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MULTIFRACTAL ANALYSIS OF SUPERPROCESSES
WITH STABLE BRANCHING IN DIMENSION ONE

BY LEONID MYTNIK1 AND VITALI WACHTEL2

Technion—Israel Institute of Technology and University of Munich

We show that density functions of a (α,1, β)-superprocesses are almost
sure multifractal for α > β + 1, β ∈ (0,1) and calculate the corresponding
spectrum of singularities.

1. Introduction, main results and discussion. For 0 < α ≤ 2 and 1 + β ∈
(1,2], the so-called (α, d,β)-superprocess X = {Xt : t ≥ 0} in Rd is a finite
measure-valued process related to the log-Laplace equation

d

dt
u = �αu + au − bu1+β,(1.1)

where a ∈ R and b > 0 are any fixed constants. Its underlying motion is described
by the fractional Laplacian �α := −(−�)α/2 determining a symmetric α-stable
motion in Rd of index α ∈ (0,2] (Brownian motion corresponds to α = 2), whereas
its continuous-state branching mechanism

v �→ −av + bv1+β, v ≥ 0,(1.2)

belongs to the domain of attraction of a stable law of index 1 + β ∈ (1,2] (the
branching mechanism is critical if a = 0).

Let d < α
β

. Then, for any fixed time t , Xt(dx) is a.s. absolutely continuous with
respect to the Lebesgue measure (cf. Fleischmann [3] for a = 0).

In the case of β = 1, there is a continuous version of the density of Xt(dx) for all
α > 1; see Konno and Shiga [12]. A careful examination of their arguments shows
that this density is Hölder continuous with any exponent smaller than (α − 1)/2.

Now we consider the case β < 1. As shown in Fleischmann, Mytnik and Wach-
tel ([4], Theorem 1.2(a), (c)), there is a dichotomy for the density function of the
measure (in what follows, we just say the “density of the measure”): there is a con-
tinuous version of the density of Xt(dx) if d = 1 and α > 1 +β , but otherwise the
density is unbounded on open sets of positive Xt(dx)-measure. Note that the case
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of α = 2 had been studied earlier in Mytnik and Perkins [15]. In the case of conti-
nuity, Hölder regularity properties of the density had been studied in [4, 5].

From now on, we always assume that d = 1, β < 1 and α > 1 + β , that is, there
is a continuous version of the density at fixed time t . This density, with a slight
abuse of notation, will be also denoted by Xt(x), x ∈ R.

Let us first recall the notion of pointwise regularity (see, e.g., Jaffard [7]). We
say that a function f has regularity of index η > 0 at a point x ∈ R, if there exists
an open neighborhood U(x) of x, a constant C > 0 and a polynomial Px of degree
at most �η� such that∣∣f (y) − Px(y)

∣∣ ≤ C|y − x|η for all y ∈ U(x).(1.3)

For η ∈ (0,1), the above definition coincides with the definition of Hölder conti-
nuity with index η at a point. Note that sometimes the class of functions satisfy-
ing (1.3) is denoted by Cη(x). Now, given f one would like to find the supremum
over all η such that (1.3) holds for some constant C and polynomial Px . This leads
to the definition of so-called optimal Hölder exponent (or index) of f at x:

Hf (x) := sup
{
η > 0 :f ∈ Cη(x)

}
,(1.4)

and we set it to 0 if f /∈ Cη(x) for all η > 0. To simplify the exposition, we will
sometimes call Hf (x) the Hölder exponent of f at x.

Let us fix t > 0 and return to the continuous density Xt of the (α,1, β)-
superprocess. In what follows, HX(x) will denote the optimal Hölder exponent
of Xt at x ∈ R. In Theorem 1.2(a), (b) of [4], the so-called optimal index for local
Hölder continuity of Xt had been determined as

ηc := α

1 + β
− 1 ∈ (0,1).(1.5)

This means that infx∈K HX(x) ≥ ηc for any compact K and, moreover, in any
nonempty open set U ⊂ R with Xt(U) > 0 one can find (random) points x such
that HX(x) = ηc. Moreover, it was proved in [5] that for any fixed point x ∈ R we
have

HX(x) = η̄c := 1 + α

1 + β
− 1 a.s. on

{
Xt(x) > 0

}
in the case of β > (α − 1)/2, and

HX(x) ≥ 1 a.s. on
{
Xt(x) > 0

}
if β ≤ (α − 1)/2.

REMARK 1.1. In [5], the classical definition of Hölder exponent was used,
which can take only values between 0 and 1. Hence, the result in [5] states that the
optimal index of Hölder continuity (in classical sense) equals min{ 1+α

1+β
− 1,1}, for

any β ∈ (0, α − 1).
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The purpose of this paper includes proving that on any open set of positive Xt

measure, and for any η ∈ (ηc, η̄c) \ {1} there are, with probability one, (random)
points x ∈ R such that the optimal Hölder index HX(x) of Xt at x is exactly η.
Moreover, for an open set U ⊂ R, we are going to determine the Hausdorff dimen-
sion, say DU(η), of the (random) set

EU,X,η := {
x ∈ U :HX(x) = η

}
.

We will show that the function η �→ DU(η) is independent of U ; it reveals the
so-called multifractal spectrum related to the optimal Hölder index at points.

To formulate our main result, we need also the following notation. Let Mf
denote the set of finite measures on R, and for μ ∈ Mf, |μ| will denote the total
mass μ(R). Our main result is as follows.

THEOREM 1.2 (Multifractal spectrum). Fix t > 0, and X0 = μ ∈ Mf. Let
d = 1 and α > 1 + β . Then, for any η ∈ [ηc, η̄c) \ {1}, with probability one,

DU(η) = (β + 1)(η − ηc) for any open set U ⊂ R,

whenever Xt(U) > 0.

REMARK 1.3. Let us consider the case η = η̄c. First note that if η̄c < 1 then,
for every fixed x, HX(x) = η̄c almost surely on the event {Xt(x) > 0}, see Theo-
rem 1.1 from [5]. We conjecture that this statement is also valid whenever η̄c ≥ 1.
This would imply that DU(η̄c) = 1 almost surely on {Xt(U) > 0}. Indeed, for
B being an arbitrary interval in (0,1) define

λ(EB,X,η̄c) =
∫
B

1{HX(x)=η̄c} dx,

where λ is the Lebesgue measure on R. Then, by the Fubini theorem, we have

E
[
λ(EB,X,η̄c)

∣∣ inf
y∈B

Xt(y) > 0
]
= E

[∫
B

1{HX(x)=η̄c} dx
∣∣∣ inf
y∈B

Xt(y) > 0
]

=
∫
B

P
(
HX(x) = η̄c

∣∣ inf
y∈B

Xt(y) > 0
)
dx

= λ(B),

in the last step we used our conjecture that HX(x) = η̄c with probability one for
every fixed point x. That is, given {infy∈B Xt(y) > 0}, we get that, with probability
one, DB(η̄c) = 1. We may fix ω outside a P-null set so that this holds for any
rational ball B , that is, for any ball with a rational radius and center. Let U be an
arbitrary open set such that {infy∈U Xt(y) > 0}. Then there is always a rational ball
B in U such that {infy∈B Xt(y) > 0}, and so the result follows immediately from
what we derived for the fixed ball.
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REMARK 1.4. The fact that our proof fails in the case η = 1 is even more
disappointing. Formally, it happens for some technical reasons, but one has also
to note, that this point is critical: it is the borderline between differentiable and
nondifferentiable functions. However, we still believe that the function DU(·) can
be continuously extended to η = 1, that is, DU(1) = (β + 1)(1 −ηc) almost surely
on {Xt(U) > 0}.

REMARK 1.5. The condition α > 1 + β excludes the case of the quadratic
super-Brownian motion, that is, α = 2, β = 1. But it is a known “folklore” result
that the super-Brownian motion Xt(·) is almost surely monofractal on any open
set of strictly positive density. That is, P-a.s., for any x with Xt(x) > 0 we have
HX(x) = 1/2. For the fact that HX(x) ≥ 1/2, for any x, see Konno and Shiga [12]
and Walsh [17]. To get that HX(x) ≤ 1/2 on the event {Xt(x) > 0}, one can show
that

lim sup
δ→0

|Xt(x + δ) − Xt(x)|
δη

= ∞ for all x such that Xt(x) > 0,P-a.s.,

for every η > 1/2. This result follows from the fact that for β = 1 the noise driving
the corresponding stochastic equation for Xt is Gaussian (see (0.4) in [12]) in
contrast to the case of β < 1 considered here, where we have driving discontinuous
noise with Lévy type intensity of jumps.

The multifractal spectrum of random functions and measures has attracted at-
tention for many years and has been studied, for example, in Dembo et al. [1],
Durand [2], Hu and Taylor [6], Klenke and Mörters [11], Le Gall and Perkins [13],
Mörters and Shieh [14] and Perkins and Taylor [16]. The multifractal spectrum
of singularities that describes the Hausdorff dimension of sets of different Hölder
exponents of functions was investigated for deterministic and random functions in
Jaffard [7–9] and Jaffard and Meyer [10].

We now turn to the description of our approach. We would like to verify
the spectrum of singularities of Xt(·) on any open (random) set U whenever
Xt(U) > 0. Based on the ideas of the proof of Theorem 1.1(b) in [15], it is enough
to verify the spectrum of singularities of Xt(·) on any fixed open ball U in R. In
what follows, we fix, without loss of generality, U = (0,1). The extension of our
argument to general open U is trivial.

Next, we derive a representation for the density Xt(·), which will be used in
the proof. Let pα denote the continuous α-stable transition kernel related to the
fractional Laplacian �α = −(−�)α/2 in R, and (Sα

t , t ≥ 0) the related semigroup,
that is,

Sα
t f (x) =

∫
R

pα(x − y)f (y) dy for any bounded function f

and

Sα
t ν(x) =

∫
R

pα(x − y)ν(dy) for any finite measure ν.
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Fix X0 = μ ∈ Mf \ {0}. First, we want to recall the martingale decomposition
of the (α,1, β)-superprocess X (valid for any α ∈ (0,2], β ∈ (0,1); see, e.g., [4],
Lemma 1.6): for all sufficiently smooth bounded nonnegative functions ϕ on R and
t ≥ 0,

〈Xt,ϕ〉 = 〈μ,ϕ〉 +
∫ t

0
ds〈Xs,�αϕ〉 + Mt(ϕ) + aIt (ϕ)(1.6)

with discontinuous martingale

t �→ Mt(ϕ) :=
∫
(0,t]×R×R+

Ñ
(
d(s, x, r)

)
rϕ(x)(1.7)

and increasing process

t �→ It (ϕ) :=
∫ t

0
ds〈Xs,ϕ〉.(1.8)

Here, Ñ := N − N̂ , where N (d(s, x, r)) is a random measure on (0,∞) × R ×
(0,∞) describing all the jumps rδx of X at times s at sites x of size r (which are
the only discontinuities of the process X). Moreover,

N̂
(
d(s, x, r)

)= � dsXs(dx)r−2−β dr(1.9)

is the compensator of N , where � := b(1 + β)β/�(1 − β) with � denoting the
Gamma function.

Under our assumptions, the random measure Xt(dx) is a.s. absolutely continu-
ous for every fixed t > 0. From the Green function representation related to (1.6)
(see, e.g., [4], (1.9)), we obtain the following representation of a version of the
density function of Xt(dx) (see, e.g., [4], (1.12)):

Xt(x) = μ ∗ pα
t (x) +

∫
(0,t]×R

M
(
d(s, y)

)
pα

t−s(y − x)

+ a

∫
(0,t]×R

I
(
d(s, y)

)
pα

t−s(y − x)(1.10)

=: Z1(x) + Z2(x) + Z3(x), x ∈ R

(with notation in the obvious correspondence). Note that although Zi, i = 1,2,3,
depend on t , we omit the corresponding subscript since t is fixed throughout the pa-
per. M(d(s, y)) in (1.10) is the martingale measure related to (1.7) and I (d(s, y))

the random measure related to (1.8). Note that by Lemma 1.7 of [4] the class of “le-
gitimate” integrands with respect to the martingale measure M(d(s, y)) includes
the set of functions ψ such that for some p ∈ (1 + β,2),∫ T

0
ds

∫
R

dxSα
s μ(x)

∣∣ψ(s, x)
∣∣p < ∞ ∀T > 0.(1.11)

We let Lp
loc denote the space of equivalence classes of measurable functions sat-

isfying (1.11). For α > 1 + β , it is easy to check that, for any t > 0, z ∈ R,
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(s, x) �→ pα
t−s(z−x)1{s<t} is in Lp

loc for any p ∈ (1+β,2), and hence the stochas-
tic integral in the representation (1.10) is well defined.

Z1 is obviously twice differentiable. Moreover, it turns out (see Corollary 2.7)
that Z3 is Hölder continuous of index α1{η̄c>1} + 1{η̄c≤1}. Noting that this index
is not smaller that ηc, we conclude that the multifractal structure of Xt coincides
with that of Z2. Recalling the definitions of Z2 and M(ds, dy), we see that there
is a “competition” between branching and motion: jumps of the martingale mea-
sure M try to destroy smoothness of Xt(·) and pα tries to make Xt(·) smoother.
Thus, it is natural to expect that {x :HZ2(x) = η} can be described by jumps of
a certain order depending on η.

In Section 3, we construct a random set Sη such that dim(Sη) ≤ (1 +β)(η −ηc)

and {HZ2(x) = η} ⊆ Sη+ε . This, after some simple manipulations, allows us to
obtain the bound dim({HZ2(x) = η}) ≤ (1 + β)(η − ηc).

It turns out that Sη is not very convenient for the derivation of the lower bound
for dim({HZ2(x) = η}). For this reason, in Section 4, we introduce an alterna-
tive random set J̃η,1 with dim(J̃η,1) ≥ (β + 1)(η − ηc), on which we show exis-
tence of jumps which should lead to HZ2(x) ≤ η for x ∈ J̃η,1. However, if several
jumps occur in a proximity of a point x then they can compensate each other. To
show that this possible scenario does not affect the Hausdorff dimension of the set,
{HZ2(x) = η} is the most difficult part of our proof. This is not unexpected: in our
previous papers [4, 5], the proofs of the optimality of Hölder indices were much
harder than the derivation of the Hölder continuity. More precisely, we prove that
such a compensation is possible only on a set of the Hausdorff dimension strictly
smaller than (β + 1)(η − ηc), and hence this does not influence the dimension
result.

2. Preliminaries.

2.1. Estimates for the transition kernel of the α-stable motion. The symbol C

will always denote a generic positive constant, which might change from line to
line. On the other hand, C(#) denotes a constant appearing in formula line (or
array) (#).

Throughout the paper, we will need the following bound; see [4], Lemma 2.1.

LEMMA 2.1. For every δ ∈ [0,1], there exists a constant C > 0 such that

∣∣pα
t (x) − pα

t (y)
∣∣ ≤ C

|x − y|δ
tδ/α

(
pα

t (x/2) + pα
t (y/2)

)
, t > 0, x, y ∈ R.(2.1)

By methods very similar to those used for the proof of the previous lemma, one
can get the following result.
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LEMMA 2.2. (a) For every δ ∈ [0,1], there exists a constant C > 0 such that,
for all t > 0 and x, y ∈ R,∣∣∣∣∂pα

t (x)

∂x
− ∂pα

t (y)

∂y

∣∣∣∣ ≤ C
|x − y|δ
t (1+δ)/α

(
pα

t (x/2) + pα
t (y/2)

)
.(2.2)

(b) There exists a constant C > 0 such that∣∣∣∣∂pα
t (x)

∂x

∣∣∣∣ ≤ Ct−1/αpα
t (x/2), t > 0, x ∈ R.(2.3)

An immediate corollary from the above lemma is as follows.

COROLLARY 2.3. For every δ ∈ [1,2],∣∣∣∣pα
t (x) − pα

t (y) − (x − y)
∂pα

t (y)

∂y

∣∣∣∣
(2.4)

≤ C
|x − y|δ

tδ/α

(
pα

t (x/2) + pα
t (y/2)

)
, t > 0, x, y ∈ R.

With Lemma 2.2(b) at hand, it is easy to check that if β < (α − 1)/2, then for

any t > 0, z ∈ R, (s, x) �→ ∂pα
t−s (z−x)

∂x
1{s<t} is in Lp

loc for any p ∈ (1 + β, 1+α
2 ).

Then, using again condition (1.11), it is easy to show the following result.

LEMMA 2.4. Let β < (α − 1)/2. Then for any fixed t > 0, x ∈ R, the stochas-
tic integral ∫

(0,t]×R
M

(
d(s, y)

)∂pα
t−s(y − x)

∂x

is well defined.

In what follows, we let ∂Z2(x)
∂x

denote the integral
∫
(0,t]×R M(d(s, y))

∂pα
t−s (y−x)

∂x
.

2.2. Bound for stable processes. Let L = {Lt : t ≥ 0} denote a spectrally posi-
tive stable process of index κ ∈ (1,2). That is, L is an R-valued time-homogeneous
process with independent increments and with Laplace transform given by

Ee−λLt = etλκ

, λ, t ≥ 0.(2.5)

Let �Ls := Ls − Ls− > 0 denote the (positive) jumps of L. The next technical
result gives an exponential upper bound for the tail of sup0≤u≤t |Lu| under the
condition that all the jumps of L are not too large.
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LEMMA 2.5. There exists a constant C(2.6) = C(2.6)(κ) such that

P
(

sup
0≤u≤t

|Lu|1{sup0≤v≤u �Lv≤y} ≥ x
)

(2.6)

≤
(

C(2.6)t

xyκ−1

)x/y

+ exp
{
− xκ/(κ−1)

C(2.6)t1/(κ−1)

}
and

P
(

sup
0≤u≤t

Lu1{sup0≤v≤u �Lv≤y} ≥ x
)

≤
(

C(2.6)t

xyκ−1

)x/y

(2.7)

for all t, x, y > 0.

This bound (2.7) has been proven in [4] (see Lemma 2.3 there). To prove the
inequality for sup0≤u≤t |Lu|, one has to combine (2.7) with Lemma 2.4 from [4].

2.3. Analysis of Z1 and Z3. Consider Z1,Z3 on the right-hand side of (1.10).
Clearly, Z1 is twice differentiable. Noting that η̄c < 2 for all α,β , we see that
Z1 does not affect the optimal Hölder exponent of Xt . As for Z3, we have the
following result.

LEMMA 2.6. Let β < (α − 1)/2. Then P-a.s., Z3(x) is differentiable for any
x ∈ (0,1), and the mapping

x �→ d

dx
Z3(x), x ∈ (0,1),

is, P-a.s., Hölder continuous with any exponent η < α − 1.

PROOF. Using Lemma 2.12 in [4] with θ = δ = 1, we see that Z3(x) is differ-
entiable and, furthermore,

d

dx
Z3(x) = a

∫ t

0
ds

∫
R

Xs(dy)
∂

∂x
pα

t−s(x − y).

Therefore, for any x1, x2 ∈ (0,1),∣∣∣∣ d

dx
Z3(x1) − d

dx
Z3(x2)

∣∣∣∣
≤ |a|

∫ t

0
ds

∫
R

Xs(dy)

∣∣∣∣ ∂

∂x1
pα

t−s(x1 − y) − ∂

∂x2
pα

t−s(x2 − y)

∣∣∣∣.
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Applying now Lemma 2.2 with δ < α − 1, we obtain∣∣∣∣ d

dx
Z3(x1) − d

dx
Z3(x2)

∣∣∣∣
≤ C|a||x1 − x2|δ

∫ t

0
ds(t − s)−(1+δ)/α

×
∫

R
Xs(dy)

(
pα

t−s

(
x1 − y

2

)
+ pα

t−s

(
x2 − y

2

))
= C|a||x1 − x2|δ

∫ t

0
ds(t − s)−(1+δ)/α

× (
Sα

2α(t−s)Xs(x1) + Sα
2α(t−s)Xs(x2)

)
≤ C|a||x1 − x2|δ sup

s≤t,x∈(0,1)

Sα
2α(t−s)Xs(x)

∫ t

0
dss−(1+δ)/α

= Cα(α − 1 − δ)−1|a||x1 − x2|δ sup
s≤t,x∈(0,1)

Sα
2α(t−s)Xs(x).

Taking into account Lemma 2.11 from [4], which states that

V := sup
s≤t,x∈(0,1)

Sα
2α(t−s)Xs(x) < ∞, P-a.s.,(2.8)

we see that x �→ d
dx

Z3(x) is Hölder continuous with the exponent δ. �

Combining this lemma with [4], Remark 2.13, we obtain

COROLLARY 2.7. P-a.s., for any x ∈ (0,1) we have

HZ3(x) ≥ α1{η̄c>1} + 1{η̄c≤1}.(2.9)

From this corollary and the fact that the right-hand side in (2.9) is not smaller
than η̄c, we conclude that Z3 does not affect the multifractal structure of Xt either.
More precisely, the spectrum of singularities of Xt coincides with that of Z2. Con-
sequently, to prove Theorem 1.2, we have to determine Hausdorff dimensions of
the sets

EZ2,η := {
x ∈ (0,1) :HZ2(x) = η

}
,

ẼZ2,η := {
x ∈ (0,1) :HZ2(x) ≤ η

}
,

and this is done in the next two sections.

3. Upper bound for the Hausdorff dimension. The aim of this section is to
prove the following proposition.
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PROPOSITION 3.1. For every η ∈ [ηc, ηc),

dim(EZ2,η) ≤ dim(ẼZ2,η) ≤ (1 + β)(η − ηc), P-a.s.

We need to introduce an additional notation. In what follows, for any η ∈
(ηc, η̄c) \ {1}, we fix an arbitrary small γ = γ (η) ∈ (0,

10−2ηc
α

) such that

γ <

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10−2

α
min{1 − η,η}, if η < 1,

10−2

α
min{η − 1,2 − η}, if η > 1,

and define

Sη := {
x ∈ (0,1) : there exists a sequence (sn, yn) → (t, x)

with �Xsn

({yn}) ≥ (t − sn)
1/(1+β)−γ |x − yn|η−ηc

}
.

To prove the above proposition we have to verify the following two lemmas.

LEMMA 3.2. For every η ∈ (ηc, ηc) \ {1}, we have

P
(
HZ2(x) ≥ η − 2αγ for all x ∈ (0,1) \ Sη

) = 1.

LEMMA 3.3. For every η ∈ (ηc, ηc) \ {1}, we have

dim(Sη) ≤ (1 + β)(η − ηc), P-a.s.

With Lemmas 3.2 and 3.3 in hand, we immediately get the following.

PROOF OF PROPOSITION 3.1. It follows easily from Lemma 3.2 that ẼZ2,η ⊂
Sη+2αγ+ε for every ε > 0 and every η ∈ (ηc, ηc) \ {1}. Therefore,

dim(ẼZ2,η) ≤ lim
ε→0

dim(Sη+2αγ+ε).

Using Lemma 3.3, we then get

dim(ẼZ2,η) ≤ (1 + β)(η + 2αγ − ηc), P-a.s.

Since γ can be chosen arbitrary small, the result for η �= 1 follows immediately.
The inequality for η = 1 follows from the monotonicity in η of the sets ẼZ2,η. �

Let ε ∈ (0, ηc/2) be arbitrarily small. We introduce a “good” event Aε which
will be frequently used throughout the proofs. On this event, with high probability,
V from (2.8) is bounded by a constant, and there is a bound on the sizes of jumps.
By Lemma 2.14 of [4], there exists a constant C(3.1) = C(3.1)(ε, γ ) such that

P
(|�Xs | > C(3.1)(t − s)(1+β)−1−γ for some s < t

) ≤ ε/3.(3.1)
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Then we fix another constant C(3.2) = C(3.2)(ε, γ ) such that

P(V ≤ C(3.2)) ≥ 1 − ε/3.(3.2)

Recall that, by Theorem 1.2 in [4], x �→ Xt(x) is P-a.s. Hölder continuous with
any exponent less than ηc. Hence, we can define a constant C(3.3) = C(3.3)(ε) such
that

P
(

sup
x1,x2∈(0,1),x1 �=x2

|Xt(x1) − Xt(x2)|
|x1 − x2|ηc−ε

≤ C(3.3)

)
≥ 1 − ε/3.(3.3)

Now we are ready to define

Aε := {|�Xs | ≤ C(3.1)(t − s)(1+β)−1−γ for all s < t
}

(3.4)
∩ {V ≤ C(3.2)} ∩

{
sup

x1,x2∈(0,1),x1 �=x2

|Xt(x1) − Xt(x2)|
|x1 − x2|ηc−ε

≤ C(3.3)

}
.

Clearly, by (3.1), (3.2) and (3.3), P(Aε) ≥ 1 − ε. See (3.4) in [4] for the analogous
definition.

The proof of Lemma 3.3 is rather short, so we will give it first.

PROOF OF LEMMA 3.3. To every jump (s, y, r) of the measure N (in what
follows in the paper we will usually call them simply “jumps”) with

(s, y, r) ∈ Dj,n := [
t − 2−j , t − 2−j−1)× (0,1) × [

2−n−1,2−n)
we assign the ball

B(s,y,r) := B

(
y,

(
2−n

(2−j−1)1/(1+β)−γ

)1/(η−ηc))
.(3.5)

We used here the obvious notation B(y, δ) for the ball in R with the center at y and
radius δ. Define n0(j) := j [ 1

1+β
− γ

4 ]. It follows from (3.1) and (3.4) that, on Aε ,

there are no jumps bigger than 2−n0(j) in the time interval [t − 2−j , t − 2−j−1).
It is easy to see that every point from Sη is contained in infinitely many balls

B(s,y,r). Therefore, for every J ≥ 1, the set⋃
j≥J,n≥1

⋃
(s,y,r)∈Dj,n

B(s,y,r)

covers Sη. From (3.1) and (3.4), we conclude that, on Aε , there are no jumps bigger
than C(3.1)2−(j+1)(1/(1+β)−γ ) in the time interval s ∈ [t − 2−j , t − 2−j−1) for any
j ≥ 1. Define n0(j) := j [ 1

1+β
− γ

4 ]. Clearly, there exists J0 such that for all j ≥ J0

there are no jumps bigger than 2−n0(j) in the time interval [t − 2−j , t − 2−j−1).
Hence, for every J ≥ J0, the set

Sη(J ) := ⋃
j≥J,n≥n0(j)

⋃
(s,y,r)∈Dj,n

B(s,y,r)

covers Sη for every ω ∈ Aε .
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It follows from the formula for the compensator that, on the event {sups≤t Xs((0,

1)) ≤ N}, the intensity of jumps with (s, y, r) ∈ Dj,n is bounded by

N2−j−1
∫ 2−n

2−n−1
�r−2−β dr = N�(21+β − 1)

2(1 + β)
2n(1+β)−j =: λj,n.

Therefore, the intensity of jumps with (s, y, r) ∈ ⋃n1(j)
n=n0(j) Dj,n =: D̃j , where

n1(j) = j [ 1
1+β

+ γ
4 ], is bounded by

n1(j)∑
n=n0(j)

λj,n ≤ N�2β

(β + 1)
2j (1+β)γ /4 =: �j .

The number of such jumps does not exceed 2�j with the probability 1 −
e−(1−2 log 2)�j . This is immediate from the exponential Chebyshev inequality
applied to Poisson distributed random variables. Analogously, the number of
jumps with (s, y, r) ∈ Dj,n does not exceed 2λj,n with the probability at least
1 − e−(1−2 log 2)λj,n . Since∑

j

(
e−(1−2 log 2)�j +

∞∑
n=n1(j)

e−(1−2 log 2)λj,n

)
< ∞,

we conclude, applying the Borel–Cantelli lemma that, for almost every ω from the
set Aε ∩ {sups≤t Xs((0,1)) ≤ N}, there exists J (ω) such that for all j ≥ J (ω) and
n ≥ n1(j), the numbers of jumps in D̃j and in Dj,n are bounded by 2�j and 2λj,n,
respectively.

The radius of every ball corresponding to the jump in D̃j is bounded by rj :=
C2−(3γ )/(4(η−ηc))j . Thus, one can easily see that

∞∑
j=1

(
2�jr

θ
j +

∞∑
n=n1(j)

2λj,n

(
2−n

(2−j−1)1/(1+β)−γ

)θ/(η−ηc)
)

< ∞

for every θ > (1 + β)(η − ηc). This yields the desired bound for the Hausdorff
dimension for almost every ω ∈ Aε ∩ {sups≤t Xs((0,1)) ≤ N}. Letting N → ∞
and ε → 0 completes the proof. �

The remaining part of this section will be devoted to the proof of Lemma 3.2.
Since Sη = ⋂

J≥1 Sη(J ),{
HZ2(x) ≥ η − 2αγ,∀x ∈ (0,1) \ Sη

}
= ⋂

J≥1

{
HZ2(x) ≥ η − 2αγ,∀x ∈ (0,1) \ Sη(J )

}
.

Thus, it suffices to show that

P
(
HZ2(x) ≥ η − 2αγ,∀x ∈ (0,1) \ Sη(J )

) = 1(3.6)

for every J ≥ 1.
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Before we start proving (3.6), let us introduce some further notation. For any
x1, x2 ∈ R, η ∈ (ηc, η̄c), define

p̃α,η
s (x, y) :=

⎧⎨⎩
pα

s (x) − pα
s (y), if η ≤ 1, s > 0,

pα
s (x) − pα

s (y) − (x − y)
∂pα

s (y)

∂y
, if η ∈ (1, η̄c), s > 0,

p̃α,η,′
s (x, y) := ∂pα

s (x)

∂x
− ∂pα

s (y)

∂y
, η ∈ (1, η̄c),

Z̃2,η
s (x1, x2) :=

∫ s

0

∫
R

M
(
d(u, y)

)
p̃

α,η
t−u(x1 − y, x2 − y), s ∈ [0, t],

�Z̃2,η
s (x1, x2) := Z̃2,η

s (x1, x2) − Z̃
2,η
s− (x1, x2), s ∈ (0, t],

Z̃2,η,′
s (x1, x2) :=

∫ s

0

∫
R

M
(
d(u, y)

)
p̃

α,η,′
t−u (x1 − y, x2 − y), s ∈ [0, t],

�Z̃2,η,′
s (x1, x2) := Z̃2,η,′

s (x1, x2) − Z̃
2,η,′
s− (x1, x2), η ∈ (1, η̄c), s ∈ (0, t].

Also for any N,J ≥ 1, let

S̃η(N,J ) := {
(x1, x2) ∈ R2 :∃x0 ∈ (0,1) \ Sη(J )

such that x1, x2 ∈ B
(
x0,2−N )}

and

S̃′
η(J ) = {

(x1, x2) ∈ R2 :∃x0 ∈ (0,1) \ Sη(J )

such that x1, x2 ∈ B
(
x0,4|x1 − x2|)}.

We split the proof of (3.6) into several steps.

LEMMA 3.4. Fix arbitrary (deterministic) x1, x2 ∈ R, and η ∈ (ηc, η̄c). Then
for any N,J ≥ 1, there exists a constant C(3.7)(J ) ≥ 1 such that∣∣�Z̃2,η

s (x1, x2)
∣∣1Aε1{(x1,x2)∈S̃η(N,J )}

(3.7)
≤ C(3.7)(J )|x1 − x2|ηc−αγ 2−N(η−ηc) ∀s ≤ t.

PROOF. Let (y, s, r) be the point of an arbitrary jump of the measure N
with s ≤ t . Then for the corresponding jump of Z̃

2,η
s (x1, x2) we get the follow-

ing bound: ∣∣�Z̃2,η
s (x1, x2)

∣∣ ≤ r
∣∣p̃α,η

t−s(x1 − y, x2 − y)
∣∣.(3.8)

Now on the event {(x1, x2) ∈ S̃η(N,J )}, there exists a point x0 ∈ (0,1) \ Sη(J )

such that x1, x2 ∈ B(x0,2−N), and for s ≥ t − 2−J we have

r ≤ (t − s)1/(1+β)−γ |y − x0|η−ηc .
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This and (3.8) imply that for s ≥ t − 2−J

I = I (s, y, x1, x2) := ∣∣�Z̃2,η
s (x1, x2)

∣∣1Aε1{(x1,x2)∈S̃η(N,J )}
(3.9)

≤ (t − s)1/(1+β)−γ |y − x0|η−ηc
∣∣p̃α,η

t−s(x1 − y, x2 − y)
∣∣.

Applying Lemma 2.1 (if η ≤ 1) or Corollary 2.3 (if η > 1) with δ = η − αγ to
p̃

α,η
t−s(x1 − y, x2 − y), we conclude from (3.9) that, for s ≥ t − 2−J ,

I ≤ (t − s)−(η−ηc)/α|y − x0|η−ηc |x1 − x2|η−αγ

×
(
pα

1

(
x1 − y

2(t − s)1/α

)
+ pα

1

(
x2 − y

2(t − s)1/α

))
(3.10)

≤ C(3.10)(t − s)−(η−ηc)/α|y − x0|η−ηc |x1 − x2|η−αγ

×
( |x1 − y| + |x2 − y|

(t − s)1/α
∨ 1

)−α−1

,

where the last inequality follows from the standard bound

pα
1 (z) ≤ C(3.11)

(|z| ∨ 1
)−α−1

, z ∈ R.(3.11)

One can easily check by separating the cases |x1 − y| + |x2 − y| < (t − s)1/α

and |x1 − y| + |x2 − y| ≥ (t − s)1/α that

|x1 − x2|η−ηc

( |x1 − y| + |x2 − y|
(t − s)1/α

∨ 1
)−α−1

≤ (t − s)(η−ηc)/α,

and hence

I ≤ C(3.10)|x1 − x2|ηc−αγ |y − x0|η−ηc , s ≥ t − 2−J .(3.12)

If |y − x0| ≤ 2−N+1, then we obtain the bound

I ≤ 2C(3.10)|x1 − x2|ηc−αγ 2−N(η−ηc), s ≥ t − 2−J .(3.13)

Now consider the case |y − x0| > 2−N+1. Here, we treat separately two sub-
cases: |y −x0| ≤ (t − s)1/α and |y −x0| > (t − s)1/α . First, if |y −x0| ≤ (t − s)1/α ,
then it follows from (3.10) that

I ≤ C(3.10)(t − s)−(η−ηc)/α|y − x0|η−ηc |x1 − x2|η−αγ

≤ C(3.10)|x1 − x2|η−αγ(3.14)

≤ C(3.10)|x1 − x2|ηc−αγ 2−(N−1)(η−ηc), s ≥ t − 2−J .

Second, if |y − x0| > (t − s)1/α , then we recall that |y − x0| > (t − s)1/α ∨ 2−N+1

and |xi − x0| ≤ 2−N, i = 1,2, to get that

|xi − y| ≥ |x0 − y|/2, i = 1,2.(3.15)
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Combining this with (3.10), we obtain

I ≤ C(3.10)(t − s)−(η−ηc)/α|y − x0|η−ηc |x1 − x2|η−αγ

( |x0 − y|
(t − s)1/α

)−α−1

≤ C(3.10)|x1 − x2|η−αγ

( |x0 − y|
(t − s)1/α

)η−ηc−α−1

(3.16)
≤ C(3.10)|x1 − x2|η−αγ

≤ C(3.10)|x1 − x2|ηc−αγ 2−(N−1)(η−ηc), s ≥ t − 2−J .

Finally, we consider the jumps (y, s, r) with s < t − 2−J . On the event Aε ,

r ≤ (t − s)1/(1+β)−γ .

Using Lemma 2.1 (or Corollary 2.3) with δ = η−αγ once again, we see from (3.8)
that

I ≤ C(3.17)|x1 − x2|η−αγ (t − s)−(η−ηc)/α

≤ C(3.17)2
J (η−ηc)/α|x1 − x2|η−αγ(3.17)

≤ C(3.17)2
J (η−ηc)/α|x1 − x2|ηc−αγ 2−(N−1)(η−ηc), s < t − 2−N.

Combining (3.13)–(3.17), we get the desired result. �

By a similar argument, we can get the following result.

LEMMA 3.5. Let η̄c > 1. Fix arbitrary (deterministic) x1, x2 ∈ R, and η ∈
(1, η̄c). Then for any J ≥ 1, there exists a constant C(3.18)(J ) such that∣∣�Z̃η,2,′

s (x1, x2)
∣∣1Aε1{(x1,x2)∈S̃′

η(J )}
(3.18)

≤ C(3.18)(J )|x1 − x2|η−1−αγ ∀s ≤ t.

Having an upper bound for absolute values of the jumps of Z̃2(x1, x2), we can
give some estimate for Z̃2

t (x1, x2) itself.

LEMMA 3.6. Fix arbitrary (deterministic) x1, x2 ∈ (0,1), and η ∈ (ηc, η̄c).

(a) Then there exists a constant C(3.19), such that for any N,J ≥ 1,

P
(∣∣Z̃2,η

t (x1, x2)
∣∣ ≥ 2C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,

(x1, x2) ∈ S̃η(N,J )
)

(3.19)
≤ (

C(3.19)2
−αγN )|x1−x2|−αγ

.
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(b) Let η̄c > 1 and assume η ∈ (1, η̄c). Then there exists a constant C(3.20), such
that for any J ≥ 1,

P
(∣∣Z̃2,η,′

t (x1, x2)
∣∣ ≥ 2C(3.18)(J )|x1 − x2|η−1−2αγ ,Aε, (x1, x2) ∈ S̃′

η(J )
)

(3.20)
≤ (

C(3.20)|x1 − x2|αγ )|x1−x2|−αγ

.

PROOF. (a) According to Lemma 2.15 from [4], there exist spectrally positive
(1 + β)-stable processes L+ and L− such that

Z̃2,η
s (x1, x2) = L+

T
η
+(s)

− L−
T

η
−(s)

, s ≤ t,(3.21)

where

T
η
±(s) :=

∫ s

0
du

∫
R

Xu(dy)
((

p̃
α,η
t−u(x1 − y, x2 − y)

)±)1+β
, 0 ≤ s ≤ t.(3.22)

(Note that L+,L− also depend on η; however, we omit the corresponding su-
perindex η to simplify the notation.) Therefore, we get

P
(∣∣Z̃2,η

t (x1, x2)
∣∣ ≥ 2C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,(

x1, x2 ∈ S̃η(N,J )
))

≤ P
(∣∣L+

T
η
+(s)

∣∣ ≥ C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,

(3.23) (
x1, x2 ∈ S̃η(N,J )

))
+ P

(∣∣L−
T

η
−(s)

∣∣ ≥ C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,(
x1, x2 ∈ S̃η(N,J )

))
.

By going through the derivation of (3.43) in [5], one can easily get that in our
setting, on the event Aε , for any η ∈ (ηc, η̄c) and any ε1 ∈ (0, αβγ ), there exists
a constant C(3.24) = C(3.24)(ε, ε1, η) such that

T
η
±(t) ≤ C(3.24)|x1 − x2|α−β−ε1 =: T̂ (x1, x2).(3.24)

From this bound, Lemmas 2.5 and 3.4 we get

P
(∣∣L±

T
η
±(t)

∣∣ ≥ C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,
(
x1, x2 ∈ S̃η(N,J )

))
≤ P

(∣∣L±
T

η
±(t)

∣∣ ≥ C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc),Aε,

sup
s≤T

η
±
�L±

s ≤ C(3.7)(J )|x1 − x2|ηc−αγ 2−N(η−ηc)
)

≤ P
(

sup
0≤s≤T̂ (x1,x2)

∣∣L±
s

∣∣1{ sup
0≤v≤s

�L±
v ≤ C(3.7)(J )|x1 − x2|ηc−αγ 2−N(η−ηc)

}
≥ C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc)

)
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≤
(

C(2.6)C(3.24)|x1 − x2|α−β−ε1

|x1 − x2|−αγ (C(3.7)(J )|x1 − x2|ηc−αγ 2−N(η−ηc))1+β

)|x1−x2|−αγ

+ exp
{
−(C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc))(1+β)/β

C(2.6)(C(3.24)|x1 − x2|α−β−ε1)1/β

}

=
(
C

|x1 − x2|αγ (2+β)−ε1+1

2−N(η−ηc)(1+β)

)|x1−x2|−αγ

+ exp
{−c|x1 − x2|−1/β+ε1/β−2αγ (1+β)/β2−N(η−ηc)(1+β)/β}

= O
((

2−αγN )|x1−x2|−αγ )
,

where the last equality follows since (η − ηc)(1 + β) ≤ 1, ε1 ≤ αβγ , |x1 − x2| ≤
2−N+1. (We omit here some elementary arithmetic calculations.)

The claim follows now from (3.23).
(b) The proof goes along the similar lines. �

LEMMA 3.7. Let J ≥ 1, η̄c > 1, η ∈ (1, η̄c). For almost every ω ∈ Aε , there
exists N2 = N2(ω) such that for all n ≥ N2, and

(x1, x2) ∈ S̃′
η(J ) ∩ {(

i2−n, j2−n), i, j ∈ Z, |i − j | = 1
}

the following holds:∣∣Z̃2,η,′
t (x1, x2)

∣∣ ≤ 2C(3.18)(J )|x1 − x2|η−1−2αγ .

PROOF. Define

Mn := max
{∣∣Z̃2,η,′

t (x1, x2)
∣∣ : (x1, x2) ∈ {(

i2−n, j2−n), i, j ∈ Z, |i − j | = 1
}

∩ (0,1) ∩ S̃′
η(J )

}
.

Applying Lemma 3.6(b), we obtain

P
(
Mn ≥ 2C(3.18)(J )2−n(η−1−2αγ );Aε) ≤ 2n(C(3.20)2

−nαγ )2nαγ

.

Let

AN := {
Mn ≥ 2C(3.18)(J )2−n(η−1−2αγ ) for some n ≥ N

}
.

It is clear that
∞∑

N=1

P
(
AN ∩ Aε) ≤

∞∑
N=1

∞∑
n=N

P
(
Mn ≥ 2C(3.18)(J )2−n(η−1−2αγ );Aε)

≤
∞∑

N=1

∞∑
n=N

2n(C(3.20)2
−nαγ )2nαγ
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≤
∞∑

N=1

∞∑
n=N

2n(C(3.20)2
−nαγ )2nαγ

≤ C

∞∑
N=1

2−αγN < ∞

and we are done by the Borel–Cantelli lemma. �

LEMMA 3.8. Let J ≥ 1, η ∈ (η, η̄c). For almost every ω ∈ Aε , there exists
N1 = N1(ω) such that for all n ≥ N ≥ N1,

(x1, x2) ∈ S̃η(N,J ) ∩ {(
i2−n, j2−n), i, j ∈ Z

}
with |x1 − x2| ≤ 2− log2 n we have the inequality∣∣Z̃2,η

t (x1, x2)
∣∣ ≤ 2C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc).

PROOF. Define events

B(x1, x2) := {
Z̃

2,η
t (x1, x2) ≥ 2C(3.7)(J )|x1 − x2|ηc−2αγ 2−N(η−ηc)

}
,

and

An,N := ⋃
x1,x2∈{i2−n,i∈Z}
∩(0,1)∩S̃η(N,J ) :

{|x1−x2|≤2− log2 n}}

B(x1, x2).

Applying Lemma 3.6(a), we obtain

P
(
An,N ∩ Aε) ≤ 22n(C(3.19)2

−αγN )2αγ log2 n

.

Let

AN := ⋃
n≥N

An,N .

It is clear that
∞∑

N=1

P
(
AN ∩ Aε) ≤

∞∑
N=1

∞∑
n=N

P
(
An,N ∩ Aε)

≤
∞∑

N=1

∞∑
n=N

22n(C(3.19)2
−αγN )2αγ log2 n

≤ C

∞∑
N=1

2−αγN < ∞

and we are done by the Borel–Cantelli lemma. �
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LEMMA 3.9. Let J ≥ 1, η̄c > 1, η ∈ (1, η̄c). Fix an integer k0 > max{1 +
1

α−1−β
,3}. For almost every ω ∈ Aε and for all x ∈ (0,1) \ Sη(J ), there exists

V ′(x) = V ′(x,ω) and C(3.25)(J,ω) such that∣∣Z2(y) − Z2(x) − (y − x)V ′(x)
∣∣

(3.25)
≤ C(3.25)(J )|y − x|η−2αγ ∀y ∈ B

(
x,2−N3

)
,

where

N3 = max
{
N2(ω),N1(ω), log2

(∣∣V ′(x)
∣∣), (k0)

10}+ 2

and N2,N1 are from Lemmas 3.7 and 3.8.

REMARK 3.10. Z2(x) [similarly for Z2(y)] at a random point x is defined
via Z2(x) = Xt(x) − Z1(x) − Z3(x), where all the terms on the right-hand side
are well defined.

REMARK 3.11. The lemma shows that V ′(x) is in fact a spatial derivative of
Z2(x) at the point x.

PROOF OF LEMMA 3.9. First, we will define V ′(y) for fixed points y. For any
y ∈ R, let

V ′(y) :=
∫ t

0

∫
R

M
(
d(u, z)

) ∂

∂y
pα

t−u(y − z).

Let x and ω be as in the statement of the lemma. For any n ≥ 1, take xn ∈ {i2−n, i ∈
Z} satisfying the following conditions:

|xn − x| ≤ 2−n, |xn − xn+1| = 2−n−1 ∀n ≥ 1.(3.26)

Applying Lemma 3.7, we get for every n ≥ N3 the bound∣∣V ′(xn) − V ′(xn+1)
∣∣ = ∣∣Z̃2,η,′

t (xn, xn+1)
∣∣

≤ 2C(3.18)(J )2−n(η−1−2αγ ).

Then for any m > n ≥ N3 we have

∣∣V ′(xn) − V ′(xm)
∣∣ ≤ m−1∑

k=n

∣∣V ′(xk) − V ′(xk+1)
∣∣

(3.27)
≤ C(3.27)(J )2−n(η−1−2αγ ).

This implies that {V ′(xn)}n≥1 is a Cauchy sequence and we denote the limit by
V ′(x). Moreover, it is easy to check that∣∣V ′(xn) − V ′(x)

∣∣ ≤ C(3.27)(J )2−n(η−1−2αγ ), n ≥ N3.(3.28)
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Now let us check (3.25). Let

y ∈ B
(
x,2−N3

) \ {x}.
Then we can fix an integer N∗ ≥ N3 such that

2−N∗−1 ≤ |x − y| ≤ 2−N∗
.(3.29)

Fix a sequence {xn}n≥1 satisfying (3.26), and {yn}n≥1 satisfying the same con-
dition with y instead of x. Then for any n ≥ N3 we have∣∣Z2(y) − Z2(x) − (y − x)V ′(x)

∣∣
≤ ∣∣Z2(yn) − Z2(xn) − (yn − xn)V

′(xn)
∣∣

+ ∣∣Z2(yn) − Z2(y)
∣∣+ ∣∣Z2(xn) − Z2(x)

∣∣(3.30)

+ |yn − y| × ∣∣V ′(x)
∣∣+ |xn − x| × ∣∣V ′(x)

∣∣
+ |yn − xn| ×

∣∣V ′(x) − V ′(xn)
∣∣.

In what follows fix

n = k0N
∗.(3.31)

Then we have

|yn − y| × ∣∣V ′(x)
∣∣+ |xn − x| × ∣∣V ′(x)

∣∣
≤ 2 · 2−k0N

∗ ∣∣V ′(x)
∣∣

≤ 2 · 2−N∗(η−2αγ )2−N∗ ∣∣V ′(x)
∣∣ (since η ≤ 2, k0 ≥ 3)

(3.32)
≤ (

2|x − y|)η−2αγ 21−N∗ ∣∣V ′(x)
∣∣ [by (3.29)]

≤ (|x − y|)η−2αγ 22−N∗ ∣∣V ′(x)
∣∣

≤ |x − y|η−2αγ , ∀n ≥ N ′
1,

where the last inequality follows from N∗ ≥ log2(|V ′(x)|) + 2. Now by triangle
inequality and (3.31) we get

|xn − yn| ≤ 21−n + |x − y|
≤ 21−N∗

(3.33)

≤ 4|x − y|.
This, (3.31) and (3.28) imply

|yn − xn| ·
∣∣V ′(x) − V ′(xn)

∣∣ ≤ 4|x − y| · C(3.27)(J )2−N∗k0(η−1−2αγ )

≤ 8C(J )|x − y| · |x − y|η−1−2αγ(3.34)

≤ 8C(J )|x − y|η−2αγ .
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Now recall that Z2 is Hölder continuous with any exponent less than ηc (see
Theorem 2 in [4]) to get that there exists C = C(ω) such that∣∣Z2(yn) − Z2(y)

∣∣+ ∣∣Z2(xn) − Z2(x)
∣∣

≤ C(ω)
(|yn − y|ηc−(2αγ )/k0 + |xn − x|ηc−(2αγ )/k0

) ∀y ∈ B
(
x,2−N3

)
.

Recalling that

|yn − y|, |xn − x| ≤ 2−n(3.35)

and (3.31) we get∣∣Z2(yn) − Z2(y)
∣∣+ ∣∣Z2(xn) − Z2(x)

∣∣ ≤ 2C(ω)2−n(ηc−(2αγ )/k0)

≤ 2C(ω)2−N∗(k0ηc−2αγ )

≤ 2C(ω)2−N∗(η−2αγ ),

where the last inequality follows since by assumption k0 > 1 + 1/(α − 1 − β) and
hence k0ηc > η̄c > η. By (3.29), we immediately get∣∣Z2(yn) − Z2(y)

∣∣+ ∣∣Z2(xn) − Z2(x)
∣∣ ≤ 8C(ω)|x − y|η−2αγ .(3.36)

Now use again (3.35) and triangle inequality to get that

|yn − x| ≤ |yn − y| + |y − x| ≤ 2−(N∗−1).

This together with the (3.35) and the definition of S̃η(N,J ) implies that

(xn, yn) ∈ S̃η

(
N∗ − 1, J

)∩ {(
i2−n, j2−n), i, j ∈ Z

}
.(3.37)

Note that

|xn − yn| ≤ 2−(N∗−1) [by (3.33)]
≤ 2− log2(k0N

∗)(3.38)

= 2− log2(n),

where the first inequality follows by (3.33) and the second inequality follows easily
by our assumption N∗ ≥ (k0)

10, k0 > 3. By (3.37), (3.38) and since N∗ − 1 ≥ N1,
we can apply Lemma 3.8 to get∣∣Z2(yn) − Z2(xn) − (yn − xn)V

′(xn)
∣∣

= ∣∣Z2,η
t (xn, yn)

∣∣
(3.39)

≤ C|yn − xn|η−2αγ

≤ C′|y − x|η−2αγ ,

where the last inequality follows by (3.33).
By (3.30) and the bounds (3.32), (3.34), (3.36), (3.39), we complete the proof.

�
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LEMMA 3.12. Let J ≥ 1, η ∈ (ηc,min{η̄c,1}). For almost every ω ∈ Aε and
for all x ∈ (0,1) \ Sη(J ),∣∣Z2(y) − Z2(x)

∣∣ ≤ C1(J )|y − x|η−2αγ ∀y ∈ B
(
x,2−N1

)
,

where N1 = N1(ω) is from Lemma 3.8.

PROOF. For any n ≥ 1, take xn, yn ∈ {i2−n, i ∈ Z} satisfying the following
conditions:

|xn − x| ≤ 2−n, |xn − xn+1| ≤ 2−n−1,

|yn − y| ≤ 2−n, |yn − yn+1| ≤ 2−n−1.

Applying Lemma 3.8, we get for every N ≥ N1 the bound∣∣Z2,η
t (y, x)

∣∣
≤ ∣∣Z2,η

t (yN, xN)
∣∣+ ∞∑

n=N

(∣∣Z2,η
t (yN+1, yN)

∣∣+ ∣∣Z2,η
t (xN+1, xN)

∣∣)
(3.40)

≤ 2C(J )2−N(η−ηc)

(
|xN − yN |ηc−2αγ + 2

∞∑
n=N

2−n(ηc−αγ )

)

≤ C′(J )2−N(η−ηc)
(|xN − yN |ηc−2αγ + 2−N(ηc−2αγ )).

Choosing N so that |y − x| ∈ [2−N−1,2−N ], we complete the proof. �

Now we are able to complete the following.

PROOF OF LEMMA 3.2. Lemmas 3.9, 3.12 imply that

P
(
HZ2(x) ≥ η − 2αγ,∀x ∈ (0,1) \ Sη(J );Aε) ≥ 1 − ε.

Letting here ε → 0, we complete the proof of the lemma. �

4. Lower bound for the Hausdorff dimension. The aim of this section is to
prove the following proposition.

PROPOSITION 4.1. For every η ∈ (ηc, ηc) \ {1},
dim(EZ2,η) ≥ (1 + β)(η − ηc), P-a.s. on

{
Xt

(
(0,1)

)
> 0

}
.

REMARK 4.2. Clearly, the above proposition together with Proposition 3.1
completes the proof of Theorem 1.2.
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As we have already mentioned in the Introduction, the proof of the lower bound
is much more involved then the proof of the upper one. Due to the mentioned
complexity of the proof we give, for the reader’s convenience, a short descrip-
tion of our strategy. Section 4.1 is devoted to deriving some uniform estimates on
“masses” of Xs of dyadic intervals at times s close to t . In Section 4.2, we con-
struct a set J̃η,1 with dim(J̃η,1) ≥ (β + 1)(η − ηc), on which we show existence
of “big” jumps of X that occur close to time t . These jumps are “encoded” in the
jumps of the auxiliary processes L+

n,l,r and they, in fact, “may” destroy the Hölder

continuity of Xt(·) on J̃η,1 for any index greater or equal to η (see Lemma 4.7 and
Lemma 4.8). However, there are also other jumps of the process X (they will be
encoded in processes L−

n,l,r ) which may compensate the impact of the jumps of X

encoded in L+. The most difficult part of the proof is to show that there is no such
compensation, and this is done in Section 4.3. More precisely, we prove in Sec-
tion 4.3 that such a compensation is possible on a set of the Hausdorff dimension
strictly smaller than (β + 1)(η − ηc), and hence does not influence the dimension
result. It is done in Lemmata 4.9, 4.10 and 4.13.

4.1. Uniform estimates for values of Xs on dyadic intervals. In this subsec-
tion, we derive some bounds for Xs(I

(n)
k ), where

I
(n)
k := [

k2−n, (k + 1)2−n).
In what follows, fix some

m > 3/α,(4.1)

and let θ ∈ (0,1) be arbitrarily small. Define

On :=
{
ω : there exists k ∈ [

0,2n − 1
]

such that

sup
s∈(t−2−αnnα2m/3,t)

Xs

(
I

(n)
k

) ≥ 2−nn2mα/3
}

and

Bn = Bn(θ) :=
{
ω : there exists k ∈ [

0,2n − 1
]

such that

I
(n)
k ∩ {

x :Xt(x) ≥ θ
} �= ∅

and inf
s∈(t−2−αnn−αm,t)

Xs

(
I

(n)
k

) ≤ 2−nn−2m
}
.

LEMMA 4.3. There exists a constant C such that

P(On) ≤ Cn−mα/3, n ≥ 1.

The proof is an almost word-by-word repetition of the proof of Lemma 5.5 in
[4], and we omit it.
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LEMMA 4.4. There exists a constant C = C(m) such that, for every θ ∈ (0,1),

P
(
Bn(θ) ∩ Aε) ≤ Cθ−1n−αm/3, n ≥ ñ(θ),

for some ñ(θ) sufficiently large.

PROOF. Define

τn := inf
{
s ∈ (

t − 2−αnn−αm, t
)
:Xs

(
I

(n)
k

) ≤ 2−nn−2m

for some k ∈ [
0,2n − 1

]}
.

Fix an arbitrary θ ∈ (0,1). If ω ∈ Bn = Bn(θ), then there exists a sequence
{(sj , I (n)

kj
)} such that Xsj (I

(n)
kj

) ≤ 2−nn−2m for all j ≥ 1, and sj ↓ τn, as j → ∞.

Since for each n ≥ 1 the number of intervals I
(n)
k is finite, there exist k̃n and a

subsequence jr such that kjr = k̃n for all r ≥ 1. Therefore,

lim
r→∞Xsjr

(
I

(n)

k̃n

) ≤ 2−nn−2m.

By the right continuity of the measure valued process {Xt }t≥0, we get that

Xτn

(
I

(n)

k̃n
\ {k̃n2−n}) ≤ 2−nn−2m.

Since X has only positive jumps in the form of atomic measures and these jumps do
not occur with probability one at dyadic rational points of space, we immediately
deduce that, in fact,

Xτn

(
I

(n)

k̃n

) ≤ 2−nn−2m, P-a.s.

Put

B̃n :=
[
k̃n

2n
+ 1

2n+1 − 2−nn−m,
k̃n

2n
+ 1

2n+1 + 2−nn−m

]
,

and

Ẽ(n) := {
ω : I (n)

k̃n
∩ {

x :Xt(x) > θ
} �= ∅

}
.

Recall that, on Aε , Xt(·) is locally Hölder continuous on (0,1) with exponent
ηc −ε and Hölder constant C(3.3) [see (3.4)]. Therefore, on the event Aε ∩ Ẽ(n), we
have Xt(x) ≥ θ/2 for all x ∈ B̃n and all n ≥ ñ(θ), where ñ(θ) is chosen sufficiently
large.

Thus, for n ≥ ñ(θ),

θ2−nn−mP
(
τn < t,Oc

n, Ẽ
(n),Aε) = θ

2
|B̃n|P(τn < t,Oc

n, Ẽ
(n),Aε)

≤ E
[
Xt(B̃n)1{τn<t,Oc

n,Ẽ(n),Aε}
]

(4.2)

≤ E
[
Xt(B̃n)1{τn<t,Õc

n}
]
,
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where

Õc
n := {

Xτn

(
I

(n)
k

) ≤ 2−nn2mα/3, for all k = 0, . . . ,2n − 1
}
,

and the last inequality in (4.2) follows since Oc
n ⊂ Õc

n.
Using the strong Markov property, we then obtain

θ2−nn−mP
(
τn < t,Oc

n, Ẽ
(n),Aε) ≤ E

[
St−τnXτn(B̃n)1{τn<t,Õc

n}
]
e|a|t ,(4.3)

for all n ≥ ñ(θ). It is clear that

E
[
St−τnXτn(B̃n)1{τn<t,Õc

n}
]

(4.4)

= E
[∫

R
Xτn(dz)

∫
B̃n

pα
t−τn

(y − z) dy1{τn<t,Õc
n}
]

∀n ≥ 1.(4.5)

Since Xτn(I
(n)

k̃n
) ≤ 2−nn−2m on the event {τn < t}, we have

E
[∫

I
(n)

k̃n

Xτn(dz)

∫
B̃n

pα
t−τn

(y − z) dy1{τn<t,Õc
n}
]

≤ 2−nn−2m ∀n ≥ 1.(4.6)

Recalling that τn ≥ t − 2−αnn−αm and using the scaling property of the kernel pα

together with the bound (3.11) we get

pα
t−τn

(y − z) = (t − τn)
−1/αpα

1

(
y − z

(t − τn)1/α

)
≤ C(t − τn)|y − z|−α−1

≤ C2−αnn−αm|y − z|−α−1.

Further, if z ∈ I
(n)

k̃n±j
and y ∈ B̃n, then

|y − z| ≥ (j − 1)2−n + (
1/2 − n−m)2−n = (

j − 1/2 − n−m)2−n

≥ 1
10j2−n ∀n ≥ 2, j ≥ 1.

Combining the last two bounds, we get∫
I

(n)

k̃n±j

Xτn(dz)

∫
B̃n

pα
t−τn

(y − z) dy

≤
∫
I

(n)

k̃n±j

Xτn(dz)

∫
B̃n

Cj−α−12(α+1)n2−αnn−αm dy

= Cj−α−1n−(α+1)mXτn

(
I

(n)

k̃n±j

) ∀n ≥ 2, j ≥ 1.
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On the event {τn < t} ∩ Õc
n we then have∫

I
(n)

k̃n−j
∪I

(n)

k̃n+j

Xτn(dz)

∫
B̃n

pα
t−τn

(y − z) dy

≤ Cj−α−12−nn−(α+1)m+2mα/3(4.7)

= Cj−α−12−nn−((1/3)α+1)m ∀n ≥ 2, j ≥ 1.

Consequently, by summing up (4.7) over j ≥ 1, we get

E
[∫

R\I (n)

k̃n

Xτn(dz)

∫
B̃n

pα
t−τn

(y − z) dy1{τn<t,Õc
n}
]

≤ C2−nn−((1/3)α+1)m,

(4.8)
n ≥ 2.

This and (4.6) imply that (4.4) is bounded by

C2−n(n−((1/3)α+1)m + n−2m), n ≥ 2.(4.9)

Combining (4.3), (4.9) and using the trivial bound for n = 1, we obtain

θP
(
τn < t,Oc

n, Ẽ
(n),Aε) ≤ C

(
n−(1/3)αm + n−m) ≤ Cn−(1/3)αm, n ≥ ñ(θ).

In view of Lemma 4.3,

P
(
τn < t, Ẽ(n),Aε) ≤ P(On) + P

(
τn < t,Oc

n, Ẽ
(n),Aε)

≤ Cθ−1n−αm/3, n ≥ ñ(θ).

This completes the proof of the lemma. �

4.2. Analysis of the set of jumps which destroy the Hölder continuity. In this
subsection, we construct a set J̃η,1 such that its Hausdorff dimension is bounded
from below by (β + 1)(η − ηc) and in the vicinity of each x ∈ J̃η,1 there are jumps
of X which destroy the Hölder continuity at x for any index greater than η.

We first introduce J̃η,1 and prove the lower bound for its dimension. Set

q := (α + 3)m

(β + 1)(η − ηc)

and define

A
(n)
k := {

�Xs

(
I

(n)
k−2nq−2

) ≥ 2−(η+1)n

for some s ∈ [
t − 2−αnn−αm, t − 2−α(n+1)(n + 1)−αm)},

J
(n)
k,r :=

[
k

2n
− (

nq2−n)r , k + 1

2n
+ (

nq2−n)r].
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Let us introduce the following notation. For a Borel set B and an event E, define
a random set

B1E(ω) :=
{

B, ω ∈ E,
∅, ω /∈ E.

Now we are ready to define random sets

J̃η,r := lim sup
n→∞

2n−1⋃
k=2nq+2

J
(n)
k,r 1

A
(n)
k

, r > 0.

As we have mentioned already, we are interested in getting the lower bound on
Hausdorff dimension of J̃η,1. The standard procedure for this is as follows. First,
show that a bit “inflated” set J̃η,r , for certain r ∈ (0,1), contains open inter-
vals. This would imply a lower bound r on the Hausdorff dimension of J̃η,1 (see
Lemma 4.5 and Theorem 2 from [7] where a similar strategy was implemented).
Thus, to get a sharper bound on Hausdorff dimension of J̃η,1, one should try to
take r as large as possible. In the next lemma, we show that, in fact, one can
choose r = (β + 1)(η − ηc).

LEMMA 4.5. On the event Aε ,{
x ∈ (0,1) :Xt(x) ≥ θ

} ⊆ J̃η,(β+1)(η−ηc), P-a.s.

for every θ ∈ (0,1).

PROOF. Fix an arbitrary θ ∈ (0,1). We estimate the probability of the event
En ∩ Aε , where

En :=
{
ω :

{
x ∈ (0,1) :Xt(x) ≥ θ

} ⊆
2n−1⋃

k=2nq+2

J
(n)
k,(β+1)(η−ηc)

1
A

(n)
k

}
.

It follows from Lemma 4.4 that, for all n ≥ ñ(θ),

P
(
Ec

n ∩ Aε) ≤ P
(
Ec

n ∩ Bn ∩ Aε)+ P
(
Ec

n ∩ Bc
n ∩ Aε)

(4.10)
≤ Cθ−1n−αm/3 + P

(
Ec

n ∩ Bc
n ∩ Aε).

For any k = 0, . . . ,2n − 1, the compensator measure N̂(dr, dy, ds) of the random
measure N (dr, dy, ds) [the jump measure for X—see discussion after (1.8)], on

J (n)
1 × I

(n)
k ×J (n)

2

:= [
2−(η+1)n,∞)× I

(n)
k × [

t − 2−αnn−αm, t − 2−α(n+1)(n + 1)−αm),
is given by the formula

1
{
(r, y, s) ∈ J (n)

1 × I
(n)
k ×J (n)

2

}
�r−2−β drXs(dy) ds.(4.11)
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If

k ∈ Kθ := {
l : I (n)

l ∩ {
x ∈ (0,1) :Xt(x) ≥ θ

} �= ∅
}
,

then, by the definition of Bn, we have

Xs

(
I

(n)
k

) ≥ 2−nn−2m, for s ∈ J (n)
2 , on the event Aε ∩ Bc

n.(4.12)

Define the measure �̂(dr, dy, ds) on R+ × (0,1) × R+, as follows:

�̂(dr, dy, ds) := �r−2−β drn−2m dy ds.(4.13)

Then, by (4.11) and (4.12), on Aε ∩ Bc
n, and on the set

J (n)
1 × {

y ∈ (0,1) :Xt(y) ≥ θ
}×J (n)

2

we have the following bound:

�̂
(
dr, I

(n)
k ,J (n)

2

) ≤ N̂
(
dr, I

(n)
k ,J (n)

2

)
, k ∈ Kθ.

By standard arguments, it is easy to construct the Poisson point process �(dr, dx,

ds) on R+ × (0,1) × R+ with intensity measure �̂ given by (4.13) on the whole
space R+ × (0,1) × R+ such that on Aε ∩ Bc

n,

�
(
dr, I

(n)
k ,J (n)

2

) ≤ N
(
dr, I

(n)
k ,J (n)

2

)
for r ∈ J (n)

1 and k ∈ Kθ .
Now, define

ξ
(n)
k = 1{�(J (n)

1 ×I
(n)

k−2nq−2×J (n)
2 )≥1}, k ≥ 2nq + 2.

Clearly, on Aε ∩ Bc
n and for k such that k − 2nq − 2 ∈ Kθ ,

ξ
(n)
k ≤ 1

A
(n)
k

.

Moreover, by construction {ξ (n)
k }2n+2nq+1

k=2nq+2 is a collection of independent identically
distributed Bernoulli random variables with success probabilities

p(n) := �̂
(
J (n)

1 × I
(n)
k−2nq−2 ×J (n)

2

)
= C2(η−ηc)(1+β)n−nn−(α+2)m.

From the above coupling with the Poisson point process �, it is easy to see that

P
(
Ec

n ∩ Bc
n ∩ Aε) ≤ P

(
Ẽc

n

)
,(4.14)

where

Ẽn :=
{
(0,1) ⊆

2n+2nq+1⋃
k=2nq+2

J
(n)
k 1{ξ (n)

k =1}

}
.
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Let L(n) denote the length of the longest run of zeros in the sequence
{ξ (n)

k }2n+2nq+1
k=2nq+2 . Clearly,

P
(
Ẽc

n

) ≤ P
(
L(n) ≥ 2n−(β+1)(η−ηc)nnm(α+3))

and it is also obvious that

P
(
L(n) ≥ j

) ≤ 2np(n)(1 − p(n))j ∀j ≥ 1.

Use this with the fact that, by (4.1), m > 1, to get that

P
(
Ẽc

n

) ≤ exp
{−1

2nm}(4.15)

for all n sufficiently large. Combining (4.10), (4.14) and (4.15), we conclude that
the sequence P(Ec

n ∩ Aε) is summable. Applying Borel–Cantelli, we complete the
proof of the lemma. �

Define

hη(x) := x(β+1)(η−ηc) log2 1

x

and

Hη(A) := lim
ε→0

inf

{ ∞∑
j=1

hη

(|Ij |),A ∈
∞⋃

j=1

Ij and |Ij | ≤ ε

}
.

Combining Lemma 4.5 and Theorem 2 from [7], one can easily get.

COROLLARY 4.6. On the event Aε ∩ {Xt((0,1)) > 0},
Hη(J̃η,1) > 0, P-a.s.

and, consequently, on Aε ∩ {Xt((0,1)) > 0},
dim(J̃η,1) ≥ (β + 1)(η − ηc), P-a.s.

PROOF. Fix any θ ∈ (0,1). If ω ∈ Aε is such that Bθ := {x ∈ (0,1) :Xt(x) ≥
θ} is not empty, then by the local Hölder continuity of Xt(·) there exists an open
interval (x1(ω), x2(ω)) ⊂ Bθ/2. Moreover, in view of Lemma 4.5,(

x1(ω), x2(ω)
) ⊂ J̃η,(β+1)(η−ηc)(ω), P-a.s.

on the event Aε ∩ {Bθ is not empty}. Thus, we may apply Theorem 2 from [7] to
the set (x1(ω), x2(ω)), which gives

Hη

((
x1(ω), x2(ω)

)∩ J̃η,1
)
> 0, P-a.s.

on the event Aε ∩ {Bθ is not empty}. Thus,

dim
((

x1(ω), x2(ω)
)∩ J̃η,1

) ≥ (β + 1)(η − ηc), P-a.s.
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on the event Aε ∩{Bθ is not empty}. Due to the monotonicity of Hη(·) and dim(·),
we conclude that Hη(J̃η,1) > 0 and dim(J̃η,1) ≥ (β + 1)(η − ηc), P-a.s. on the
event Aε ∩ {Bθ is not empty}. Noting that 1{Bθ is not empty} ↑ 1{Xt(0,1)>0} as θ ↓ 0,
P-a.s., we complete the proof. �

Now we turn to the second part of the present subsection. By construction of
J̃η,1, we know that to the left of every point x ∈ J̃η,1 there exist big jumps of X at

time s “close” to t : such jumps are defined by the events A
(n)
k . We would like to

show that these jumps will result in destroying the Hölder continuity of any index
greater than η at the point x. To this end, we will introduce auxiliary processes
L±

n,l,r that are indexed by a grid finer than {k2−n, k = 0,1, . . .}. That is, take some
integer Q > 1 (note, that eventually Q will be chosen large enough, depending
on η). According to Lemma 2.15 from [4] [see also (3.21), (3.22)], there exist
spectrally positive (1 + β)-stable processes L±

n,l,r such that

Z̃2,η
s

(
l2−Qn, r2−Qn) = L+

n,l,r

(
T

n,l,r
+ (s)

)− L−
n,l,r

(
T

n,l,r
− (s)

)
,

(4.16)
0 ≤ l < r ≤ 2Qn,0 ≤ s ≤ t,

where

T
n,l,r
± (s) =

∫ s

0
du

∫
R

Xu(dy)
((

p̃
α,η
t−u

(
l2−Qn − y, r2−Qn − y

))±)1+β
, s ≤ t.

The goal of the remaining part of this subsection is to show that, in fact, “big”

jumps of X defined via A
(n)
k imply “big” values of L+

n,l,r for certain l, r .

We need to introduce additional notation related to the event A
(n)
k . If A

(n)
k oc-

curs, then there is a jump of the process X at time sn
k such that

�Xsn
k

(
I

(n)
k−2nq−2

) ≥ 2−(η+1)n,(4.17)

and

sn
k ∈ [

t − 2−αnn−αm, t − 2−α(n+1)(n + 1)−αm).(4.18)

Let yn
k ∈ I

(n)
k−2nq−2 denote the spatial position of that jump. Now put

lnk = ⌊
2Qnyn

k

⌋
,

and for every x ∈ (0,1) define

k̃n(x) = ⌊
2Qnx

⌋
.

To simplify notation, in what follows, for any n, l, r , we denote by �L+
n,l,r the

maximal jump of L+
n,l,r , that is,

�L+
n,l,r := sup

s≤t
�L+

n,l,r

(
T

n,l,r
+ (s)

)
.
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Also set

L±
n,l,r := L±

n,l,r

(
T

n,l,r
± (t)

)
.(4.19)

Now we explain briefly why we look at fine dyadic intervals (l2−Qn, r2−Qn).
First, we can not work directly with increments of Z2 at random points x ∈ J̃η,1.
However, if we show that Hölder continuity is destroyed at 2−Qnk̃n(x), then we
will be able to infer that, at the point x, the Hölder continuity of any index greater
than η is destroyed as well: to show this we need Q to be sufficiently large. Also,
on this finer scale, we can show that L+

n,lnk ,r
has “large” jumps for all r which are

close to k̃n(x). This property is quite important because of a possible compensation
effect, which will be investigated in the next subsection.

In the next two lemmas, we start to fulfill the above program. In Lemma 4.7,
we show that on the event A

(n)
k , L+

n,lnk ,r
has “large” jumps of order 2−ηnnm for all

r’s sufficiently close to k̃n(x) with x ∈ J
(n)
k,1 . As a consequence, in Lemma 4.8, we

obtain, by pretty standard arguments, that L+
n,lnk ,r

can also take “big” values of the

same order, for certain n, lnk , r .

LEMMA 4.7. Let η ∈ (ηc, η̄c), and fix an arbitrary integer R > 0. There exist
constants C(4.20) and N4.7 sufficiently large, such that for all n ≥ N4.7 and all
rn
k ∈ {k̃n(x) − R, k̃n(x) − R + 1, . . . , k̃n(x)},

A
(n)
k ⊂ {

�L+
n,lnk ,rn

k
≥ C(4.20)2

−ηnnm,∀x ∈ J
(n)
k,1

}
, k = 2nq + 2, . . . ,2n.(4.20)

PROOF. Fix n sufficiently large (to be chosen later) and k ∈ {2nq +2, . . . ,2n}.
In what follows, we assume that A

(n)
k occurs. Then we have to show that

�L+
n,lnk ,rn

k
≥ C(4.20)2

−ηnnm ∀x ∈ J
(n)
k,1 .

Fix an arbitrary x ∈ J
(n)
k,1 . Recall that (sn

k , yn
k ) denotes a space-time location of a

jump of X that appears in the definition of A
(n)
k . To simplify notation, to the end of

the lemma, we will suppress the superindex n in lnk , rn
k , yn

k . If A
(n)
k occurred, then

�L+
n,lk,rk

≥ 2−(η+1)n(p̃α,η
t−sk

(
lk2−Qn − yk, rk2−Qn − yk

))
+.(4.21)

So to verify the lemma, we have to obtain a suitable strictly positive lower bound
for p̃

α,η
t−sk

(lk2−Qn − yk, rk2−Qn − yk).
First, we will obtain a lower bound for pα

t−sk
(lk2−Qn − yk):

pα
t−sk

(
lk2−Qn − yk

) = (t − sk)
−1/αp1

(
(t − sk)

−1/α(lk2−Qn − yk

))
(4.22)

≥ 2nnmp1
(
(t − sk)

−1/α(lk2−Qn − yk

))
,
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where the last inequality follows by (4.18). By definition of lk , we get∣∣lk2−Qn − yk

∣∣ ≤ 2−Qn,(4.23)

and this with again (4.18) and monotonicity of p1(·) implies

p1
(
(t − sk)

−1/α(lk2−Qn − yk

)) ≥ p1
(
2−(Q−1)n+1(n + 1)m

) ≥ p1(1)(4.24)

for all n sufficiently large. Let N(4.24) be sufficiently large such that (4.24) holds
for all n ≥ N(4.24). Then (4.22), (4.24) imply

pα
t−sk

(
lk2−Qn − yk

) ≥ 2np1(1)nm

(4.25)
= C(4.25)2

nnm ∀n ≥ N(4.24).

Next, by definition of A
(n)
k ,V

(n)
k , we easily get, for all sufficiently large n,

−yk + rk2−Qn ≥ 2−n(2nq + 1
)− (

2−nnq + R2−Qn) ≥ 2−n−1nq.(4.26)

Use this and the bound on t − sk to get

pα
t−sk

(
rk2−Qn − yk

) = (t − sk)
−1/αp1

(
(t − sk)

−1/α(rk2−Qn − yk

))
≤ C(3.11)(t − sk)

−1/α((t − sk)
−1/α(rk2−Qn − yk

))−α−1

= C(3.11)(t − sk)
(
rk2−Qn − yk

)−α−1(4.27)

≤ C(3.11)2
−αnn−αm2(n+1)(α+1)n−q(α+1)

= C(4.27)2
nn−αm−q(α+1).

Next, we will bound from above the quantity∣∣(lk2−Qn − rk2−Qn)pα,′
t−sk

(
rk2−Qn − yk

)∣∣,
where p

α,′
t (z) := ∂pα(z)

∂z
. It is easy to check that∣∣pα,′

t−sk

(
rk2−Qn − yk

)∣∣ ≤ C(t − sk)
−2/αpα

1
(
(t − sk)

−1/α(rk2−Qn − yk

)
/2
)

= C(t − sk)
−1/αpα

t−sk

((
rk2−Qn − yk

)
/2
)

(4.28)

≤ C(4.28)2
nnm2nn−αm−q(α+1),

where the last inequality follows by (4.27) and the bound on t − sk . Since∣∣lk2−Qn − rk2−Qn
∣∣ ≤ 3 · 2−nnq,

this implies∣∣(lk2−Qn − rk2−Qn)pα,′
t−sk

(
rk2−Qn − yk

)∣∣ ≤ 3C(4.28)2
nn−m(α−1)−qα.(4.29)
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Then by definition of p̃
α,η
t , (4.25), (4.27), (4.29), we immediately get that there

exists an N(4.30) ≥ N(4.24), such that, for any η ∈ (ηc, η̄c),

p̃
α,η
t−sk

(
lk2−Qn − yk, rk2−Qn − yk

)
≥ C(4.25)2

nnm − C(4.27)2
nn−mα−q(α+1) − 3C(4.28)2

nn−m(α−1)−qα(4.30)

≥ 1
2C(4.25)2

nnm ∀n ≥ N(4.30).

Substitute the above lower bound into (4.21) and the result follows immediately.
�

LEMMA 4.8. Let η ∈ (ηc, η̄c), and fix an arbitrary integer R > 0. On Aε , for
every x ∈ J̃η,1 there exists a (random) sequence {(nj , kj )}, such that

L+
nj ,l

nj
kj

,r
nj
kj

≥ C2−ηnj nm
j

for all r
nj

kj
∈ [k̃nj

(x) − R, k̃nj
(x) − R + 1, . . . , k̃nj

(x)].

PROOF. Recall (3.24) to get that on Aε , and for any l, r ,

T
n,l,r
+ (t) ≤ T̂ n,l,r(l2−Qn, r2−Qn) = C(3.24)

(|r − l|2−Qn)α−β−ε1,(4.31)

and take ε1 < (η̄c −η)(β +1)/2. This, Lemma 4.7 and Lemma 2.4 from [4], imply
that for all n sufficiently large, and for any k ∈ [2nq + 2,2n − 1],

P
(
Aε ∩ A

(n)
k ∩ {

L+
n,lnk ,rn

k
≤ C(4.20)2

−ηn−1nm})
≤ P

(
Aε ∩ {

�L+
n,lnk ,rn

k
≥ C(4.20)2

−ηnnm}∩ {
L+

n,lnk ,rn
k

≤ C(4.20)2
−ηn−1nm})

≤ ∑
l : 2−Qnl∈I

(n)
k ,

r : 2−Qnr∈J
(n)
k,1

P
(
Aε ∩ {

�L+
n,l,r ≥ C(4.20)2

−ηnnm}

∩ {
L+

n,l,r ≤ C(4.20)2
−ηn−1nm})

≤ ∑
l : 2−Qnl∈I

(n)
k ,

r : 2−Qnr∈J
(n)
k,1

P
(

inf
s≤T̂ n,l,r (l2−Qn,r2−Qn)

L+
n,l,r (s) ≤ −C(4.20)2

−ηn−1nm
)

≤ 2(Q−1)n5nq exp
{−c2(η̄c−η)(β+1)n/(2β)}.
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Consequently,

P
(
Aε ∩ A

(n)
k ∩ {

L+
n,lnk ,rn

k
≤ C(4.20)2

−ηn−1nm})
≤ 2(2Q−1)n5nq exp

{−c2(η̄c−η)(β+1)n/(2β)}
≤ exp

{−2(η̄c−η)(β+1)n/(4β)},
for all n sufficiently large. Using Borel–Cantelli, we get that with probability one

2n−1⋃
k=2nq+2

{
Aε ∩ A

(n)
k ∩ {

L+
n,lnk ,rn

k
≤ C(4.20)2

−ηn−1nm}}
occurs only a finite number of times. Let x ∈ J̃η,1 be arbitrary. By definition of
J̃η,1, there exists a (random) sequence {(nj , kj )} such that

x ∈ J
(nj )

kj ,1 and 1
A

(nj )

kj

= 1 ∀j ≥ 1.

Therefore, on the set Aε we have

L+
n,l

nj
kj

,r
nj
kj

> C(4.20)2
−ηnj−1nm

j ,

for all j sufficiently large and all r
kj
nj ∈ [k̃nj

(x) − R, k̃nj
(x)]. �

4.3. Effect of compensation. If we recall (4.16), then Lemma 4.8 implies that
it is maybe possible to destroy the Hölder continuity, of any index greater than η,
of the process on the set J̃η,1. For this purpose, we use processes L+

n,k,l . It is also
clear from (4.16) that in addition one should show that (loosely speaking) on a
“significant” part of J̃η,1 there is no compensation of “big” values of L+ by “big”
values of L−.

First, fix arbitrary positive constants ρ, c, ν such that

ρ < 10−2γ, ν ∈
(

αγ + 5ρ

ηc
,10−1

)
, c ∈

(
10

2 − η
,

1

10ρ

)
.(4.32)

Define

G
(n)
k :=

{
there exist at least two jumps of M, of the form rδ(s,y),

satisfying r ≥ 2−(η+1+2ρ+2cρ)n, s ∈ [
t − 2−α(1−cρ)n, t − 2−α(1+cρ)n)(4.33)

and y ∈
[

k

2n
− 2−n(1−cρ)(1−ν),

k + 1

2n
+ 2−n(1−cρ)(1−ν)

]}
and

G̃η := lim sup
n→∞

2n−1⋃
k=0

I
(n)
k 1

G
(n)
k

.
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Informally, G̃η is such that in certain proximity of every x ∈ G̃η there are at least
two “big” jumps of M . If one of the jumps, appears in L+, and another in L−,
they may compensate each other; however, in the next lemma we will show that
the Hausdorff dimension of G̃η is small.

LEMMA 4.9. On Aε ,

dim(G̃η) ≤ (
2(β + 1)(η − ηc) − 1

)+ + 2
(
ν + 8(c + 1)ρ

)
, P-a.s.

PROOF. On the event Oc
n, we have the following upper bound for the intensity

of the jumps in G
(n)
k :∫ t−2−α(1+cρ)n

t−2−α(1−cρ)n
dsXs

([
k

2n
− 2−n(1−cρ)(1−ν),

k + 1

2n
+ 2−n(1−cρ)(1−ν)

])
×
∫

2−(η+1+2ρ+2cρ)n
�r−2−β dr

≤ C2n−n(1−cρ)(1−ν)2−nn2m2−α(1−ρc)n2(β+1)(η+1+2ρ+2cρ)

≤ C2−n+n(β+1)(η−ηc)+δn,

where δ = ν + 7(c + 1)ρ. Since the number of such jumps can be represented by
means of a time-changed standard Poisson process, the probability to have at least
two such jumps is bounded by the square of the above bound, that is,

P
(
Oc

n ∩ G
(n)
k

) ≤ C2−2n+2n(β+1)(η−ηc)+2δn =: p(n).

Combining this bound with Lemma 4.3 and the Markov inequality, we get

P

(2n−1∑
k=0

1
G

(n)
k

≥ 2n+εnp(n)

)
≤ P(On) + P

(2n−1∑
k=0

1
G

(n)
k

≥ 2n+εnp(n);Oc
n

)

≤ Cn−mα/3 + 2nP(G
(n)
1 )

2n+εnp(n)

≤ Cn−mα/3 + 2−εn.

If 2(β + 1)(η − ηc) + 2δ < 1, then, choosing ε sufficiently small, we obtain

P

(2n−1∑
k=0

1
G

(n)
k

≥ 1

)
≤ C2−mn + 2−εn.

Applying finally Borel–Cantelli, we conclude that G̃η = ∅ almost surely. In par-
ticular, dim(G̃η) = 0 with probability one.
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Assume now that 2(β + 1)(η − ηc) + 2δ ≥ 1. Applying Borel–Cantelli once
again, we see that the number of indices k with 1

G
(n)
k

= 1 is bounded by 2n+εnp(n).

Noting that G̃η can be covered by
⋃2n

k=1 I
(n)
k 1

G
(n)
k

and

∞∑
n=1

2n+εnp(n)2−θn < ∞ for all θ > 2(β + 1)(η − ηc) + 2δ − 1 + ε,

we infer that

dim(G̃η) ≤ 2(β + 1)(η − ηc) + 2δ − 1 + ε.

Letting ε → 0, we get the desired result. �

The remaining part of the subsection is devoted to the proof of the fact that, on
the set (J̃η,1 \Sη−2ρ)\ G̃η “enough” of big values of L+

n,l,k cannot be compensated
by L−

n,l,k . This will lead later to the desired upper bound for Hölder exponents for

points from (J̃η,1 \ Sη−2ρ) \ G̃η.
As usual, we start with the analysis of jumps. For N ≥ 1, define

F
(N)
k := {

�Xs(y) ≥ (t − s)1/(1+β)−γ
∣∣y − (k + 1)2−N

∣∣η−ηc

for some s ≥ t − 2−αN, y ∈ I
(N)
k

}
,

k = 0, . . . ,2N − 1,

and

F (N) :=
2N−1⋃
k=0

(⋂
j<R

F
(N)
k+j

)
.

Note that we use N (and not n) above, and at some point we will take N = Qn.

LEMMA 4.10. For every R > (1 − (1 +β)(η −ηc))
−1, there exists a constant

C = C(R) such that

P
(
F (N)) ≤ CN−mα/3+1.

PROOF. It follows from Lemma 4.3 that

P
( ⋃

n≥N

On

)
≤

∞∑
n=N

P(On) ≤ CN−mα/3+1.

Therefore,

P
(
F (N)) ≤ P

(
F (N) ∩

( ⋂
n≥N

Oc
n

))
+ P

( ⋃
n≥N

On

)
(4.34)

≤
2N−R−1∑

k=0

P
((⋂

j<R

F
(N)
k+j

)
∩
( ⋂

n≥N

Oc
n

))
+ CN−mα/3+1.



MULTIFRACTAL ANALYSIS OF SUPERPROCESSES 2799

Consider a jump characterized by the triple (y, s, r). We first assume that

−(t − s)1/α < y − (k + 1)2−n < 0.

This jump affects F
(N)
k if and only if r > (t − s)1/(1+β)−γ+(η−ηc)/α . If we

consider s ∈ [t − 2−αj , t − 2−α(j+1)), then r should be greater than
2−α(j+1)(1/(1+β)−γ+(η−ηc)/α). Since

sup
s≥t−2−αj

Xu

([
(k + 1)2−n − 2−j , (k + 1)2−n)) ≤ j2m2−j

on the event Oc
j , we have the following bound for the intensity of jumps described

above: ∫ t−2−α(j+1)

t−2−αj
duXu

([
(k + 1)2−n − 2−j , (k + 1)2−n))

×
∫ ∞

2−α(j+1)(1/(1+β)−γ+(η−ηc)/α)
�r−2−β dr

(4.35)
≤ Cj2m2−j (α+1)2j (α−γα(β+1)+(η−ηc)(β+1)

= Cj2m2−j (1−(η−ηc)(β+1))−jγ α(β+1).

If (k + 1)2−N − y ∈ [a2−j , (a + 1)2−j ) with some a ≥ 1, then r should be bigger
than 2−α(j+1)(1/(1+β)−γ )aη−ηc2−j (η−ηc). Then, on the event Oc

j ,

∫ t−2−α(j+1)

t−2−αj
duXu

([
a2−j , (a + 1)2−j ))

×
∫ ∞

2−α(j+1)(1/(1+β)−γ )aη−ηc 2−j (η−ηc)
�r−2−β dr

(4.36)
≤ Cj2m2−j (α+1)2j (α−γα(β+1)+(η−ηc)(β+1)a−(η−ηc)(β+1)

= Cj2m2−j (1−(η−ηc)(β+1))−jγ α(β+1)a−(η−ηc)(β+1).

Combining (4.35), (4.36) and noting that we can cover the interval I
(N)
k by the

union of intervals [(k + 1)2−N − (a + 1)2−j , (k + 1)2−N −a2−j ) with a < 2j−N ,
we see that the intensity of jumps with y ∈ I

(N)
k , s ≥ t − 2−αN is bounded

by

∞∑
j=N

Cj2m2−j (1−(η−ηc)(β+1))−jγ α(β+1)

(
1 +

2j−N−1∑
a=1

a−(η−ηc)(β+1)

)

≤ C

∞∑
j=N

j2m2−j (1−(η−ηc)(β+1))−jγ α(β+1)(2j−N )1−(η−ηc)(β+1)
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= C
(
2−N )1−(η−ηc)(β+1)

∞∑
j=N

j2m2−jγ α(β+1)

≤ C
(
2−N )1−(η−ηc)(β+1)

.

This implies that

P
(
F

(N)
k ∩

( ⋂
n≥N

Oc
n

))
≤ C

(
2−N )1−(η−ηc)(β+1)

.

Since the jumps can be represented by a time-changed Poisson process, we then
get

P
((⋂

j<R

F
(N)
k+j

)
∩
( ⋂

n≥N

Oc
n

))
≤ C

(
2−N )R(1−(η−ηc)(β+1))

.

Applying this bound to summands in (4.34), we complete the proof of the lemma.
�

From this lemma and the Borel–Cantelli lemma, we obtain:

COROLLARY 4.11. Let R be as in the previous lemma. For P-a.s. ω ∈ Aε

there exists N4.11 = N4.11(ω) such that for every N ≥ N4.11 and every k :R ≤ k <

2N there exists j = j (k,N) ∈ {1, . . . ,R} with 1
F

(N)
k−j

= 0.

We need to introduce additional notation. Let

kn(x) := ⌊
2nx

⌋
.(4.37)

Recall A
(n)
kn(x), and let s̃ = sn

kn(x) [see (4.17), (4.18)] be the time and ỹ = yn
kn(x)

[defined below (4.18)] be the spatial position of a jump described in the definition
of the event A

(n)
kn(x). Then on A

(n)
kn(x), fix

l̃n(x) := ⌊
2Qnỹ

⌋
.(4.38)

Moreover, since Q > 1, for every n ≥ N4.11 we can define

r̃n(x) = k̃n(x) − j
(
k̃n(x),Qn

)
,(4.39)

where j (·, ·) is defined in Corollary 4.11, and recall that k̃n(x) = kQn(x).

REMARK 4.12. Note that above definition of l̃n(x) and especially the con-
struction of r̃n(x) are crucial for the proof of the lower bound. In the sequel, we
will show that for x ∈ (J̃η,1 \ Sη−2ρ) \ G̃η, there exists subsequence {nj } such
that big values of L+

nj ,l̃nj
(x),r̃nj

(x)
are not compensated by L−

nj ,l̃nj
(x),r̃nj

(x)
(see

Lemma 4.14 below and Lemma 4.8 above).
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We also will define three sets in [0, t) × R. For any x ∈ R, set

S1
n,x := {

(s, y) ∈ [0, t) × R : |y − x| ≥ (t − s)(1−ν)/α},
S2

n,x := {
(s, y) ∈ ([0, t) \ (t − 2−α(1−cρ)n, t − 2−α(1+cρ)n))× R :

|y − x| ≤ (t − s)(1−ν)/α},
S3

n,x := {
(s, y) ∈ [

t − 2−α(1−cρ)n, t − 2−α(1+cρ)n]× R :

|y − x| ≤ (t − s)(1−ν)/α,�Xs(y) ≤ (t − s)(η+1+3ρ)/α},
and note that the last set is random. In the next lemma, we will show that, under
certain conditions, the jumps of L−

n,l̃n(x),r̃n(x)
are small on the above sets. We will

also need an additional piece of notation. Let

S4 := {
(s, y) ∈ [0, t) × R :�Xs

({y}) > 0
}

be the set of points in space×time where the jumps of X, or equivalently of M ,
occur.

LEMMA 4.13. Let η ∈ (ηc, η̄c) \ {1}, and ρ, ν, c be as in (4.32). For P-a.s.
ω ∈ Aε , there exists N4.13 = N4.13(ω) such that for every n ≥ N4.13 the following
holds. Fix arbitrary x ∈ (0,1) \ Sη−2ρ such that 1

A
(n)
kn(x)

= 1. Then there exists a

constant C(4.40) = C(4.40)(ρ, ν, c) such that for any (s, y) ∈ (
⋃3

i=1 Si
n,x) ∩ S4, we

have

�L−
n,l̃n(x),r̃n(x)

(
T

n,l̃n(x),r̃n(x)
− (s)

) ≤ C(4.40)2
−(η+2ρ)n.(4.40)

PROOF. Fix some ω ∈ Aε and choose N4.13 ≥ N4.11; the choice of N4.13 will
be clear from the proof. Take arbitrary n ≥ N4.13. Fix also some x ∈ (0,1) \ Sη−2ρ

satisfying 1
A

(n)
kn(x)

= 1. Recall (4.38), (4.39) and in what follows to simplify the

notation denote

l = l̃n(x), r = r̃n(x).

It is clear that a jump, which appears in the definition of A
(n)
kn(x), does not produce

a jump of L−
n,l,r .

Recall that x ∈ (0,1) \ Sη−2ρ means that, for any y ∈ R,

�Xs(y) ≤ (t − s)1/(β+1)−γ |y − x|η−2ρ−ηc .(4.41)

We will treat the three regions Si
n,x, i = 1,2,3 separately.

(i) Let (s, y) ∈ S1
n,x ∩ S4, that is,

|y − x| ≥ (t − s)(1−ν)/α.(4.42)

First assume |y − x| ≤ nq2−n. We will consider the cases of η < 1 and η > 1
separately. We start with the following.
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Case η < 1. For all x1, x2 ∈ R,(
p

α,η
t−s(x1, x2)

)− = (
pα

t−s(x1) − pα
t−s(x1)

)− ≤ pα
1 (0)

(t − s)1/α
.

Combining this inequality with (4.41) and (4.42), we get

�L−
n,l,r

(
T

n,l,r
− (s)

) ≤ pα
1 (0)(t − s)1/(β+1)−γ |y − x|η−2ρ−ηc(t − s)−1/α

= pα
1 (0)(t − s)(ηc−αγ )/α|y − x|η−2ρ−ηc

≤ pα
1 (0)|y − x|(ηc−αγ )/(1−ν)+η−ηc−2ρ.

We choose N4.13 sufficiently large such that, for any ν ∈ (
αγ+5ρ

ηc
,10−1) and |y −

x| ≤ nq2−n, (4.40) holds, for all n ≥ N4.13.
Case η > 1. Here, we have

p
α,η
t−s

(
l2−Qn − y, r2−Qn − y

)
= pα

t−s

(
l2−Qn − y

)− pα
t−s

(
r2−Qn − y

)+ (r − l)2−Qnp
α,′
t−s

(
r2−Qn − y

)
.

Note that p
α,′
t−s(z) ≥ 0 for all z ≤ 0. Consequently,(

p
α,η
t−s

(
l2−Qn − y, r2−Qn − y

))−
≤ (

pα
t−s

(
l2−Qn − y

)− pα
t−s

(
r2−Qn − y

))−(4.43)

≤ pα
1 (0)

(t − s)1/α

for all y ≥ r2−Qn.
In the complementary case y < r2−Qn, one can easily get(

p
α,η
t−s

(
l2−Qn − y, r2−Qn − y

))−
(4.44)

≤ pα
1 (0)

(t − s)1/α
+ ∣∣(r − l)2−Qnp

α,′
t−s

(
r2−Qn − y

)∣∣.
If y ≤ (r − 1)2−Qn, then r2−Qn − y ≥ (x − y)/(R + 1). Thus, using the bound
p

α,′
1 (z) ≤ C|z|−α−2 and the scaling property, we obtain

−p
α,′
t−s

(
r2−Qn − y

) ≤ C(t − s)−2/α

(
r2−Qn − y

(t − s)1/α

)−α−2

(4.45)
≤ CRα+2(t − s)|x − y|−α−2.

From this, (4.43) and (4.44) we conclude that, for all y satisfying |y − r2−Qn| >

2−Qn, (
p

α,η
t−s

(
l2−Qn − y, r2−Qn − y

))−
≤ C

(
(t − s)−1/α + (r − l)2−Qn(t − s)|x − y|−α−2).



MULTIFRACTAL ANALYSIS OF SUPERPROCESSES 2803

Combining this with (4.41) we conclude that the corresponding jump
�L−

n,l,r (T
n,l,r
− (s)) is bounded by

C(t − s)1/(β+1)−γ |y − x|η−2ρ−ηc
(
(t − s)−1/α + (r − l)2−Qn(t − s)|x − y|−α−2).

Taking into account (4.42), we see that the expression on the right-hand side does
not exceed

C
(|y − x|(ηc−αγ )/(1−ν)+η−ηc−2ρ + (r − l)2−Qn|y − x|(η−1)/(1−ν)+να−2ρ).

Now it is easy to see that (4.40) remain valid for η > 1 under additional assumption
y ≤ (r − 1)2−Qn, or y ≥ r2−Qn.

Now we will take care of the case y ∈ ((r − 1)2−Qn, r2−Qn). By Corol-
lary 4.11 and our definition of r = r̃n(x) [recall again (4.39) and n ≥ N4.13 ≥ N4.11,
Q > 1], we obtain

�Xs(y) ≤ (t − s)1/(β+1)−γ
∣∣y − r2−Qn

∣∣η−ηc(4.46)

for all y ∈ ((r − 1)2−Qn, r2−Qn) and s ≥ t − 2−αQn. It is clear that y ∈ ((r −
1)2−Qn, r2−Qn) implies that |y − x| ≤ (R + 1)2−Qn. From this and (4.42), we
infer that (t − s) ≤ (R + 1)α/(1−ν)2−αQn/(1−ν) and, consequently, s ≥ t − 2−αQn

for all sufficiently large n. Repeating all the arguments after (4.44) and using (4.46)
instead of (4.41), we obtain (4.40).

Summarizing, (4.40) is valid for all |y − x| ≤ nq2−n.
In case |y −x| ≥ nq2−n, we apply Corollary 2.3 if η > 1, or Lemma 2.1 if η < 1

with δ = η + 3ρ (recall the bounds on ρ and γ to get that δ < 1 if η < 1 and δ < 2
if η > 1) to get

∣∣p̃α,η
t−s

(
l2−Qn − y, r2−Qn − y

)∣∣ ≤ C
(r − l)δ2−Qδn

(t − s)(δ+1)/α
pα

1

(
y − r2−Qn

(t − s)1/α

)
.

Since (r − l)2−Qn ≤ 4nq2−n and r2−Qn ≤ x, we then have

∣∣p̃α,η
t−s

(
l2−Qn − y, r2−Qn − y

)∣∣ ≤ C
nqδ2−δn

(t − s)(1+δ)/α
pα

1

(
y − x

(t − s)1/α

)
.

From this bound and (3.11), we obtain

�L−
n,l,r

(
T

n,l,r
− (s)

)
≤ C(t − s)1/(β+1)−γ |y − x|η−ηc−2ρ nqδ2−δn

(t − s)(δ+1)/α
pα

1

(
y − x

(t − s)1/α

)
≤ Cnqδ2−δn(t − s)1/(β+1)−γ−(δ+1)/α+(α+1)/α|y − x|η−ηc−2ρ−α−1.
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As a result, for |y − x| ≥ (t − s)(1−ν)/α we have

�L−
n,l,r

(
T

n,l,r
− (s)

)
≤ Cnqδ2−δn((t − s)1/α)α/(β+1)−αγ−δ+α+(η−ηc−2ρ−α−1)(1−ν)

≤ C2−(η+2ρ)n((t − s)1/α)ηc+1−αγ−η−3ρ+α+(η−ηc−2ρ−α−1)(1−ν)

= C2−(η+2ρ)n((t − s)1/α)ν(α+1−η+ηc+2ρ)−αγ−5ρ
.

Finally, recall that ν ≥ 5ρ+αγ
ηc

, and then (4.40) holds with an appropriate con-
stant C(4.40).

(ii) Let (s, y) ∈ S2
n,x ∩ S4. We start with the subset of S2

n,x where |y − x| ≤
(t − s)(1−ν)/α and s ≤ t − 2−α(1−cρ)n.

If η < 1 then, applying Lemma 2.1 with δ = 1, we obtain

�L−
n,l,r

(
T

n,l,r
− (s)

) ≤ C(t − s)1/(β+1)−γ |y − x|η−ηc−2ρ 4nq2−n

(t − s)2/α

≤ Cnq2−n(t − s)1/(β+1)−γ−2/α(t − s)(1−ν)(η−ηc−2ρ)/α

= Cnq2−n((t − s)1/α)α/(β+1)−αγ−2+(1−ν)(η−ηc−2ρ)

= Cnq2−n((t − s)1/α)η−1−αγ−2ρ−ν(η−ηc−2ρ)

≤ Cnq2−n(2−n(1−cρ))η−1−αγ−2ρ−ν(η−ηc−2ρ)
.

If η > 1, then we can apply Corollary 2.3 with δ = 2, which gives

�L−
n,l,r

(
T

n,l,r
− (s)

) ≤ C(t − s)1/(β+1)−γ |y − x|η−ηc−2ρ 16n2q2−2n

(t − s)3/α

≤ Cn2q2−2n(t − s)1/(β+1)−γ−3/α(t − s)(1−ν)(η−ηc−2ρ)/α

= Cn2q2−2n((t − s)1/α)α/(β+1)−αγ−3+(1−ν)(η−ηc−2ρ)

= Cn2q2−2n((t − s)1/α)η−2−αγ−2ρ−ν(η−ηc−2ρ)

≤ Cn2q2−2n(2−n(1−cρ))η−2−αγ−2ρ−ν(η−ηc−2ρ)
.

Hence, for η ∈ (ηc, η̄c) \ {1}, and with c, ρ, ν as in (4.32), we immediately
get (4.40) with an appropriate constant C(4.40).

Now we consider the complimentary subset of S2
n,x , where

|y − x| ≤ (t − s)(1−ν)/α and s ≥ t − 2−α(1+cρ)n.

It follows from the definition of p̃
α,η
t−s that, for η > 1,∣∣p̃α,η

t−s

(
l2−Qn − y, r2−Qn − y

)∣∣
(4.47)

≤ 2pα
1 (0)

(t − s)1/α
+ (r − l)2−Qnsup

z

∣∣∣∣ ∂

∂z
pα

1 (z)

∣∣∣∣/(t − s)2/α.
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With this and recalling that (r − l)2−Qn ≤ 4nq2−n, we obtain

�L−
n,l,r

(
T

n,l,r
− (s)

) ≤ C(t − s)1/(β+1)−γ |y − x|η−ηc−2ρ

× (
(t − s)−1/α + nq2−n(t − s)−2/α)

≤ Cnq2−n(t − s)1/(β+1)−γ−2/α|y − x|η−ηc−2ρ

≤ Cnq2−n((t − s)1/α)ηc−1−αγ+(1−ν)(η−ηc−2ρ)

≤ Cnq2−n(2−(1+cρ)n)η−1−αγ−2ρ−ν(η−ηc−2ρ)
.

Again, with c, ρ, ν as in (4.32), we immediately get (4.40) with an appropriate
constant C(4.40). If η < 1 then, instead of (4.47), we have a simpler inequality∣∣p̃α,η

t−s

(
l2−Qn − y, r2−Qn − y

)∣∣ ≤ 2pα
1 (0)

(t − s)1/α
.

Thus,

�L−
n,l,r

(
T

n,l,r
− (s)

) ≤ C
(
2−(1+cρ)n)η−αγ−2ρ−ν(η−ηc−2ρ)

.

Consequently, (4.40) holds also for η < 1.
(iii) Let (s, y) ∈ S3

n,x ∩ S4.
Recall that on this set, �Xs(y) ≤ (t − s)(η+1+3ρ)/α . Then applying Corol-

lary 2.3 (if η > 1) or Lemma 2.1 (if η < 1) with δ = η + 3ρ, and by using that
c, ρ, ν are as in (4.32), one can easily get (4.40) in this case as well. �

Recall that L−
n,l,r = L−

n,l,r (T
n,l,r
− (t)). In the next lemma, we will deal with re-

gions where {L−
n,l̃n(x),r̃n(x)

}n≥1 may take “big” values infinitely often.

LEMMA 4.14. For x ∈ (0,1) define events

Bn(x) ≡ {
L−

n,l̃n(x),r̃n(x)
≥ 2−ηn−1}∩ {1

A
(n)
kn(x)

= 1}, n ≥ 1.

For any η ∈ (ηc, η̄c) \ {1}, we have

P
({

x ∈ (0,1) \ Sη−2ρ : Bn(x) i.o.
} ⊂ G̃η|Aε) = 1.

PROOF. First, we will show that on ω ∈ Aε{
x ∈ (0,1) \ Sη−2ρ : B∗

n(x) i.o.
} ⊂ G̃η,(4.48)

where for x ∈ (0,1),

B∗
n(x) ≡ {

�L−
n,l̃n(x),r̃n(x)

≥ C(4.40)2
−(η+2ρ)n}∩ {1

A
(n)
kn(x)

= 1}, n ≥ 1.

On ω ∈ Aε , take n ≥ N4.13, and fix some x ∈ (0,1) \ Sη−2ρ satisfying 1
A

(n)
kn(x)

= 1.

First of all, by definition of A
(n)
kn(x), if 1

A
(n)
kn(x)

= 1 then there exists a jump of M
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of the form r̃δ(s̃,ỹ) with r̃ , s̃, ỹ as in G
(n)
kn(x) [see (4.33)]. Moreover, again by

the definition of A
(n)
kn(x), the spatial position of the jump, ỹ, is in I

(n)
kn(x)−2nq−2.

Hence, it is easy to see that this jump does not contribute to the jumps of

L−
n,l̃n(x),r̃n(x)

that is, �L−
n,l̃n(x),r̃n(x)

(T
n,l̃n(x),r̃n(x)
− (s̃)) = 0. Thus, we have to show

that, if �L−
n,l̃n(x),r̃n(x)

≥ C(4.40)2−(η+2ρ)n, and 1
A

(n)
kn(x)

= 1, then there exists at least

one another big jump of M with properties described in G
(n)
k .

By Lemma 4.13, we get that if there exists s such that

�L−
n,l̃n(x),r̃n(x)

(
T

n,l̃n(x),r̃n(x)
− (s)

) ≥ C(4.40)2
−(η+2ρ)n,

then the corresponding jump of M , of the form rδ(s,y), has to satisfy

|y − x| ≤ (t − s)(1−ν)/α, s ∈ [
t − 2−α(1−cρ)n, t − 2−α(1+cρ)n],

r ≥ (t − s)(η+1+3ρ)/α.

This yields that on Aε (4.48) holds.
Second, it follows from the second inequality in Lemma 2.5 and (4.31), that

P
(
L−

n,l,r ≥ 2−ηn−1;�L−
n,l,r ≤ C(4.40)2

−(η+2ρ)n) ≤ exp
{−c22ρn}

for all l, r satisfying (r − l)2−Qn ≤ 4nq2−n. (Recall that (r̃n(x) − l̃n(x))2−Qn ≤
4nq2−n.)

Applying now Borel–Cantelli, we conclude that, with probability one,⋃
0≤l<r≤2Qn−1,(r−l)2−Qn≤4nq2−n

{
L−

n,l,r ≥ 2−ηn−1;�L−
n,l,r ≤ C(4.40)2

−(η+2ρ)n}
occurs only finite number of times. This completes the proof of the lemma. �

4.4. Proof of Proposition 4.1. Fix arbitrary η ∈ (ηc, η̄c) \ {1}. Also fix

Q =
[
max

{
4

η

ηc
,4

η

|η − 1|
}

+ 2
]
,

where [x] denotes the integer part of x.
It follows from Lemmas 4.8 and 4.14, that for every x ∈ (J̃η,1 \Sη−2ρ) \ G̃η, for

P-a.s. ω on Aε , there exists a (random) sequence {nj }j≥1 such that

L+
nj ,l̃nj

(x),r̃nj
(x)

≥ nm
j 2−ηnj , L−

nj ,l̃nj
(x),r̃nj

(x)
≤ 2−(ηnj−1),

for all nj sufficiently large. This implies that, on the event Aε , we have

lim inf
j→∞ 2(η+δ)nj

∣∣∣∣Z̃2,η
t

(
l̃nj

(x)

2Qnj
,
r̃nj

(x)

2Qnj

)∣∣∣∣ = ∞,(4.49)
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for any δ > 0. Recall that, Xt(·) and Z2
t (·) are Hölder continuous with any expo-

nent less than ηc at every point of (0,1). Therefore, recalling that Q > 4 η
ηc

, we
have

lim
j→∞ sup

x∈(0,1)

2(η+δ)nj
∣∣Xt(x) − Xt

(
r̃nj

(x)2−Qnj
)∣∣

(4.50)
= lim

j→∞C(ω)2−(1/2)Qηcnj 2(η+δ)nj = 0, P-a.s. on Aε.

If η < 1, then Z̃
2,η
t (x1, x2) = Z2

t (x1) − Z2
t (x2). Therefore, combining (4.49)

and (4.50), we conclude that

HZ2(x) ≤ η for all x ∈ (J̃η,1 \ Sη−2ρ) \ G̃η P-a.s. on Aε.(4.51)

Assume now that η > 1. In this case, we infer from (3.28) that P-a.s. on Aε ,

lim sup
j→∞

sup
x∈(0,1)\Sη−2ρ

2Q(η−1−2ρ−2αγ )nj
∣∣V ′(r̃nj

2−Qnj
)− V ′(x)

∣∣ = 0.(4.52)

Combining (4.49), (4.50) and (4.52), and recalling that Q > 4η/(η − 1), we get

lim inf
j→∞ 2(η+δ)nj

∣∣Z̃2,η
t

(
2−Qnj l̃nj

(x), x
)∣∣ = ∞ on Aε,P-a.s.

This implies that (4.51) holds.
We know, by Lemma 3.2, that

HZ2(x) ≥ η − αγ − 2ρ for all x ∈ (0,1) \ Sη−2ρ,P-a.s.

This and (4.51) imply that on Aε , P-a.s.,

η − αγ − 2ρ ≤ HZ2(x) ≤ η
(4.53)

for all x ∈ (J̃η,1 \ Sη−2ρ) \ G̃η,∀η ∈ (ηc, η̄c) \ {1}.
It follows easily from Lemma 3.3, Corollary 4.6 and Lemma 4.9 that on Aε

dim
(
(J̃η,1 \ Sη−2ρ) \ G̃η

) ≥ (β + 1)(η − ηc), P-a.s.

Thus, by (4.53),

dim
{
x :HZ2(x) ≤ η

} ≥ (β + 1)(η − ηc) on Aε,P-a.s.

It is clear that

{
x :HZ2(x) = η

}∪
∞⋃

n=n0

{
x :HZ2(x) ∈ (

η − n−1, η − (n + 1)−1]}
= {

x :η − n−1
0 ≤ HZ2(x) ≤ η

}
.
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Consequently,

Hη

({
x :η − n−1

0 ≤ HZ2(x) ≤ η
})

= Hη

({
x :HZ2(x) = η

})
+

∞∑
n=n0

Hη

({
x :HZ2(x) ∈ (

η − n−1, η − (n + 1)−1]}).
Since the dimensions of Sη−2ρ and G̃η are smaller than η, the Hη-measure of these
sets equals zero. Applying Corollary 4.6, we then conclude that on Aε

Hη

(
(J̃η,1 \ Sη−2ρ) \ G̃η

)
> 0, P-a.s.

And in view of (4.53), Hη({x :η − n−1
0 ≤ HZ2(x) ≤ η}) > 0. Furthermore, it fol-

lows from Proposition 3.1, that dimension of the set {x :HZ2(x) ∈ (η − n−1, η −
(n + 1)−1]} is bounded from above by (β + 1)(η − (n + 1)−1 − ηc). Hence, the
definition of Hη immediately yields

Hη

({
x :HZ2(x) ∈ (

η − n−1, η − (n + 1)−1]}) = 0 on Aε,P-a.s.,

for all n ≥ n0. As a result, we have

Hη

({
x :HZ2(x) = η

})
> 0 P-a.s. on Aε.(4.54)

Since ε > 0 was arbitrary, this implies that (4.54) is satisfied on the whole proba-
bility space P-a.s. From this, we get that

dim
{
x :HZ2(x) = η

} ≥ (β + 1)(η − ηc), P-a.s.
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