decreasing on [0, π].

PROOF. The proof follows ideas from [34]; we include it for the reader’s con-
venience. We first note that since

�
(
k2ak

)= k2�ak + (2k+ 1)ak+1

and

�2(k2ak

)= k2�2ak + 2(2k + 1)�ak+1 + 2ak+2,

assumption (3.6) is equivalent to

lim
k→∞

∣∣k�2(k2ak

)∣∣+ ∣∣�(
k2ak

)∣∣+ k|ak| = 0.(3.7)

Using the Abel transformation, we observe

Sn(t)= a0

2
+

n∑
k=1

ak cos(kt)= 1

2

n∑
k=0

�ak+1Dk(t)+ 1

2
an+1Dn(t).

By the assumptions and (3.7) we have
∑∞

k=1 |�ak| <∞. Since supn∈N Dn(t) is
bounded locally uniformly on (0,2π) and an→ 0, we observe that

K(t) := a0

2
+

∞∑
k=1

ak cos(kt)= 1

2

∞∑
k=0

�akDk(t)
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exists locally uniformly and is continuous in (0,2π).
The Cesàro means of the sequence Sn(t) are given by

σn(t)= a0

2
+

n∑
k=1

(
1− k

n+ 1

)
ak cos(kt).

By Fejér’s theorem ([48], Theorem III.3.4) and continuity of K , σn →K locally
uniformly in (0,2π). Hence, σ ′′n → K ′′ in the space of distributions on (0,2π).
Clearly,

σ ′′n (t)=−
n∑

k=0

(
1− k

n+ 1

)
k2ak cos(kt).

Let βk := (1− k
n+1)k2ak . Using summation by parts twice we obtain

2σ ′′n (t)=
n∑

k=0

�βkDk(t)

=�βnFn(t)−
n−1∑
k=0

�2βkFk(t)

=−
n−1∑
k=0

�2(k2ak

)
Fk(t)

−
n−1∑
k=0

(
k�2(k2ak)

n+ 1
− 2�((k + 1)2ak+1)

n+ 1

)
Fk(t)+ n2

n+ 1
anFn(t).

We have 0≤ Fn(t)≤ C
t2 + C

(2π−t)2 , where C > 0 is an absolute constant. There-
fore, for every ε with 0 < ε < 2π ,

sup
n≥0;t∈[ε,2π−ε]

Fn(t)= Cε <∞.(3.8)

It follows from (3.5) that for all t ∈ [0,2π ] and n≥ 1,

−
n−1∑
k=0

�2(k2ak

)
Fk(t)− 1

n+ 1

n−1∑
k=0

k�2(k2ak

)
Fk(t)≥ 0.

Moreover, since k|ak| → 0 as k→∞ [see (3.6)], and (3.8) holds, we have

sup
t∈[ε,2π−ε]

n2

n+ 1
|an|Fn(t)→ 0

as n→∞. Finally, set

Sn(t)= 2

n+ 1

n−1∑
k=0

�
(
(k + 1)2ak+1

)
Fk(t).(3.9)
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It is easy to see, using (3.8), that for all n≥ 1,

sup
t∈[ε,2π−ε]

∣∣Sn(t)
∣∣≤ 2Cε

n+ 1

n−1∑
k=0

∣∣�(
(k + 1)2ak+1

)∣∣.
Next, taking into account (3.6) and the Cesàro summability theorem for convergent
sequences, we obtain

sup
t∈[ε,2π−ε]

∣∣Sn(t)
∣∣→ 0

as n→∞, for all t ∈ [ε,2π − ε]. Summarizing what was said above, we see that
for every 0 < ε < 2π ,

lim inf
n→∞ inf

t∈[ε,2π−ε]σ
′′
n (t)≥ 0.

For any nonnegative test-function ϕ ∈C∞c (0,2π), Fatou’s lemma implies

K ′′(ϕ)= lim
n→∞σ ′′n (ϕ)≥

∫ 2π

0
lim inf
n→∞ σ ′′n (t)ϕ(t) dt ≥ 0;

that is, K ′′ is a nonnegative distribution on (0,2π). Thus K is convex on [0,2π ].
Assume now that K is not decreasing on [0, π]; that is, there are s < t ∈ [0, π]

such that K(s) < K(t). Since K is given as a cosine series, we have K(s)=K(s ′)
and K(t) = K(t ′) for s′ = 2π − s and t ′ = 2π − t . Choose λ ∈ (0,1) such that
λs + (1− λ)s′ = t . Then

K
(
λs + (1− λ)s′

)=K(t) > K(s)= λK(s)+ (1− λ)K
(
s′
)

which is a contradiction to the convexity of K . �

Concerning Hölder regularity of cosine series we recall the following:

LEMMA 3.4 ([37], Satz 8). A cosine series (3.4) with nonincreasing coeffi-

cients ak ↓ 0 for k→∞ is 1
ρ

-Hölder continuous if and only if ak =O(k−(1+(1/ρ)))

for k→∞.

REMARK 3.5. The above lemma gives a sharper result than what is ob-
tained by usual Sobolev embeddings. Indeed: recall that an L2 function on the
torus with Fourier coefficients (ak) is in the Sobolev space Hs if and only if
((1+ |k|s)ak) ∈ l2. By a standard Sobolev embedding (here in dimension 1), such
functions are (s−1/2)-Hölder, provided s > 1/2. Hence, a cosine series (3.4) with
coefficients ak =O(k−(1+(1/ρ))) for k→∞ is α-Hölder for all α < 1/ρ.
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3.2. Stability under approximation. We now aim to prove stability of the esti-
mates provided in Theorem 3.2 under approximations of � . These stability prop-
erties will be used in Section 3.4 to prove the convergence (in rough path topology)
of Galerkin and hyper-viscosity approximations of random Fourier series. Let us
consider

�̃(t)= α0β0Y
0

2
+

∞∑
k=1

αkβkY
k sin(kt)+ α−kβ−kY

−k cos(kt),(3.10)

with Y k as above and (αk), (βk) real-valued sequences. In the applications, the
multiplication of the coefficients by βk will correspond to a smoothing of � . We
thus aim to prove that the estimates given in Theorem 3.2 remain true uniformly
for (bk)= (β2

k ) in an appropriate class of sequences. This will naturally lead to the
following:

DEFINITION 3.6. (1) A sequence (bk)k∈Z is negligible if there are finite,
signed, real Borel measures μ1,μ2 on S1 :=R/2πZ such that

bk =
∫ 2π

0
cos(kr)μ1(dr), b−k =

∫ 2π

0
cos(kr)μ2(dr) ∀k ∈N.

(2) A family of sequences (bτ
k ) is uniformly negligible if each (bτ

k ) is negligible
with associated measures μτ

1,μτ
2 being uniformly bounded in total variation norm.

(3) For two bounded sequences (ak), (ck) we write (ak) # (ck) if there is a
negligible sequence (bk) such that ak = ckbk for every k ∈ Z.

EXAMPLE 3.7. Some (simple) examples of negligible sequences are:

(1) (bk)≡ C, with μ1 = μ2 = Cδ0,
(2) (bk) ∈ l1(Z), with μ1 =∑∞

k=1 bk cos(kt) dt and μ2 =∑∞
k=1 b−k cos(kt) dt .

In the forthcoming Lemmas 3.13 and 3.14, we will give sufficient conditions
for (uniform) negligibility.

As will be seen below, our results are uniform relative to “negligible” perturba-
tions as in (3.10).

PROPOSITION 3.8. Consider the random Fourier series (3.10) with (ak) sat-
isfying the assumptions of Theorem 3.2. Let (bk) be negligible. Then

V1,ρ

(
R�̃; [s, t]2

)≤ C|t − s|1/ρ ∀[s, t]2 ⊆ [0,2π ]2.
The constant C depends only on ρ, the constant C1 = supk∈Z ak|k|1+1/ρ and a
constant C2 which bounds ‖μ1‖TV and ‖μ2‖TV with μ1,μ2 corresponding to (bk);
cf. Definition 3.6.
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This proposition is a special case of Proposition 3.9 below. Consider another
random Fourier series

�(t)= γ0Z
0

2
+

∞∑
k=1

γkZ
k sin(kt)+ γ−kZ

−k cos(kt),

and assume that the Zk fulfill the same conditions as the Y k . Furthermore, as-
sume that {Y k,Zk}k∈Z are uncorrelated random variables, and set ck := γ 2

k , �k :=
EY kZk and

R�,�(s, t) := E�(s)�(t).

Then the following holds:

PROPOSITION 3.9. Assume that there is a sequence (dk) satisfying the as-
sumptions of Theorem 3.2 such that

(bk) :=
(

αkγk�k

dk

)
is negligible with associated measures μ1, μ2. Then

Vρ

(
R�,�; [s, t]2)≤ V1,ρ

(
R�,�; [s, t]2)≤C|t − s|1/ρ ∀[s, t]2 ⊆ [0,2π ]2.

The constant C depends only on ρ, the constant C1 = supk∈Z dk|k|1+1/ρ and a
constant C2 which bounds ‖μ1‖TV and ‖μ2‖TV.

PROOF. Arguing as for Theorem 3.2 we observe

V1,ρ

(
R�,�; [s, t] × [u, v])
� V1,ρ

(
R−; [s, t] × [u, v])+ V1,ρ

(
R+; [s, t] × [u, v])

+ V1,ρ

(
R̃−; [s, t] × [u, v])+ V1,ρ

(
R̃+; [s, t] × [u, v]),

with R−(s, t) = K(t − s), R+(s, t) = K(t + s), R̃−(s, t) = K̃(t − s) and
R̃+(s, t)= K̃(t + s)

K(t) := 1

2

∞∑
k=1

d−kb−k cos(kt),

K̃(t) := 1

2

∞∑
k=1

dkbk cos(kt).

We thus need to estimate the mixed (1, ρ)-variation of cosine series under multi-
plication with negligible sequences. In the following we consider R±, R̃± can be
treated analogously. Let

R±0 (t, s) := d0

2
+

∞∑
k=1

d−k cos
(
k(t ± s)

)
.
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We then apply Proposition 3.12 below with R±μ = R±, R± = R±0 , ak = d−k , bk =
b−k to obtain

V1,ρ

(
R±; [s, t]2)≤ ‖μ‖TV sup

0≤z≤2π

V1,ρ

(
R±0 ; [s − z, t − z] × [s, t])

for every [s, t] ⊆ [0,2π ]. By Theorem 3.2 applied to R±0 , we have

sup
0≤z≤2π

V1,ρ

(
R±0 ; [s − z, t − z] × [s, t])≤ C|t − s|1/ρ,

which completes the proof. �

In the following let M(S1) be the space of signed, real Borel-measures on the
circle S1 with finite total variation ‖ · ‖TV. Define Mw(S1) to be M(S1) endowed
with the topology of weak convergence. For B ∈ L1(S1) we set μB := B dt ∈
M(S1) to be the associated measure with density B .

LEMMA 3.10. Let μ ∈M(S1), R:S1× I →R and set Rμ(s, t) := (R(·, t) ∗
μ)(s). Then

Vγ,ρ

(
Rμ; [s, t] × [u, v])≤ ‖μ‖TV sup

x∈S1
Vγ,ρ

(
R; [s − x, t − x] × [u, v])

for all [s, t] × [u, v] ⊆ S1 × I and 1≤ γ ≤ ρ.

PROOF. Let (ti), (t ′j ) be partitions of [s, t], respectively, [u, v]. From Jensen’s
inequality,∣∣∣∣Rμ

(
ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ ≤
(∫

S1

∣∣∣∣R
(

ti − x, ti+1 − x

t ′j , t ′j+1

)∣∣∣∣d|μ|(x)

)γ

≤ ‖μ‖γTV

∫
S1

∣∣∣∣R
(

ti − x, ti+1 − x

t ′j , t ′j+1

)∣∣∣∣γ d
|μ|(x)

‖μ‖TV
.

Summing over ti and using again Jensen’s inequality for ρ
γ

yields

∑
t ′j

(∑
ti

∣∣∣∣Rμ

(
ti , ti+1
t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ

≤ ‖μ‖ρTV

∫
S1

∑
t ′j

(∑
ti

∣∣∣∣R
(

ti − x, ti+1 − x

t ′j , t ′j+1

)∣∣∣∣γ
)ρ/γ

d
|μ|(x)

‖μ‖TV

≤ ‖μ‖ρTV

∫
S1

V ρ
γ,ρ

(
R; [s − x, t − x] × [u, v])d |μ|(x)

‖μ‖TV

≤ ‖μ‖ρTV sup
x∈S1

V ρ
γ,ρ

(
R; [s − x, t − x] × [u, v]).

Taking the supremum over all partitions yields the inequality. �
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REMARK 3.11. In many cases, x �→ Vγ,ρ(R; [s− x, t − x]× [s, t]) attains its
maximum at x = 0. In this case our inequality above reads

Vγ,ρ

(
R ∗μ; [s, t]2)≤ ‖μ‖TVVγ,ρ

(
R; [s, t]2)

for all squares [s, t]2 ⊆ [0,2π ]2. Lemma 3.10 can thus be interpreted as a Young-
inequality for the mixed (γ, ρ)-variation of a function with two arguments. If μ=
δ0, we have bk = 1 for every k and the estimate is thus sharp.

PROPOSITION 3.12. Let R+μ ,R−μ : [0,2π ]2 → R be continuous functions of
the form

R±μ (s, t)= a0b0

2
+

∞∑
k=1

akbk cos
(
k(s ± t)

)
with ak, bk being real-valued coefficients such that

∑∞
k=1 |ak| <∞, and assume

that there is a measure μ ∈M(S1) such that

bk =
∫ 2π

0
cos(kr)μ(dr).

Set

R±(t, s)= a0

2
+

∞∑
k=1

ak cos
(
k(t ± s)

)
.

Then for every 1≤ γ ≤ ρ,

Vγ,ρ

(
R±μ ; [s, t] × [u, v])≤ ‖μ‖TV sup

0≤z≤2π

Vγ,ρ

(
R±; [s − z, t − z] × [u, v])

for every [s, t] × [u, v] ⊆ [0,2π ]2.

PROOF. Let a−k := ak , b−k := bk for k ∈ N. Since
∑∞

k=1 |ak| <∞, we ob-
serve

R±μ (s, t)= 1

2

∑
k∈Z

akbke
ik(t±s) = (

R±(·, t) ∗μ
)
(s)

and the estimate is thus a direct consequence from Lemma 3.10. �

3.3. (Uniform) negligibility. In order to use Proposition 3.12 to control the
(γ, ρ)-variation of R(s, t), we need to control ‖μ‖TV. We recall the following:

LEMMA 3.13. Let {bk}k∈N be a sequence satisfying bk → b ∈ R for k→∞,
and let Sn(t) := b0

2 +
∑n

k=1 bk cos(kt). Assume one of the following conditions:

(1)
∑∞

k=1 |bk − b|<∞;
(2) there exists a nonincreasing sequence Ak such that

∑∞
k=0 Ak < ∞ and

|�bk| ≤Ak for all k ≥ 0;
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(3) bk is quasi-convex, that is,
∞∑

k=0

(k + 1)
∣∣�2bk

∣∣ <∞.

Then, B(t)= b0
2 +

∑∞
k=1 bk cos(kt) exists locally uniformly on (0,2π), and the

right-hand side is the Fourier series of B . Moreover,

μSn ⇀ μB + bδ0 =: μ weakly in M
(
S1)

and bk = ∫ 2π
0 cos(kr)μ(dr). Moreover, there is a numerical constant C > 0 such

that

‖μ‖TV ≤ |b| +C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=0

|bk − b|, in case (1),

∞∑
k=0

Ak, in case (2),

∞∑
k=0

(k + 1)
∣∣�2bk

∣∣, in case (3).

(3.11)

PROOF. The case b = 0 is classical [(1) is trivial; cf. [45] for (2) and [32]
for (3)]. The case b �= 0 may be reduced to b= 0 by noting that bDn(t)→ 2πbδ0
in Mw(S1), where Dn is the Dirichlet kernel. �

Lemma 3.13 in combination with Proposition 3.12 allows us to derive bounds
on the ρ-variation of covariance functions of the type discussed here, depending
on μ only via its total variation norm. Since we will use this to prove uniform
estimates, we will need the following uniform estimates on the L1-norm of cosine
series.

LEMMA 3.14. Let b ∈C1(0,∞) with b(r)→ 0 for r →∞ and bτ
k := b(τmk)

for some τ,m > 0. If:

(1) b is convex, nonincreasing, then bτ
k satisfies the assumptions of Lemma 3.13;

(2) Bτ (t)= bτ
0
2 +

∑∞
k=1 bτ

k cos(kt) exists locally uniformly in (0,2π) and∥∥Bτ
∥∥
L1([0,2π ]) ≤ Cb0,

for some C > 0;
(3) b ∈ C2(0,∞) with r �→ r|b′′(r)| being integrable, then bτ

k satisfies the as-
sumptions of Lemma 3.13, (3) and∥∥Bτ

∥∥
L1([0,2π ]) ≤ C

∫ ∞
0

r
∣∣b′′(r)∣∣dr,

for some C > 0 with Bτ as in (1).
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PROOF. (1) Since b, |b′| are nonincreasing �bτ
k ≤ 0 and −�bk is nonincreas-

ing. We set Ak := −�bk . Clearly,
∑∞

k=0 Ak = 2b0, and the claim follows from
Lemma 3.13.

(2) Let bτ (r) := b(τmr), and observe

�2bτ
k =

∫ k+2

k+1

∫ s

s−1

(
bτ )′′(r) dr ds.

Since (bτ )′′ dr = τmb′′(τmr) d(τmr), elementary calculations show
∞∑

k=0

(k + 1)
∣∣�2bτ

k

∣∣≤ 2
∫ ∞

0
r
∣∣b′′(r)∣∣dr,

and Lemma 3.13 completes the proof. �

EXAMPLE 3.15. As an application of Lemma 3.13, we see that the sequence
(bk) = (k−α), α > 0, is negligible. Furthermore, the sequence (bk) = (e−τkα

),
α, τ > 0, is uniformly negligible in τ which follows from Lemma 3.14.

3.4. Random Fourier series as rough paths. We now return to the initial prob-
lem of showing the existence of a lift to vector-valued versions of (3.1) to a process
with values in a rough paths space.

Recall that we write (ak) # (bk) for two sequences (ak) and (bk) if there is a
negligible sequence (ck) such that ak = ckbk ; cf. Definition 3.6. We will extend
this notation as follows: if (Ak) = (a

i,j
k ) is a sequence of matrices, and (bk) is a

sequence of real numbers, (Ak) # (bk) means that (a
i,j
k ) # (bk) for every i, j . If

(Ak) = (A1
k, . . . ,A

m
k ) is a sequence of vectors whose entries are matrices or real

numbers, we will write (Ak)# (bk) if (Ai
k)# (bk) for all i = 1, . . . ,m.

Let � = (�1, . . . ,�d) where the �i are given as random Fourier series

�i(t)= αi
0Y

0,i

2
+

∞∑
k=1

αi
kY

k,i sin(kt)+ αi−kY
−k,i cos(kt),(3.12)

with (Y k,i)k∈Z,i=1,...,d being independent, N (0,1) distributed random variables.
As before, set ai

k := (αi
k)

2 and (ak) := (a1
k , . . . , a

d
k ). Our main existence result is

the following:

THEOREM 3.16. Assume (ak) # (|k|−(1+1/ρ)) for some ρ ∈ [1,2) with as-
sociated measures μi

1,μ
i
2, i = 1, . . . , d , as in Definition 3.6, and let K ≥

maxi=1,...,d{‖μi
1‖TV,‖μi

2‖TV}. Then for every β < 1
2ρ

, there exists a continuous

G[1/β](Rd)-valued process � such that:

(1) � has geometric β-Hölder rough sample paths, that is,

� ∈ C
0,β-Höl
0

([0,2π ],G[1/β](
R

d))
almost surely,
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(2) � lifts � in the sense that π1(� t )=�t −�0,
(3) there is a C = C(ρ,K) such that for all s < t in [0,2π ] and q ∈ [1,∞),∣∣d(�s,� t )

∣∣
Lq ≤ C

√
q|t − s|1/(2ρ),

(4) there exists η= η(ρ,K,β) > 0, such that

Ee
η‖�‖

β-Höl;[0,2π ]2 <∞.

PROOF. By assumption,

�i(t)= γ i
0Y 0,i

2
+

∞∑
k=1

γ i
k |k|−(1/2+1/(2ρ))Y k,i sin(kt)

+ γ i−k|k|−(1/2+1/(2ρ))Y−k,i cos(kt)

for every i = 1, . . . , d where (ci
k) = ((γ i

k )2) is a negligible sequence. Hence, we
may apply Proposition 3.8 to see that the covariance of �i has finite Hölder dom-
inated ρ-variation for every i; thus [17], Theorem 35, applies. �

We will now compare the lifts of two random Fourier series � = (�1, . . . ,�d)

and �̃ = (�̃1, . . . , �̃d) with

�i(t)= αi
0Y

0,i

2
+

∞∑
k=1

αi
kY

k,i sin(kt)+ αi−kY
−k,i cos(kt),

�̃i(t)= α̃i
0Ỹ

0,i

2
+

∞∑
k=1

α̃i
kỸ

k,i sin(kt)+ α̃i−kỸ
−k,i cos(kt).

We make the following assumption:{(
Y k,i, Ỹ k,i) :k ∈ Z, i = 1, . . . , d

}
are independent, normally distributed random vectors with Y k,i, Ỹ k,i ∼ N (0,1)

for all k ∈ Z and i = 1, . . . , d . It follows that EY k,i Ỹ l,j = 0 for k �= l or i �= j ,
and we set �i

k := EY k,i Ỹ k,i . As before, let ai
k := (αi

k)
2 and ãi

k := (α̃i
k)

2. Define the
matrix

Ai
k :=

(
ai
k αi

kα̃
i
k�

i
k

αi
kα̃

i
k�

i
k ãi

k

)
,

and set Ak := (A1
k, . . . ,A

d
k ).

THEOREM 3.17. Assume that (Ak) # (|k|−(1+1/ρ)) for some ρ ∈ [1,2) and
that the total variation of all associated measures is bounded by a constant K .
Then we can lift � and �̃ to processes with values in a rough paths space as
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in Theorem 3.16, and for all γ < 1 − ρ
2 and β < 1

ρ
(1

2 − γ ) there is a constant
C = C(ρ,K,β, γ ) such that∣∣ρβ-Höl(�, �̃)

∣∣
Lq ≤ Cq(1/2)�1/β( sup

t∈[0,2π ]
E
∣∣�(t)− �̃(t)

∣∣2)γ
(3.13)

for all q ∈ [1,∞).

PROOF. The existence of the lifted processes � and �̃ follows from Theo-
rem 3.16. The Lq norm of the difference of two such processes in rough paths
metric can be estimated by the ρ-variation of the covariance of the difference of
the two processes, and an interpolation argument shows that this quantity can ac-
tually be bounded by the right-hand side of (3.13) times the ρ-variation of the
covariance of the two processes and their joint covariance function. We aim to
apply [15], Theorem 5,20 where the estimate (3.13) was given for the optimal pa-
rameter γ . To obtain a uniform estimate, we need to show that the joint covariance
function of the process (�, �̃) has finite, Hölder dominated ρ-variation, bounded
by a constant depending only on the parameters above. From independence of the
components, it suffices to estimate the ρ-variation of R�i,�̃i (s, t)= E�i(s)�̃i(t)

for every i = 1, . . . , d . This can be done using Proposition 3.9. �

As an application, we consider the truncated random Fourier series, that is, we
define �N = (�1,N , . . . ,�d,N) by

�i,N(t)= αi
0Y

0,i

2
+

N∑
k=1

αi
kY

k,i sin(kt)+ αi−kY
−k,i cos(kt)

(3.14)
for i = 1, . . . , d.

It is then easy to show that convergence also holds for the corresponding rough
paths lifts, and we can even give an upper bound for the order of convergence.

COROLLARY 3.18. Under the assumptions of Theorem 3.16, choose some
η < 1

ρ
− 1

2 and β < 1
2ρ
− η. Then there is a constant C = C(ρ,K,β,η) such that

∣∣ρβ-Höl
(
�,�N )∣∣

Lq ≤ Cq(1/2)�1/β
(

1

N

)η

for every N ∈ N, q ∈ [1,∞). In particular, ρβ-Höl(�,�N)→ 0 for N →∞ al-
most surely and in Lq for any q ∈ [1,∞) with rate η.

20Strictly speaking, [15], Theorem 5, assumes that �̃ is a certain approximation of � . However, it
is shown in [43] that this is not necessary, and ([15], Theorem 5) can be used more generally to give
an upper bound for the distance between � and �̃ as we need it here.
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REMARK 3.19. We emphasize that �,�N are lifted to level �1/β above. In
particular, a “good” rate η forces β to be small so that, in general, it is not enough
to work with 3 levels, as is the usual setting in Gaussian rough paths theory.

PROOF OF COROLLARY 3.18. We aim to apply Theorem 3.17 with α̃i
k =

1|k|≤Nαi
k and �i

k ≡ 1. We will first show that (ai
k1|k|≤N)# (|k|−(1+1/ρ′)) for every

ρ′ > ρ, uniformly over i and N . Indeed, we have

ai
k1|k|≤N = (

ai
k|k|1+1/ρ)(|k|1/ρ′−1/ρ1|k|≤N

)|k|−(1+1/ρ′),

and since (ai
k) # (|k|−(1+1/ρ)) for all i = 1, . . . , d , it suffices to show that

(|k|−ε1|k|≤N) is uniformly negligible for every ε > 0. Therefore, we need to show
that the cosine series

BN(x)=
∞∑

k=1

|k|−ε1|k|≤N cos(kx)=
N∑

k=1

|k|−ε cos(kx)

is uniformly bounded in L1([0,2π ]). Since �k−ε = O(k−ε−1) and
limk→∞ log(k)k−ε = 0, we can apply the Sidon–Telyakovskii theorem (cf. [45],
Theorem 4) to obtain BN → B for N →∞ in L1([0,2π ]) which proves the uni-
form negligibility, and we may apply Theorem 3.17 for every ρ ′ > ρ. Furthermore,

E
∣∣�(t)−�N(t)

∣∣2 = ∞∑
k=N+1

ak sin2(kt)+ a−k cos2(kt)

≤ 2
∑

|k|≥N+1

ak � 4
∞∑

k=N+1

k−(1+1/ρ) �
(

1

N

)1/ρ

.

For given η, we choose ρ′ such that η < 1
ρ′ − 1

2 < 1
ρ
− 1

2 and apply Theorem 3.17 to
complete the Lq convergence. The almost sure convergence follows by a standard
Borel–Cantelli argument; cf. [15], Theorem 6, page 41. �

4. Applications to SPDE. In this section we will apply our results on ran-
dom Fourier series to construct spatial rough path lifts of stationary Ornstein–
Uhlenbeck processes corresponding to the R

d -valued (generalized) fractional
stochastic heat equation with Dirichlet, Neumann or periodic boundary conditions

d�t =−(−�)α�t dt + dWt on [0, T ] × [0,2π ],(4.1)

where the fractional Laplacian (−�)α acts on each component of �t and α ∈
(0,1]. We will start by first considering the fractional stochastic heat equation
with Dirichlet boundary conditions, proving the existence of (continuous) spatial
rough paths lifts and stability under approximations. Then we comment on Neu-
mann boundary conditions and on more general equations for periodic boundary
conditions.
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If a (spatial) rough path lift of (4.1) has been constructed, one can view (4.1) as
an evolution in a rough path space, a point of view which has proven extremely
fruitful in solving new classes of, until now, ill-posed stochastic PDE [22, 23, 27],
arising, for example, in path sampling problems for Rd -valued SDE [22, 25, 26].

For a variant of (4.1) with α = 1, Hairer proved in [22] finite 1-variation of the
covariance of the stationary solution to (4.1), that is, of (x, y) �→ E�(t, x)�(t, y).
This general theory then gives the existence of a “canonical, level 2” rough path
� lifting �; cf. Theorem 3.16; see also [21]. It is clear that in the case α = 1 the
Brownian-like regularity of x �→�(t, x;ω) is due to the competition between the
smoothing effects of the Laplacian and the roughness of space–time white noise.
Truncation of the higher noise modes (or suitable “coloring”) leads to better spatial
regularity; on the other hand, replacing � by a fractional Laplacian, that is, consid-
ering (4.1) for some α ∈ (0,1), dampens the smoothing effect, and x �→�(t, x;ω)

will have “rougher” regularity properties than a standard Brownian motion. One
thus expects ρ-variation regularity for the spatial covariance of x �→ �(t, x;ω)

for (4.1) only for some ρ > 1 and subsequently only the existence of a “rougher”
rough path, that is, necessarily with higher p than before.

As we shall see below, (4.1) is handled as a spatial rough path with a number of
precise estimates, provided

α > α∗ = 3
4 .

More precisely, the resulting (geometric rough) path enjoys 1
p

-Hölder regularity

for any p > 2ρ = 2
2α−1 . When α > 5

6 we have ρ = 1
2α−1 < 3

2 and can pick p < 3.
The resulting rough path can then be realized as a “level 2” rough path. In the
general case (similar to H ∈ (1

4 , 1
3 ] in the fBm setting) one must go beyond the

stochastic area and control the third level iterated integrals. Our approach, which
crucially passes through ρ-variation, combined with existing theory, has many ad-
vantages: the notoriously difficult third-level computation need not be repeated
in the present context; leave alone the higher level computations needed for rates.
A satisfactory approximation theory is also available, based on uniform ρ-variation
estimates; cf. Section 4.2 below.

4.1. Fractional stochastic heat equation with Dirichlet boundary conditions.
We consider

d�t =−(−�)α�t dt + dWt on [0, T ] × [0,2π ](4.2)

on [0,2π ] endowed with Dirichlet boundary conditions. Neumann and periodic
boundary conditions may be treated analogously; cf. Section 4.3 below. We have
the following orthogonal basis of eigenvectors with corresponding eigenvalues of
−� on L2([0,2π ]):

ek(x)= sin
(

k

2
x

)
, τk =

(
k

2

)2

, k ∈N,
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and take Wt =∑
k∈N βk

t ek(x). The fractional Laplacian has eigenvalues λk := τα
k

for k ∈ N and (informal) Fourier expansion of the stationary solution � to (4.1)
leads to the random Fourier series

�(t, x)=
∞∑

k=1

αkY
k
t sin

(
k
x

2

)
,(4.3)

with αk = 1√
2λk

and Y k
t being a decoupled, infinite system of d-dimensional, sta-

tionary, normalized Ornstein–Uhlenbeck processes satisfying

dY k
t =−λkY

k
t dt +√

2λk dβk
t .(4.4)

Clearly (4.3) gives a well-defined and continuous random field and solves (4.2) in
the sense of standard SPDE theory; cf., for example, [8, 47]. Note EY k

t ⊗ Y l
s =

e−λk |t−s|δk,l Id, and set

ak = α2
k =

1

2λk

= 22α−1 1

k2α
, k ∈N.

As an immediate consequence of our results on random Fourier series, we get the
following:

PROPOSITION 4.1. Suppose α ∈ (1
2 ,1]. Then:

(1) For every t ≥ 0, the spatial process x �→ �(t, x) is a centered Gaussian
process which admits a continuous modification (which we denote by the same
symbol) with covariance R� of finite mixed (1, ρ)-variation for all ρ ≥ 1

2α−1 , and
all conclusions of Theorem 3.2 hold.

(2) If α > 3
4 , the process x �→ �(t, x) lifts to a process with geometric β-

Hölder rough paths

�(t) ∈C
0,β-Höl
0

([0,2π ],G�1/β(
R

d))
almost surely for every β < α − 1

2 .
(3) Choose γ and β such that

γ < 1− 3

4α
, β < α − 1

2
− 2αγ

2α − 1
.

Then there is a γ -Hölder continuous modification of the map

� : [0, T ] → C
0,β-Höl
0

([0,2π ],G�1/β(
R

d)),
(4.5)

t �→�(t).

REMARK 4.2. In (3), we observe a “trade-off” between the parameters
β and γ : If we want a “good” time regularity (i.e., large γ ), we have to take β

small which is tantamount to working in a rough paths space with many “levels”
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of formal iterated integrals. For instance, when α = 1, we can get arbitrarily close
to 1

4 in time, at the price of working with many arbitrary levels. On the other hand,
if we insist to work with the first 3 levels only (or 2 levels in case α > 5/6), which
is the standard setting in Gaussian rough path theory, we only get poor time regu-
larity of the evolution in rough path space.

PROOF OF PROPOSITION 4.1. Since � is a rescaling of

�̃(t, x)=
∞∑

k=1

αkY
k
t sin(kx)=�(t,2x),

it is enough to consider �̃:

(1) Clearly x �→ �̃(t, x) is centered and Gaussian. Due to (3.3) and Lemma 3.4,
we have

σ 2
t (x, y)= E

∣∣�̃(t, x)− �̃(t, y)
∣∣2 � |x − y|2α−1,

which implies that there is a continuous modification of �̃ . Theorem 3.2 implies
the claim.

(2) Follows from Theorem 3.16.
(3) We will derive the existence of a continuous modification by application of

Kolmogorov’s continuity theorem. Therefore, we need an estimate on a qth mo-
ment of the distance in the ρβ-Höl metric of the rough paths �̃(t), �̃(s) at different
times 0≤ s < t ≤ T . Such an estimate can be obtained by applying Theorem 3.17.
Let 0≤ s ≤ t ≤ T , τ := |t − s|, and set Ak = (A1

k, . . . ,A
d
k ) where

Ai
k :=

(
ak ake

−λkτ

ake
−λkτ ak

)
for i = 1, . . . , d . We claim that (Ak) # (|k|−2α) uniformly in τ . Defining b(r) :=
e−(r/2)2α

we note bτ
k = e−λkτ = b(kτ 1/(2α)), and b is convex, nonincreasing.

Lemma 3.14 then implies that (e−λkτ ) is uniformly negligible which shows the
claim. Hence, we can apply Theorem 3.17 and obtain∣∣ρβ-Höl

(
�̃(t), �̃(s)

)∣∣
Lq ≤ Cq(1/2)�1/β( sup

x∈[0,2π ]
E
∣∣�̃(t, x)− �̃(s, x)

∣∣2)θ

for all θ < 4α−3
4α−2 , β < α − 1

2 − θ and all q ∈ [1,∞). In order to estimate the right-
hand side, we note

E
∣∣�̃1(t, x)− �̃1(s, x)

∣∣2
= E

∣∣�̃1(t, x)
∣∣2 +E

∣∣�̃1(s, x)
∣∣2 − 2E�̃1(t, x)�̃1(s, x)

≤ 2
∞∑

k=1

ak

(
1− e−λkτ

)
sin2(kx)≤ 2

∞∑
k=1

ak

∣∣1− e−λkτ
∣∣

≤ C
∑
k≤N

|t − s| +CN1−2α′ ∑
k>N

akk
2α′−1 ≤ C

(
N |t − s| +N1−2α′)
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for all α′ < α. We then choose N ∼ |t − s|−1/(2α′) to obtain

E
∣∣�̃(t, x)− �̃(s, x)

∣∣2 ≤ C|t − s|1−1/(2α′).

Thus we can choose γ < 1− 3
4α

and β < α− 1
2 − 2αγ

2α−1 to obtain∣∣ρβ-Höl
(
�̃(t), �̃(s)

)∣∣
Lq ≤ Cq(1/2)�1/β|t − s|γ ,

for all q ∈ [1,∞). Kolmogorov’s continuity theorem gives the result. �

4.2. Stability and approximations. Due to the “contraction principle” in the
form of Proposition 3.12, the estimates on the ρ-variation of the covariance of ran-
dom Fourier series derived in Section 3 are robust with respect to approximations.
In order to emphasize this point, in this section we consider Galerkin and hyper-
viscosity approximations to � with � as in Section 4.1 and prove strong conver-
gence of the corresponding rough paths lifts. Recall that by the general theory of
rough paths, this immediately implies the strong convergence of the corresponding
stochastic integrals as well as of solutions to rough differential equations; cf., for
example, [2, 22].

4.2.1. Galerkin approximations. The Galerkin approximation �N
t of �t is

defined to be the projection of � onto the N -dimensional subspace spanned by
{ek}k=1,...,N . This process solves the SPDE

d�N
t =−

(
PN(−�)α

)
�N

t dt + dPNWt,(4.6)

where PN(−�)α has the eigenvalues (k
2)2α1k≤N , and PNWt has the covariance

operator QN given by QNek = 1k≤Nek . The process �N can be written as the
truncated Fourier series

�N(t, x)=
N∑

k=1

αkY
k
t sin

(
k
x

2

)
,

with αk = 2α−1/2k−α and Y k Ornstein–Uhlenbeck processes as in Section 4.1.
One easily checks that we can lift the spatial sample paths of �N

t to Gaus-
sian rough paths and find continuous modifications of t �→�N

t . Moreover, we can
prove the following strong convergence result:

PROPOSITION 4.3. Assume α > 3
4 , and choose η < 2α− 3

2 and β < α− 1
2−η.

Then there is a constant C = C(α,β, η) such that∣∣ρβ-Höl
(
�(t),�N(t)

)∣∣
Lq ≤ Cq(1/2)�1/β

(
1

N

)η

for all t ∈ [0, T ], N ∈ N, q ∈ [1,∞). In particular, for every t ∈ [0, T ],
ρβ-Höl(�(t),�N(t))→ 0 for N →∞ almost surely and in Lq for any q ∈ [1,∞)

with rate η.

PROOF. The proof follows from Corollary 3.18. �
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4.2.2. Hyper-viscosity approximations. The hyper-viscosity approximation
�ε = (�ε,1, . . . ,�ε,d) is the solution to

d�ε
t =−

(
(−�)α + ε(−�)θ

)
�ε

t dt + dWt,(4.7)

for some (large) θ ≥ 1 and ε > 0. Again, it is easy to see that we can lift the spatial
sample paths of �ε

t to Gaussian rough paths and find continuous modifications of
t �→�ε

t .

PROPOSITION 4.4. Assume α > 3
4 and θ > α. Choose β < α − 1

2 . Then there
is a function rα,β,θ :R→ R+ such that r(ε)→ 0 for ε→ 0 and a constant C =
C(α,β, θ) such that∣∣ρβ-Höl

(
�(t),�ε(t)

)∣∣
Lq ≤ Cq(1/2)�1/βr(ε)

for every t ∈ [0, T ], ε > 0 and q ∈ [1,∞).

PROOF. As before, �ε
t has the form of a random Fourier series where the kth

Fourier coefficients are given by αε
kY

ε,k
t with αε

k = 1√
2λε

k

,

λε
k =

(
k

2

)2α

+ ε

(
k

2

)2θ

,

and t �→ Y
ε,k
t are d-dimensional, stationary Ornstein–Uhlenbeck processes with

independent components, each component being centered with variance 1 and cor-
relation

EY
ε,k
t ⊗ Y l

t = 2

√
λkλ

ε
k

λk + λε
k

δk,lId.

From Theorem 3.17, we know that it is sufficient to show that (Aε
k)# (|k|−2α)

uniformly over ε > 0 where

Aε
k :=

(
α2

k αkα
ε
k�

ε
k

αkα
ε
k�

ε
k

(
αε

k

)2

)
, �ε

k := 2

√
λkλ

ε
k

λk + λε
k

and that

sup
t∈[0,T ]

sup
x∈[0,2π ]

E
∣∣�(t, x)−�ε(t, x)

∣∣2 → 0 for ε→ 0.(4.8)

For the first claim, we have to show that the series
∞∑

k=1

(
αε

k

)2
k2α cos(kx),

∞∑
k=1

αkα
ε
k�

ε
kk

2α cos(kx)

are uniformly bounded in L1 which can be done using Lemma 3.14(2). Show-
ing (4.8) follows by writing down the left-hand side as a Fourier series and bound-
ing it uniformly in x and t by an infinite series. Then we send ε→ 0, using the
dominated convergence theorem. �
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4.3. Various generalizations.

4.3.1. Generalized fractional stochastic heat equation on periodic domains.
Based on the stability results for the mixed (1, ρ)-variation of the covariance of
random Fourier series developed in Section 3, one may consider more general frac-
tional stochastic heat type equations and different types of boundary conditions.
As an example let us consider generalized fractional stochastic heat equations on
[0,2π ] with periodic boundary conditions. An orthogonal basis of eigenvectors
and corresponding eigenvalues of −� on L2([0,2π ]) is given by

τk = k2, ek(x) :=
⎧⎨
⎩

sin(kx), k > 0,
1
2 , k = 0,
cos(kx), k < 0.

Via the spectral theorem we may define A = f (−�) for each Borel measurable
function f :R+ → R+, still having ek as a basis of eigenvectors and eigenvalues
f (τk).

In order to be able to consider stationary Ornstein–Uhlenbeck processes, we
need to shift the spectrum of A to be strictly negative. Hence, we consider
R

d -valued SPDE of the form

d�t = (−A− λ)�t dt + dWt with λ > 0,(4.9)

where Wt is a (possibly) colored Wiener process with covariance operator having
ek as basis of eigenvectors and σk as eigenvalues. An (informal) Fourier expansion
of the stationary solution � to (4.9) leads to the random Fourier series

�(t, x)= α0Y0

2
+

∞∑
k=1

αkY
k
t sin(kx)+ α−kY

−k
t cos(kx),(4.10)

with αk = α−k =
√

σk

2(λ+f (τk))
and Y k

t as in (4.4). Suppose (ak) to be eventually

nonincreasing and (ak) # (k−2α) for some α ∈ (1
2 ,1]. Then analogous results to

Proposition 4.1 may be established under various assumptions on σk and f (τk),
by means of the stability results given in Section 3.

EXAMPLE 4.5. We consider the stochastic fractional heat equation with (pos-
sibly) colored noise on the 1-dimensional torus, that is,

d�i
t =−

(
(−�)α�i

t + λ
)
dt + d(−�)−γ /2Wi

t , i = 1, . . . , d,(4.11)

where α ∈ (0,1], γ ≥ 0, λ > 0 and Wt is a cylindrical Wiener process. Hence,
f (τk) = |k|2α and σk = |k|−2γ . By elementary calculations we see ( σk

λ+f (τk)
) #

(k−(2γ+2α)) and thus the conclusions of Proposition 4.1 hold if 2γ + 2α > 3
2 .
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4.3.2. Neumann boundary conditions. In the case of homogeneous Neumann
boundary conditions, an orthogonal basis of eigenvectors of −� on L2([0,2π ]) is
given by

ek(x)= cos
(

k

2
x

)
, τk =

(
k

2

)2

, k ∈N∪ {0}.
In order to be able to consider stationary Ornstein–Uhlenbeck processes, we need
to shift the spectrum; that is, we consider

d�t =−((−�)α + 1
)
�t dt + dWt .

We may then proceed as for Dirichlet boundary conditions, resolving additional
difficulties due to the shift of the spectrum as in the proof of Proposition 4.1.

5. The continuous case. In some cases, the covariance function of a Gaus-
sian process X is given as the cosine transform of some function f . For example,
this is the case if the spectral measure of a stationary process has a density f

with respect to the Lebesgue measure; cf. Example 2.16 and [41], Chapter 5.6.
In this case, we may obtain similar results as for random Fourier series. The key
is a continuous version of Lemma 3.3 which we are now going to present. For a
(symmetric) function f ∈ L1(R), let f̂ denote its (real) Fourier transform. Then
the following holds:

LEMMA 5.1. Let f :R→R be symmetric and in L1(R)∩C2(R\{0}). Assume
f̂ ∈L1(R) and

lim
ξ→∞

∣∣ξ3f ′′(ξ)
∣∣+ ∣∣ξ2f ′(ξ)

∣∣+ ∣∣ξf (ξ)
∣∣= 0

and that there is an x0 ∈ (0,∞] such that

lim sup
R→∞

∫ R

0

∂2

∂ξ2

(
f (ξ)ξ2)Fξ (x) dξ ≤ 0,

for all x ∈ (0, x0) where Fξ (x)= 1−cos(ξx)

x2 denotes the Féjer kernel. Then f̂ is a
convex function on [0, x0).

PROOF. Since the proof is very similar to Lemma 3.3 we just sketch it briefly.
By Féjer’s theorem for Fourier transforms (cf. [33], Theorem 49.3),

lim
R→∞

1

2π

∫ R

−R

(
1− |ξ |

R

)
ĝ(ξ)eixξ dξ = g(x),

for all x provided g ∈ C(R) ∩ L1(R). Setting g = f̂ , we obtain from Fourier in-
version

σR(x) :=
∫ R

−R

(
1− |ξ |

R

)
f (ξ)eixξ dξ → f̂ (x) for R→∞.
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Applying integration by parts twice, our assumptions imply that

lim inf
R→∞ σ ′′R(x)≥ 0

for all x ∈ (0, x0). This implies the claim. �

REMARK 5.2. Note that for a given f ∈ L1(R), it does not follow that also
f̂ ∈ L1(R). However, Bernstein’s theorem states that the Fourier transform of
functions f in the Sobolev space Hs(R) is contained in L1(R) for all s > 1

2 ;
cf. [28], Corollary 7.9.4.

EXAMPLE 5.3. Consider the covariance R of a fractional Ornstein–Uhlen-
beck process with Hurst parameter H ∈ (0,1/2]; cf. Example 2.16. Then R(s, t)=
K(t − s) with

K(x)=
∫

f (ξ) cos(ξx) dξ, f (ξ)= cH

|ξ |1−2H

λ2 + ξ2 , λ > 0.

We prove that there is an x0 > 0 such that K is convex on [0, x0). Since f (ξ) =
O(ξ−1−2H ), f ∈Hs for any s < 2H + 1/2 and Bernstein’s theorem implies that
f̂ ∈ L1 for any H > 0. An easy calculation shows that g := ∂2

ξ,ξ (f (ξ)ξ2) is non-

positive on [ξ0,∞) for some ξ0 > 0 and that g(ξ)=O(−ξ−1−2H ). It follows that

lim sup
R→∞

∫ R

0

∂2

∂ξ2

(
f (ξ)ξ2)Fξ (x) dξ =

∫ ∞
0

∂2

∂ξ2

(
f (ξ)ξ2)Fξ (x) dξ.

Note first that
∫ ξ0

0 g(ξ)Fξ (x) dξ is uniformly bounded for x ↘ 0. Furthermore
limx→0 Fξ (x)= ξ2/2, and Fatou’s lemma gives

lim inf
x→0

∫ ∞
ξ0

−g(ξ)Fξ (x) dξ ≥−1

2

∫ ∞
ξ0

ξ2g(ξ) dξ =+∞.

Hence

lim
x→0

∫ ∞
0

g(ξ)Fξ (x) dξ =−∞.

Thus there is an x0 such that
∫∞

0 g(ξ)Fξ (x) dξ ≤ 0 for all x ∈ (0, x0), and we can
apply Lemma 5.1 to conclude that K is convex on [0, x0).

EXAMPLE 5.4. Consider the SPDE

d�t =−((−�)α + λ
)
�t dt + dWt on R,

for some α ∈ (0,1], λ > 0. The stationary solution can be written down explicitly
(cf. [47]), namely

�t(x)=
∫ t

−∞

∫
R

Kt−s(x, y)W(ds, dy),
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where K is the fractional heat kernel operator associated to −((−�)α + λ) with
Fourier transform given by

K̂t (ξ)= e−t |ξ |2α−λt .

After some calculations, one sees that the covariance R of the spatial process x �→
�t(x) for every time point t is given by R(x, y)=K(x − y) where

K(x)=
∫

f (ξ) cos(ξx) dξ, f (ξ)= 1

2|ξ |2α + 2λ
.

With a similar calculation as in Example 5.3, one can see that K is convex in
a neighborhood around 0. It is easy to see that σ 2(x) = 2(K(x) − K(0)) =
O(|x|2α−1) (using, e.g., [41], Theorem 7.3.1). Hence we are in the situation of
Example 2.9, and we may conclude that

V1,ρ

(
RX; [x, y])=O

(|y − x|2α−1)
for |y − x| small enough. Applying [20], Theorem 35, we see that �t can
be lifted, for every fixed time point t , to a process � t with sample paths in
C

0,β-Höl
0 ([x, y],G[1/β](Rd)), every β < α − 1/2, provided α > 3/4 and |y − x|

is small enough. By concatenation one has the existence of spatial rough paths
lifts on all compact intervals in R.

6. Application to non-Markovian Hörmander theory. Consider a (rough)
differential equation

dY = V (Y )dX(6.1)

driven by a (Gaussian) rough path X along a vector field V = (V1, . . . , Vd), started
at Y0 = y0 ∈ R

e. Assume V to be bounded with bounded derivatives of all or-
ders such that Hörmander’s condition Lie(V1, . . . , Vd)|y0 = R

e holds.21 If X is
sufficiently nondegenerate (e.g., fBm) one can hope for a density of Yt at positive
times t > 0. This has been achieved in a series of papers starting with Baudoin
and Hairer [1] (with X fBm for H > 1/2), followed by [3, 5, 24] which dealt,
respectively, with general Gaussian signals X (ρ < 2 subject to CYR22), fBm for
H > 1/4 and then again general Gaussian signals (ρ < 2 subject to CYR), now
with a smoothness result. The general case [3, 5] requires a number of assump-
tions on X that are not always easy to check. To wit, even if X is fBm-like, in the
sense that

σ 2(s, t)= F(t − s)≥ 0

21We may also include a drift vector V0, in which case we mean the weak Hörmander condition.
22Complementary Young regularity for Cameron–Martin paths h: that is, h has finite q-variation

and X(ω) has finite p-variation a.s. with 1/p+ 1/q > 1.
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with F being concave and F(t)=O(t2H ), already the CYR is unclear in the afore-
mentioned references [3, 5]. Indeed, CYR for fBm (in case H > 1/4) relies on the
variation embedding theorem [16] which is not applicable in this more general
situation. Our results provide a convenient way to check the assumptions of [5].
Let us illustrate how to proceed by the concrete example of an RDE driven by a
(Gaussian) process (with i.i.d. components) with stationary increments.

THEOREM 6.1. Assume F(t) =O(t1/ρ) with ρ ∈ [1,2) as t ↓ 0, F concave
and nonzero. Then

F ′−(T ) > 0 for some T > 0,

and Yt in (6.1) has a smooth density for all t ∈ (0, T ].
This applies in particular when X is given as a random Fourier series as in

Example 2.13 (with ρ < 2) or as a fractional Ornstein–Uhlenbeck process with
Hurst parameter H ∈ (1/4,1/2] as in Example 2.16.

PROOF. By assumption, F is not identically equal to zero. In order to see that
F ′−(T ) > 0 for some T small enough, assume the opposite, that is, F ′−(t) ≤ 0 for
all t > 0. Then

F(t + h)− F(t)

h
≤ F ′−(t)≤ 0 ∀h, t > 0,

and thus F is nonincreasing. Since F(0) = 0 and F ≥ 0, this implies that F is
trivial and gives the desired contradiction. We now proceed by checking the con-
ditions from [5]. Condition 1 (CYR; [3, 5]) follows from Theorem 2.2, applied as
in Example 2.9 which yields mixed (1, ρ)-variation and thus (cf. part 1) comple-
mentary Young regularity. For Condition 2 from [5]23 we first note that, leaving
the imminent estimate (6.2) to the end of the proof,

2 Var(Xs,t |F0,s ∨Ft,T )

≥ 2R

(
s, t

0, T

)

= σ 2(0, t)− σ 2(0, s)+ σ 2(s, T )− σ 2(t, T )(6.2)

= F(t)− F(s)+ F(T − s)+ F(T − t)

≥ 2F ′−(T )(t − s),

where we used (thanks to concavity) that the left-hand side derivative of F at T

exists and

inf
0≤s<t≤T

F (t)− F(s)

t − s
= F ′−(T ).

23For the reader’s convenience we recall (the essence of) Condition 2 in [5]: there exists c,α > 0
such that Var(Xs,t |F0,s ∨ Ft,T )≥ c(t − s)α for all 0≤ s < t ≤ T .
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By assumption, F ′−(T ) > 0, and so Condition 2 holds with α = 1. Also note that
F ′−(T ) is nonincreasing in T ; thus Condition 2 remains valid upon decreasing T .

Next, we prove that ([5], Condition 4, page 10) is satisfied. Due to concavity
of F and Lemma 2.20, X has nonpositively correlated increments, and it is enough
to show that (cf. [5], page 11)

EX0,SXs,t =R

(
0, S

s, t

)
≥ 0 ∀[s, t] ⊆ [0, S] ⊆ [0, T ],(6.3)

which is clear from our condition (B.ii) of Theorem 2.2, which was seen to be
verified in the present situation in Example 2.9. We also note that ([5], Condition 3,
page 10) is implied by Condition 4 (cf. [5], Corollary 6.8). In conclusion, [5],
Theorem 3.5, implies the claim.

It remains to prove estimate (6.2). To this end, let G :=F0,s ∨Ft,T . Since X is
Gaussian, Var(Xs,t |G) is deterministic, and by a simple argument (detailed in [5],
Lemma 4.1) one has

Var(Xs,t |G)= inf
Y∈L2(�,G,P)

‖Xs,t − Y‖2
2,(6.4)

where the inf is achieved at Y = E[Xs,t |G], an element in the first Wiener–Itô
chaos, that is, the L2-closure of {Xt : 0≤ t ≤ T } and of course G-measurable. As a
consequence, E[Xs,t |G] = limn Yn in L2 for suitable “simple” approximations of
the form, with [tni , tni+1] ⊂ [0, s] ∪ [t, T ],

Yn =
kn∑

i=1

an
i Xtni ,tni+1

,

and we can replace the inf in (6.4) by the inf taken over such simple elements.
In what follows let us write (t̃ni ) for the dissection obtained from (tni : 1 ≤ i <

kn) ∪ {s, t}. This way, we may condense the expression Xs,t −∑
i a

n
i Xtni ,tni+1

to∑
i ã

n
i Xt̃ni ,t̃ni+1

. Using elementary estimates such as αiαj ≤ (α2
i + α2

j )/2 and sym-
metry of R, we find

‖Xs,t − Yn‖2
2 = E

∣∣∣∣Xs,t −
∑
i

an
i Xtni ,tni+1

∣∣∣∣2 = E

∣∣∣∣∑
i

ãn
i Xt̃ni ,t̃ni+1

∣∣∣∣2

=∑
i,j

ãn
i ãn

jEXt̃ni ,t̃ni+1
Xt̃nj ,t̃nj+1

=∑
i,j

ãn
i ãn

j R

(
t̃ ni , t̃ni+1
t̃ nj , t̃nj+1

)

≥ −∑
i

∑
j �=i

∣∣ãn
i

∣∣∣∣ãn
j

∣∣∣∣∣∣R
(

t̃ ni , t̃ni+1
t̃ nj , t̃nj+1

)∣∣∣∣+∑
i

(
ãn
i

)2
R

(
t̃ ni , t̃ni+1
t̃ ni , t̃ni+1

)

≥ −∑
i

∑
j �=i

(
ãn
i

)2
∣∣∣∣R

(
t̃ ni , t̃ni+1
t̃ nj , t̃nj+1

)∣∣∣∣+∑
i

(
ãn
i

)2
R

(
t̃ ni , t̃ni+1
t̃ ni , t̃ni+1

)
.
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Due to nonpositively correlated increments we may drop the minus and absolute
values in the line above and combine both sums. Thanks to (6.3), we can then
finish the desired estimate,

‖Xs,t − Yn‖2
2 ≥

∑
i

(
ãn
i

)2 ∑
j

R

(
t̃ ni , t̃ni+1
t̃ nj , t̃nj+1

)
=∑

i

(
ãn
i

)2
R

(
t̃ ni , t̃ni+1

0, T

)

= R

(
s, t

0, T

)
+∑

i

(
an
i

)2
R

(
tni , tni+1

0, T

)
≥R

(
s, t

0, T

)
.

�
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