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INDEPENDENCE RATIO AND RANDOM EIGENVECTORS
IN TRANSITIVE GRAPHS

BY VIKTOR HARANGI1 AND BÁLINT VIRÁG2

University of Toronto

A theorem of Hoffman gives an upper bound on the independence ratio
of regular graphs in terms of the minimum λmin of the spectrum of the adja-
cency matrix. To complement this result we use random eigenvectors to gain
lower bounds in the vertex-transitive case. For example, we prove that the
independence ratio of a 3-regular transitive graph is at least

q = 1

2
− 3

4π
arccos

(
1 − λmin

4

)
.

The same bound holds for infinite transitive graphs: we construct factor of
i.i.d. independent sets for which the probability that any given vertex is in the
set is at least q − o(1).

We also show that the set of the distributions of factor of i.i.d. processes
is not closed w.r.t. the weak topology provided that the spectrum of the graph
is uncountable.

1. Introduction.

1.1. The independence ratio and the minimum eigenvalue. An independent set
is a set of vertices in a graph, no two of which are adjacent. The independence ratio
of a graph G is the size of its largest independent set divided by the total number
of vertices. If G is regular, then the independence ratio is at most 1/2, and it is
equal to 1/2 if and only if G is bipartite.

The adjacency matrix of a d-regular graph has real eigenvalues between
−d and d . The least eigenvalue λmin is at least −d , and it is equal to −d if and
only if the graph is bipartite.

So the distance of the independence ratio from 1/2 and the distance of λmin from
−d both measure how far a d-regular graph is from being bipartite. The following
natural question arises: what kind of connection is there between these two graph
parameters?
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A theorem of Hoffman [8] gives a partial answer to this question. It says that
the independence ratio of a d-regular graph is at most

−λmin

d − λmin
= 1

2
− (1/2)(λmin + d)

2d − (λmin + d)
;(1)

for a simple proof, see [5], Theorem 11; also see [13], Section 4, for certain im-
provements.

Hoffman’s bound implies that λmin → −d as the independence ratio tends
to 1/2. The converse statement is not true in general: it is easy to construct
d-regular graphs with λmin arbitrarily close to −d and the independence ratio sep-
arated from 1/2. However, for transitive graphs the converse is also true. A graph
G is said to be vertex-transitive (or transitive in short) if its automorphism group
Aut(G) acts transitively on the vertex set V (G).

THEOREM 1. Let G be a finite, d-regular, vertex-transitive graph with least
eigenvalue λmin. Then the independence ratio of G is at least

1
2 − 1

3

√
d(λmin + d).

In particular, if λmin → −d , then the independence ratio converges to 1/2.

The idea behind the proof is to consider random eigenvectors with eigenvalue
λmin. Let λ be an arbitrary eigenvalue of the adjacency matrix of some transitive
graph G, and let Eλ denote the eigenspace corresponding to λ, that is, the space of
eigenvectors with eigenvalue λ. (Note that Eλ is typically more than one dimen-
sional, since G is transitive.) Furthermore, let Sλ be the unit sphere in Eλ. Now we
pick a uniform random vector from Sλ. Note that Sλ is Aut(G)-invariant, therefore
the distribution of this random vector is Aut(G)-invariant, too. Let us choose the
vertices v with the property that the value of the eigenvector at v is larger than at
each neighbor of v. (If λ is negative, then we expect many of the vertices with pos-
itive value to have this property.) Clearly, these vertices form an independent set.
Since our random vector is invariant, the probability q that a given vertex is chosen
is the same for all vertices. Therefore the expected size of this random indepen-
dent set is q|V (G)|, and consequently, the independence ratio of G is at least q .
An estimate of q yields Theorem 1 above. In many cases we obtain much sharper
bounds.

When the graph has a lot of symmetry (e.g., when any pair of neighbors of a
fixed vertex can be mapped to any other pair by a suitable graph automorphism),
then the probability q defined above is actually determined by λ. In this case it
equals qd(λ), the relative volume of the (d − 1)-dimensional regular spherical
simplex defined by normal vectors with pairwise scalar product d−2−λ

2(d−1)
; see Defi-

nition 2.9. There is a simple formula for q3(λ); see Theorem 3.
We conjecture that q ≥ qd(λ) for arbitrary transitive graphs (provided that λ

is sufficiently small). In other words, the worst-case scenario is when the graph
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has a lot of symmetry. Of course, this would yield a lower bound qd(λmin) for the
independence ratio. We managed to prove this conjecture for 3-regular transitive
graphs and 4-regular arc-transitive graphs. We also showed that a natural geometric
conjecture would imply the d-regular, arc-transitive case. [A graph is said to be
arc-transitive or symmetric if for any two pairs of adjacent vertices (u1, v1) and
(u2, v2), there is an automorphism of the graph mapping u1 to u2 and v1 to v2.]
The following theorems were obtained.

THEOREM 2. Suppose that G is a finite, d-regular, arc-transitive graph with
least eigenvalue λmin. Then the independence ratio of G is at least

1
2 − 1

3

√
λmin + d.

In fact, a natural geometric conjecture (see Conjecture 2.13) would imply that the
independence ratio is at least qd(λmin). This has been proven in the case d = 4:
the independence ratio of a finite, 4-regular, arc-transitive graph is at least

q4(λmin) ≥ 1
2 − 1

4

√
λmin + 4.(2)

THEOREM 3. Suppose that G is a finite, 3-regular, vertex-transitive graph
with minimum eigenvalue λmin. Then the independence ratio of G is at least

q3(λmin) = 1

8
+ 3

4π
arcsin

(
1 − λmin

4

)
= 1

2
− 3

4π
arccos

(
1 − λmin

4

)
.

In fact, the following stronger statement holds: G contains two disjoint indepen-
dent sets I1, I2 with total size |I1 ∪ I2| ≥ 2q3(λmin)|V (G)|. This means that the
induced subgraph G[I1 ∪ I2] is bipartite and has at least 2q3(λmin)|V (G)| ver-
tices.

See Figure 1 to compare the lower bound given in Theorem 3 to Hoffman’s up-
per bound (1). Note that −3 ≤ λmin ≤ −2 for any 3-regular transitive graph with

FIG. 1. Hoffman’s upper bound (1) and the lower bound of Theorem 3 for λmin ∈ [−3,−1].
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the only exception of the complete graph K4 for which λmin = −1; see Proposi-
tion A.3 in the Appendix.

1.2. Random wave functions on infinite transitive graphs. In order to gener-
alize the above theorems, we define random wave functions on infinite transitive
graphs G. A wave function with eigenvalue λ on G is a function f :V (G) → R

such that ∑
u∈N(v)

f (u) = λf (v) for each vertex v ∈ V (G),

where N(v) denotes the set of neighbors of v in G. So a wave function is basically
an eigenvector of the adjacency operator of G, except that it does not need to be in
�2(V (G)).

These random wave functions will also let us answer an open question concern-
ing factor of i.i.d. processes. Suppose that we have independent standard normal
random variables Zu assigned to each vertex u of an infinite transitive graph G.
By a factor of i.i.d. process on G we mean random variables Xv , v ∈ V (G) that
are all obtained as measurable functions of the random variables Zu, u ∈ V (G)

and that are Aut(G)-equivariant [i.e., they commute with the natural action of
Aut(G)]. It is easy to see that for any factor of i.i.d. process Xv , v ∈ V (G) with
0 < var(Xv) < ∞, the correlation of Xv and Xv′ converges to 0 as the distance of
v and v′ goes to infinity; see Proposition A.4 in the Appendix. So a random pro-
cess that is 0 everywhere with probability 1/2 and 1 everywhere with probability
1/2 cannot be a factor of i.i.d. However, it can be seen easily that this process can
be approximated by factor of i.i.d. processes provided that G is amenable. So the
space of factor of i.i.d. processes is not closed; that is, the distributions of these
processes do not form a closed set w.r.t. the weak topology. It has been an open
question whether the same is true on nonamenable graphs, for example, on the
d-regular tree; see [1], Section 4, Question 4. We will show that the space of factor
of i.i.d. processes is not closed provided that the spectrum of G is uncountable.

We say that a factor of i.i.d. process Xv , v ∈ V (G) is a linear factor of i.i.d. if
each Xv is obtained as a (possibly infinite) linear combination of Zu, u ∈ V (G).
Note that linear factors have the following properties.

DEFINITION 1.1. We call a collection of random variables Xv , v ∈ V (G)

a Gaussian process on G if they are jointly Gaussian, and each Xv is centered (i.e.,
has mean 0). (Random variables are jointly Gaussian if any finite linear combina-
tion of them is Gaussian.) We say that a Gaussian process Xv is Aut(G)-invariant
(or simply invariant) if for any � ∈ Aut(G) the joint distribution of the Gaussian
process X�(v) is the same as that of the original process.

We will prove that the adjacency operator AG has approximate eigenvectors
(satisfying a certain invariance property) for any λ in the spectrum λ ∈ σ(AG).
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Then we will use these approximate eigenvectors as coefficients to define linear
factor of i.i.d. processes converging in distribution to an invariant Gaussian process
Xv that satisfies the eigenvector equation at each vertex.

THEOREM 4. Let G be an infinite vertex-transitive graph with adjacency op-
erator AG. Then for each point λ of the spectrum σ(AG) there exists a nontrivial
invariant Gaussian process Xv , v ∈ V (G) such that∑

u∈N(v)

Xu = λXv for each vertex v ∈ V (G),(3)

where N(v) denotes the set of neighbors of v in G. Furthermore, the process Xv

can be approximated (in distribution) by linear factor of i.i.d. processes. Clearly,
we can assume that these approximating linear factors have only finitely many
nonzero coefficients.

An invariant Gaussian process satisfying (3) will be called a Gaussian wave
function with eigenvalue λ. If the spectrum of G is not countable, then we can
conclude that some of these Gaussian wave functions cannot be obtained as factor
of i.i.d. processes.

THEOREM 5. Let G be an infinite transitive graph such that the spectrum of
the adjacency oparator AG is not countable. Then there exist (linear) factor of
i.i.d. processes on G with the property that the weak limit of their distributions
cannot be obtained as the distribution of a factor of i.i.d. process.

We can say more for Cayley graphs.

THEOREM 6. Suppose that G is the Cayley graph of a finitely generated in-

finite group. Then a Gaussian wave function with eigenvalue λmax
def= supσ(AG)

can never be obtained as the distribution of a factor of i.i.d. process.

In view of Theorems 4 and 6 there exists a Gaussian wave function with eigen-
value λmax that can be approximated by factor of i.i.d. processes but cannot be
obtained as one. An independent and different proof of this result was given by
Russell Lyons in the special case when G is a regular tree [12], Corollary 3.3.

1.3. Factor of i.i.d. independent sets. Let Xv , v ∈ V (G) be a random process

on our infinite transitive graph G. As in the finite setting, I+ def= {v :Xv > Xu, ∀u ∈
N(v)} is a random independent set. If our process is invariant, then the probability
that v ∈ I+ is the same for each vertex v, and thus this probability can be used to
measure the size of I+. If our process is a factor of some i.i.d. process Zv , then the
resulting independent set is also a factor of Zv .
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In the infinite setting let λmin denote the minimum of the spectrum σ(AG),
and let Xv be a linear factor of Zv approximating the Gaussian eigenvector with
eigenvalue λmin; see Theorem 4. As the process Xv converges in distribution to
the Gaussian eigenvector, the probability P(v ∈ I+) approaches the corresponding
probability for the Gaussian eigenvector process, which, as we will see, can be
computed the exact same way as in the finite case.

THEOREM 7. Theorems 1, 2 and 3 give lower bounds q (in terms of λmin) for
the independence ratio of finite transitive graphs with least eigenvalue λmin. These
bounds remain true in the following framework. Let λmin denote the minimum of
the spectrum of an infinite transitive graph G. Then for any ε > 0 there exists a
factor of i.i.d. independent set on G such that the probability that any given vertex
is in the set is at least q − ε.

A special case of this infinite setting was investigated in [4]. When G is the d-
regular tree Td , then any factor of i.i.d. independent set on G automatically gives
a lower bound for the independence ratio of d-regular finite graphs with suffi-
ciently large girth. In particular, for the 3-regular tree, T3 one has λmin = −2

√
2.

Therefore the infinite version of Theorem 3 tells us that there exists factor of i.i.d.
independent set in T3 with density

1

2
− 3

4π
arccos

(
1 + 2

√
2

4

)
≈ 0.4298.

In [4] the somewhat better bound 0.4361 was obtained. In fact, [4] was the starting
point for the work in the present paper. For previous results on the independence
ratio of large-girth graphs, see [3, 9, 11, 14–16].

2. Finite vertex-transitive graphs. Throughout this section G will denote a
vertex-transitive, finite graph with degree d for some positive integer d ≥ 3. The
least eigenvalue of its adjacency matrix AG will be denoted by λmin. For now let
λ be an arbitrary eigenvalue of AG. Eventually, we will choose λ as the minimum
eigenvalue. First we define what we mean by a random eigenvector.

DEFINITION 2.1. Let Eλ be the eigenspace corresponding to λ, that is,

Eλ
def= {

x ∈ �2
(
V (G)

)
:AGx = λx

}
.

We fix some orthonormal basis e1, . . . , el in Eλ, and take independent standard
normal random variables γ1, . . . , γl . We call

∑l
i=1 γiei the random eigenvector

with eigenvalue λ.

REMARK 2.2. The (distribution of the) random eigenvector is clearly inde-
pendent of the choice of the basis e1, . . . , el , so it is well defined. It also follows
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that the distribution of the random eigenvector is Aut(G)-invariant. (Note that in
the Introduction we defined the random eigenvector differently: a uniform random
vector on the unit sphere of Eλ, which is just the normalized version of the random
eigenvector of Definition 2.1.)

We will think of this random eigenvector as a collection of real-valued ran-
dom variables Xv , v ∈ V (G) with the property that they are jointly Gaussian and
Aut(G)-invariant, each Xv is centered, and∑

u∈N(v)

Xu = λXv for each vertex v,

where N(v) denotes the set of neighbors of v in G. Since G is transitive, each Xv

has the same variance. After multiplying these random variables with a suitable
positive constant we might assume that var(Xv) = 1 for each vertex v. Next we
define random independent sets by means of these random eigenvectors.

DEFINITION 2.3. Let Xv , v ∈ V (G) denote the random eigenvector corre-
sponding to the eigenvalue λ as explained above. The random sets I+ and I− are
defined as follows:

I+ = Iλ+
def= {

v ∈ V (G) :Xv > Xu for each u ∈ N(v)
}

and

I− = Iλ−
def= {

v ∈ V (G) :Xv < Xu for each u ∈ N(v)
}
.

Clearly, I+ and I− are disjoint (random) independent sets in G.

The Aut(G)-invariance implies that the probability of the event v ∈ I+ is the
same for all vertices v. So from now on, we will focus on a fixed vertex and its
neighbors. First we introduce the following notation.

NOTATION 2.4. Let v be an arbitrary vertex of our vertex-transitive graph G.
We will call v the root. The neighbors of v are denoted by w1, . . . ,wd . For Xv and
Xwi

we will simply write X and Yi , respectively. We will assume that var(X) = 1,
which implies that var(Yi) = 1 for each i. Since Xv , v ∈ V (G) is the random
eigenvector with eigenvalue λ, we have

d∑
i=1

Yi = λX.(4)

The covariance cov(Yi, Yj ) will be denoted by ci,j . Then it readily follows from (4)
that

λ2 = cov(λX,λX) = ∑
i,j

ci,j = d + 2
∑
i<j

ci,j , thus
∑
i<j

ci,j = λ2 − d

2
.(5)
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We also introduce the random variables Ui
def= X − Yi .

Since Y1, . . . , Yd are centered and jointly Gaussian, they can be written as the
linear combinations of independent standard normal variables: there exist indepen-
dent standard Gaussians Z1, . . . ,Zd and (deterministic) vectors y1, . . . , yd ∈ R

d

such that Yi is the inner product of yi and Z = (Z1, . . . ,Zd). Setting x = (y1 +
· · · + yd)/λ and ui = x − yi , we have

Yi = yi · Z; X = x · Z; Ui = ui · Z.

It is easy to see that for any deterministic vectors a, b ∈ R
d the covariance

cov(a · Z,b · Z) is equal to the inner product a · b. In particular,

x · x = var(X) = 1; yi · yj = cov(Yi, Yj ) = ci,j ;
(6)

ui · uj = cov(Ui,Uj ).

Finally, we introduce the following notation for the pairwise angles of the vec-
tors ui :

ϕi,j
def= ∠(ui, uj ) = arccos

(
ui · uj

‖ui‖‖uj‖
)
.(7)

Our goal is to give estimates for the probability that a certain vertex lies in our
random independent set I+. As we will see, this probability can be expressed as
the volume of a certain spherical simplex.

DEFINITION 2.5. Let Sd−1 denote the unit sphere in R
d . A half-space is said

to be homogeneous if the defining hyperplane (i.e., the boundary of the half-space)
passes through the origin. A vector n orthogonal to the defining hyperplane and
“pointing outward” is called an outer normal vector. Then the given (open) half-
space consists of those x ∈ R

d for which the inner product n · x is negative.
A (d − 1)-dimensional spherical simplex is the intersection of Sd−1 and d ho-

mogeneous half-spaces in R
d . Up to congruence, a spherical simplex is determined

by the
(d

2

)
pairwise angles enclosed by the outer normal vectors of the d half-

spaces. If these
(d

2

)
angles are all equal, then we say that the spherical simplex is

regular.

PROPOSITION 2.6. The probability that any fixed vertex is in the random inde-
pendent set I+ is equal to the relative volume of the (d − 1)-dimensional spherical
simplex corresponding to the outer normal vectors −ui .

PROOF. The probability in question is

P(v ∈ I+) = P(X > Yi,1 ≤ i ≤ d) = P(Ui > 0,1 ≤ i ≤ d).(8)

The event Ui > 0 is that the random point Z lies in the homogeneous open half-
space with outer normal vector −ui . So the probability is equal to the measure of
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the intersection of the homogeneous half-spaces with outer normal vectors −ui

with respect to the standard multivariate Gaussian measure on R
d . This is simply

the volume of the corresponding (d − 1)-dimensional spherical simplex divided
by the volume vol(Sd−1) of the unit sphere Sd−1. Note that this relative volume
is determined by the pairwise angles ϕi,j [see (7) in Notation 2.4], which, in turn,
can be expressed using the inner products yi · yj = ci,j . �

The probability P(v ∈ I+) seems to be the smallest when G has a lot of sym-
metry. To make this more precise, we first define what we mean by a “lot of sym-
metry.”

DEFINITION 2.7. We say that G is cherry-transitive if any cherry (path of
length 2) in G can be mapped to any other cherry using a suitable graph automor-
phism of G.

PROPOSITION 2.8. If G is cherry-transitive, then

ci,j = λ2 − d

d(d − 1)
for all i 
= j,

and, consequently, the pairwise angles ϕi,j are all equal to

arccos
(

d − 2 − λ

2(d − 1)

)
.(9)

PROOF. If G is cherry-transitive, then for any i1 
= j1 and i2 
= j2 there exists
an automorphism � ∈ Aut(G) such that � fixes the root v and takes the unordered
pair wi1,wj1 to wi2,wj2 , that is,

�v = v, �wi1 = �wi2, �wj1 = �wj2

or

�v = v, �wi1 = �wj2, �wj1 = �wi2 .

Together with the Aut(G)-invariance of the random eigenvector this implies that
ci1,j1 = ci2,j2 . Since this holds for any two pairs of indices, it follows that all ci,j ,
i 
= j are the same. Using (5) we conclude that for i 
= j

ci,j = λ2 − d

d(d − 1)
.

Then easy calculation shows (using notations introduced earlier) that

‖ui‖2 = ‖uj‖2 = 2(d − λ)

d
and ui · uj = (d − λ)(d − 2 − λ)

d(d − 1)
.
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Plugging this into (7) gives

ϕi,j = arccos
(

d − 2 − λ

2(d − 1)

)
. �

We are now in a position to define the functions qd(λ).

DEFINITION 2.9. For −d ≤ λ ≤ d , let qd(λ) denote the volume of the (d −1)-
dimensional regular spherical simplex corresponding to the angle (9) divided by
vol(Sd−1). Then P(v ∈ I+) = qd(λ) for any cherry-transitive G. In particular, the
independence ratio of any cherry-transitive graph G is at least qd(λmin).

So P(v ∈ I+) = qd(λ) provided that G has enough symmetry. The follow-
ing conjecture says that in the general (i.e., vertex-transitive) case the probability
should be larger than that.

CONJECTURE 2.10. For any transitive graph G it holds that

P(v ∈ I+) ≥ qd(λ)

for any λ, or at least for sufficiently small λ: λ ≤ λ0 for some λ0.
This would, of course, imply that the independence ratio of G is at least qd(λmin)

provided that λmin ≤ λ0.

We will prove this conjecture for d = 3 and λ0 = −2 in Section 2.1. The con-
jecture might be true for arbitrary λ, but proving for λ ≤ λ0 = −2 will be sufficient
for our purposes, because λmin ≤ −2 for any 3-regular transitive graph except K4.

REMARK 2.11. In view of formula (8) the above conjecture would follow
from the following statement. Let (U1, . . . ,Ud) be a multivariate Gaussian with
each Ui centered and with pairwise covariances mi,j . We have the following con-
straints for the covariances:∑

1≤i,j≤d

mi,j = (d − λ)2 and for each i :mi,i = 2

d − λ

d∑
j=1

mi,j .

[Or one might replace these by the weaker constraints
∑

1≤i,j≤d mi,j = (d − λ)2

and
∑

1≤i≤d mi,i = 2(d − λ).] Then the orthant probability P(Ui > 0,1 ≤ i ≤ d)

is minimized when all mi,i , 1 ≤ i ≤ d are equal and also all mi,j , i 
= j are equal.

A few properties of the functions qd(λ) are collected in the next proposition.

PROPOSITION 2.12. For any d ≥ 3, qd is a monotone decreasing continuous
function on [−d,−1] with

qd(−d) = 1

2
and qd(−1) = 1

d + 1
.
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As for the behavior of qd around −d we have

qd(λ) ≥ 1

2
− π vol(Sd−2)

4 vol(Sd−1)

√
λ + d

d
≥ 1

2
− 1

3

√
λ + d.

PROOF. The volume of a regular spherical simplex is clearly a continuous and
monotone decreasing function of the corresponding angle. Since (9) is a continu-
ous and monotone increasing function of λ ∈ [−d,−1], monotonicity and conti-
nuity of qd follow.

For λ = −d the angles ϕi,j are 0, so the corresponding (degenerate) spherical
simplex is a hemisphere, thus qd(−d) = 1/2 as claimed.

For λ = −1 the angles ϕi,j are π/3. It is not hard to see that the vertices of
our spherical simplex in that case will be the d vertices of a face of a regular
(Euclidean) simplex in R

d . Then each of the d + 1 spherical simplices belonging
to the d + 1 faces has volume vol(Sd−1)/(d + 1). [We could also argue that for
G = Kd+1 and λ = −1 we have P(v ∈ I+) = 1/(d +1), and since Kd+1 is cherry-
transitive, P(v ∈ I+) = qd(−1).]

See Section 2.3 for a proof of the claimed behavior around −d . �

2.1. The 3-regular, vertex-transitive case. Now we turn to the proof of The-
orem 3 that gives a lower bound for the independence ratio of 3-regular transi-
tive graphs. We will basically show that Conjecture 2.10 is true when d = 3 and
λ0 = −2.

As we have seen, P(v ∈ I+) equals the relative volume of a certain spherical
simplex. For d = 3 the surface of the unit sphere Sd−1 = S2 is 4π and the area
of a spherical triangle with interior angles α,β, γ is equal to α + β + γ − π .
The spherical triangle in question is determined by the homogeneous half-spaces
with outer normal vectors −u1,−u2,−u3 (recall Proposition 2.6). We denoted
the angle enclosed by the outer normal vectors −ui and −uj by ϕi,j . Then the
interior angle at the intersection of the two corresponding planes is clearly π −ϕi,j .
Therefore P(v ∈ I+) equals the relative surface area of a spherical triangle with
angles π − ϕ1,2, π − ϕ1,3, π − ϕ2,3,

P(v ∈ I+) = 1

4π

( ∑
1≤i<j≤3

(π − ϕi,j ) − π

)

= 1

4π

(
π

2
+ ∑

1≤i<j≤3

(
π

2
− ϕi,j

))
(10)

= 1

4π

(
π

2
+ ∑

1≤i<j≤3

arcsin
(

ui · uj

‖ui‖‖uj‖
))

.
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By Proposition 2.8 we have ci,j = (λ2 − 3)/6 and ϕi,j = arccos((1 − λ)/4) in the
cherry-transitive case, thus

q3(λ) = 1

8
+ 3

4π
arcsin

(
1 − λ

4

)
= 1

2
− 3

4π
arccos

(
1 − λ

4

)
.(11)

PROOF OF THEOREM 3. The statement of the theorem is true for the complete
graph K4 as the independence ratio is 1/4 and the minimum eigenvalue is −1
in that case. For any other 3-regular transitive graph G we have λmin ≤ −2; see
Proposition A.3 in the Appendix. Therefore it suffices to prove that P(v ∈ I+) ≥
q3(λ), whenever λ ≤ −2.

Recall that Y1, Y2, Y3 are standard Gaussians with pairwise covariances ci,j .
Therefore the matrix ⎛⎝ 1 c1,2 c1,3

c1,2 1 c2,3
c1,3 c2,3 1

⎞⎠
is positive semidefinite. In particular, its determinant is nonnegative:

1 + 2c1,2c1,3c2,3 − c2
1,2 − c2

1,3 − c2
2,3 ≥ 0.

Furthermore, according to (5) we have c1,2 + c1,3 + c2,3 = (λ2 − 3)/2 ≥ 1/2, be-
cause λ ≤ −2. It follows that each ci,j must be between −1/2 and 1.

Indeed, let x, y, z be real numbers between −1 and 1 with x + y + z ≥ 1/2 and
1 + 2xyz − x2 − y2 − z2 ≥ 0. Assume that z < −1/2. Then

0 ≤ 1 + 2xyz − x2 − y2 − z2 = 1 + 2(z + 1)xy − (x + y)2 − z2

≤ 1 + 2(z + 1)

(
x + y

2

)2

− (x + y)2 − z2 = 1 + z − 1

2
(x + y)2 − z2

≤ 1 + z − 1

2

(
1

2
− z

)2

− z2 < 0,

contradiction. Therefore z ≥ −1/2. Similarly, x, y ≥ −1/2, too.
Next we bound ui ·uj/(‖ui‖‖uj‖) from below. Using (6), x = (y1 +y2 +y3)/λ

and c1,2 + c1,3 + c2,3 = (λ2 − 3)/2

x · y1 = 1

λ
(1 + c1,2 + c1,3) = 1

λ

(
1 + λ2 − 3

2
− c2,3

)
= λ

2
− 1

2λ
− 1

λ
c2,3,

‖u1‖2 = ‖x − y1‖2 = 2 − 2x · y1 = 2 − λ + 1

λ
+ 2

λ
c2,3.

Similar formulas hold for x · yi and ‖ui‖, i = 2,3. By the inequality of arithmetic
and geometric means it follows that

‖u1‖‖u2‖ ≤ ‖u1‖2 + ‖u2‖2

2
= 2 − λ + 1

λ
+ 1

λ
(c1,3 + c2,3)

= −1

λ

(
1

2
− 2λ + λ2

2
+ c1,2

)
.
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Note that this holds with equality when all ci,j are equal. Furthermore,

u1 · u2 = (x − y1) · (x − y2) = 1 + c1,2 − x · (y1 + y2)

= 1 + c1,2 + x · (y3 − λx)

= 1 + c1,2 +
(

λ

2
− 1

2λ
− 1

λ
c1,2

)
− λ

= −1

λ

(
1

2
− λ + λ2

2
+ (1 − λ)c1,2

)
.

It follows that

u1 · u2

‖u1‖‖u2‖ ≥ (1/2) − λ + (λ2/2) + (1 − λ)c1,2

(1/2) − 2λ + (λ2/2) + c1,2
,

because the numerator is positive (note that −3 ≤ λ ≤ −2 and c1,2 ≥ −1/2). The
analogous inequality holds for any other pair of indices i, j . Since arcsin is a mono-
tone increasing function, (10) yields that

P(v ∈ I+) ≥ 1

8
+ 1

4π

∑
1≤i<j≤3

arcsin
(

(1/2) − λ + (λ2/2) + (1 − λ)ci,j

(1/2) − 2λ + (λ2/2) + ci,j

)
.

Setting

f (t)
def= arcsin

(
(1/2) − λ + (λ2/2) + (1 − λ)t

(1/2) − 2λ + (λ2/2) + t

)
,

we have

P(v ∈ I+) ≥ 1

8
+ 1

4π

∑
1≤i<j≤3

f (ci,j ).(12)

On the other hand,

q3(λ) = 1

8
+ 3

4π
f

(
λ2 − 3

6

)
,(13)

which follows from (11) and the definition of f . [It also follows from the fact that
when each ci,j is equal to (λ2 −3)/6, then (12) should hold with equality.] In view
of (12) and (13) we need to show that

1

3

∑
1≤i<j≤3

f (ci,j ) ≥ f

(
λ2 − 3

6

)
,(14)

where each ci,j is between −1/2 and 1, and their average is (λ2 − 3)/6. This, of
course, would follow from the convexity of f . Unfortunately, f is not convex on
the entire interval [−1/2,1]. We claim, however, that the tangent line to f at t0 =
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(λ2 −3)/6 is below f on the entire interval [−1/2,1], which still implies (14). The
rather technical proof of this claim can be found in the Appendix (Lemma A.7).

Now let λ = λmin ≤ −2, then P(v ∈ I+) ≥ q3(λmin). So the expected size of the
random independent set I+ is at least q3(λmin)|V (G)|; thus the independence ratio
of G is at least q3(λmin).

To prove the second part of the statement we notice that the random independent
set I− (see Definition 2.3) has the same expected size. Indeed, if we replace Xv , v ∈
V (G) with X′

v = −Xv , then X′
v , v ∈ V (G) have the same joint distribution and the

roles of I+ and I− interchange. Since I+ and I− are always disjoint, the expected
size of their union I+ ∪ I− is at least 2q3(λmin)|V (G)|. Consequently, there must
exist disjoint independent sets I1, I2 in G with |I1 ∪ I2| ≥ 2q3(λmin)|V (G)|. �

For graphs with very large odd-girth, Theorem A.1 of the Appendix gives a
slightly better bound. The proof is based on the same random eigenvector, but uses
a different method to find large independent sets.

2.2. The arc-transitive case. The following innocent-looking, and very plau-
sible, conjecture is open in dimension n ≥ 4.

CONJECTURE 2.13. Let S be a sphere in the n-dimensional Euclidean
space R

n. We have n + 1 spherical caps with the same given radius on S. We
want to find the configuration for which the volume of the union of the caps is
maximal. It is conjectured that this optimal configuration is always the one where
the n + 1 centers are the vertices of a regular simplex in R

n.

The statement of the conjecture is trivial for n = 2, while the n = 3 case follows
from the so-called moment theorem of Fejes Tóth [6], Theorem 2; see also [7], Sec-
tion 34. The genereal case would follow from the following conjecture: the volume
of the intersection of a fixed spherical cap and a spherical simplex of fixed volume
is maximal when the spherical simplex is regular, and its center coincides with the
center of the spherical cap (Gábor Fejes Tóth, personal communication, 2012).

In what follows we will explain how the case n = d − 1 of Conjecture 2.13
implies that P(v ∈ I+) ≥ qd(λ) holds for every d-regular arc-transitive graph G,
and consequently the independence ratio of G is at least qd(λmin). In particular,
the d = 4 case follows from the n = 3 case of the conjecture, which is known to be
true; see Theorem 2. Using our previous notation, P(v ∈ I+) is the volume of the
spherical simplex T determined by the half-spaces with outer normal vectors −ui ,
i = 1, . . . , d , while qd(λ) is the volume of the same simplex in the case when all
the angles ϕi,j = ∠(ui, uj ), i 
= j are the same. In other words, we need to show
that the volume of the spherical simplex T is minimal when the angles ∠(ui, uj )

are the same.
If G is arc-transitive, then the covariances cov(X,Yi) = x ·yi are all equal. Since

x · y1 + · · · + x · yd = x · (y1 + · · · + yd) = x · (λx) = λ,
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we get that x · yi = λ/d for each i. It follows that the angle enclosed by x and ui

∠(x, ui) = δ
def= π − arccos(λ/d)

2
= arccos(−λ/d)

2
for each i.(15)

Now let Sl be the set of points on Sd−1 that has some fixed distance l from x;
thus Sl is a (d − 2)-dimensional sphere for any l. The intersection of Sl and the
half-space with outer normal vector ui is a spherical cap of radius depending only
on l and λ. So the intersection of Sl and our spherical simplex T can be obtained
by removing d spherical caps of the same given radius from Sl . If Conjecture 2.13
is true for n = d − 1, then the total volume of the removed area is maximal for the
“regular configuration” when each ∠(ui, uj ) is the same. Therefore the (d − 2)-
dimensional volume of T ∩ Sl is minimal for the regular configuration for any l. It
follows that the (d − 1)-dimensional volume of T is also minimal for the regular
configuration, and this is what we wanted to prove.

2.3. Bounds near −d . Even if Conjecture 2.13 is not assumed to be true, the
above observations yield a lower bound for the independence ratio of d-regular
arc-transitive graphs in the case when the least eigenvalue is close to −d .

PROOF OF THEOREM 2. We already explained in Section 2.2 why Conjec-
ture 2.13 implies that the independence ratio is at least qd(λmin).

Next we prove tht first part of Theorem 2. As we have seen in (15), ∠(x, ui) = δ

for each i, which means that each point of Sd−1 at (spherical) distance less than
π/2 − δ from x is contained in our spherical simplex T . These points form a
spherical cap with center x and radius π/2 − δ. (In fact, this spherical cap is the
“inscribed ball” of T .) Using (15) and that arccos(t) ≤ π/2

√
1 − t for any t ∈

[0,1], we get

δ = arccos(−λ/d)

2
≤ π

4

√
1 + λ/d

provided that λ ≤ 0.
This spherical cap can be obtained by taking the hemisphere (around x), and

removing a strip of “width” δ (in spherical distance). The volume of this strip is
clearly at most δ vol(Sd−2). Therefore the volume of the spherical cap is at least
vol(Sd−1)/2 − δ vol(Sd−2), whence

P(v ∈ I+) ≥ vol(Sd−1)/2 − δ vol(Sd−2)

vol(Sd−1)
= 1

2
− π vol(Sd−2)

4 vol(Sd−1)

√
λ + d

d
.

For d = 4 we have vol(S2)/vol(S3) = (4π)/(2π2) = 2/π , so the bound is

1
2 − 1

4

√
λ + 4.
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For general d , we use the estimate vol(Sd−2)/vol(Sd−1) ≤ √
d/

√
2π (see

Lemma A.6 of the Appendix) to obtain the following bound:

1

2
−

√
π

4
√

2

√
λ + d >

1

2
− 1

3

√
λ + d.

These are lower bounds for the probability P(v ∈ I+), in particular, for qd(λ).
Thus the first part of Theorem 2 follows, as well as the estimate (2) for q4(λ) and
the last statement of Proposition 2.12. �

PROOF OF THEOREM 1. In the general (vertex-transitive) case, we use that
x · y1 + · · · + x · yd = λ and x · yj ≥ −1:

x · yi ≤ λ + d − 1 for each 1 ≤ i ≤ d.

Therefore the angle ∠(x, yi) is at least arccos(λ + d − 1). Using that arccos(t) ≤
π/2

√
1 − t for any t ∈ [0,1], it follows that

∠(x, ui) ≤ δ′ def= π − arccos(λ + d − 1)

2
= arccos(1 − λ − d)

2
≤ π

4

√
λ + d

provided that λ ≤ −d + 1. This means that our spherical simplex T contains the
spherical cap with center x and radius π/2 − δ′. Therefore

P(v ∈ I+) ≥ vol(Sd−1)/2 − δ′ vol(Sd−2)

vol(Sd−1)
= 1

2
− π vol(Sd−2)

4 vol(Sd−1)

√
λ + d

≥ 1

2
−

√
π

4
√

2

√
d(λ + d).

Since
√

π/(4
√

2) < 1/3, Theorem 1 follows. �

3. Infinite transitive graphs.

3.1. Random wave functions. Our goal now is to generalize the random eigen-
vectors we introduced in Section 2 for infinite transitive graphs G. For an infinite
graph G the adjacency operator AG :�2(V (G)) → �2(V (G)) might not have any
eigenvectors (i.e., the point spectrum might be empty). So the approach we used
in the finite setting will not work here. Instead, we will define random wave func-
tions as the limit of linear factor of i.i.d. processes. The coefficients of these linear
factors will be approximate eigenvectors of AG that are invariant under automor-
phisms fixing some root x ∈ V (G). We start with proving that such approximate
eigenvectors exist for any λ in the spectrum σ(AG). Let Stabx(G) denote the sta-
bilizer subgroup, that is, the group of automorphisms fixing x.

THEOREM 3.1. Let G be an infinite vertex-transitive graph with adjacency
operator AG and with some fixed root x. Then for any ε > 0 and any λ in the
spectrum σ(AG), there exists a Stabx(G)-invariant vector α ∈ �2(V (G)) such that

‖α‖ = 1 and ‖AGα − λα‖ ≤ ε.
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PROOF. Consider the projection-valued measure Pλ corresponding to the self-
adjoint operator AG. This “measure” assigns an orthogonal projection PS to each
Borel set S ⊆ R. According to spectral theory, one can integrate with respect to
this measure. For instance, the following formula holds:

AG =
∫
R

λdPλ.

Furthermore, the projections PS have the property that if an operator T com-
mutes with AG, then it also commutes with each projection PS . There is a uni-
tary operator U� corresponding to each � ∈ Aut(G) [the one that permutes the
coordinates of �2(V (G)) according to �]. Since U� commutes with AG, it also
commutes with the projections PS .

Now let λ0 be an arbitrary element of the spectrum σ(AG), and set S =
[λ0 − ε,λ0 + ε]. We define α as the image of the indicator function 1x under
the projection PS ,

α
def= P[λ0−ε,λ0+ε]1x.

Note that 1x is a fixed point of U� for any � ∈ Stabx(G). Therefore

U�α = U�P[λ0−ε,λ0+ε]1x = P[λ0−ε,λ0+ε]U�1x = P[λ0−ε,λ0+ε]1x = α,

and thus α is Stabx(G)-invariant. On the other hand, since PSPR\S = 0, we have

AGα − λ0α =
(∫

R

(λ − λ0)dPλ

)
α =

(∫
[λ0−ε,λ0+ε]

(λ − λ0)dPλ

)
α,

which clearly implies that

‖AGα − λ0α‖ ≤ ε‖α‖.
It remains to show that α = P[λ0−ε,λ0+ε]1x 
= 0. Assume that P[λ0−ε,λ0+ε]1x = 0. It
follows that P[λ0−ε,λ0+ε]1v = 0 for every vertex v ∈ V (G). Indeed, let � ∈ Aut(G)

such that �x = v. Then U�1x = 1v and

P[λ0−ε,λ0+ε]1v = P[λ0−ε,λ0+ε]U�1x = U�P[λ0−ε,λ0+ε]1x = 0.

This holds for each vertex v, which clearly implies that P[λ0−ε,λ0+ε] = 0. Then the
operator

B =
∫
R\[λ0−ε,λ0+ε]

1

λ − λ0
dPλ

would be the inverse of AG − λ0I contradicting our assumption that λ0 ∈ σ(AG).
�

REMARK 3.2. There is a general theorem for Hilbert spaces saying that every
point of the spectrum of a self-adjoint operator is an approximate eigenvalue [17],
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Corollary 4.1.3. So the real content of the above theorem is that one can find ap-
proximate eigenvectors that are Stabx(G)-invariant. This invariance will be crucial
for us later on, when we will use these approximate eigenvectors as coefficients to
define linear factor of i.i.d. processes.

Suppose now that we have an i.i.d. process on G: independent standard normal
random variables Zu assigned to each vertex u. We will consider processes Xv , v ∈
V (G), where each Xv is a (possibly infinite) linear combination of Zu, u ∈ V (G).
We collected some obvious properties of such processes in the next proposition.

PROPOSITION 3.3. Let βv,u, v,u ∈ V (G) be real numbers, and let

Xv = ∑
u∈V (G)

βv,uZu.(16)

The infinite sum in (16) converges almost surely if and only if∑
u∈V (G)

β2
v,u < ∞.(17)

If (17) is satisfied, then Xv is a centered Gaussian with variance var(Xv) =∑
u∈V (G) β

2
v,u.

The process Xv , v ∈ V (G) is Aut(G)-invariant if and only if

βv,u = β�v,�u for all � ∈ Aut(G).(18)

Now we are in a position to formally define linear factor of i.i.d. processes.

DEFINITION 3.4. We say that a process Xv , v ∈ V (G) is a linear factor of
the i.i.d. process Zu if it can be written as in (16) for some real numbers βv,u,
v,u ∈ V (G) satisfying (17) and (18).

REMARK 3.5. Let us fix a root x ∈ V (G). For a linear factor the coeffi-

cients αu
def= βx,u clearly determine each βv,u. Here α = (αu)u∈V (G) can be any

Stabx(G)-invariant vector in �2(V (G)). So there is a one-to-one correspondance
between linear factor of i.i.d. processes on G and Stabx(G)-invariant vectors
α ∈ �2(V (G)). Also, by Proposition 3.3 we have var(Xv) = ‖α‖2.

Recall Definition 1.1 of invariant Gaussian processes.

DEFINITION 3.6. We call an invariant Gaussian process Xv , v ∈ V (G)

a Gaussian wave function with eigenvalue λ if∑
u∈N(v)

Xu = λXv for each vertex v ∈ V (G),

where N(v) denotes the set of neighbors of v in G.
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EXAMPLE 3.7. It was shown in [4] that for the d-regular tree Td there exists
an essentially unique Gaussian wave function for each λ ∈ [−d, d]. Furthermore,
this Gaussian wave function can be approximated by factor of i.i.d. processes pro-
vided that λ is in the spectrum σ(Td) = [−2

√
d − 1,2

√
d − 1].

In general, it is not clear for which λ such Gaussian wave functions exist and
whether they are unique.

DEFINITION 3.8. For a transitive graph G we call the closed set

σ̃ (G)
def= {λ: there exists a Gaussian wave function on G with eigenvalue λ}

the Gaussian spectrum of G.

Theorem 4 claims that for any λ ∈ σ(AG) there exists a Gaussian wave function
on G, which can be approximated by linear factor of i.i.d. processes. Therefore
σ̃ (G) ⊇ σ(AG).

PROOF OF THEOREM 4. We use the Stabx(G)-invariant approximate eigen-
vectors of Theorem 3.1 to define linear factor of i.i.d. processes. So let ε > 0 be ar-
bitrary and αε a Stabx(G)-invariant vector with ‖αε‖ = 1 and ‖AGαε −λαε‖ ≤ ε.
By Remark 3.5 for each αε there is a corresponding linear factor Xε

v , v ∈ V (G).
Note that the process

Y ε
v

def= ∑
u∈N(v)

Xε
u − λXε

v

is also a linear factor, and the corresponding coefficient vector is δε def= AGαε −
λαε . Therefore Xε

v is an invariant Gaussian process with var(Xε
v) = ‖αε‖2 = 1

and

var
( ∑

u∈N(v)

Xε
u − λXε

v

)
= var

(
Y ε

v

) = ∥∥δε
∥∥2 = ∥∥AGαε − λαε

∥∥2 ≤ ε2.

Since the space of invariant Gaussian processes with variance 1 is compact, it
follows that there exists a sequence εn converging to 0 such that the processes Xεn

v

converge in distribution. The limit process will be a nontrivial invariant Gaussian
process Xv that satisfies the eigenvector equation (3) at each vertex. �

3.2. Factor of i.i.d. processes. For a graph G we defined an i.i.d. process on G

as independent standard normal random variables Zv , v ∈ V (G). In other words,
Z = (Zv)v∈V (G) is a random point in the measure space (
,μ), where 
 is RV (G)

with the product topology, and μ is the product of standard Gaussian measures
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(one on each copy of R). The natural action of Aut(G) on V (G) gives rise to an
action of Aut(G) on 
: for � ∈ Aut(G) and ω = (ωv)v∈V (G) ∈ 
 let

(� · ω)v
def= ω�−1v.

Let G be an infinite transitive graph, and suppose that F is a measurable 
 → 


function that is Aut(G)-equivariant [i.e., commutes with the Aut(G)-action]. Then
X = F(Z) is an invariant process on G. Such a process X = (Xv)v∈V (G) is called
a factor of the i.i.d. process Z.

An Aut(G)-equivariant F :
 → 
 function is determined by f = πx ◦F , where
πx :
 →R is the projection corresponding to the coordinate of some fixed root x.
Here f can be any Stabx(G)-invariant 
 → R function. So factor of i.i.d. pro-
cesses can be identified with measurable, Stabx(G)-invariant functions f :
 →R.

Next we will prove Theorems 5 and 6 by showing that certain Gaussian wave
functions Xv , v ∈ V (G) cannot be obtained as factor of i.i.d. processes. Since
Xv has finite variance in that case, we can restrict ourselves to functions f ∈
L2(
,μ). Let Hinv ⊂ L2(
,μ) be the subspace containing those f ∈ L2(
,μ)

that are Stabx(G)-invariant. There is a natural way to define an adjacency opera-
tor A on the Hilbert space Hinv. Let

(Af )(ω)
def= ∑

y∈N(x)

f (�y→x · ω),

where �y→x is an (arbitrary) automorphism of G taking y to x. Since f is
Stabx(G)-invariant, A is well defined.

Suppose now that we have a Gaussian wave function with eigenvalue λ that can
be obtained as a factor of i.i.d. process. Then the corresponding f satisfies the
eigenvector equation Af = λf . In particular, λ needs to be in the point spectrum
of A. [Note that an eigenvector f of A does not necessarily give us a Gaussian
wave function: although the corresponding factor of i.i.d. process will satisfy the
eigenvector equation at each vertex, f (Z) might not have a Gaussian distribution.]

PROOF OF THEOREM 5. Since L2(
,μ) is a separable Hilbert space, so is
Hinv, and consequently the point spectrum of A :Hinv → Hinv is countable.

Therefore only for countably many λ’s can we have a Gaussian wave function
on G that can be obtained as a factor of i.i.d. process. However, if σ(AG) is un-
countable, then by Theorem 4, G has Gaussian wave functions for uncountably
many different eigenvalues λ; moreover, they can all be approximated by linear
factor of i.i.d. processes. �

PROOF OF THEOREM 6. We will use two basic facts about the point spectra
of the adjacency operators AG and A. First, λmax is never in the point spectrum
σp(AG) (we will give a short proof for this in the Appendix; see Lemma A.5).
Second, σp(A) ⊆ σp(AG)∪ {d} for Cayley graphs (this will be explained after the
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proof). Therefore λmax is not in the point spectrum of A provided that λmax < d ,
and consequently, a Gaussian wave function with eigenvalue λmax cannot be ob-
tained as a factor of i.i.d. process.

In the case λmax = d the Gaussian wave function has to be constant; that is,
Xu = Xv for any two vertices u, v. However, for a factor of i.i.d. process the cor-
relation between Xu and Xv should tend to 0 as the distance of u and v goes to
infinity; see Proposition A.4 in the Appendix. �

Next we will explain the relation between the adjacency operators AG and A.
This can be found in [10], Section 3, in a more general setting; see also [13],
Theorem 2.1 and Corollary 2.2. Let ν denote the standard Gaussian measure.
Since L2(R, ν) is a separable Hilbert space, it has a countable orthonormal ba-
sis: g0, g1, g2, . . . , where g0 will be assumed to be the constant 1 function. Let I
denote the set of finitely supported V (G) → {0,1,2, . . .} functions. For each q ∈ I
we define an 
 →R function:

Wq(ω)
def= ∏

v∈V (G)

gq(v)(ωv).

Note that this is actually a finite product, since all but finitely many terms are
equal to g0 ≡ 1. According to [10], Lemma 3.1, the functions Wq , q ∈ I form an
orthonormal basis of L2(
,μ). It follows that L2(
,μ) is separable, which fact
was used in the proof of Theorem 5.

We defined the operator A on the space Hinv ⊂ L2(
,μ) containing Stabx(G)-
invariant functions. When G is a Cayley graph, there is a natural way to extend
A to an adjacency operator over the whole space L2(
,μ). Suppose that � is a
finitely generated infinite group. Let S be a finite, symmetric set of generators, and
let G be the corresponding Cayley graph; that is, V (G) = � and the vertex v ∈ �

is adjacent to the vertices γ v, γ ∈ S. The natural action of � on itself gives rise to
the following �-action on 
:

(γ · ω)v
def= (ω)γ −1v.

(This is often called the generalized Bernoulli shift.) Then for f ∈ L2(
,μ), let

(Af )(ω)
def= ∑

γ∈S

f (γ · ω).

This clearly extends our earlier definition of A.
There is a natural �-action on I as well: for q ∈ I

(γ · q)(v)
def= q

(
γ −1v

)
.

It is compatible with the �-action on 
 in the following sense:

Wγ ·q(ω) = Wq

(
γ −1 · ω)

.
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It means that

AWq = ∑
γ∈S

Wγ ·q.(19)

We now consider the orbit {γ · p :γ ∈ �} of a given element p ∈ I and the closure
of the space spanned by the corresponding functions Wγ ·p ,

Hp
def= cl

(
span{Wγ ·p :γ ∈ �}) ⊂ L2(
,μ).

It is clear from (19) that Hp is A-invariant. If p ≡ 0, then Hp consists of the con-
stant functions on 
 and both the point spectrum and the spectrum of A|Hp is {d}.
Otherwise the stabilizer �p of p is a finite subgroup of �, and A|Hp is closely
related to the original adjacency operator AG. Indeed, let Tp:Hp → �2(V (G)) ∼=
�2(�) be the operator defined by

Tp:Wq �→ 1{γ∈� : γ ·p=q},

where q is in the orbit of p. It is easy to see that Tp is a bounded operator for
which TpA|Hp = AGTp . Since Tp is also bounded below, it follows that

σ(A|Hp) ⊆ σ(AG) and σp(A|Hp) ⊆ σp(AG)

with equality when the stabilizer �p is trivial.
Therefore for Cayley graphs the operators AG:�2(V (G)) → �2(V (G)) and

A:L2(
,μ) → L2(
,μ) have the same spectra and point spectra with the possi-
ble exception of the point d ,

σ(A) = σ(AG) ∪ {d} and σp(A) = σp(AG) ∪ {d}.
Consequently,

σp(A|Hinv) ⊆ σp(A) = σp(AG) ∪ {d},
which we used in the proof of Theorem 6.

3.3. Independent sets. Let G be an infinite transitive graph and λmin be the
minimum of its spectrum σ(AG). Consider linear factor of i.i.d. processes Xn

v

converging in distribution to a Gaussian wave function Xv with eigenvalue λmin as
n → ∞ as in Theorem 4. We define the following independent sets on G:

I+ def= {
v :Xv > Xu,∀u ∈ N(v)

}
and In+

def= {
v :Xn

v > Xn
u,∀u ∈ N(v)

}
.

Then for each n the independent set In+ is a factor of the i.i.d. process Zv ; that is,
it is obtained as a measurable function of Zv , v ∈ V (G) that commutes with the
natural action of Aut(G). Furthermore, since the event v ∈ I+ corresponds to an
open set, we have

lim inf
n→∞ P

(
v ∈ In+

) ≥ P(v ∈ I+).
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Therefore whenever we have a lower bound q for P(v ∈ I+), it yields that for any
ε > 0 there exists a factor of i.i.d. independent set with “size” greater than q − ε.

Bounding P(v ∈ I+), however, leads us to the same optimization problem as in
the finite case. We need to estimate the volume of the same spherical simplex with
the exact same constraints. [Of course, there might be a difference between the fi-
nite and infinite setting in terms of what covariances ci,j can actually come up, but
our proofs used only the trivial constraints that they form a positive semidefinite
matrix and their sum is (λ2

min − d)/2, which are true in the infinite case, too.] Thus
we obtain the exact same bounds, and Theorem 7 follows.

Actually, in Theorem 3 we proved the bound only for graphs with λmin ≤ −2
and argued that the only finite, 3-regular, transitive graph for which this does not
hold is the complete graph K4. For infinite transitive graphs λmin ≤ −2 holds with
no exception. This follows from the fact that they contain arbitrarily long paths as
induced subgraphs.

APPENDIX

THEOREM A.1. Suppose that G is a finite, 3-regular, vertex-transitive graph
with minimum eigenvalue λmin and odd-girth g. Then the independence ratio of G

is at least

5g − 3

16g
+ g + 1

2g

3

4π
arcsin

(
λ2

min − 3

6

)
≥ 5

16
+ 3

8π
arcsin

(
λ2

min − 3

6

)
− 3

16g
.

In fact, there exist two disjoint independent sets in G such that their average size
divided by |V (G)| is not less than the above bound.

PROOF. It is easy to check the statement for K4. According to Proposition A.3
λmin ≤ −2 holds for any other finite, 3-regular, transitive graph G. Let Xv , v ∈
V (G) be the random eigenvector corresponding to λmin. Let V+ denote the set of
“positive vertices,” that is,

V+ def= {
v ∈ V (G) :Xv > 0

}
.

The expected size of V+ is |V (G)|/2.
Since λmin is negative, a vertex and its three neighbors cannot all be positive.

Therefore each vertex has degree at most two in the induced subgraph G[V+].
Thus each connected component of this subgraph is a path or a cycle. We want
to choose an independent set from each component. We can choose at least half
the vertices from paths and even cycles. From an odd cycle of length l ≥ g we can
choose (l −1)/2 vertices, which is at least a (g −1)/(2g) proportion of all vertices
in that component. (Recall that g denotes the odd-girth of G, i.e., the length of the
shortest odd cycle in G.)

We need one more observation, namely, that many of the components actually
contain only one vertex. Using our earlier notation, let v be an arbitrary vertex with
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neighbors w1,w2,w3, the corresponding random variables are X and Y1, Y2, Y3.
Note that Y1 < 0, Y2 < 0 and Y3 < 0 imply that X > 0. Therefore the probability
p that v is an isolated vertex in G[V+] is

p
def= P(X > 0;Y1 < 0;Y2 < 0;Y3 < 0) = P(Y1 < 0;Y2 < 0;Y3 < 0)

= P(yi · Z < 0; i = 1,2,3) = 1

2
− 1

4π

∑
1≤i,j≤3

arccos(ci,j )(20)

= 1

8
+ 1

4π

∑
1≤i,j≤3

arcsin(ci,j ).

Note that arcsin it is a monotone increasing odd function on [−1,1], which is
convex on [0,1]. Furthermore, the average of ci,j is (λ2

min −3)/6 ≥ (22 −3)/6 > 0.
It is easy to see that these imply that the right-hand side of (20) decreases (not
increases) if we replace each ci,j with their average (λ2

min − 3)/6. Thus

p ≥ 1

8
+ 3

4π
arcsin

(
λ2

min − 3

6

)
.(21)

Our independent set will contain all isolated vertices and at least a (g − 1)/(2g)

proportion of all the other vertices in V+. This yields the following lower bound
for the independence ratio of G:

p + g − 1

2g

(
1

2
− p

)
= g − 1

4g
+ g + 1

2g
p.

Combining this with (21) yields the desired bound.
We can choose an independent set with the same expected size from the “nega-

tive vertices”

V− def= {
v ∈ V (G) :Xv < 0

}
.

This implies the second part of the theorem.
We mention that the proof also works in the infinite setting, so there is an anal-

ogous theorem for infinite transitive graphs (as in Theorem 7). �

REMARK A.2. Any nontrivial lower bound for the density of components
of size 3,5, . . . in G[V+] would immediately yield an improvement in the above
theorem. In [4] such nontrivial bounds were obtained for the 3-regular tree T3.

PROPOSITION A.3. Suppose that G is a finite, connected, 3-regular, vertex-
transitive graph. Then either G is isomorphic to the complete graph K4, or the
least eigenvalue λmin of its adjacency matrix is at most −2.

The proof below is due to Péter Csikvári.
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FIG. 2. The graph T and the eigenvector corresponding to its least eigenvalue −2.

PROOF OF PROPOSITION A.3. Let G be a connected, 3-regular, vertex-
transitive graph with λmin(G) > −2. We need to show that G must be the complete
graph K4.

Cauchy’s interlacing theorem implies that λmin(G) ≤ λmin(H) whenever H is
an induced subgraph of G. Therefore λmin(H) > −2 must hold for any induced
subgraph. Let T denote the tree shown in Figure 2. It is easy to see that the smallest
eigenvalue of T is −2. We also have λmin(C2k) = −2 for the cycle of length 2k for
any k ≥ 2. Therefore G can contain neither T , nor C2k as an induced subgraph.

We will distinguish three cases.

Case 1. G does not contain triangles.
Let u, v be two neighboring vertices, and let u1, u2 and v1, v2 denote the re-

maining two neighbors of u and v, respectively. Since G contains no triangles,
u1, u2, v1, v2 are pairwise distinct vertices. The induced subgraph on the set
{u,u1, u2, v, v1, v2} must be isomorphic to T (the graph shown in Figure 2), oth-
erwise G would contain a triangle or an induced C4. Since G cannot contain T as
an induced subgraph, this is a contradiction.

Case 2. G contains triangles, but no two share a common edge.
Since G is vertex-transitive, there must be at least one triangle through every

vertex. We claim that any two triangles must be disjoint. If they had two com-
mon vertices, then they would share an edge, and if they had exactly one common
vertex, then that vertex would have degree at least 4.

So we have disjoint triangles in G, exactly one through every vertex. We claim
that there can be at most one edge between two triangles (with one endpoint in
one triangle and one in the other). Indeed, otherwise we would either have an
induced C4 or a vertex with degree at least 4.

Let us consider the following graph G∗. To each triangle in G corresponds
a vertex in G∗, and we join two such vertices with an edge if there is an edge
between the corresponding triangles. It is easy to see that G∗ will be 3-regular as
well. Take a cycle in G∗ with minimum length g ≥ 3. There is a corresponding
cycle of length 2g in the original graph G. It is easy to see that this must be an
induced cycle, contradiction.

Case 3. G contains two triangles sharing an edge.
Let xy be an edge shared by triangles xyu and xyv; see Figure 3.
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FIG. 3. Case 3.

Then x and y already have degree 3, while u and v still need an edge. We claim
that uv must be an edge. Otherwise v would have a neighbor z different from
x, y,u. Since z cannot be adjacent to x and y, there is only one triangle through v,
while there are two triangles through x, contradticting the transitivity of G. So uv

is an edge, and therefore each of x, y,u, v has degree 3. Since G is connected, G

cannot have any other vertices and thus isomorphic to K4. �

For the sake of completeness we include a simple proof for the following well-
known result.

PROPOSITION A.4. Let G be a vertex-transitive graph, and let Xv , v ∈ V (G)

be a factor of the i.i.d. process Zv , v ∈ V (G) with 0 < var(Xv) < ∞. Then
corr(Xv,Xv′) → 0 as the distance of v and v′ goes to infinity.

See [2] for an explicit (and sharp) bound on the correlation decay on the
d-regular tree.

PROOF OF PROPOSITION A.4. For any vertex v ∈ V (G), one can define the
following Lévy martingales:

X(n)
v = E

(
Xv|Zu,dist(u, v) ≤ n

)
.

According to martingale convergence theorems, X
(n)
v converges to Xv almost

surely and in L2 as well. Since E(X
(n)
v ) = E(Xv), the latter means that var(Xv −

X
(n)
v ) → 0 as n → ∞.
Moreover, X

(n)
v , v ∈ V (G) is a so-called block factor of Zu, u ∈ V (G), that is,

X
(n)
v depends only on those Zu’s for which u is in some finite neighborhood of v.
Now let ε > 0 be arbitrary and let us pick n such that var(Xv −X

(n)
v ) < ε. If the

distance of v and v′ is more than 2n, then X
(n)
v and X

(n)
v′ are independent (because

they depend on disjoint sets of Zu’s). Therefore cov(X
(n)
v ,X

(n)
v′ ) = 0 and hence

cov(Xv,Xv′) = cov
(
Xv − X(n)

v ,Xv′ − X
(n)
v′

) + cov
(
X(n)

v ,Xv′ − X
(n)
v′

)
+ cov

(
Xv − X(n)

v ,X
(n)
v′

)
,
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which can be bounded by ε + 2
√

ε var(Xv), and the statement of the proposition
follows. �

The following lemma is probably known, but we did not find an explicit refer-
ence, so we give a short proof.

LEMMA A.5. If G is an infinite transitive graph, then the maximum λmax of
the spectrum of AG is never in the point spectrum of AG.

PROOF. In the case λmax = d , the equation AGf = df means that the vec-
tor f is harmonic. However, the maximum principle implies that there are no �2

harmonic functions. Thus there is no eigenvector for λmax, which is equivalent to
saying that λmax is not in the point spectrum of AG.

For the nonamenable case (i.e., λmax < d), Theorem II.7.8 in [18] implies that
for any vertex v,

∞∑
n=0

λ−2n
max

〈
1v,A

2n
G 1v

〉
< ∞,

where the left-hand side can be written in terms of the spectral measure μG as
∞∑

n=0

λ−2n
max

∫
x2n dμG(x) ≥

∞∑
n=0

λ−2n
maxλ2n

maxμG

({λmax}).
This forces μG({λmax}) = 0, which means that λmax is not in the point spectrum
of AG. �

LEMMA A.6.

vol(Sd−2)

vol(Sd−1)
<

√
d√

2π
.

PROOF. Using the formula

vol
(
Sn−1) = 2πn/2

�(n/2)
,

we need to show that

�((d − 1)/2)

�((d − 2)/2)
<

√
d

2
.

Since � is log-convex, the increments of its logarithm over intervals of length, say,
1/2 are increasing. Thus

�((d − 1)/2)

�((d − 2)/2)
≤ �(d/2)

�((d − 1)/2)
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FIG. 4. The function f (t) and its tangent at t0 for λmin = −2.

and multiplying both sides by the left-hand side, we get(
�((d − 1)/2)

�((d − 2)/2)

)2

≤ �(d/2)

�((d − 2)/2)
= d − 2

2
<

d

2

as required. �

LEMMA A.7. Let λ ∈ [−3,−2] and

f (t)
def= arcsin

(
(1/2) − λ + (λ2/2) + (1 − λ)t

(1/2) − 2λ + (λ2/2) + t

)
.

Then the tangent line to f at t0 = (λ2 − 3)/6 is below f on the entire interval
[−0.5,1]; see Figure 4 for the case λmin = −2.

PROOF. We need to prove that

f (t) − f ′(t0)t

takes its minimum value at t0 on the interval [−0.5,1]. This will follow from the
fact that f ′(t) < f ′(t0) for −0.5 ≤ t < t0 and f ′(t) > f ′(t0) for t0 < t < 1.

In order to make calculations easier, we will use the following notation:

a = 1

2
− λ + λ2

2
≥ 4.5; b = 1 − λ ≥ 3;

c = a + b − 1 ≥ 6.5;
then

f (t) = arcsin
(

a + bt

c + t

)
.
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It is easy to see that 0 < a + bt < c + t for t ∈ [−0.5,1). Therefore we have

f ′(t) =
(

1 −
(

a + bt

c + t

)2)−1/2 b(c + t) − (a + bt)

(c + t)2

= bc − a

(c + t)
√

(c + t)2 − (a + bt)2
.

Since bc−a > 0 it follows that f ′ is positive on [−0.5,1), and thus f is monotone
increasing. Next we study the intervals of monotonicity of f ′. First we note that

(c + t)2 − (a + bt)2 = (
c + a + (1 + b)t

)(
c − a + (1 − b)t

)
.

Using c − a = b − 1 we get that

(c + t)2 − (a + bt)2 = (
b2 − 1

)
(t + d)(1 − t),

where

d = c + a

b + 1
= 1 − 3λ + λ2

2 − λ
= 1 − λ − 1

2 − λ
≥ 11

4
.

It follows that

1

(f ′(t))2 = b2 − 1

(bc − a)2 (t + c)2(t + d)(1 − t).

If we restrict ourselves to the interval [−0.5,1) (where f ′ is positive), then it
suffices to examine the function

g(t) = (t + c)2(t + d)(1 − t).

Wherever g is monotone increasing, f ′ is monotone decreasing, and vice versa.
So we have a fourth-degree polynomial g with leading coefficient −1, whose

roots are −c (with multiplicity 2), −d and 1. Consequently, the derivative g′ is a
third-degree polynomial with negative leading coefficient and with roots −c, u, v,
where −c < u < −d < v < 1. We distinguish the following two cases.

Case 1. v ≤ −0.5. Then g is monotone decreasing on [−0.5,∞), and therefore
f ′ is monotone increasing on [−0.5,1), and thus f is convex on the whole interval,
which clearly implies the statement of the lemma.

Case 2. v > −0.5. Since the other two roots of g′ are less than −d < −0.5,
we know that g is monotone increasing on [−0.5, v] and monotone decreasing on
[v,1). We claim that

g
(−1

2

)
> g

(1
6

)
.(22)

This would yield that v < 1/6. Since 1/6 ≤ t0 = (λ2 − 3)/6, we have g(−1/2) >

g(1/6) > g(t0). This means that g(t) > g(t0) for −0.5 ≤ t < t0 and g(t) < g(t0)



INDEPENDENCE RATIO AND RANDOM EIGENVECTORS 2839

for t0 < t < 1. As for f ′, f ′(t) < f ′(t0) for −0.5 ≤ t < t0 and f ′(t) > f ′(t0) for
t0 < t < 1, and the statement of the lemma clearly follows.

It remains to show (22). Let −1/2 = t2 < t1 = 1/6. Then t1 − t2 = 2/3; t2 + c ≥
6 and t2 + d ≥ 9/4, and consequently,

g(t1)

g(t2)
= 1 − t1

1 − t2

(
1 + t1 − t2

t2 + c

)2(
1 + t1 − t2

t2 + d

)

≤ 5/6

3/2

(
1 + 2/3

6

)2(
1 + 2/3

9/4

)
= 5

9

(
10

9

)2 35

27
= 17,500

19,683
< 1. �

Acknowledgments. The authors are grateful to Péter Csikvári for the elegant
proof of Proposition A.3, and to Gergely Ambrus, Károly Böröczky, Gábor Fejes
Tóth and Endre Makai for their remarks on Conjecture 2.13. We would also like
to thank the anonymous referee for the very careful reading of the manuscript and
the helpful comments and suggestions.

REFERENCES

[1] ABÉRT, M., SZEGEDY, B. et al. (eds.) (2013). Residually finite groups, graph limits and dy-
namics. BIRS Focused Research Group Proceedings. Available at https://www.birs.ca/
workshops/2009/09frg147/report09frg147.pdf.

[2] BACKHAUSZ, Á., SZEGEDY, B. and VIRÁG, B. (2013). Ramanujan graphings and correlation
decay in local algorithms. Preprint. Available at arXiv:1305.6784v1.

[3] BOLLOBÁS, B. (1981). The independence ratio of regular graphs. Proc. Amer. Math. Soc. 83
433–436. MR0624948

[4] CSÓKA, E., GERENCSÉR, B., HARANGI, V. and VIRÁG, B. (2013). Invariant Gaussian
processes and independent sets on regular graphs of large girth. Preprint. Available at
arXiv:1305.3977.

[5] ELLIS, D., FRIEDGUT, E. and PILPEL, H. (2011). Intersecting families of permutations.
J. Amer. Math. Soc. 24 649–682. MR2784326

[6] FEJES TÓTH, L. (1948). The isepiphan problem for n-hedra. Amer. J. Math. 70 174–180.
MR0024157

[7] FEJES TÓTH, L. (1964). Regular Figures. The Macmillan Co., New York. MR0165423
[8] HOFFMAN, A. J. (1970). On eigenvalues and colorings of graphs. In Graph Theory and Its

Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison,
Wis., 1969) 79–91. Academic Press, New York. MR0284373

[9] KARDOŠ, F., KRÁL, D. and VOLEC, J. (2011). Fractional colorings of cubic graphs with large
girth. SIAM J. Discrete Math. 25 1454–1476. MR2837610

[10] KECHRIS, A. S. and TSANKOV, T. (2008). Amenable actions and almost invariant sets. Proc.
Amer. Math. Soc. 136 687–697 (electronic). MR2358510

[11] LAUER, J. and WORMALD, N. (2007). Large independent sets in regular graphs of large girth.
J. Combin. Theory Ser. B 97 999–1009. MR2354714

[12] LYONS, R. (2014). Factors of i.i.d. on trees. Preprint. Available at arXiv:1401.4197v1.
[13] LYONS, R. and NAZAROV, F. (2011). Perfect matchings as IID factors on non-amenable

groups. European J. Combin. 32 1115–1125. MR2825538
[14] MCKAY, B. D. (1987). Independent sets in regular graphs of high girth. Ars Combin. 23 179–

185. MR0890138

https://www.birs.ca/workshops/2009/09frg147/report09frg147.pdf
http://arxiv.org/abs/arXiv:1305.6784v1
http://www.ams.org/mathscinet-getitem?mr=0624948
http://arxiv.org/abs/arXiv:1305.3977
http://www.ams.org/mathscinet-getitem?mr=2784326
http://www.ams.org/mathscinet-getitem?mr=0024157
http://www.ams.org/mathscinet-getitem?mr=0165423
http://www.ams.org/mathscinet-getitem?mr=0284373
http://www.ams.org/mathscinet-getitem?mr=2837610
http://www.ams.org/mathscinet-getitem?mr=2358510
http://www.ams.org/mathscinet-getitem?mr=2354714
http://arxiv.org/abs/arXiv:1401.4197v1
http://www.ams.org/mathscinet-getitem?mr=2825538
http://www.ams.org/mathscinet-getitem?mr=0890138
https://www.birs.ca/workshops/2009/09frg147/report09frg147.pdf


2840 V. HARANGI AND B. VIRÁG

[15] SHEARER, J. B. (1983). A note on the independence number of triangle-free graphs. Discrete
Math. 46 83–87. MR0708165

[16] SHEARER, J. B. (1991). A note on the independence number of triangle-free graphs. II. J. Com-
bin. Theory Ser. B 53 300–307. MR1129557

[17] SUNDER, V. S. (1997). Functional Analysis: Spectral Theory. Birkhäuser, Basel. MR1646508
[18] WOESS, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Math-

ematics 138. Cambridge Univ. Press, Cambridge. MR1743100

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TORONTO

40 ST. GEORGE STREET

TORONTO, ONTARIO M5S 2E4
CANADA

E-MAIL: harangi@math.toronto.edu
balint@math.toronto.edu

http://www.ams.org/mathscinet-getitem?mr=0708165
http://www.ams.org/mathscinet-getitem?mr=1129557
http://www.ams.org/mathscinet-getitem?mr=1646508
http://www.ams.org/mathscinet-getitem?mr=1743100
mailto:harangi@math.toronto.edu
mailto:balint@math.toronto.edu

	Introduction
	The independence ratio and the minimum eigenvalue
	Random wave functions on inﬁnite transitive graphs
	Factor of i.i.d. independent sets

	Finite vertex-transitive graphs
	The 3-regular, vertex-transitive case
	The arc-transitive case
	Bounds near -d

	Inﬁnite transitive graphs
	Random wave functions
	Factor of i.i.d. processes
	Independent sets

	Appendix
	Acknowledgments
	References
	Author's Addresses

