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In this paper we obtain Gaussian-type lower bounds for the density of
solutions to stochastic differential equations (SDEs) driven by a fractional
Brownian motion with Hurst parameter H . In the one-dimensional case with
additive noise, our study encompasses all parameters H ∈ (0,1), while the
multidimensional case is restricted to the case H > 1/2. We rely on a mix of
pathwise methods for stochastic differential equations and stochastic analysis
tools.

1. Introduction. Let B = (B1, . . . ,Bd) be a d-dimensional fractional Brow-
nian motion (fBm in the sequel) defined on a complete probability space (�,F,P),
with Hurst parameter H ∈ (0,1). Recall that this means that B is a centered Gaus-
sian process indexed in [0,1], whose coordinate processes are independent, and
their covariance structure is defined by

R(t, s) := E
[
Bj

s B
j
t

] = 1
2

(
s2H + t2H − |t − s|2H )

(1)
for s, t ∈ [0,1] and j = 1, . . . , d.

This implies that the variance of an increment is given by

E
[(

B
j
t − Bj

s

)2] = |t − s|2H for s, t ∈ [0,1].(2)

In particular, this process is γ -Hölder continuous a.s. for any γ < H and is an H -
self similar process. This converts fBm into a natural generalization of Brownian
motion and explains the fact that it is used in applications [17, 26, 27].

We are concerned here with the following class of stochastic differential equa-
tions (SDEs) in R

m driven by B on the time interval [0,1]:

Xt = a +
∫ t

0
V0(Xs) ds +

d∑
i=1

∫ t

0
Vi(Xs) dBi

s,(3)
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where a ∈ R
m is a generic initial condition, and {Vi;0 ≤ i ≤ d} is a collection

of smooth and bounded vector fields of Rm. Though equation (3) can be solved
thanks to rough paths methods in the general case H ∈ (1/4,1), d ≥ 1, we shall
consider in the sequel three situations which can be handled without recurring to
this kind of technique:

(1) The one-dimensional case with additive noise and H ∈ (0,1), which can be
treated via simple ODE techniques.

(2) The one-dimensional situation, namely m = d = 1 with H ∈ (1/2,1),
where the equation can be solved thanks to a Doss–Sussman-type methodology,
as mentioned in [19].

(3) The case of a Hurst exponent H ∈ (1/2,1), for which Young integration
methods are available; see, for example, [14, 24, 29].

Hence, we always understand the solution to equation (3) according to the three
settings mentioned above. We shall see, however, that rough path-type arguments
shall be involved in some of our proofs.

The process defined as the solution of (3) is obviously worth studying, and a
natural step in this direction is to analyze the density of the random variable Xt

for a fixed t > 0. In this respect, the following results are available in our cases of
interest:

(1) For m = d = 1, the existence of density for L(Xt) is examined in [19].
(2) Whenever H > 1/2 and in a multidimensional setting, the existence of den-

sity is established in [25], while smoothness under elliptic assumptions is handled
in [15].

Let us also mention that for multidimensional equation (3) and H ∈ (1/4,1/2),
rough path techniques also enable the study of densities of the solution. We refer
to [5, 6] for existence and [7] for smoothness results for L(Xt). However, the
only Gaussian-type estimate for the density we are aware of, is the one contained
in [3], which relies heavily on a skew-symmetric assumption for the vector fields
V1, . . . , Vd .

The current article is thus dedicated to give Gaussian-type lower bounds for the
density of Xt . More specifically, we work under the following assumptions on the
coefficients of equation (3):

HYPOTHESIS 1.1. The coefficients V0, . . . , Vd of equation (3) satisfy the fol-
lowing conditions:

(1) If m = d = 1, then V0,V1 ∈ C3
b , and we also assume λ ≤ |V1| ≤ �.

(2) In the multidimensional case, the vector fields V0, . . . , Vd belong to the
space C∞

b of smooth functions bounded together with all their higher order deriva-
tives. Furthermore, if V (x) denotes the matrix (V1(x), . . . , Vd(x)) ∈ R

m×d for all
x ∈ R

m, then we assume the following uniform elliptic condition:

λIdm ≤ V (x)V ∗(x) ≤ �Idm for all x ∈ R
m,(4)
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where the inequalities are understood in the matrix sense and where λ and � are
two given strictly positive constants which are independent of x.

With these hypotheses in hand, our main goal is to prove the following result:

THEOREM 1.2. Consider equation (3), under the following three specific sit-
uations:

(I) m = d = 1, H ∈ (0,1), V0 ∈ C1
b and the noise is additive (i.e., V1 is a

nonvanishing real constant).
(II) m = d = 1, H ∈ (1/2,1) and Hypothesis 1.1(1) is satisfied for V0,V1.

(III) Arbitrary m, d ∈ N, H ∈ (1/2,1) and V0, . . . , Vd satisfy Hypothe-
sis 1.1(2).

Then the solution Xt of equation (3) possesses a density pt(x) such that for every
x ∈ R

m and t ∈ (0,1], we have

pt(x) ≥ c1

tmH
exp

(
−c2|x − a|2

t2H

)
,(5)

for some constants c1, c2 only depending on d,m and V0, . . . , Vd .

As mentioned above, this is (to the best of our knowledge) the first Gaussian-
type lower bound obtained for the density of the solution of the SDE driven by
fBm in a general setting. It should also be mentioned that lower bound (5) can be
complemented by a similar upper bound contained in [4].

Let us say a few words about the methodology we rely on in order to obtain our
lower bound (5). Generally speaking it is based on Malliavin calculus tools, but
the three results mentioned in Theorem 1.2 are proved in different ways:

(1) In the one-dimensional additive case, we invoke a recent formula for den-
sities introduced in [20] which yields an easy way to estimate pt in the case of
additive stochastic equations. We thus include this study for didactical purposes,
and also because we obtain (slightly nonoptimal) Gaussian upper and lower bounds
with elegant methods. Observe that this technique proves to be useful (generally
speaking) for equations with additive noise, as assessed in a SPDE context in [23].

(2) The one-dimensional case with multiplicative noise is based on the Doss–
Sussmann transform and Girsanov-type arguments. It is rather easy to implement
and yields results when the criterion of [20] cannot be applied.

(3) As far as the general case is concerned, it will be basically handled, thanks
to the decomposition of random variables, using increments independent of Gaus-
sian increments strategy introduced in [2, 16], which has also been invoked suc-
cessfully, for example, in [9]. However, let us point out two important differences
between the fBm and the diffusion case:
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(i) In the case of SDE (3) without drift coefficient V0, the first step of the
method implemented (for a fixed t ∈ (0,1]) in [2, 16] amounts to introducing a
partition {tj ;0 ≤ j ≤ n} such that t0 = 0 and tn = t , with n large enough, and then
splitting Xt into small contributions of the form

Xtj+1 − Xtj =
d∑

i=1

Vi(Xtj )
[
Bi

tj+1
− Bi

tj

] +
d∑

i=1

∫ tj+1

tj

[
Vi(Xs) − Vi(Xtj )

]
dBi

s .(6)

Then a main conditionally Gaussian contribution Vi(Xtj )[Bi
tj+1

−Bi
tj
] is identified

on the right-hand side of equation (6), while the other terms are a small remainder
in the Malliavin calculus sense in comparison with the first. Roughly speaking,
Gaussian lower bound (5) is then obtained by adding those main contributions and
proving that the remainder does not significantly modify the estimate. However, let
us highlight the fact that this general scheme does not fit to the fractional Brownian
motion setting.

Indeed, due to the fBm dependence structure, the main contributions to the
variance of Xt in the current situation come from the cross terms E[(Bi

tj+1
−

Bi
tj
)(Bi

tk+1
− Bi

tk
)] for j �= k. We have thus decided to express equation (3) as

an anticipative Stratonovich-type equation with respect to the Wiener process in-
duced by B . This is known to be an inefficient way to solve the original equation,
but turns out to be very useful in order to analyze the law of Xt . We shall detail
this strategy at Section 5.1.

(ii) In the case of an equation driven by usual Brownian motion, the Malliavin–
Sobolev norms involved in the computations give deterministic contributions after
conditioning, due to the independence of increments of the Wiener process. This
is not true, however, in the fBm case, and we thus need to add a proper localization
to the arguments in [2, 16].

The adaptation of the Brownian methodology to our fBm context is thus non-
trivial. Note that we could also have tried to resort to the powerful global bounds
given in [18] in order to get our Gaussian lower bounds. Unfortunately, the expo-
nential moments conditions imposed in the latter reference are too restrictive to be
applied to Malliavin derivatives of SDEs driven by fBm.

Our article is structured as follows: Section 2 is devoted to recall some use-
ful facts on fractional Brownian motion and stochastic differential equations. We
handle the one-dimensional case with additive noise at Section 3 and the one-
dimensional case with multiplicative noise in Section 4 with different method-
ologies. Finally, the bulk of our article focuses on the general multidimensional
case contained in Section 5. Some auxiliary results used in Section 5 dealing with
stochastic derivatives are given in an Appendix.

NOTATION. Throughout this paper, unless otherwise specified, we use | · | for
Euclidean norms and ‖ · ‖Lp for the Lp(�) norm with respect to the underlying
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probability measure P. For a random variable X, L(X) denotes its law and for a
σ -field F , X ∈ F denotes the fact that X is F -measurable.

Consider a finite-dimensional vector space V and a subset U ⊂ R
d . The space

of V -valued Hölder continuous functions defined on U , with k-derivatives which
are γ -Hölder continuous with γ ∈ (0,1), will be denoted by Ck+γ (U ;V ), or just
Ck+γ when U = [0,1]. For a function g ∈ Cγ (V ) and 0 ≤ s < t ≤ 1, we shall
consider the semi-norms

‖g‖s,t,γ = sup
s≤u<v≤t

|gv − gu|V
|v − u|γ .(7)

The semi-norm ‖g‖0,1,γ will simply be denoted by ‖g‖γ . Similarly, for an open
set U , C1

b(U ;V ) denotes the space of bounded continuously differentiable func-
tions with bounded first derivative. For x, y ∈ R

m, we set 1{y≥x} := ∏m
k=1 1{yk≥xk}.

Vectors x ∈ R
m denote column vectors, their j th component is denoted by xj and

the transpose of x is denoted by x∗. The identity matrix of order m×m is denoted
by Idm.

Finally, let us mention that generic constants will be denoted by c, cH , cV , etc.,
independently of their actual value which may change from one line to the next.
This rule will also apply for the constants M and M ′ which will appear as localiza-
tion parameters, with the following additional convention: each time a localization
constant appears, it increases its value by the addition of a fixed universal constant
from the previous value. For a detailed explanation, see (16).

2. Stochastic calculus for fractional Brownian motion. This section is de-
voted to giving some of the basic elements of stochastic calculus with respect to B .
For some fixed H ∈ (0,1), we consider (�,F,P) the canonical probability space
associated with the fractional Brownian motion (in short fBm) with Hurst param-
eter H . That is, � = C0([0,1];Rd) is the Banach space of continuous functions
vanishing at 0 equipped with the supremum norm, F is the Borel sigma-algebra
and P is the unique probability measure on � such that the canonical process
B = {Bt = (B1

t , . . . ,Bd
t ), t ∈ [0,1]} is a fBm with Hurst parameter H . In this con-

text, let us recall that B is a d-dimensional centered Gaussian process, whose co-
variance structure is induced by equation (2).

2.1. Malliavin calculus tools. Gaussian techniques are obviously essential in
the analysis of fBm driven differential equations like (3), and we proceed here to
introduce some of them; see Chapter 5 in [21] for further details.

2.1.1. Wiener space associated to fBm. Let E be the space of Rd -valued step
functions on [0,1], and H the closure of E under the distance defined by the scalar
product

〈
(1[0,t1], . . . ,1[0,td ]), (1[0,s1], . . . ,1[0,sd ])

〉
H =

d∑
i=1

R(ti, si).



404 M. BESALÚ, A. KOHATSU-HIGA AND S. TINDEL

The space H is isometric to the reproducing kernel Hilbert space associated to B .
Furthermore, if (e1, . . . , ed) designates the canonical basis of Rd , one constructs

an isometry K∗: H → L2([0,1];Rd) such that K∗(1[0,t]ei) = 1[0,t] KH(t, ·)ei ,
where the kernel K = KH is given by

K(t, s) = cH s1/2−H
∫ t

s
(u − s)H−3/2uH−1/2 du, H >

1

2
,

K(t, s) = cH,1

(
s

t

)1/2−H

(t − s)H−1/2(8)

+ cH,2s
1/2−H

∫ t

s
(u − s)H−1/2uH−3/2 du, H <

1

2
,

for 0 ≤ s ≤ t and some explicit universal constants cH , cH,1, cH,2. With a slight
abuse of notation we will denote the associated integral operator by Kf (x) =∫ x

0 f (s)K(x, s) ds. Note that we have that R(s, t) = ∫ s∧t
0 K(t, r)K(s, r) dr . More-

over, let us observe that K∗ can be represented in the following form: for H ∈
(1/2,1), we have

[
K∗ϕ

]
t =

∫ 1

t
ϕr ∂rK(r, t) dr

while for H ∈ (0,1/2) it holds that

[
K∗ϕ

]
t = K(1, t)ϕt +

∫ 1

t
(ϕr − ϕt) ∂rK(r, t) dr.

When H ∈ (1/2,1) it can be shown that L1/H ([0,1],Rd) ⊂ H, and when H ∈
(0,1/2) one has Cγ ⊂ H ⊂ L2([0,1]) for all γ > 1

2 − H . We shall also use the
following representations of the inner product in H:

(i) For H ∈ (1/2,1) and φ,ψ ∈ H, we have

〈
K∗φ,K∗ψ

〉
L2([0,1]) = 〈φ,ψ〉H = cH

∫ 1

0

∫ 1

0
|s − t |2H−2〈φs,ψt 〉Rd ds dt.(9)

(ii) For H ∈ (0,1/2), consider any family of partitions π = (tj ) of [0,1], and
set Qjk = ∑d

i=1 E[�i
j (B)�i

k(B)] with �i
j (B) = Bi

tj
− Bi

tj−1
. Then for φ,ψ ∈ H,

we have

〈φ,ψ〉H = lim|π |→0

∑
j,k

〈φtj−1,ψtk−1〉Rd Qjk.(10)

Let us also recall that there exists a d-dimensional Wiener process W defined
on (�,F,P) such that B can be expressed as

Bt =
∫ t

0
K(t, r) dWr, t ∈ [0,1].(11)

This formula will be referred to as Volterra’s representation of fBm. Formula (11)
has various important implications. For example, it is readily checked that Ft ≡
σ {Bs;0 ≤ s ≤ t} = σ {Ws;0 ≤ s ≤ t}. This filtration will appear in the sequel.



GAUSSIAN-TYPE LOWER BOUNDS FOR DENSITY OF FRACTIONAL SDES 405

2.1.2. Malliavin calculus for B . Isometry arguments allow us to define the
Wiener integral B(h) = ∫ 1

0 〈hs, dBs〉 for any element h ∈ H, such that it satisfies
E[B(h1) B(h2)] = 〈h1, h2〉H for any h1, h2 ∈ H. An F -measurable real valued
random variable F is then said to be cylindrical if it can be written, for a given
n ≥ 1, as

F = f
(
B

(
h1)

, . . . ,B
(
hn)) = f

(∫ 1

0

〈
h1

s , dBs

〉
, . . . ,

∫ 1

0

〈
hn

s , dBs

〉)
,

where hi ∈ H and f :Rn →R is a C∞ bounded function with bounded derivatives.
The set of cylindrical random variables is denoted by S .

The Malliavin derivative with respect to B is defined as follows: for F ∈ S , the
derivative of F is the R

d valued stochastic process (DtF )0≤t≤1 given by

DtF =
n∑

i=1

hi
t

∂f

∂xi

(
B

(
h1)

, . . . ,B
(
hn))

.

More generally, we can introduce iterated derivatives. We will use the following
notation, depending on the situation. For F ∈ S , we set for i = (i1, . . . , ik) and
t = (t1, . . . , tk)

Dk
t = Dk

t1,...,tk
F = Dt1 · · ·DtkF or Di

tF = Di1,...,ik
t1,...,tk

F = Di1
t1

· · ·Dik
tk
F.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into
Lp(�;H⊗k). We denote by Dk,p the closure of the class of cylindrical random
variables with respect to the norm

‖F‖k,p =
(

E
[
Fp] +

k∑
j=1

E
[∥∥DjF

∥∥p

H⊗j

])1/p

,

for k ≥ 0 and p ≥ 1. In particular, ‖F‖0,p ≡ ‖F‖p = (E[Fp])1/p . As it is usu-
ally the case in Malliavin calculus with respect to W , the spaces Dk,p(H) are also
defined. The dual operator of D is denoted by δ, which corresponds to the Skoro-
hod integral with respect to the fBm B on the interval [0,1]. The space of smooth
processes Lk,p(H) is induced by the following norm:

‖u‖p

Lk,p(H)
= E

[‖u‖p
H

] +
k∑

l=1

E
[∥∥Dlu

∥∥p

H⊗(l+1)

]
.

Finally, the set of smooth integrands is defined as D∞(H) = ⋂
k,p≥1 Dk,p(H), and

the Malliavin covariance matrix of F is denoted by �F .
As mentioned in the Introduction, our lower bound (5) will be obtained by con-

sidering equation (3) as an equation driven by the underlying Wiener process W

defined in (11), meaning that we shall also use stochastic analysis estimates with
respect to W . We refer to Chapter 1 in [21] for this classical setting, and just men-
tion here a some notation: we denote by D the differentiation operator with respect
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to W and by δ the corresponding dual operator (Skorohod integral). The respective
norms in the Sobolev spaces Dk,p(L2([0,1])) are denoted by ‖ ·‖k,p and the space
of smooth integrands by Lk,p . The following simple relation between D and D is
then shown in [21], Proposition 5.2.1:

PROPOSITION 2.1. Let D1,2 be the Malliavin–Sobolev space corresponding
to the Wiener process W . Then D1,2 = (K∗)−1D1,2, and for any F ∈ D1,2 we have
DF = K∗DF whenever both members of the relation are well defined.

In fact the above proposition says that the derivatives D and D are somewhat
interchangeable. Indeed, using formula (5.14) in [21], which gives an explicit for-
mula for (K∗)−1, one obtains such a property. In particular, we will use that for
F ∈ Ft with F ∈ Dk,p and for u = (u1, . . . , uk) ∈ [0,1]k and r = (r1, . . . , rn), we
have ∣∣Dk

uF
∣∣ ≤ ess sup

ui≤ri;i=1,...,k

∣∣Dk
rF

∣∣K(t, u1) · · ·K(t, uk).(12)

For the proof of (12) and other useful properties, see Appendix.
Some of our computations in Section 5 will rely on some conditional Malliavin

calculus arguments, for which some definitions need to be recalled. First, for a
given t ∈ [0,1] and F ∈ L2(�), we shorten notation and write

Et [F ] := E[F |Ft ],
and also set Pt for the respective conditional probability and Covt (G) for the con-
ditional covariance matrix of a Gaussian vector G. We shall only use conditional
Malliavin calculus with respect to the underlying Wiener process W , for which
we recall the following definitions: For a random variable F and t ∈ [0,1], let
‖F‖k,p,t and �F,t be the quantities defined (for k ≥ 0, p > 0) by

‖F‖k,p,t =
(

Et

[
Fp] +

k∑
j=1

Et

[∥∥DjF
∥∥p

(L2
t )

⊗j

])1/p

and

(13)
�F,t = (〈

F i,F j 〉
L2

t

)
1≤i,j≤d,

where we have set L2
t ≡ L2([t,1]).

With this notation in hand, we give a conditional version of the integration by
parts formula with respect to the Wiener process W , borrowed from [21], Proposi-
tion 2.1.4.

PROPOSITION 2.2. Fix n ≥ 1. Let F,Zs,G ∈ (D∞)d be three random vectors
where Zs is Fs -measurable and (det�F+Zs

)−1 has finite moments of all orders. Let
g ∈ C∞

p (Rd). Then, for any multi-index α = (α1, . . . , αn) ∈ {1, . . . , d}n, there exists
a r.v. Hs

α(F,G) ∈ ⋂
p≥1

⋂
m≥0 Dm,p such that

E
[
(∂αg)(F + Zs)G|Fs

] = E
[
g(F + Zs)H

s
α(F,G)|Fs

]
,(14)
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where Hs
α(F,G) is recursively defined by

Hs
(i)(F,G) =

d∑
j=1

δs

(
G

(
�−1

F,s

)
ijDF j )

,

H s
α(F,G) = Hs

(αn)

(
F,Hs

(α1,...,αn−1)
(F,G)

)
.

Here δs denotes the Skorohod integral with respect to the Wiener process W on the
interval [s,1]. Furthermore, the following norm estimates with 1

p
= 1

q1
+ 1

q2
+ 1

q3
hold true:∥∥Hs

α(F,G)
∥∥
p,s ≤ c

∥∥det(�F,s)
−1∥∥n

2n−1q1,s
‖F‖2(dn+1)

n+2,2nq2,s
‖G‖n,q3,s .

We will also resort to a localized version of the above bounds. Namely, we
introduce a family of functions �M,ε :R+ → R+ indexed by M,ε > 0, which are
regularizations of 1{x≤M}. Specifically, we define a function φε = ε−1φ :R → R

with

φ(x) := cφ exp
(
− 1

1 − x2

)
1{|x|<1},

where cφ is a normalization constant chosen in order to have
∫
R

φ(x) dx = 1. Then
we define

�M,ε(z) := 1 −
∫ z

−∞
φε(x − M)dx.(15)

It is then readily checked that �M,ε(z) = 0 for z > M + ε, �M,ε(z) = 1 on [0,

M − ε] and �M,ε ∈ C∞
b . We will use the above localization function in two sit-

uations: one for M � 1, ε = 1, and in this case we simplify the notation using
�M ≡ �M,1. In a second case M will not be a large quantity and therefore we will
have to choose ε accordingly.

Consider now Z ∈ D∞. Under the same conditions as for Proposition 2.2, we
get a conditional integration by parts formula of form (14) localized by Z, with the
following modification on the estimation of the norms of Hs

α :∥∥Hs
α

(
F,G�M(Z)

)∥∥
p,s

(16)
≤ c

∥∥det(�F,s)
−1�M ′(Z)

∥∥k3
p3,s

∥∥F�M ′(Z)
∥∥k4
k2,p2,s

∥∥G�M ′(Z)
∥∥
k1,p1,s

,

for some appropriate positive integers k1,p1, k2,p2, k3,p3, k4, and where we re-
call our convention on increasing constants M ′ > M . In fact, to obtain the above in-
equality is enough to notice that there exist constants M ′ and C which may depend
on M and k ∈ N such that �M(Z) ≤ C�M ′(Z)k and |∂k

z �M(Z)| ≤ C�M ′(Z). No-
tice that (16) is valid for localizations of the form �M,ε(Z) as well.



408 M. BESALÚ, A. KOHATSU-HIGA AND S. TINDEL

2.2. Differential equations driven by fBm. Recall that X is the solution of (3),
and that our working assumptions are summarized in Hypothesis 1.1. We have
distinguished 3 situations:

(1) The one-dimensional additive case, for which equation (3) can be reduced
to an ordinary differential equation by considering the process Z = X − B .

(2) The one-dimensional multiplicative case, handled thanks to the Doss–
Sussman transform; see, for example, [19].

(3) The multidimensional case with H ∈ (1/2,1), solved in a pathwise way by
interpreting stochastic integrals as generalized Riemann–Stieljes-type integrals.

In this section we give a brief account on the known results in the last situation.
In the case H ∈ (1/2,1), (3) is solved thanks to a fixed point argument, after

interpreting the stochastic integral in the (pathwise) Young sense; see, for example,
[14]. Let us recall that Young’s integral can be defined in the following way:

PROPOSITION 2.3. Let f ∈ Cγ , g ∈ Cκ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1.
Then the integral

∫ t
s gξ dfξ is well defined as a Riemann–Stieltjes integral. More-

over, the following estimation is fulfilled:∣∣∣∣
∫ t

s
gξ dfξ

∣∣∣∣ ≤ C‖f ‖γ ‖g‖κ |t − s|γ ,

where the constant C only depends on γ and κ .

With this definition in mind and under Hypothesis 1.1, we can solve (3)
uniquely, in the Young sense. Specifically, it is proven in [24] that equation (3)
driven by B admits a unique γ -Hölder continuous solution X, for any 1

2 < γ < H .
Moreover, the following moments bounds are shown in [15]:

PROPOSITION 2.4. Let H ∈ (1/2,1), and assume that V0, . . . , Vd satisfy Hy-
pothesis 1.1. Then for t ∈ [0,1] and 1

2 < γ < H , we have

‖X‖0,t,∞ ≤ |a| + cV ‖B‖1/γ
0,t,γ ,(17)

where we have set ‖X‖0,t,∞ := sup{|Xs |;0 ≤ s ≤ t} and where we recall that
‖B‖0,t,γ is defined by (7). Moreover Xt ∈ D∞ and for n ≥ 1, i = (i1, . . . , in) ∈
{1, . . . , d}n and 0 ≤ s < t ≤ 1 the following bound holds true:

sup
s≤u,r1,...,rn≤t

∣∣Di
rXu

∣∣ ≤ CV,n exp
(
cV,n‖B‖1/γ

s,t,γ

)
.(18)

We remark that Di1,...,in
r1,...,rnXu is a continuous function except if ri = u for some i,

where it is càdlàg, and therefore the above supremum is well defined.
Furthermore, a bound for γ -Hölder norms with 1

2 < γ < H is provided in [12],
equation (10.15), for X together with its Malliavin derivatives:
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PROPOSITION 2.5. Under the same assumptions as for Proposition 2.4, we
have

‖X‖s,t,γ ≤ c1,V

(‖B‖s,t,γ ∨ ‖B‖1/γ
s,t,γ

)
,∥∥Di

rXu

∥∥
s,t,γ ≤ c2,V ,n exp

(
c3,V ,n‖B‖1/γ

s,t,γ

)
.

REMARK 2.6. Assume H > 1/2 and the other hypothesis of Proposition 2.4
again. As mentioned, for example, in [8], Section 7, the Young-type integrals∫ t

0 Vi(Xs) dBi
s in (3) coincide with the Russo–Vallois definition of integral and

also with the Stratonovich integral of Malliavin calculus. We shall use these iden-
tifications later on, and they will be detailed in Section 5.2. For the time being,
let us just stress the following fact: in order to harmonize notation, we shall often
write

∫ t
0 Vi(Xs) ◦ dBi

s for the Young integral (instead of
∫ t

0 Vi(Xs) dBi
s ), in order

to recall that it can also be interpreted in the Stratonovich sense.

3. One-dimensional additive case. This section is devoted to prove our main
Theorem 1.2 in the particular case m = d = 1 with additive noise. In this context,
one can take advantage of the results obtained by Nourdin and Viens in [20] in
order to derive Gaussian-type upper and lower bounds for pt . Let us then first
recall what those results are.

3.1. General bounds on densities of one-dimensional random variables. Re-
call that we denote the Malliavin–Sobolev spaces with respect to the fBm B by
Dk,p , and consider a real-valued centered random variable F ∈ D1,2. We define a
function g on R by

g(z) := E
[〈

DF,−DL−1F
〉
H|F = z

]
,

where the operator L is the Ornstein–Uhlenbeck operator associated to the fBm B

(see [21] for further details), which can be defined using the chaos expansion by the
formula L = −∑∞

n=0 nJn. Based on the function g, the following simple criterion
for Gaussian-type bounds has been obtained in [20]:

PROPOSITION 3.1. Let F ∈ D1,2 with E[F ] = 0. If there exist c1, c2 > 0 such
that

c1 ≤ g(F ) ≤ c2, P-a.s.,(19)

then the law of F has a density ρ satisfying, for almost all z ∈R,

E[|F |]
2c2

exp
(
− z2

2c1

)
≤ ρ(z) ≤ E[|F |]

2c1
exp

(
− z2

2c2

)
.
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Interestingly enough, Nourdin and Viens [20], Proposition 3.7, also give an al-
ternative formula for g(F ) which is suitable for computational purposes. Indeed,
if we write DF = �F (B) in the above Proposition, where �F :RH → H is a mea-
surable mapping, then the following relation holds true:

g(F ) =
∫ ∞

0
e−θE

[〈
�F (B),�F

(
e−θB +

√
1 − e−2θB ′)〉

H|F ]
dθ,(20)

where B ′ stands for an independent copy of B , and is such that B and B ′ are
defined on the product probability space (�×�′,F ⊗F ′,P × P′). Here we abuse
the notation by letting E be the mathematical expectation with respect to P × P′,
while E′ is the mathematical expectation with respect to P′ only. One can thus
recast relation (20) as

g(F ) =
∫ ∞

0
E

[
E′[〈DF,DFθ 〉

H
]|F ]

dθ,(21)

where, for any random variable X defined in (�,F,P), Xθ denotes the following
shifted random variable in � × �′:

Xθ (
ω,ω′) = X

(
e−θω +

√
1 − e−2θω′), ω ∈ �,ω′ ∈ �′.

3.2. Main result in the additive one-dimensional case. Before stating our re-
sult let us point out that we assume throughout this subsection V1 ≡ σ . That is, X

is the solution of

Xt = x +
∫ t

0
V0(Xs) ds + σBt , t ∈ [0,1],(22)

where σ > 0 is a strictly positive constant, V0 satisfies ‖V ′
0‖∞ ≤ M for some con-

stant M > 0 and B is a fBm with H ∈ (0,1). Under this setting, we are able to get
the following bounds:

THEOREM 3.2. Assume that V0 satisfies that ‖V ′
0‖∞ ≤ M , for some constant

M > 0, σ > 0 and H ∈ (0,1). Then, for all t ∈ (0,1], Xt possesses a density pt ,
and there exist some strictly positive constants c1 < c3 and c2 < c4 depending only
on M and H such that for all z ∈ R,

c1

σ tH
exp

(
−(z − m)2

c2σ 2t2H

)
≤ pt(z) ≤ c3

σ tH
exp

(
−(z − m)2

c4σ 2t2H

)
.(23)

REMARK 3.3. The advantage of the Nourdin–Viens method of estimating
densities is that upper and lower bounds are obtained with similar proofs. The
drawback is the restriction to one-dimensional additive situations. Also notice that
the exponents in equation (24) are optimal, meaning that our density bounds mimic
the fBm case. See also Theorem 4.3 for the nonconstant diffusion case.
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STRATEGY OF THE PROOF. We first notice that we can reduce our problem to
prove that

E[|Xt − m|]
c1σ 2t2H

exp
(
−(z − m)2

c2σ 2t2H

)
≤ pt(z) ≤ E[|Xt − m|]

c2σ 2t2H
exp

(
−(z − m)2

c1σ 2t2H

)
.(24)

Indeed, one can check in our context that E[|Xt −m|] � σ tH . This easy step is left
to the reader for the sake of conciseness, and it naturally allows us to go from (24)
to (23). Now in order to prove (24), we obviously rely heavily on Proposition 3.1.
We thus define F = Xt −E[Xt ], where Xt is the solution of (22). We get a centered
random variable, and we shall prove that there exists two constants 0 < K1 < K2
such that

K1σ
2t2H ≤ g(F ) ≤ K2σ

2t2H .(25)

Notice first that in the present case, it is easily seen that for any t > 0, we have
Xt ∈ D1,2; this is a particular case of [25]. Furthermore, the Malliavin derivative
of Xt satisfies the following equation for r ≤ t :

DrXt =
∫ t

r
V ′

0(Xs)DrXs ds + σ.

This equation can be solved explicitly, and we obtain

DrXt = σe
∫ t
r V ′

0(Xs) ds .(26)

In particular, the bound

σe−tM ≤ DrXt ≤ σetM(27)

holds true almost surely for M = ‖V ′
0‖∞.

Observe that we shall bound g(F ) thanks to relation (27). More specifically, we
will show that for each θ ∈ R+ we have (almost surely)

c3t
2Hσ 2 ≤ 〈

DF,DFθ 〉
H ≤ c4t

2Hσ 2,(28)

for two strictly positive constants c3 < c4. This deterministic bound easily
yields (19) and thus (24). We now separate the cases H ∈ (1/2,1) and H ∈ (0,1/2)

in order to get relation (28). Notice that the Brownian case, that is, H = 1/2, is
well known, and it is thus omitted here for the sake of conciseness. �

3.3. Case H > 1
2 . Recall that we wish to prove (28) thanks to relation (27).

Furthermore, owing to expression (9) for the inner product in H, we can write
〈DF,DFθ 〉H as〈

DF,DFθ 〉
H = cH

∫ t

0

∫ t

0
DuXtDvX

θ
t |u − v|2H−2 dudv

(29)

= cHσ 2
∫ t

0

∫ t

0
e

∫ t
u V ′

0(Xs) dse
∫ t
v V ′

0(X
θ
s ) ds |u − v|2H−2 dudv.

Therefore the lower and upper bounds in (27) follow from plugging inequality (27)
into relation (29).
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3.4. Case 0 < H < 1
2 . As in the case H > 1

2 , our aim is to prove (27). We thus
go back to equation (21), and we observe that we can reduce the problem to the
existence of two constants 0 < c1 < c2 such that

c1t
2H ≤ 〈

DXt,DXθ
t

〉
H ≤ c2t

2H .(30)

The proof of these inequalities will rely on the following quadratic programming
lemma, which is a slight variation of [7], Lemma 6.2:

LEMMA 3.4. Let Q ∈ R
n ⊗ R

n be a strictly positive symmetric matrix such
that

∑n
j=1 Qij ≥ 0 for all i = 1, . . . , n. For two positive constants a and b, con-

sider the sets A = [a,∞)n and B = [b,∞)n. Then

inf
{
x∗Qx̃; x̃ ∈ A, x ∈ B

} = ab

n∑
i,j=1

Qij .

PROOF. Set a = a1 ∈ R
n and b = b1 ∈ R

n. The Lagrangian of our quadratic
programming problem is a function L :Rn ×R

n ×R
n+ ×R

n+ →R defined as

L(x, x̃, λ1, λ2) = x∗Qx̃ − λ∗
1(x − b) − λ∗

2(x̃ − a).

It is readily checked that ∇xL(x, x̃, λ1, λ2) = Qx̃ − λ1 and ∇x̃L(x, x̃, λ1, λ2) =
Qx − λ2, which vanishes for x = Q−1λ2 and x̃ = Q−1λ1. Therefore,

inf
{
L(x, x̃, λ1, λ2);x, x̃ ∈R

n} = L
(
Q−1λ2,Q

−1λ1, λ1, λ2
)

= −λ∗
1Q

−1λ2 + λ∗
1b + λ∗

2a =: G(λ1, λ2).

We have thus obtained a dual problem of the form

max
{
G(λ1, λ2);λ1, λ2 ∈ R

n+
}
.(31)

Let us now solve Problem (31). We first maximize G without positivity con-
straints on λ1 and λ2: we get ∇λ1G(λ1, λ2) = −Q−1λ2 + b and ∇λ2G(λ1, λ2) =
−λ∗

1Q
−1 + a, which vanishes for λ◦

1 = Qa and λ◦
2 = Qb. Observe now that our

assumption
∑n

j=1 Qij ≥ 0 for all i = 1, . . . , n implies λ◦
1, λ

◦
2 ≥ 0, so that λ◦

1 and λ◦
2

are feasible for the dual problem. Hence

max
{
G(λ1, λ2);λ1, λ2 ∈ R

n+
} = G

(
λ◦

1, λ
◦
2
) = ab

n∑
i,j=1

Qij ,

which completes the proof. �

Importantly enough, Lemma 3.4 can be applied in order to get a lower bound
on H norms:

PROPOSITION 3.5. Let B be a one-dimensional fBm on [0, τ ], let H ≡ Hτ be
the associated reproducing kernel Hilbert space and f, f̃ ∈ H such that fu ≥ b

and f̃u ≥ a for any u ∈ [0, τ ]. Then 〈f, f̃ 〉H ≥ abτ 2H .
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PROOF. Recall that, owing to relation (10), we have 〈f, f̃ 〉H = lim|π |→0 Iπ(f,

f̃ ), where π stands for a generic partition {0 = t0 < · · · < tn = τ } and

Iπ(f, f̃ ) =
n∑

i,j=1

fti−1Qij f̃tj−1 with Qij = E
[
�i(B)�j (B)

]
,

where we recall that �i(B) = Bti − Bti−1 . We assume for the moment that Q

satisfies the hypothesis of Lemma 3.4, and we get

Iπ(f, f̃ ) ≥ ab

n∑
i,j=1

Qij = ab

n∑
i,j=1

E
[
�i(B)�j (B)

] = abE
[
B2

τ

] = abτ 2H ,

which is our claim.
Let us now prove that Q satisfies the hypothesis of Lemma 3.4. First, the strict

positivity of Q stems from the local nondeterminism of B; see, for example, [28].
Indeed, for u ∈ R

n we have

u∗Qu = Var

(
n−1∑
j=0

uj�j (B)

)
≥ cn

n∑
j=1

u2
j |tj − tj−1|2H ,

where the lower bound is the definition of local nondeterminism. Thus u∗Qu > 0
as long as u �= 0.

Let us now check that for a fixed i we have
∑n

j=1 Qij ≥ 0. To this end, write

n∑
j=1

Qij = E
[
�i(B)Bτ

] =
∫ ti+1

ti

∂uR(τ,u) du.

Going back to expression (1), it is now easily seen that for u < τ we have

∂uR(τ,u) = H
(
u2H−1 + (τ − u)2H−1)

> 0,

which completes the proof. �

We can now go back to the proof of relation (30), which is divided again into
two steps:

Step 1: Lower bound. Thanks to relation (27), we have that σe−tM ≤ DrXt .
Thus we just have to apply Proposition 3.5 to the Malliavin derivative in order to
obtain 〈

DXt,DXθ
t

〉
H ≥ σ 2t2He−2M,(32)

which is our desired lower bound.
Step 2: Upper bound. In order to obtain an upper bound for g(F ), we will

use the representation of H through fractional derivatives. Indeed, apply first the
Cauchy–Schwarz inequality in order to get〈

DXt,DXθ
t

〉
H ≤ ‖DXt‖H

∥∥DXθ
t

∥∥
H.(33)
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We then invoke Lemma A.1 to bound ‖DXθ
t ‖H. This boils down to estimating

a = sup
r∈[0,t]

∣∣DrX
θ
t

∣∣ and b = sup
r,v∈[0,t]

DrX
θ
t − DvX

θ
t

(v − r)γ
,

with 1/2 − H < γ < 1/2 and any θ ≥ 0.
Now starting from expression (26) and owing to the fact that V ′

0 is uniformly
bounded by M , we trivially get a ≤ σeM . As far as b is concerned, we write∣∣DrX

θ
t − DvX

θ
t

∣∣ ≤ σe
∫ t
v V ′

0(X
θ
s ) ds

∣∣1 − e
∫ v
r V ′

0(X
θ
s ) ds

∣∣ ≤ σMe2M(v − r).

We thus end up with the inequalities

a ≤ σeM and b ≤ σMe2Mt1−γ .

We now apply Lemma A.1 with constants a and b, and we obtain

‖DXt‖H ≤ cH

(
σeMtH + σMe2Mt1+H ) ≤ 2cHσMe2MtH ,

and hence 〈
DXt,DXθ

t

〉
H ≤ 4cHσ 2M2e4Mt2H .

Finally, putting together the last bound and (32), we get (25) in the case H ∈
(0,1/2), which completes the proof of Theorem 3.2.

4. One-dimensional nonvanishing diffusion coefficient case. We turn now
to the case m = d = 1, H ∈ (1

2 ,1) for a nonconstant elliptic coefficient σ . Observe
that this special case is treated in a separate section because (i) the Gaussian bound
is obtained with weaker conditions on the coefficients than in the multidimensional
case, and (ii) the proof is shorter due to specific one-dimensional techniques based
on the Doss–Sussman transform and Girsanov’s theorem. This is detailed below.

REMARK 4.1. The Doss–Sussman transform can be justified for any H ∈
(0,1) in our context. However, the computations related to Girsanov’s transform
become much more involved when H < 1/2, and this is why we restrict our anal-
ysis to H > 1/2 in the sequel.

4.1. Doss–Sussmann transformation. The idea of the method is to first con-
sider a one-dimensional equation of Stratonovich-type without drift and then apply
Girsanov’s theorem for fBm in order to obtain a characterization of the density.

In order to carry out this strategy, we start by using an independent copy of
(�,F,P) called (�′,F ′,P′) supporting a fBm denoted by B ′. On (�′,F ′,P′), let
Y be the unique solution to

Yt = a +
∫ t

0
V1(Ys) ◦ dB ′

s,(34)
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where the integral is interpreted either in the Young or Stratonovich sense (as re-
called in Remark 2.6), and where V1 ∈ C1(R;R), V1 �= 0 and H ∈ (1

2 ,1). We also
call W ′ the underlying Wiener process appearing in the Volterra-type represen-
tation (11) for B ′. We now recall here some details from Doss and Sussmann’s
classical computations adapted to our fBm context.

Indeed, as in [19], let us recall that the solution of equation (34) can be expressed
as Yt = F(B ′

t , a), t > 0, where F :R2 →R is the flow associated to V1,

∂F

∂x
(x, y) = V1

(
F(x, y)

)
, F (0, y) = y.(35)

We remark that if V1 is bounded, then F satisfies |F(x, y)| ≤ c(1 + |x| + |y|).
Next we relate the solution X of equation (3) to the process Y defined by (34).

This step is partially borrowed from [22], and we refer to that paper for further
details. Indeed, thanks to a Girsanov-type transform, the following characteriza-
tion of the law of the solution to (3) is shown for m = d = 1: For any bounded
measurable function U :R →R, one has

EP
[
U(Xt)

] = EP′
[
U

(
F

(
B ′

t , a
))

ξ
]
,(36)

where ξ ≡ ξt = dP
dP′ is the random variable defined by

ξ = exp
(∫ t

0

[
Ms dW ′

s − 1

2
M2

s ds

])
,(37)

where we have set M = K−1(
∫ ·

0 V0V
−1
1 (Yu) du).

Notice that in definition (37), the operator K has been alluded to in Sec-
tion 2.1.1. It should be observed that K,K−1 can also be defined, respectively,
for H ≥ 1

2 and an appropriate function h, by (see details in [21], Chapter 5)

K(h)(s) = I 1
0+

(
sH−1/2(

I
H−1/2
0+

(
s1/2−Hh

)))
(s) and

K−1(h)(s) = sH−1/2(
D

H−1/2
0+

(
s1/2−Hh′))(s).

We also recall that in the last equation, Iα
0+ and Dα

0+ denote the fractional integral
and fractional derivative, whose expressions are

Iα
0+f (x) = 1

�(α)

∫ x

a
(x − y)α−1f (y) dy

and

Dα
0+f (x) = 1

�(1 − α)

(
f (x)

xα
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1 dy

)
.

It is easily seen from the expressions of K−1
H and D

H−1/2
0+ that K−1

H h is an adapted
transformation; see also expression (39) below. Hence the term ξ in (36) corre-
sponds to the usual Girsanov correction term. Furthermore, notice that in order
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for (36) to be satisfied, it is required that
∫ ·

0 V0V
−1
1 (Yu) du ∈ I

H+1/2
0+ (L2[0,1]).

This condition is satisfied due to the γ -Hölderianity of Y for any γ < H .
Actually one should prove that Novikov-type conditions are satisfied for ξ in

order to apply Girsanov’s transform and get relation (36). This is achieved in the
following lemma:

LEMMA 4.2. Let ξ be the random variable defined by (37), and assume that
Hypothesis 1.1(1) is satisfied. Then

Ms ≤ cV βs with βs := s1/2−H + ∥∥B ′∥∥
H−1/2+ε,(38)

for any arbitrarily small ε > 0. Furthermore EP′ [ξ ] = 1, which justifies the Gir-
sanov identity (36). That is, under P, B = B ′ + ∫ ·

0 V0V
−1
1 (Yu) du is a H -fBm.

PROOF. According to the expression of K−1
H , we have

Ms = 1

�(H − 1/2)

(
M1

s + (
H − 1

2

)
M2

s

)
,(39)

where we have set

M1
s ≡ V0V

−1
1 (Ys)

sH−1/2 ,

M2
s ≡ sH−1/2

∫ s

0

s1/2−HV0V
−1
1 (Ys) − u1/2−HV0V

−1
1 (Yu)

(s − u)H+1/2 du.

The term M1
s is easily bounded: we invoke the uniform ellipticity of V1 and the

regularity of V0 and V1, which yields M1
s ≤ cs−(H−1/2). We now bound M2

s : let
us decompose this term as M2

s = M21
s +M22

s , with

M21
s =

∫ s

0

1 − (s/u)H−1/2

(s − u)H+1/2 V0V
−1
1 (Yu) du and

M22
s =

∫ s

0

V0V
−1
1 (Ys) − V0V

−1
1 (Yu)

(s − u)H+1/2 du.

Then, resorting again to the fact that V0V
−1
1 is bounded and with the obvious

change of variable r = u/s, we get

∣∣M21
s

∣∣ ≤ cV

sH−1/2

∫ 1

0

rH−1/2 − 1

rH−1/2(1 − r)H+1/2 dr ≤ cV,H

sH−1/2 .

In order to handle the term M22
s , we start by writing

M22
s ≤ cV

∫ s

0

|F(B ′
s, a) − F(B ′

u, a)|
(s − u)H+1/2 du,
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and thanks to the Lipschitz properties of F plus elementary integral computations,
we obtain

M22
s ≤ cV,H

∥∥B ′∥∥
H−1/2+ε.

Therefore, summarizing our estimates on M1,M21 and M22, the proof of our
claim (38) is now completed.

Now let us have a closer look at the process β: it is readily checked that ‖B ′‖γ

admits quadratic exponential moments for any γ < H ; see Theorem 3 in [22]. In
particular, one can choose γ = H − 1/2 + ε for ε small enough, and hence there
exists λ > 0 such that the expected value E[exp(λ

∫ t
0 β2(s) ds)] is a finite quantity.

Owing to a version of Novikov’s condition stated in [11], Theorem 1.1, we deduce
that E[ξ ] = 1. This completes the proof. �

4.2. Main result in the Doss–Sussman framework. As in the additive case of
Section 3, we are able to get both upper and lower Gaussian bounds in a one-
dimensional context:

THEOREM 4.3. Assume that H ∈ (1/2,1) and V0,V1 satisfy the assumptions
of Hypothesis 1.1(1). Then there exist constants C1 and C2 such that for all t ∈
(0,1], the solution Xt to equation (3) possesses a density pt satisfying for all
x ∈ R,

1

C1
√

2πt2H
exp

(
−C1

(x − a)2

2t2H

)
≤ pt(x)

(40)

≤ 1

C2
√

2πt2H
exp

(
−C2

(x − a)2

2t2H

)
.

PROOF. In this proof one should separate 4 cases: (a) λ ≤ V1(z) ≤ � with
subcases x > a and x ≤ a and (b) −� ≤ V1(z) ≤ −λ with subcases x < −a and
x ≥ −a. These situations are treated thanks to the same kind of arguments, and we
will thus assume in the proof that x ≥ a and λ ≤ V1(z) ≤ � for all z ∈ R. We now
divide our proof in two steps.

Step 1: Upper bound. We start from an equivalent of (36) for densities, which
is justified by [15], Theorem 7, and a duality argument

pt(x) = EP′
[
δx

(
F

(
B ′

t , a
))

ξ
]
,(41)

where ξ is the random variable defined in (37). We now integrate by parts in order
to get

pt(x) = EP′
[
1{F(B ′

t ,a)≥x}H
(
F

(
B ′

t , a
)
, ξ

)]
,



418 M. BESALÚ, A. KOHATSU-HIGA AND S. TINDEL

with

H
(
F

(
B ′

t , a
)
, ξ

) = δ

(
ξDF(B ′

t , a)

‖DF(B ′
t , a)‖2

L2([0,t])

)
,(42)

where D, δ, respectively, stand (with a slight abuse of notation) for the Malliavin
derivative and divergence operator for the Brownian motion W ′ under P′. Let us
further simplify the expression for the random variable H(F(B ′

t , a), ξ): setting
Kt(u) ≡ K(t, u)1[0,t](u), it is readily checked that we have

DuF
(
B ′

t , a
) = ∂xF

(
B ′

t , a
)
Kt(u) and

∥∥DF
(
B ′

t , a
)∥∥2

L2([0,t]) = ∣∣∂xF
(
B ′

t , a
)∣∣2t2H .

Plugging this information into (42), and defining Z := ξ(∂xF (B ′
t , a))−1, we end

up with

H
(
F

(
B ′

t , a
)
, ξ

) = δ(ZKt)

t2H
= K1 − K2,

where

K1 = ZB ′
t

t2H
and K2 = 〈DZ,Kt 〉L2([0,t])

t2H
.

We have thus obtained

pt(x) = EP′ [1{F(B ′
t ,a)≥x}K1] − EP′ [1{F(B ′

t ,a)≥x}K2] =: p1
t (x) − p2

t (x),(43)

and we shall upper bound these two terms separately.
The term p1

t (x) can be bounded as follows: for q1, q2, q3 > 1 large enough and
a parameter 1 < q4 = 1 + ε with an arbitrarily small ε > 0, we have

p1
t (x) ≤ E1/q1

P′ [|B ′
t |q1]

t2H
P′1/q2

(
F

(
B ′

t , a
) ≥ x

)
(44)

× E1/q3
P′

[∣∣∂xF
(
B ′

t , a
)∣∣−q3

]
E1/q4

P′
[
ξq4

]
.

We now bound the right-hand side of this inequality:

(i) We obviously have
E

1/q1
P′ [|B ′

t |q1 ]
t2H ≤ ct−H , since B ′ is a P′-fBm.

(ii) Let us prove that there exist two positive constants c1 and c2 such that, for
all x ≥ 0,

P′1/q2
(
F

(
B ′

t , a
) ≥ x

) ≤ c1 exp
(
−c2(x − a)2

t2H

)
.(45)

Indeed, for a fixed a ∈ R, set Q ≡ P′(F (B ′
t , a) ≥ x), and decompose this term as

Q = Q1 + Q2 with

Q1 = P′(F (
B ′

t , a
) ≥ x,B ′

t ≥ 0
)

and Q2 = P′(F (
B ′

t , a
) ≥ x,B ′

t < 0
)
.
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Since we have assumed x > a and V1 > λ > 0, it is readily checked that Q2 = 0. In
the sequel we thus bound the term Q1. Toward this aim, appealing to relation (35),
we write

Q1 = P′
(∫ B ′

t

0
V1

(
F(z, a)

)
dz ≥ x − a,B ′

t ≥ 0
)
.

Next recall that we have assumed λ ≤ V1(z) ≤ � for all z ∈ R. Hence we have∫ ζ
0 V1(F (z, a)) dz ≤ �ζ for all ζ ≥ 0, and thus

Q1 ≤ P′(�B ′
t ≥ x − a,B ′

t ≥ 0
) = P′(�B ′

t ≥ x − a
) ≤ exp

(
−(x − a)2

�2t2H

)
,

which is consistent with relation (45). The proof is now completed by a similar
analysis of the term Q2.

(iii) Equation (35) and the nondegeneracy assumptions on V1 show that ∂xF is
bounded from below by a constant, so that we get the trivial bound

E1/q3
P′

[∣∣∂xF
(
B ′

t , a
)∣∣−q3

] ≤ c.

(iv) Set S = ∫ t
0 Ms dW ′

s and D = ∫ t
0 M2

s ds, where M ≡ K−1
H (

∫ ·
0 V0 ×

V −1
1 (Yu) du) as above, and where we recall that q4 = 1 + ε with an arbitrarily

small ε > 0. It is readily checked that

ξq4 = exp
(
q4S − q4

2
D

)
= exp

(
q4S − q2

4

2
D

)
exp

(
qε

2
D

)
,

where qε = q2
4 − q4 = ε(1 + ε). Now observe that the term exp(q4S − q2

4
2 D) is a

Girsanov change of measure which corresponds to a shift on B ′ of the form

B̂ = B ′ − q4

∫ ·
0

V0V
−1
1 (Yu) du = B − (q4 − 1)

∫ ·
0

V0V
−1
1 (Yu) du.

Calling P̂′ the probability under which B̂ is a fBm, we get

EP′
[
ξq4

] = EP̂′

[
exp

(
qε

2
D

)]
.(46)

Now plug estimate (38) into (46). This yields

D ≤ cV

(
1 + ∥∥B ′∥∥2

H−1/2

)

≤ cV

(
1 +

∥∥∥∥B̂ + q4

∫ ·
0

V0V
−1
1 (Yu) du

∥∥∥∥
2

H−1/2

)

≤ cV

(
1 + ‖B̂‖2

H−1/2
)
.

Going back to relation (46) and taking into account the fact that qε can be chosen
arbitrarily small, we get EP′ [ξq4] < ∞.
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Gathering all the above estimates into (44), we have thus obtained that

p1
t (x) ≤ c1

tH
exp

(
−c2(x − a)2

t2H

)
.

The upper bound for p2
t (x) [defined in (43)] is obtained along the same lines,

and we spare the details to the reader. Let us just mention that more Malliavin
derivatives of ξ and F(B ′, a) are involved in the computations, and this is where
we use both the nondegeneracy and smoothness assumptions on V . Then taking
into account the estimates on p1

t (x) and p2
t (x) in (43), we end up with our global

upper bound in (40).
Step 2: Lower bound. Our strategy to obtain the lower bound in (40) is based

on the following decomposition:

pt(x) = EP′
[
δx

(
F

(
B ′

t , a
))

(ξt − ξc1t )
] + EP′

[
δx

(
F

(
B ′

t , a
))

ξc1t

] =: ρ1
t + ρ2

t ,(47)

where c1 is a constant to be determined later. Observe that the main term will
be ρ2

t , which means that we consider a two-point partition of the interval [0, t],
and we perform a one-step decomposition of Xt (or Yt ) on [0, c1t] and [c1t, t], as
opposed to the general time interval partition in Section 5.

First, we start studying the main term ρ2
t : Note that due to (11), we can apply

Girsanov’s theorem in order to get

ρ2
t = EP′

[
EP′

[
δx

(
F

(
B ′

t , a
))|Fc1t

]
ξc1t

]
= EP′

[
exp

(
−(F−1(x, a) − ∫ c1t

0 K(t, s) dW ′
s)

2

2
∫ t
c1t

K2(t, s) ds

)
∂xF

−1(x, a)√
2π

∫ t
c1t

K2(t, s) ds
ξc1t

]

= EP[Lc1,t ],
where we have set

Lc1,t := exp
(
−(F−1(x, a) − ∫ c1t

0 K(t, s) dWs + ∫ c1t
0 V0V

−1
1 (Xs) ds)2

2
∫ t
c1t

K2(t, s) ds

)

× ∂xF
−1(x, a)√

2π
∫ t
c1t

K2(t, s) ds
.

In order to determine a lower bound for the above expression, we use the following
information:

(i) We have ∂xF
−1(x, a)≥ [V1(F (x, a))]−1 ≥ �−1.

(ii) We apply the inequality (m + a)2 ≥ 1
2m2 − 2a2 to m ≡ F−1(x, a) −∫ c1t

0 K(t, s) dWs and a defined by a2 ≡ (
∫ c1t

0 V0V
−1
1 (Xs) ds)2 ≤ cV t2.

(iii) Gaussian convolution identities can be invoked in order to compose the
quadratic exponential term defining Lc1,t with the expected value with respect to
the Gaussian random variable

∫ c1t
0 K(t, s) dWs .
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(iv) The following trivial bound holds true:
∫ t
c1t

K2(t, s) ds ≤ ∫ t
0 K2(t, s) ds =

t2H . These ingredients easily entail that

ρ2
t ≥ c√

2πσ̂ 2
exp

(
−F−1(x, a)2

2σ̂ 2

)
,

for σ̂ 2 = 2
∫ t
c1t

K2(t, s) ds + ∫ c1t
0 K2(t, s) ds, and we observe that σ 2 ≤ σ̂ 2 ≤ 2σ 2.

Now we estimate the first term ρ1
t in (47) and prove that it is upper bounded

by a quantity which is smaller than half of the lower bound we have just obtained.
For this term we need to use again the integration by parts estimates carried out
in (41). In order not to repeat arguments we just mention the main steps: we start
by writing

ρ1
t = EP′

[
δx

(
F

(
B ′

t , a
))

(ξt − ξc1t )
] = EP′

[
1{F(B ′

t ,a)≤x}H
(
F

(
B ′

t , a
)
, ξt − ξc1t

)]
,

and we decompose this expression into p1 − p2 like in (43), except for the fact
that this time Z is replaced by Zt := ((ξt − ξc1t ) ∂xF (B ′

t , a))−1.
We wish to take advantage of the fact that ξt − ξc1t is a small quantity

whenever c1 is close to 1. For this, define the process Mc1t,· as Mc1t,s =
K−1

H (
∫ ·
c1t

V0V
−1
1 (Yu) du), consider θ ∈ [0,1] and define

ξt (θ) := ξc1t exp
(
θ

∫ t

c1t
Mc1t,s dW ′

s − θ2

2

∫ t

c1t
M2

c1t,s
ds

)
.

Then by the mean value theorem, we have

ξt − ξc1t =
∫ 1

0
dθξt (θ)

(∫ t

c1t
Ms dW ′

s − θ

∫ t

c1t
M2

s ds

)
.

Applying Fubini’s theorem, one sees that the same estimates as in (44) appear
again with the following exceptions: (i) The last term in the decomposition be-
comes E1/q4

P′ [(ξt (θ))q4], which is handled in the same fashion as before. (ii) There
is another term appearing in the decomposition, namely

E1/q5
P′

[(∫ t

c1t
Ms dW ′

s − θ

∫ t

c1t
M2

s ds

)q5]
.

Using (38) and the same estimates for stochastic integrals as in step 1, one obtains
that the latter term is upper bounded by c(1 − c2−2H

1 )t2−2H . Therefore taking c1
sufficiently close to 1 one obtains that this upper bound is smaller than 1/2 of the
lower bound previously obtained. The proof is now complete. �

5. General lower bound. We now wish to obtain Gaussian-type lower
bounds for the multi-dimensional case of equation (3). However, the computations
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in this section will be performed on the following simplified version for notational
sake (adaptation of our calculations to the drift case are straightforward):

Xt = a +
d∑

i=1

∫ t

0
Vi(Xs) ◦ dBi

s,(48)

where a ∈ R
m is a generic initial condition, Vi :Rm → R

m i = 1, . . . , d is a col-
lection of smooth and bounded vectors fields and B1, . . . ,Bd are d independent
fBm’s with H ∈ (1/2,1). Recall that our goal is then to prove relation (5) in this
context. To this end, we shall assume that Hypothesis 1.1 [especially relation (4)]
is satisfied for the remainder of the article. Observe that, as in Section 4, equa-
tion (48) is written in the Stratonovich sense. Relations between Stratonovich and
Young integrals will be investigated in Section 5.2.

5.1. Preliminary considerations. Let us recall briefly the strategy used in [2,
16] in order to obtain Gaussian lower bounds for solutions of stochastic differen-
tial equations. The argument starts with some additional notation: Recall that the
natural filtration of B , which is also the natural filtration of the underlying Wiener
process W defined by (11), is denoted by Ft . As we have introduced in Section 2.1,
we write Et for the conditional expectation with respect to Ft . Under our working
Hypothesis 1.1, let us also mention that the following result is available (see [4,
15] for further details):

PROPOSITION 5.1. Under Hypothesis 1.1, there exists a unique solution
to (48). Then for any t ∈ (0,1], the random variable Xt is nondegenerate in the
sense of Definition 2.1.1 in [21], namely: (i) Xt ∈ D∞; (ii) the Malliavin matrix
�Xt is almost surely invertible and satisfies �−1

Xt
∈ ⋂

p≥1 Lp(�). In particular, the
density of Xt admits the representation pt(x) = E[δx(Xt)], where δx stands for
the Dirac measure at point x.

With this preliminary result in hand, the quantity E[δx(Xt)] will be analyzed
by means of the succesive evaluation of conditional densities of an approximation
sequence {Fj ;0 ≤ j ≤ n} such that Xt = Fn. We thus consider pt(x) = E[δx(Fn)].
The discretization procedure is based on a corresponding partition of the time in-
terval as π : 0 = t0 < · · · < tn = t , and the sequence of random variables Fj which
satisfy the relation Fj ∈Ftj .

Let us give some hints about the general strategy for the discretization: it is
designed to take advantage of conditional Malliavin calculus, which allows one to
capture the convolution property of Gaussian distributions. We shall thus assume
for the moment a structure of the form

Fj = Fj−1 + Ij + Rj ,(49)
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where we recall that Fj−1 ∈ Ftj−1 . In formula (49), the term Ij will stand for a
Gaussian random variable (conditionally to Ftj−1 ), and Rj refers to a small re-
mainder term, whose contribution to the density of Fj can be neglected with re-
spect to the one induced by Ij just like in the argument in (47). The local Gaussian
bound (5) will be obtained from the density of the sum

∑n
j=1 Ij . The argument

will finish by an application of the Chapman–Kolmogorov formula.
As suggested by equation (6) and setting �i

j+1(B) := Bi
tj+1

− Bi
tj

, a natural
candidate consists of taking Fj = Xtj , which yields

Ij =
d∑

i=1

Vi(Xtj )�
i
j+1(B) and Rj =

d∑
i=1

∫ tj

tj−1

[
Vi(Xs) − Vi(Xtj )

]
dBi

s .(50)

However, this simple and natural guess is not suitable for the fBm case. Indeed,
the analysis of the variances of Ij induced from decomposition (50) reveals that a
significant amount is generated by the covariances between the increments �i

j (B).
Now, if we write

t2H = E
[(

Bi
t

)2] = E

[(
n∑

j=1

�i
j (B)

)2]
=

n∑
j,k=1

E
[
�i

j (B)�i
k(B)

]
,(51)

we realize that the diagonal terms on the right-hand side expression only account
for a term of the form

∑
j |tj − tj−1|2H , which vanishes as the mesh of the partition

goes to 0 when H ∈ (1/2,1). This means that our decomposition (50) will not
be able to capture the correct amount of variance contained in Xt , and has to be
modified.

There are at least two natural generalizations of the Euler-type method described
above:

(1) Take into account the off-diagonal terms in (51), and perform a block type
analysis.

(2) Express the equation as an equation driven by the Wiener process W defined
by relation (11), and take advantage of the independence of the increments of W .

We have not been able to implement the strategy (1) above without cumbersome
calculations, and we have thus chosen to follow the second approach. Toward this
aim, we first recall how to define equation (48) as a Stratonovich equation with
respect to W .

5.2. Fractional equations as Stratonovich-type equations. In order to handle
equation (48) as an equation with respect to W , let us first introduce the following
functional space:

DEFINITION 5.2. Let |H| be the space of measurable functions φ : [0,1] →
R

d such that

‖φ‖2|H| := αH

∫ 1

0

(∫ 1

0
|φr ||φu||r − u|2H−2 dr

)
du < +∞.
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Note that |H| endowed with the norm ‖·‖|H| is a Banach space of functions, which
is also a subspace of H.

In the sequel we also consider random elements with values in |H|. In particular,
the norm of φ in D1,2(|H|) is given by

‖φ‖D1,2(|H|) = E
[‖φ‖2|H|

] + E
[‖Dφ‖2|H|⊗|H|

]
.

As mentioned before, the Young-type integrals we have handled so far can be
identified with Stratonovich-type integrals with respect to B , and finally as antici-
pative Stratonovich-type integrals with respect to W . In order to state these results
more formally, let us recall what we mean by Stratonovich integrals with respect
to B:

DEFINITION 5.3. Let u = {ut , t ∈ [0,1]} be a R
d -valued process defined

on (�,F,P), whose paths are supposed to be integrable. The Stratonovich (or
symmetric, or Russo–Vallois) integral of u with respect to B is denoted by∑d

k=1
∫ 1

0 uk
s ◦ dBk

s and is defined as

d∑
k=1

∫ 1

0
uk

s ◦ dBk
s = lim

ε→0

1

2ε

d∑
k=1

∫ 1

0
uk

s

(
Bk

s+ε − Bk
s−ε

)
ds,

whenever the limit exists. In the same way, the indefinite Stratonovich integral is
defined as

d∑
k=1

∫ t

0
uk

s ◦ dBk
s =

d∑
k=1

∫ 1

0

(
uk

s 1[0,t](s)
) ◦ dBk

s for t ∈ [0,1].(52)

The following result is borrowed from [1], Proposition 3 and [10], Proposi-
tion 4.2 and page 193 (we also refer to [1], Section 5, for considerations on the
indefinite Stratonovich integral). It gives the link between Stratonovich and Young
integrals with respect to B .

PROPOSITION 5.4. Let u = {ut , t ∈ [0,1]} ∈ D1,2(|H|), such that∫ 1

0

∫ 1

0
|Dsut ||t − s|2H−2 ds dt < ∞.(53)

Then:

(i) The Stratonovich integral
∑d

k=1
∫ 1

0 uk
s ◦ dBk

s in the sense of Definition 5.3
exists, and we also have

d∑
k=1

∫ 1

0
uk

s ◦ dBk
s = δ(u) + αH

d∑
k=1

∫ 1

0

∫ 1

0
Dk

sut |t − s|2H−2 ds dt.(54)
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(ii) Whenever u ∈ Cγ a.s. with γ > 1/2 and H ∈ (1/2,1), the Stratonovich
integral

∑d
k=1

∫ 1
0 uk

s ◦ dBk
s coincides with the Young integral

∑d
k=1

∫ 1
0 uk

s dBk
s .

REMARK 5.5. In the Brownian case (which corresponds to the limiting
case H ↘ 1/2), one may wonder about the relation between our pathwise-type
Stratonovich integral and the Stratonovich integral of a square integrable adapted
process u ∈ L2

a . The easiest way to carry out this comparison might be to start
with relation (54). Indeed, on the right-hand side of this identity, the Skorohod
integral δ(u) coincides with Itô’s integral as long as u ∈ L2

a . As far as the terms
αH

∫ 1
0

∫ 1
0 Dk

sut |t − s|2H−2 ds dt is concerned, let us first mention that the mea-
sure 2αH |t − s|2H−2 ds dt converges to the Lebesgue measure on the diagonal
{(s, t) ∈ [0,1]2; s = t} as H ↘ 1/2. We thus end up morally with a sum of terms
of the form 1

2

∫ 1
0 Dk

t ut dt . The identification of this term with the bracket 1
2〈u,W 〉1

is then standard and is detailed in [21], Remark 2, page 175.

The next Proposition allows us to interpret the stochastic integral appearing
in (48) as a Stratonovich-type integral.

PROPOSITION 5.6. Let X = {Xt, t ∈ [0,1]} be the solution to (48), and as-
sume Hypothesis 1.1 holds true. Then X ∈ D1,2(|H|) and satisfies the equation

Xt = a +
d∑

k=1

∫ t

0
Vk(Xu) ◦ dBk

u,

where the indefinite Stratonovich integral is defined by (52), and can be decom-
posed as a Skorohod integral plus a trace term as in (54).

PROOF. According to Propositions 2.4 and 5.4, we just have to prove that
X ∈ D1,2(|H|) and satisfies relation (53). We first focus on proving the relation

E
[‖X‖2|H|

] + E
[‖DX‖2|H|⊗|H|

]
< ∞.

In order to see the first part of this inequality, invoke relation (17), and write

E
[‖X‖2|H|

] = αH

∫ 1

0

∫ 1

0
E

[|Xr ||Xs |]|r − s|2H−2 dr ds

≤ cE
[‖X‖2∞

] ∫ 1

0

∫ 1

0
|r − s|2H−2 dr ds < c1.

Along the same lines and owing to (18), it is also readily checked that
E[‖DX‖2|H|⊗|H|] < ∞ and that relation (53) holds true, which completes the proof.
Note that due to Proposition 5.4(ii) and Proposition 2.5, we obtain the other asser-
tions. �

Finally, the following corollary is the key to the effective decomposition we
shall use in order to get our Gaussian lower bound on pt :
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COROLLARY 5.7. Let the same assumptions as for Proposition 5.6 hold true.
For 0 ≤ s ≤ t ≤ 1 and ϕ ∈ |H|, we define

K∗
t (ϕ)s :=

∫ t

s
ϕr ∂rK(r, s) dr.

Then the process K∗
t (Vk(X))· ∈ Dom(δ) and satisfies the equation

Xt = a +
d∑

k=1

∫ t

0

[
K∗

t

(
Vk(X)

)]
s ◦ dWk

s

(55)

= a +
d∑

k=1

∫ t

0

(∫ t

s
∂uK(u, s)Vk(Xu)du

)
◦ dWk

s ,

where the anticipative Stratonovich integrals with respect to W can be decomposed
as a Skorohod integral plus a trace term as follows:

d∑
k=1

∫ t

0

[
K∗

t

(
Vk(X)

)]
s ◦ dWk

s

(56)

= δ
(
K∗

t

(
V (X)

)) +
d∑

k=1

∫ t

0
Dk

s

[
K∗

t

(
Vk(X)

)]
s ds.

PROOF. For notational sake, we give some details of the proof for n = d = 1,
the easy adaptation to the multidimensional case being omitted. We also set V ≡
V1. According to Proposition 5.6 and relation (54), we have Xt = a + St + cHTt ,
with

St = δ
(
V (X)1[0,t]

)
and Tt =

∫ 1

0

∫ 1

0
Dr

(
V (X)1[0,t]

)
s |r − s|2H−2 dr ds.

Then owing to [21], Proposition 5.2.2, we have St = δ(K∗(V (X)1[0,t])). In addi-
tion, a direct and easy computation shows that K∗(V (X)1[0,t]) = K∗

t (Vk(X))1[0,t],
so that we have obtained

St = δ
(
K∗

t

(
Vk(X)

))
,

that is, the first term in (56).
Next, for a function ϕ : [0,1]2 →R set

[
K∗,⊗2ϕ

]
r1,r2

=
∫ 1

r1

∫ 1

r2

∂s1K(s1, r1) ∂s2K(s2, r2)ϕs1s2 ds1 ds2.

Thanks to a slight extension of (9), we get

Tt =
∫ 1

0

[
K∗,⊗2(

DV (X)1[0,t]
)]

s,s ds =
∫ 1

0
Ds

[
K∗(

V (X)1[0,t]
)]

s ds

=
∫ t

0
Ds

[
K∗

t

(
V (X)

)]
s ds,
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where the second relation is due to Proposition 2.1, and the third one stems from
the fact that K∗(V (X)1[0,t]) = K∗

t (Vk(X))1[0,t]. Gathering the expressions we
have obtained for the two terms St and Tt , the proof of our claim (56) is now
complete. �

5.3. Discretization procedure. We now proceed to the decomposition of Fn :=
Xt as announced in (49), starting from the expression of Fj for j = 0, . . . , n. In-
deed, according to expression (55), a natural approximation sequence for Xt based
on a partition 0 = t0 < · · · < tn = t of [0, t] is the following:

Fi = Fi−1 + Ii + Ri,(57)

where, introducing the additional notation

ηi(u) := inf(u, ti) and gk
i,s :=

∫ t

s
∂uK(u, s)Vk(Xηi(u)) du,(58)

we set (note that gk
i−1,s ∈Fti−1 )

Fi−1 :=
d∑

k=1

∫ ti−1

0
gk

i−1,s ◦ dWk
s ,

(59)

Ii :=
d∑

k=1

∫ ti

ti−1

gk
i−1,s ◦ dWk

s =
d∑

k=1

Vk(Xti−1)

∫ ti

ti−1

K(t, s) dWk
s ,

where the last integral above is simply a Wiener integral with respect to W . We
also introduce a family of random variables Ri defined by

Ri :=
d∑

k=1

∫ ti

ti−1

Qk
s ◦ dWk

s ,(60)

where Q is the process defined by

Qk
s :=

∫ t

s
∂uK(u, s)

[
Vk(Xηi(u)) − Vk(Xti−1)

]
du.(61)

Observe that if V is elliptic and bounded, it is clear from expression (59) that∑
i Covti−1(Ii) � t2HIdm up to a constant, independently of the particular values

of the ti ’s. We shall see, however, how to choose those values in Condition 5.10.
Finally we introduce some random variables �M(Ni

γ,p(B)) for i = 1, . . . , n

which allow us to control the supremum norm of the solution of equation (48) and
of their stochastic derivatives. This argument needs to be added in the methodology
of [2, 16], and therefore we have to tailor the arguments therein to our situation.
The localization random variables are based on the family of functionals Ni

γ,p(B)

defined by

Ni
γ,p(B) =

∫ ti

ti−1

∫ ti

ti−1

|Bv − Bu|2p

|v − u|2γp+2 dudv,
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which can be compared to Hölder-type norms and have the advantage that they
can be differentiated with respect to B . In fact, we can see the aim of introducing
this functional in the following proposition, which is direct consequence of the
Garsia–Rodemich–Rumsey’s lemma; see, for example, [13].

PROPOSITION 5.8. Let H > 1
2 and p such that 0 < γ < H − 1

2p
. Then we

have ‖B‖ti−1,ti ,γ ≤ cγ,p[Ni
γ,p(B)]1/2p .

The next step is to study the conditional densities of the approximation se-
quence Fi . To this end, one has to control various terms for which the localization
technique of Malliavin Calculus turns out to be useful. Specifically, recall that we
have introduced families of functions �M,�M,ε given by expression (15). In the
sequel we localize our expectations using functionals of the type �M(Ni

γ,p(B))

and �ci,ε(
∑d

j=1
∫ ti
ti−1

|Dj
r Ri |2 dr) for some constants ci, ε of the form

ci := λ

4

∫ ti

ti−1

K2(t, s) ds > 0 and εi := ci

2
> 0.(62)

Furthermore, in order to ease notation, notice that we will simply write

�M ≡ �M

(
Ni

γ,p(B)
)

and �ci,εi
≡ �ci,εi

(
d∑

j=1

∫ ti

ti−1

∣∣Dj
r Ri

∣∣2 dr

)
.(63)

With this additional notation in hand, we can proceed to the first step of our
approximation scheme: since Fi is Fti−1 conditionally nondegenerate and the lo-
calizations �M and �ci,εi

∈ D∞, we can write

Eti−1

[
δx(Fi)

] = Eti−1

[
δx(Fi)�M�ci,εi

] + Eti−1

[
δx(Fi)(1 − �M�ci,εi

)
]
,

and due to the nonnegativity of the second term, we have

Eti−1

[
δx(Fi)

] ≥ Eti−1

[
δx(Fi)�M�ci,εi

]
.

Recalling that Fi = Fi−1 + Ii + Ri , we then obtain the following decomposition:

Eti−1

[
δx(Fi)�M�ci,εi

] = J1,i + J2,i + J3,i ,(64)

where

J1,i = Eti−1

[
δx(Fi−1 + Ii)

]
, J2,i = Eti−1

[
δx(Fi−1 + Ii)(�M�ci,εi

− 1)
]

(65)

and

J3,i =
m∑

j=1

Eti−1

[
�M�ci,εi

∫ 1

0
∂xj

δx(Fi−1 + Ii + ρRi)R
j
i dρ

]
.(66)

Our aim is now to prove that in this decomposition, J1,i should yield the main
contribution, while J2,i is small because of the quantity (�M�ci,εi

− 1) whenever
M and n are large enough, and J3,i is small due to the presence of the difference
between Xti −Xti−1 in Ri . We shall implement this strategy in the next subsections.
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5.4. Upper and lower bounds on J1,i . The main information which will be
used about J1,i is the following:

PROPOSITION 5.9. Let J1,i be defined by (65). Then under Hypothesis 1.1 we
have

J1,i = Eti−1

[
δx(Fi−1 + Ii)

] = exp(−(1/2)(x − Fi−1)
∗�−1

i−1(x − Fi−1))

(2π)m/2|�i−1|1/2 ,(67)

where �i−1 is a deterministic (conditionally to Fti−1 ) matrix such that

λ

(∫ ti

ti−1

K2(t, u) du

)
Idm ≤ �i−1 ≤ �

(∫ ti

ti−1

K2(t, u) du

)
Idm,

and where the two strictly positive constants λ,� satisfy (4).

PROOF. The fact that Ii−1 is conditionally Gaussian is clear from expres-
sion (59), and this immediately yields our claim (67). Furthermore,

�i−1 := Covti−1(Ii) = Eti−1

[
IiI

∗
i

]
= Eti−1

[(
d∑

k=1

Vk(Xti−1)

∫ ti

ti−1

K(t, u) dWk
u

)

×
(

d∑
l=1

V ∗
l (Xti−1)

∫ ti

ti−1

K(t, u) dWl
u

)]

=
d∑

k=1

Vk(Xti−1)V
∗
k (Xti−1)

∫ ti

ti−1

K2(t, u) du,

which completes the proof of our second claim, thanks to Hypothesis 1.1. �

The previous proposition induces a natural choice for the partition (ti) in terms
of the kernel K :

CONDITION 5.10. We choose the partition 0 = t0 < · · · < tn = t of [0, t] such
that we have

∫ ti
ti−1

K2(t, u) du = t2H

n
=: σ 2

n for all i = 1, . . . , n.

With this choice in hand, let us note the following properties for further use:

LEMMA 5.11. Let t0, . . . , tn be the partition of [0, t] defined by Condi-
tion 5.10. Then:

(i) The partition is constructed in a unique way.
(ii) We have 0 ≤ ti − ti−1 ≤ cHn−1/(2H) for all i = 1, . . . , n.

(iii) The parameters ci defined at (62) are all equal to λt2H

4n
.
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PROOF. Our first claim stems from the fact that
∫ t

0 K2(t, u) du = t2H and v �→∫ τ
v K2(t, u) du is a strictly decreasing function for all 0 ≤ v ≤ τ ≤ t .

In order to prove our item (ii), recall expression (8), from which we easily de-
duce the bound

K(t, s) ≥ cH (t − s)H−1/2.(68)

Consider now a fixed point τ ∈ (0, t] and 0 ≤ v ≡ vτ < τ ≤ t such that∫ τ
v K2(t, u) du = t2H

n
. Thanks to bound (68) we have vτ ≥ wτ where wτ ≡ w

is defined by

cH

∫ τ

w
(t − u)2H−1 du = t2H

n
⇐⇒ cH

[
(t − w)2H − (t − τ)2H ] = t2H

n
.

In addition, since 2H > 1, we have (t − w)2H − (t − τ)2H ≥ (τ − w)2H for
w < τ < t , which means that wτ ≥ xτ where xτ is defined by the equation

(τ −x)2H = cH t2H

n
. The latter equation can be solved explicitly as xτ = τ − cH t

n1/(2H) ,
and summarizing our last considerations we end up with the relation

τ − vτ ≤ cH t

n1/(2H)
,

which easily yields our assertion (ii). The proof of (iii) is straightforward. �

Now we state the following corollary to Proposition 5.9, whose immediate proof
is left to the reader:

COROLLARY 5.12. Let J1,i be defined by (65). Then under Hypothesis 1.1

and Condition 5.10 we have for σ 2
n = t2H

n

J1,i ≥ 1

(2π)m/2(�σ 2
n )m/2 exp

(
−|x − Fi−1|2

2λσ 2
n

)
.(69)

Summarizing the considerations of this section, we have obtained that the main
contribution to Eti−1[δx(Fi)], J1,i , is of the order given by (69). Most of our work
is now devoted to prove that the contributions of J2,i and J3,i are smaller than a
fraction of (69) if M,n are conveniently chosen.

5.5. Upper bounds for J2,i . We start the control of J2,i by stating a bound in
terms of the localization we have chosen:

PROPOSITION 5.13. Let J2,i be the quantity defined by (65). Then there exists
positive constants cλ,�, k1, k2 and p1 independent of n such that

|J2,i | ≤ cλ,�

(
σ 2

n

)−k2L
γ,p
n,i (k1,p1)

where L
γ,p
n,i (k1,p1) ≡ ‖1 − �M�ci,εi

‖k1,p1,ti−1,
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with σ 2
n = t2H

n
, and where we recall that the norms ‖ · ‖k,p,t have been introduced

at equation (13) and the random variables �M,�ci,εi
at equation (63).

PROOF. Our strategy hinges on the conditional integration by parts formula
we have introduced in Proposition 2.2, which gives for some constants ki,pi , i =
1, . . . ,4,

|J2,i | = ∣∣Eti−1

[
1{Fi−1+Ii>x}Hti−1

(1,...,m)(Ii,1 − �M�ci,εi
)
]∣∣

(70)
≤ c1,q

∥∥det(�Ii,ti−1)
−1∥∥k3

p3,ti−1
‖Ii‖k4

k2,p2,ti−1
‖1 − �M�ci,εi

‖k1,p1,ti−1 .

Here, we have used that 1{Fi−1+Ii>x} ≤ 1.
In order to bound the right-hand side of (70) we start by computing the Malliavin

derivatives of Ii . Recall that due to (59), we have for j = 1, . . . , d , α > 1 and
r, r1, . . . , rα > ti−1 that

Dj
r Ii = Vj (Xti−1)K(t, r)1[ti−1,ti ](r) and Dα

r1...rα
Ii = 0.

As far as �Ii,ti−1 is concerned, it is a conditionally deterministic quantity such that
for i, j = 1, . . . , d , we can write

�Ii,ti−1 =
d∑

j=1

〈
Dj Ii,Dj I ∗

i

〉
L2([ti−1,ti ])

=
d∑

j=1

Vj (Xti−1)V
∗
j (Xti−1)

∫ ti

ti−1

K2(t, s) ds = σ 2
nV (Xti−1)V

∗(Xti−1).

Using the ellipticity condition of Hypothesis 1.1(2) for V , we thus obtain that

0 ≤ �−1
Ii ,ti−1

≤ 1

λσ 2
n

Idm.

Therefore ‖Ii‖k4
k2,p2,ti−1

≤ C(σ 2
n�)k4/2 and

∥∥det(�Ii,ti−1)
−1∥∥k3

p3,ti−1
≤

(
1

λσ 2
n

)mk3

.

Substituting these inequalities in (70), our proof is now finished. �

From the above Proposition 5.13, we see that in order to get a convenient bound
for J2,i we need to study the random variable ‖1 − �M�ci,εi

‖k1,p1,ti−1 . A suitable
information for us will be the following bound:

PROPOSITION 5.14. Assume Condition 5.10 and consider any γ ∈ (1
2 ,H)

and k1,p1 ≥ 1. Let L
γ,p
n,i (k1,p1) = ‖1 − �M�ci,εi

‖k1,p1,ti−1 be the random vari-

able defined at Proposition 5.13. Then for any p ≥ k1
2 , γ > 0 [recall that �M ≡
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�M(Ni
γ,p(B))] such that 2p(H − γ ) − 2 > k1H the following holds true: For any

η > 0 there exists cp,k1,p1,γ,H,M,η > 0 such that

E
[
L

γ,p
n,i (k1,p1)

] ≤ cp,k1,p1,γ,H,M,ηn
−η.(71)

PROOF. Let us first highlight what the parameters involved in the proof are:
recall that ci and εi were defined in (62). And although not explicitly written, �M

depends on γ and p. From now on, and through the proof we fix the values of γ ,
H , k1, p1, n and p satisfying the inequalities in the statement of the proposition.

As a preliminary step, we also observe that, due to the Hölder inequal-
ity, it is enough to find a proper bound for ‖1 − �M‖k1,p1,ti−1 and ‖�M(1 −
�ci,εi

)‖k1,p1,ti−1 separately. We first handle the term ‖1 − �M‖k1,p1,ti−1 .
Now we will obtain a general estimate to be used in the proof. By Chebyshev’s

inequality, for any k2 ≥ 1 and 1
2 < γ < H ,

E
[|1 − �M |2] ≤ P

(
Ni

γ,p(B) > M − 1
) ≤ E[|Ni

γ,p(B)|k2]
(M − 1)k2

.(72)

We now find an upper bound for E[|Ni
γ,p(B)|k2]. A simple application of Jensen’s

inequality yields

E
[∣∣Ni

γ,p(B)
∣∣k2

] = E
[(∫ ti

ti−1

∫ ti

ti−1

|Bv − Bu|2p

|v − u|2pγ+2 dudv

)k2]

≤ c|ti − ti−1|2(k2−1)

(∫ ti

ti−1

∫ ti

ti−1

E[|Bv − Bu|2pk2]
|v − u|(2pγ+2)k2

dudv

)
(73)

≤ ck2,p,γ,H |ti − ti−1|2k2p(H−γ ).

We remark that all above integrals and expectations are finite due to the condition
2p(H −γ )−2 > k1H . Furthermore, the quantity |ti − ti−1|2k2p(H−γ ) can be made
as small as we wish by taking k2,p and n large enough. We will play on these
parameters later on.

Let us start the estimation for the high-order derivatives of 1 − �M . For this,
we first notice that, for any r of length greater or equal to 1 and any i, we have
Di

r(1 − �M) = −Di
r�M , so that we shall bound Di

r�M in the sequel. Next we
need to define the set of multi-indices An = {(l1, . . . , ln); li ∈ {0, . . . , n}, l1 +· · ·+
ln = n}. In fact, one can easily check that there exist (explicit) random variables
μi

p,l,γ,H (r), defined for l ≤ n ≤ k1, r = (r1, . . . , rn) with r1 ≤ · · · ≤ rn and i =
(i1, . . . , in) ∈ {1, . . . , d}n, such that the following inequality holds for a positive
constant Cp,l,γ,H (i, r):

∣∣Di
r�M

∣∣ ≤
n∑

l=1

∣∣∂l
z�M

(
Ni

γ,p(B)
)∣∣∣∣μi

p,l,γ,H (r)
∣∣,(74)
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and where the random variables μi
p,l,γ,H (r) satisfy

∣∣μi
p,l,γ,H (r)

∣∣ ≤ Cp,l,γ,H

l∏
l∈Al;j=1

μp,lj ,γ,H

with μp,l,γ,H =
∫ ti

ti−1

∫ ti

ti−1

|Bξ − Bη|2p−l

|ξ − η|2γp+2 dξ dη.

Note that all the integrals above are well defined due to the restrictions 2p ≥ k1
and 2p(H − γ ) − 2 > k1H .

Next, we estimate the moments of μi
p,l,γ,H (r) as follows. For any κ ∈ N, we

have

E
[|μp,l,γ,H |κ]

≤ Cp,l,γ,H (ti − ti−1)
2(κ−1)

∫ ti

ti−1

∫ ti

ti−1

E[|Bξ − Bη|(2p−l)κ ]
|ξ − η|(2γp+2)κ

dξ dη(75)

≤ cp,l,κ,γ,H |ti − ti−1|2pκ(H−γ )−lκH .

Therefore ‖μp,l,γ,H‖κ ≤ cp,l,κ,γ,H |ti − ti−1|2p(H−γ )−lH . Note again that here, we
have used the hypothesis 2p(H − γ ) − 2 > k1H .

Let us now turn to the estimation of Dn
r�M . Starting from relation (74), we get

for n ≥ 1,∥∥Dn
r�M

∥∥2
|H([ti−1,ti ])|⊗n

≤
n∑

l,m=1

l∏
l∈Al;j=1

m∏
l∈Am;k=1

|μp,lj ,γ,H ||μp,mk,γ,H |

× ∣∣∂l
z�M

(
Ni

γ,p(B)
)∣∣∣∣∂m

z �M

(
Ni

γ,p(B)
)∣∣

×
∫
[ti−1,ti ]2n

n∏
i=1

|ri − si |2(H−1) dri dsi .

Finally, plugging our previous inequalities (73) and (75) and resorting to Hölder’s
inequality with q = (q1, . . . , ql+m+1) where q−1

1 + · · · + q−1
l+m+1 = 1, we have for

k1 ≥ 1,

E
[∥∥Dk1�M

∥∥p1
L2([ti−1,ti ]n)

]
≤ cp,k1,κ,γ,H‖�M‖p1

k1,∞P1/q1
(
Ni

γ,p(B) > M − 1
)

×
k1∑

l,m=1

l∏
l∈Al;j=1

m∏
l∈Am;k=1

‖μp,lj ,γ,H‖p1
qj+1

‖μp,mk,γ,H‖p1
ql+1+k
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×
(∫

[ti−1,ti ]2n

k1∏
i=1

|ri − si |2(H−1) dri dsi

)p1

≤ cp,k1,p1,q,γ,H,k2‖�M‖p1
n,∞|ti − ti−1|(k2q

−1
1 +4)pp1(H−γ ),

where we have set ‖�M‖n,∞ := ∑n
l=0 ‖∂l

z�M‖∞. Therefore the result follows
from (73) and the above inequality by noting that |ti − ti−1| ≤ cHn−1/(2H) and
taking k2 big enough. We remark that this result also gives that ‖�M‖k1,p1,ti−1 ≤
cp,k1,p1,q,γ,H .

The calculation for ‖�M(1 −�ci,εi
)‖k1,p1,ti−1 is similar, recalling that the norm

of the Malliavin derivatives of �M are bounded, and noting that instead of ap-
plying the operator Dk1

r , it is better to use directly the derivative operator Dk1
r with

Lemma A.2. We skip details for sake of conciseness. Observe, however, that in this
case, the derivatives of 1−�ci,εi

blow up as ci, εi get small. Still, one remarks that
the final proof is based on the fact that for any k6 > 0, Chebyshev’s inequality and
the proof of Lemma A.4 (postponed to the Appendix) imply that

P

(
d∑

j=1

∫ ti

ti−1

∣∣Dj
r Ri

∣∣2 dr >
λ

8

∫ ti

ti−1

K2(t, s) ds

)

≤
(

λ

8

∫ ti

ti−1

K2(t, s) ds

)−k6

E

[(
d∑

j=1

∫ ti

ti−1

∣∣Dj
r Ri

∣∣2 dr

)k6]

≤ c
(
λσ 2

n

)−k6(ti − ti−1)
(2γ+1)k6 ≤ cn−(γ /H)k6 .

Here we have used the result in Lemma 5.11(ii) and Condition 5.10. �

5.6. Upper bounds for J3,i . We now turn to the main technical issue in our
computations, namely the bound on J3,i . Our aim is thus to prove the following
proposition:

PROPOSITION 5.15. Let J3,i be the quantity defined by (66). Then there exist
c > 0 and k > 0 such that for any H − 1

2 < γ < H ,

|J3,i | ≤ cM,V,m(ti − ti−1)
γ

(σ 2
n )m/2 ≤ cM,V,m

nγ/2H (σ 2
n )m/2 .(76)

PROOF. We start from expression (66) and normalize Ii +ρRi in the following
way: we just set Ii + ρRi = σnUi , where Ui := σ−1

n (Ii + ρRi). We thus have

J3,i =
m∑

j=1

Eti−1

[
�M�ci,εi

∫ 1

0
∂xj

δx(Fi−1 + σnUi )R
j
i dρ

]
.
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Along the same lines as in (70), the integration by parts formula (16) now yields

J3,i = σ−(m+1)
n

m∑
j=1

∫ 1

0
Eti−1

[
1{Ii+ρRi>x−Fi−1}H

ti−1
(j,1,...,m)

(
Ui ,R

j
i �M�ci,εi

)]
dρ.

Hence the following bound holds true (see [21], page 102):

|J3,i | ≤ c1,qσ−(m+1)
n A1

∫ 1

0
A2(ρ)A3(ρ) dρ,

where the quantities A1, A2(ρ), A3(ρ) are, respectively, defined by

A1 = max
j=1,...,m

∥∥Rj
i �M ′

∥∥
k1,p1,ti−1

, A2(ρ) = ∥∥det
(
�−1
Ui ,ti−1

)
�M ′�ci,εi

∥∥k3
p3,ti−1

and

A3(ρ) = ‖Ui�M ′‖k4
k2,p2,ti−1

,

and where we also recall that R
j
i is defined by (60). Then the first inequality in (76)

follows from Lemmas A.4, A.5 and A.6 which have been postponed to the Ap-
pendix, and by choosing γ such that H − 1

2 < γ . In order to go from the first
inequality in (76) to the second one, we simply apply Lemma 5.11. �

5.7. Lower bound. Let us first summarize the considerations of the previous
section: starting from decomposition (64) and applying Corollary 5.12, Proposi-
tions 5.13, 5.14 and 5.15 and the forthcoming relation (86), we have obtained the
following facts: the inequality Eti−1[δx(Fi)] ≥ J1,i + J2,i + J3,i holds true, and
thus

Eti−1

[
δx(Fi)

] ≥ 1

(2π)m/2(�σ 2
n )m/2 exp

(
−|x − Fi−1|2

2λσ 2
n

)
(77)

− cλ,�

(
σ 2

n

)−k2L
γ,p
n,i (k1,p1) − cM,V,m

nγ/2H (σ 2
n )m/2 ,

with the additional information E[Lγ,p
n,i (k1,p1)] ≤ CM,ηn

−η for an arbitrarily large
exponent η.

We are now ready to prove the main theorem of this article:

PROOF OF THEOREM 1.2. With equation (77) in hand, we shall follow the
strategy designed in [2, 16]: Fix x − a throughout the proof, and define the balls
Bi = B(yi, c1σn) for i = 1, . . . , n where yi = a + i

n
(x − a). We also define be-

low an additional sequence {xi; i = 1, . . . , n}, such that xi ∈ Bi and xn = x. The
constant c1 will be fixed later on (see Figure 1).

We shall now proceed in a backward recursive way on the index i. For instance,
in order to go from n to n − 1, we resort to (77) in order to write

E
[
δx(Fn)

] = E
[
Etn−1

[
δx(Fn)

]] ≥ cV,m

σm
n

E
[
exp

(
−|x − Fn−1|2

2λσ 2
n

)
− cM,V,mn−κ

]
,
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FIG. 1. Space partition for the lower bound, with sequence y1, . . . , yn and xi .

for a certain strictly positive constant κ . Hence

E
[
δx(Fn)

]
≥ cV,m

σm
n

∫
R

E
[(

exp
(
−|x − Fn−1|2

2λσ 2
n

)
− cM,V,mn−κ

)
δxn−1(Fn−1)

]
dxn−1

≥ cV,m

σm
n

∫
Bn−1

E
[(

exp
(
−|x − Fn−1|2

2λσ 2
n

)
− cM,V,mn−κ

)
δxn−1(Fn−1)

]
dxn−1.

We now observe the following: if we wish the term δxn−1(Fn−1) to give a nonnull
contribution, the relations

xn−1 ∈ B(yn−1, c1σn), x − yn−1 = x − a

n
,

σn = tH

n1/2 , |Fn−1 − xn−1| ≤ c1σn

must be satisfied. Moreover, from these conditions, it is easily seen that |x −
Fn−1| ≤ 4c1σn whenever n ≥ |x−a|2

c1t
2H . We thus define a constant c2 ≥ 1

4c1
such that

n = c2|x − a|2
t2H

.(78)

Then if we take c1 such that exp(−8c2
1

λ
) ≥ 1

2 and n such that cM,V,mn−κ ≤ 1/4, we
obtain

E
[
δx(Fn)

] ≥ cV,m

4σm
n

∫
Bn−1

E
[
δxn−1(Fn−1)

]
dxn−1.

These arguments can now be iterated backward from i = n − 1 to 1, and the
reader can easily check that the only additional required condition is the compati-
bility relation yi+1 − yi ≤ c1σn (this will be verified below). Denoting by αm the
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volume of a unit ball in R
m [viz. αm = πm/2/�(m

2 + 1)], we end up with

E
[
δx(Fn)

] ≥
(

cV,m

4σm
n

)n∣∣B(0, c1σn)
∣∣n−1

=
(

cV,m

4

)n(
n1/2

tH

)nm(
c1t

H

n1/2

)m(n−1)

αn−1
m

(79)

=
(

cV,m

4

)n(
cm

1 αm

)n−1
(

n1/2

tH

)m

= 1

αm(c1tH )m
exp

(
n ln

(
cV,mcm

1 αm

4

)
+ m

2
ln(n)

)
.

Once here, we are reduced to tune our parameters according to the following
constraints:

(i) Recalling (78), we have that if c1 is taken small enough so that ρ ≡
− ln(cV,mcm

1 αm/4) > 0 and (as alluded to above) such that exp(−8c2
1/λ) ≥ 1

2 and
n ln(ρ) + m ln(n) ≥ 0 for all n ∈ N, we get

exp
(
n ln

(
cV,mcm

1 αm

4

))
= exp

(
−ρc2‖x − a‖2

t2H

)
.

We remark here that the values of c1, c2 and cM,V,m are fixed independently of n.
It is now easily seen that our bound (79) is of the form (5).

(ii) We now choose the constant c2 in (78) so that the compatibility relation
yi+1 − yi ≤ c1σn is satisfied. Toward this aim, recall that

|yi+1 − yi | = |x − a|
n

= |x − a|
n1/2

1

n1/2 ,

and since n = c2
|x−a|2

t2H , we get

|yi+1 − yi | = |x − a|
n1/2 c

−1/2
2

tH

|x − a| = c
−1/2
2 σn.

It is thus sufficient to take c
−1/2
2 ≤ c1 ∧(2c

1/2
1 ), which also satisfies that n ≥ |x−a|2

4c1t
2H .

This completes our proof. �

APPENDIX: SOME PROPERTIES OF STOCHASTIC DERIVATIVES

We start this technical section with a general bound on the space H related to
fBm.

LEMMA A.1. Let H ∈ (0,1/2), t ∈ (0,1] and consider the space H defined
on [0, t] as in Section 2.1. Let f be an element of Cγ ([0, t]) for 1/2 − H < γ <

1/2, with ‖f ‖∞ ≤ a and ‖f ‖0,t,γ ≤ b. Then

‖f ‖H ≤ cH

(
atH + btγ+H )

.
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PROOF. For a function g defined on [0, t], recall that its fractional derivative
is given by

D
1/2−H

t− gu = gu

(t − u)1/2−H
+

∫ t

u

gu − gv

(v − u)3/2−H
dv.(80)

Consider now f ∈ Cγ ([0, t]) satisfying the conditions above, and set gu =
u−(1/2−H)fu. According to [21], formula (5.31), we have

‖f ‖2
H ≤ cH

∫ t

0
s1−2H

∣∣D1/2−H

t− gs

∣∣2 ds.(81)

We now proceed to estimate the right-hand side of relation (81).
Indeed, plugging definition (80) into (81), it is readily checked that

‖f ‖2
H ≤ cH

(∫ t

0
A2

s ds +
∫ t

0
B2

s ds

)

with As = fs

(t − s)1/2−H
,Bs =

∫ t

s

fs − ψvfv

(v − s)3/2−H
dv,

where we have set ψv = (s/v)1/2−H . It is then easily seen that
∫ t

0 A2
s ds ≤

cHa2t2H . In order to bound B , notice that the function ψ is well defined on [s, t]
and satisfies ψs = 1, ψv ≤ 1 and |ψ ′

v| ≤ v−1.

|fs − ψvfv| ≤ |fs − fv|ψv + |fs ||1 − ψv|
≤ b(v − s)γ + a|1 − ψv|γ ≤

(
b + a

sγ

)
(v − s)γ .

Dividing this inequality by (v − s)3/2−H , recalling that γ ≤ 1/2 and integrating
over [s, t], we get

|Bs | ≤ cH

(
b + a

sγ

)
(t − s)γ−(1/2−H),

which entails that ∫ t

0
B2

s ds ≤ cH

(
a2t2H + b2t2(γ+H)).

Gathering our bounds on
∫ t

0 A2
s ds and

∫ t
0 B2

s ds, our proof is now complete. �

Let us now state a bound on Malliavin derivatives.

PROOF OF RELATION (12). We focus on the first derivative case, the other
ones being handled in a similar fashion. We will thus prove that

|DuF | ≤ ess sup
u≤r

|DrF |K(t, u).
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Indeed, according to Proposition 2.1, we have that for F ∈Ft ,

|DuF | = ∣∣[K∗
t DF

]
u

∣∣ =
∣∣∣∣
∫ t

u
DrF ∂rK(r, u) dr

∣∣∣∣ ≤ ess sup
u≤r≤t

|DrF |K(t, u),

which is exactly our claim. �

We now turn to the bounds on the process Q featuring in the definition of our
remainders Ri [see decomposition (57) of Xt ]:

LEMMA A.2. Let X be the solution to (48), let ηi be the function defined
by (58) and Q the process given by (61). If r1, s ∈ (ti−1, ti), then the following
bounds hold true: ∣∣Qk

s

∣∣ ≤ cV K(t, s)|ti − ti−1|γ Zi
0,(82) ∣∣Dl

r1
Qk

s

∣∣ ≤ cV K(t, s)K(t, r1)Z
i
1,(83)

for F1-measurable random variables Zi
0,Z

i
1 defined by Zi

0 = ‖B‖ti−1,t,γ ∨
‖B‖γ

ti−1,t,γ
and

Zi
1 = sup

{∣∣Dl
r1

(Xv − Xti−1)
∣∣, ti−1 ≤ r1 ≤ v ≤ ti

}
,(84)

admitting moments of all orders. In general, we can extend these results to Malli-
avin derivatives of arbitrary order � ≥ 1 in the following way: for r1, s ∈ (ti−1, ti)

and r2, . . . , r� < ti , we have

∣∣Dj1,...,j�
r1,...,r�

Qk
s

∣∣ ≤ cV K(t, s)Zi
�

n∏
j=1

K(t, rj ),(85)

for Zi
� ≡ sup{|Dj1,...,j�

r1,...,r� (Xv − Xti−1)|, ti−1 ≤ ri ≤ v ≤ ti , i = 1, . . . , n}, which is a
F1-measurable random variable with moments of all orders.

PROOF. Bound (82) is an easy consequence of (61), Proposition 2.5 and the
fact that ∂uK(u, s) ≥ 0. Moreover, observe that whenever r1 > ti−1, we have
Dr1Vk(Xti−1) = 0. Hence, using Proposition 2.1, we get

∣∣Dl
r1

Qk
s

∣∣ =
∣∣∣∣
∫ t

s∨r1

∂uK(u, s)Dl
r1

Vk(Xηi(u)) du

∣∣∣∣
=

∣∣∣∣
∫ t

s∨r1

∂uK(u, s)
[
K∗

t Dl·Vk(Xηi(u))
]
r1

du

∣∣∣∣
=

∣∣∣∣
∫ t

s∨r1

∂uK(u, s)

(∫ t

r1

Dl
r2

Vk(Xηi(u)) ∂r2K(r2, r1) dr2

)
du

∣∣∣∣.
It is thus readily checked that

∣∣Dl
r1

Qk
s

∣∣ ≤ cV Zi
1

∣∣∣∣
∫ t

s∨r1

∂uK(u, s)K(t, r1) du

∣∣∣∣ ≤ cV Zi
1K(t, s)K(t, r1).



440 M. BESALÚ, A. KOHATSU-HIGA AND S. TINDEL

The general result (85) is now obtained by means of an induction argument and
resorting to the same techniques as in the case of the first order derivative (namely
� = 1). �

REMARK A.3. Note that due to the definition (84) of Zi
l and Proposition 2.5

which controls the derivatives of X using the Hölder norms of B , the random
variables Z verify ∣∣Zi

j

∣∣ ≤ CV exp
(
CV ‖B‖1/γ

ti−1,ti ,γ

)
,

for any γ ∈ (1
2 ,H). Hence, applying Proposition 5.8 we obtain∣∣Zi

j

∣∣ ≤ CV exp
(
CV,γ

(
Ni

γ,p(B)
)1/2γp)

,

for any p such that 0 < γ < H − 1
2p

. This relation yields in particular that Zi
j ∈⋂

q≥1 Lq(�). Furthermore, once we localize by the random variables �M or �M ′ ,
we end up with

max
0≤l≤k

(
Zi

l �M ′
) ≤ cM,V,m with cM,V,m = cV,m exp

(
cV,m

(
M ′)1/2γp)

.(86)

In the next proposition, we give norm estimates for the remainder terms Ri

needed in the upper bound for J3,i .

LEMMA A.4. In the setting of Proposition 5.6 and Corollary 5.7, with defini-
tion (60) and (63), the following estimate is valid:∥∥Rj

i �M ′
∥∥
k1,p1,ti−1

≤ cV,M(ti − ti−1)
γ σn.(87)

PROOF. This result obviously involves the control of many derivative terms.
For the sake of conciseness, we only sketch the bound for DRi . Now recall that

Ri =
d∑

k=1

∫ ti

ti−1

Qk
s ◦ dWk

s .

We now apply a small variant of [21], Proposition 1.3.8, to Stratonovich integrals,
which states that for r ∈ [ti−1, ti], we have

Dj
r Ri = Qj

r +
d∑

k=1

∫ ti

ti−1

Dj
r Q

k
s ◦ dWk

s .(88)

Let us now evaluate the L2[ti−1, ti] norm of Dj
r Ri . The main contribution for this

norm comes from the term Q on the right-hand side of (88), for which we obtain,
according to (82),∫ ti

ti−1

(
Qj

r

)2
dr ≤ cV |ti − ti−1|2γ (

Zi
0
)2

∫ ti

ti−1

K2(t, r) dr

= cV

(
Zi

0
)2|ti − ti−1|2γ σ 2

n ,
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and thus

E1/p1
ti−1

[‖Q‖p1
L2([ti−1,ti ])�M ′

] ≤ cV |ti − ti−1|γ σnEp1
ti−1

[(
Zi

0
)p1�M ′

]
≤ cV,M |ti − ti−1|γ σn,

which is consistent with our claim (87).
Let us give another example of term which has to be analyzed in order to bound

the norm of Dj
r Ri : the term A defined as

A := E1/p1
ti−1

[(∫ ti

ti−1

dr

∫ ti

ti−1

ds
[
Dj

r Q
k
s

]2
)p1/2

�M ′
]
.

Along the same lines as above, using (82), we find

A ≤ cM,V

∫ ti

ti−1

dsK2(t, s)

∫ ti

ti−1

drK2(t, r) = cM,V σ 4
n ,

which is a remainder term with respect to (87). Notice that many other higher
order terms have to be evaluated in order to complete the proof. We omit these
cumbersome but routine developments for sake of conciseness. �

We now turn to the bound on A2(ρ):

LEMMA A.5. Recall that A2(ρ) is defined as A2(ρ) = ‖det(�Ui ,ti−1)
−1�M ′ ×

�ci,εi
‖k3
p3,ti−1

. Then this quantity is uniformly bounded in n, ρ and ω ∈ �.

PROOF. Recall that Ui = σ−1
n (Ii + ρRi), and remark that using Proposition 4

in [2], we have that

det(�Ui ,ti−1)
−1�ci,εi

≤ σ 2m
n

(
1

2
λ

∫ ti

ti−1

K2(t, s) ds −
d∑

j=1

∫ ti

ti−1

∣∣Dj
r Ri

∣∣2 dr

)−m

�ci,εi
.

Moreover, we have localized
∑d

j=1
∫ ti
ti−1

|Dj
r Ri |2 dr by �ci,εi

with ci = λσ 2
n

8 . Thus
we end up with

det(�Ui ,ti−1)
−1�ci,εi

≤ σ 2
n

(
λ

4

∫ ti

ti−1

K2(t, s) ds

)−1

,

from which the result follows. �

The estimates for A3(ρ) are obtained in a similar fashion. In fact, we have:

LEMMA A.6. The same conclusion as in Lemma A.5 holds true for the quan-
tity A3(ρ) = ‖Ui�M ′‖k4

k2,p2,ti−1
.
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PROOF. With respect to Lemma A.4, we only need to consider additionally
the bound for

‖Ii�M ′‖k2,p2,ti−1 ≤ c‖Ii‖k2,p3,ti−1‖�M ′‖k2,p4,ti−1 .

The above follows from Hölder’s inequality. Therefore the result follows from
straightforward calculations for Ii as in the proof of Proposition 5.13. �

Acknowledgment. M. Besalú and S. Tindel are members of the BIGS (Biol-
ogy, Genetics and Statistics) team at INRIA.

REFERENCES

[1] ALÒS, E. and NUALART, D. (2003). Stochastic integration with respect to the fractional Brow-
nian motion. Stoch. Stoch. Rep. 75 129–152. MR1978896

[2] BALLY, V. (2006). Lower bounds for the density of locally elliptic Itô processes. Ann. Probab.
34 2406–2440. MR2294988

[3] BAUDOIN, F., OUYANG, C. and TINDEL, S. (2014). Upper bounds for the density of so-
lutions to stochastic differential equations driven by fractional Brownian motions. Ann.
Inst. Henri Poincaré Probab. Stat. 50 111–135. MR3161525

[4] BAUDOIN, F., NUALART, E. OUYANG, C. and TINDEL, S. (2014). On probability laws of so-
lutions to differential systems driven by a fractional Brownian motion. Preprint. Available
at arXiv:1401.3583.

[5] CASS, T. and FRIZ, P. (2010). Densities for rough differential equations under Hörmander’s
condition. Ann. of Math. (2) 171 2115–2141. MR2680405

[6] CASS, T., FRIZ, P. and VICTOIR, N. (2009). Non-degeneracy of Wiener functionals arising
from rough differential equations. Trans. Amer. Math. Soc. 361 3359–3371. MR2485431

[7] CASS, T., HAIRER, M., LITTERER, C. and TINDEL, S. (2015). Smoothness of the den-
sity for solutions to Gaussian rough differential equations. Ann. Probab. 43 188–239.
MR3298472

[8] COUTIN, L. (2007). An introduction to (stochastic) calculus with respect to fractional Brown-
ian motion. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 3–65. Springer,
Berlin. MR2408998

[9] DALANG, R. C. and NUALART, E. (2004). Potential theory for hyperbolic SPDEs. Ann.
Probab. 32 2099–2148. MR2073187

[10] DECREUSEFOND, L. and ÜSTÜNEL, A. S. (1999). Stochastic analysis of the fractional Brow-
nian motion. Potential Anal. 10 177–214. MR1677455

[11] FRIEDMAN, A. (1975). Stochastic Differential Equations and Applications. Academic Press,
San Diego.

[12] FRIZ, P. K. and VICTOIR, N. B. (2010). Multidimensional Stochastic Processes as Rough
Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cam-
bridge Univ. Press, Cambridge. MR2604669

[13] GARSIA, A. M. (1972). Continuity properties of Gaussian processes with multidimensional
time parameter. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability
Theory 369–374. Univ. California Press, Berkeley, Calif. MR0410880

[14] GUBINELLI, M. (2004). Controlling rough paths. J. Funct. Anal. 216 86–140. MR2091358
[15] HU, Y. and NUALART, D. (2007). Differential equations driven by Hölder continuous functions

of order greater than 1/2. In Stochastic Analysis and Applications. Abel Symp. 2 399–413.
Springer, Berlin. MR2397797

http://www.ams.org/mathscinet-getitem?mr=1978896
http://www.ams.org/mathscinet-getitem?mr=2294988
http://www.ams.org/mathscinet-getitem?mr=3161525
http://arxiv.org/abs/arXiv:1401.3583
http://www.ams.org/mathscinet-getitem?mr=2680405
http://www.ams.org/mathscinet-getitem?mr=2485431
http://www.ams.org/mathscinet-getitem?mr=3298472
http://www.ams.org/mathscinet-getitem?mr=2408998
http://www.ams.org/mathscinet-getitem?mr=2073187
http://www.ams.org/mathscinet-getitem?mr=1677455
http://www.ams.org/mathscinet-getitem?mr=2604669
http://www.ams.org/mathscinet-getitem?mr=0410880
http://www.ams.org/mathscinet-getitem?mr=2091358
http://www.ams.org/mathscinet-getitem?mr=2397797


GAUSSIAN-TYPE LOWER BOUNDS FOR DENSITY OF FRACTIONAL SDES 443

[16] KOHATSU-HIGA, A. (2003). Lower bounds for densities of uniformly elliptic random variables
on Wiener space. Probab. Theory Related Fields 126 421–457. MR1992500

[17] KOU, S. and SUNNEY-XIE, X. (2004). Generalized Langevin equation with fractional Gaus-
sian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 180603-1–
180603-4.

[18] MALLIAVIN, P. and NUALART, E. (2009). Density minoration of a strongly non-degenerated
random variable. J. Funct. Anal. 256 4197–4214. MR2521925

[19] NOURDIN, I. and SIMON, T. (2006). On the absolute continuity of one-dimensional SDEs
driven by a fractional Brownian motion. Statist. Probab. Lett. 76 907–912. MR2268434

[20] NOURDIN, I. and VIENS, F. G. (2009). Density formula and concentration inequalities with
Malliavin calculus. Electron. J. Probab. 14 2287–2309. MR2556018

[21] NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin.
MR2200233

[22] NUALART, D. and OUKNINE, Y. (2002). Regularization of differential equations by fractional
noise. Stochastic Process. Appl. 102 103–116. MR1934157

[23] NUALART, D. and QUER-SARDANYONS, L. (2009). Gaussian density estimates for solu-
tions to quasi-linear stochastic partial differential equations. Stochastic Process. Appl.
119 3914–3938. MR2552310
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