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MARTIN BOUNDARY OF RANDOM WALKS WITH UNBOUNDED
JUMPS IN HYPERBOLIC GROUPS

BY SÉBASTIEN GOUËZEL

IRMAR, Université de Rennes 1

Given a probability measure on a finitely generated group, its Martin
boundary is a natural way to compactify the group using the Green function
of the corresponding random walk. For finitely supported measures in hy-
perbolic groups, it is known since the work of Ancona and Gouëzel–Lalley
that the Martin boundary coincides with the geometric boundary. The goal
of this paper is to weaken the finite support assumption. We first show that,
in any nonamenable group, there exist probability measures with exponen-
tial tails giving rise to pathological Martin boundaries. Then, for probability
measures with superexponential tails in hyperbolic groups, we show that the
Martin boundary coincides with the geometric boundary by extending An-
cona’s inequalities. We also deduce asymptotics of transition probabilities
for symmetric measures with superexponential tails.

1. Introduction. Consider a probability measure μ on a finitely generated
group �, whose support generates � as a semigroup (we say that μ is admissible).
The Green function associated to μ is Gμ(x, y) = G(x,y) = ∑∞

n=0 μn(x−1y).
The Green function is defined so that the random walk with transition probabili-
ties p(a, b) = μ(a−1b) starting from x spends an average time G(x,y) at y. We
will always assume that this sum is finite (i.e., the random walk is transient). The
function G contains a lot of information about the transition probabilities and the
asymptotic properties of the random walk. Moreover, it is at the heart of the po-
tential theory of μ, making it possible to describe all positive harmonic functions
through the notion of Martin boundary.

The Martin boundary ∂μ� is defined as follows: a sequence of points yn ∈ � go-
ing to infinity converges in � ∪ ∂μ� if and only if, for all z, the sequence Kyn(z) =
G(z, yn)/G(e, yn) converges, where e denotes the identity of the group. One can
associate to any ξ ∈ ∂μ� the corresponding Martin kernel Kξ(z) = limKyn(z).
This function is superharmonic (i.e., if Pμ denotes the Markov operator associ-
ated to μ, then PμKξ ≤ Kξ ), and any positive superharmonic function on � can
be decomposed as an integral of the kernels Kξ with respect to some finite mea-
sure on � ∪ ∂μ� (the decomposition is unique if one requires that the measure is
supported on � and on the minimal part of the Martin boundary, made of those ξ
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whose kernel Kξ is harmonic and minimal among positive harmonic functions).
See, for instance, [5, 11, 12].

Describing concretely the Martin boundary in specific examples is difficult, es-
pecially in nonamenable situations. A landmark result in this direction is a the-
orem by Ancona [1] showing that, for finitely supported probability measures in
(nonelementary) hyperbolic groups, the Martin boundary coincides with the geo-
metric boundary of the group. His result is not restricted to probability measures:
the Green function and the Martin boundary can be defined for any finite measure
μ, and Ancona’s result is true for any measure μ such that rμ has a finite Green
function for some r > 1 [we will say that such a μ has the property Anc∗, since this
property is called (∗) in Ancona’s paper]. Ancona’s proof is based on an inequality
saying that, in hyperbolic groups, the Green function of a measure with finite sup-
port and property Anc∗ is essentially multiplicative along geodesics: there exists a
constant C such that, for any x, y, z on a geodesic of the group (in this order), one
has

C−1G(x,y)G(y, z) ≤ G(x, z) ≤ CG(x, y)G(y, z).(1.1)

While the first inequality is true for any random walk in any group, the second one
is highly nontrivial. It is used by Ancona to show that the Martin boundary coin-
cides with the geometric boundary. It also plays an important role in the article [3]
by Blachère, Haïssinsky and Mathieu: they prove that this inequality is necessary
and sufficient so that a natural distance associated to the random walk, the Green
distance, is hyperbolic (and they prove several properties of the harmonic mea-
sure at infinity under this condition). It is also instrumental in the articles [7, 8] by
Gouëzel and Lalley, where the asymptotics of transition probabilities in hyperbolic
groups are determined (note that the authors need to extend Ancona inequalities to
some measures that do not satisfy Anc∗). All those results rely on the finiteness of
the support of the measure μ.

Our goal in this article is to see to what extent the previous results can be ex-
tended to measures with infinite support. The tails of the measure, that is, the speed
at which μ(B(e,n)c) tends to 0 [where B(e,n)c denotes the complement of the
ball centered at e of radius n, for some word distance in the group] will play an
important role in the results. We will say that a measure has exponential tails if
there exists K > 1 such that, for large enough n, μ(B(e,n)c) ≤ K−n. We will say
that μ has superexponential tails if this condition is true for all K > 1. Equiva-
lently, μ has exponential tails if, for some δ > 0, the sum

∑
g∈� eδ|g|μ(g) is finite

(where |g| is the distance from e to g in a word metric), and μ has superexponential
tails if this sum is finite for all δ > 0.

Our first result shows that one cannot expect a reasonable description of the
Martin boundary if one only demands an exponential decay of the tails:

THEOREM 1.1. Consider a nonamenable finitely generated group �, and a
sequence yn going to infinity in �. There exists an admissible symmetric probabil-
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ity measure μ on �, with exponential tails, such that yn does not converge in the
Martin boundary ∂μ�.

This implies in particular that there exist uncountably many possible different
Martin boundaries for measures with exponential tails, by a standard diagonal ar-
gument.

If the tails have a better behavior (i.e., if they are superexponential), we can
extend Ancona’s results:

THEOREM 1.2. In a nonelementary hyperbolic group �, consider an admissi-
ble measure satisfying Anc∗, with superexponential tails. Then it satisfies Ancona
inequalities (1.1). In particular, its Martin boundary coincides with the geometric
boundary of the group.

It follows that all the results of [3] describing the geometry of the harmonic
measure (and in particular its pointwise dimension), originally obtained for finitely
supported measures, still hold for measures with superexponential tails.

As we explained before, the results of [7, 8] require Ancona inequalities for
measures that do not satisfy Anc∗. We extend their results to measures with super-
exponential tails.

THEOREM 1.3. In a nonelementary hyperbolic group �, consider an admis-
sible measure μ with superexponential tails and finite Green function. Assume that
one of the following conditions is satisfied:

1. The measure μ is symmetric.
2. The group � is a free group on finitely many generators.
3. The group � is a cocompact lattice of PSL(2,R).

Then μ satisfies Ancona inequalities (1.1). In particular, its Martin boundary co-
incides with the geometric boundary of the group.

It is likely that the above conditions (μ symmetric or � planar) are not necessary
for this theorem, but this is unknown even in the case of a finitely supported μ. The
above conditions are precisely those that are used in [7, 8] to obtain (for finitely
supported measures) Ancona inequalities and a description of the Martin boundary.

The motivation for the results of [7, 8] was to obtain asymptotics of transition
probabilities for random walks. We deduce the corresponding statement in our
setting.

THEOREM 1.4. In a nonelementary hyperbolic group �, consider a symmet-
ric admissible probability measure μ with superexponential tails. Denote by R > 1
the inverse of the spectral radius of the corresponding random walk. For any
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x, y ∈ �, there exists C(x, y) > 0 such that the transition probabilities pn(x, y)

of the random walk at time n satisfy

pn(x, y) ∼ C(x, y)R−nn−3/2

if the walk is aperiodic. If the walk is periodic, this asymptotics holds for even
(resp., odd) n if the distance from x to y is even (resp., odd).

This result is new even for random walks on free groups. Note that, even in the
finitely supported case, the proof requires the symmetry of the measure since the
very end of the argument relies on spectral properties of the Markov operator.

The paper is organized as follows. In Section 2, we recall basic properties of
the Green function. Section 3 is devoted to the construction of pathological Green
functions for measures with exponential tails, proving in particular Theorem 1.1.
The main idea of the construction is that, even with exponential tails, one can
ensure that the most likely way to reach some point is by doing a direct jump.
This makes it possible to prescribe very precisely the asymptotics of the Green
function. Finally, Section 4 is devoted to the positive results in hyperbolic groups,
for measures with superexponential tails. Ancona’s arguments to get his inequality
rely on a subtle induction that does not seem generalizable to the infinite support
situation. We will rather use a lemma of [8] (see Lemma 4.4 below) showing that
some upper bounds on relative Green functions imply Ancona inequalities. Such
upper bounds are more manageable, and can be proved for infinitely supported
measures as we will show.

2. The Green function. Consider a finite admissible measure μ on a finitely
generated group �. We will always assume that its Green function G(x,y) =∑

μn(x−1y) is finite for some x, y (and, therefore, for all x, y by admissibility).
Denote by Pμ the operator associated to μ, given by Pμf (x) = ∑

μ(x−1y)f (y)—
when μ is a probability measure, this is simply the Markov operator associated
to the corresponding random walk. Even when μ is not a probability measure,
we will use probabilistic notation such as pn(x, y) = μn(x−1y), and think of
G(x,y) = ∑

(P n
μδy)(x) as an average time spent at y if one starts from x.

The Green function can also be formulated in terms of paths. Let τ =
(x, x1, . . . , xn−1, y) be a path of length n from x to y, we define its μ-weight
(or simply weight) πμ(τ) = π(τ) by

π(τ) =
n−1∏
i=0

p(xi, xi+1),

where x0 = x and xn = y by convention, and we write p(a, b) = μ(a−1b). We
think of π(τ) as the “probability” to follow the path τ . By definition, G(x,y) =∑

π(γ ), where the sum is over all paths from x to y.
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If 	 is a subset of �, one defines the restricted Green function G(x,y;	) as∑
π(γ ) where the sum is over all paths γ = (x, x1, . . . , xn−1, y) such that xi ∈ 	

for 1 ≤ i ≤ n − 1. If A is a subset of � and x, y /∈ A, one has

G(x,y) = G
(
x, y;Ac) + ∑

a∈A

G
(
x, a;Ac)G(a,y)

= G
(
x, y;Ac) + ∑

a∈A

G(x, a)G
(
a, y;Ac),

where Ac denotes the complement of A. Indeed, the first (resp., second) formula
is proved by splitting a path from x to y according to its first (resp., last) visit to
A if it exists, the remaining trajectories giving the contribution G(x,y;Ac). If all
trajectories from x to y have to go through A, this contribution vanishes. This is
used crucially in the usual arguments for finitely supported measures, where one
uses wide enough “barriers” A between x and y, that any trajectory from x to y has
to visit. In the infinite support situation, the contribution G(x,y;Ac) will always
be present.

More generally, if 	 is a subset of � containing x and y, the above formula
holds restricted to 	, that is,

G(x,y;	) = G
(
x, y;	 ∩ Ac) + ∑

a∈A∩	

G
(
x, a;	 ∩ Ac)G(a,y;	)

(2.1)
= G

(
x, y;	 ∩ Ac) + ∑

a∈A∩	

G(x, a;	)G
(
a, y;	 ∩ Ac).

Let d be a word distance on � coming from a finite symmetric generating set.
If x and y are at distance d , there is a path from x to y with weight bounded from
below by C−d , and staying close to a geodesic segment from x to y. We deduce
that, for any z,

C−d(x,y) ≤ G(x, z)/G(y, z) ≤ Cd(x,y),(2.2)

and similar inequalities hold for the Green function restricted to any set containing
a fixed size neighborhood of a geodesic segment from x to y. These inequalities
are called Harnack inequalities.

The first visit Green function is F(x, y) = G(x,y; {y}c). It only takes into
account the first visits to y. When μ is a probability measure, F(x, y) is the
probability to reach y starting from x. One has G(x,y) = F(x, y)G(y, y) =
F(x, y)G(e, e). Moreover, F(x, y)G(y, z) ≤ G(x, z) (since the concatenation of
a path from x to y with a path from y to z gives a path from x to z). Hence,

G(x,y)G(y, z) ≤ G(e, e)G(x, z).(2.3)

This shows that the left inequality in (1.1) is always true.
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3. Pathological constructions in nonamenable groups. Let � be a finitely
generated nonamenable group. In this section, we construct admissible symmet-
ric probability measures with exponential tails that behave in a pathological way
regarding their Green functions and Martin boundaries.

The basic idea is the following. We start from a symmetric probability measure
ν supported by a finite generating set of �, and we add Dirac masses, with a very
small mass but supported far away from the identity. If we adjust carefully the
weights, the way to reach some far away points with highest probability is to jump
directly onto them (possibly with some short jumps), since an accumulation of
small jumps has a lower probability that one single big jump. In this way, we will
prescribe the behavior of the Green function at different scales.

This type of behavior is reminiscent of Lévy processes on R: when such a pro-
cess is large, this is typically due to one single large jump, the sum of the other
jumps being negligible. We are constructing a kind of Lévy process on �, but
with exponential tails. The reason behind this counterintuitive phenomenon (in R,
Lévy processes need to have heavy tails) is that exponentially small tails can still
dominate the diffusive behavior since the diffusion is also exponentially small in
nonamenable groups.

The precise construction is as follows. Let ρ < 1 be the spectral radius of the
random walk given by ν. It is also the norm of the associated Markov operator Pν

since ν is symmetric. Let us fix a decreasing sequence ri (the exponential weights)
with er0ρ < 1 and lim ri = r > 0. Let us also fix a sequence ni tending very quickly
to infinity, and a symmetric measure μi supported on the ball B(e,ni). Let

μ = ν + ∑
e−riniμi and μ′ = μ/μ(�).

The probability measure μ′ is symmetric, and has exponential tails of order r .
We will see that we can prescribe the behavior of its Green function. Since most
interesting things happen with one jump, we may equivalently work with μ′ or μ.
It will be more convenient to formulate the estimates for μ.

The fact that ri is strictly decreasing is a central point of the construction.
Roughly speaking, if one uses only the measures μi with i ≤ I , then a jump of
size n ≤ nI is made with probability at most e−rI n. This implies that a point at a
large distance n of e will be reached with probability roughly e−rI n. Let us take
n = nI+1, and x a point in the support of μI+1. It can be reached by a direct jump,
with probability of the order of e−rI+1n, which is much bigger than e−rI n since
rI+1 < rI . Hence, direct jumps are more likely than a combination of small jumps,
as desired.

The rigorous version of this argument is slightly more complicated: using the
measures μi with i ≤ I , one can in fact reach a point at distance n with a probabil-
ity at most C(s)e−sn for any s < rI . Hence, we need to introduce another sequence:
we fix once and for all si+1 ∈ (ri+1, ri) (we also require that si+1 < 2ri+1 for
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technical reasons). In the following, we will always assume that ni grows quickly
enough so that

ri+1ni+1 ≥ sini ≥ rini + i + 1(3.1)

and

1

1 − ρer0

∑
e−(ri−si+1)ni ≤ 1

2
.(3.2)

Since ri − si+1 > 0, this can easily be guaranteed. From this point on, the letter C

will denote a constant that can vary from one line to the other, but does not depend
on the choices we have made provided the conditions (3.1) and (3.2) are satisfied.

Let us estimate the Green function G(e, x) associated to μ. This is the sum of
the weights of paths from e to x. We will group together those paths corresponding
to the same sequence of measures ν or μi . This is most conveniently done in
terms of Markov operators as follows. We will write P = Pν and Pi = Pμi

for the
operators associated, respectively, to ν and μi . They satisfy Pμ = P +∑

e−riniPi .
Developing P n

μ and grouping together the successive occurrences of P , we get

G(e, x) = ∑
n

〈
P n

μδx, δe

〉

=
∞∑

�=0

∑
a0,i1,a1,...,i�,a�

〈
P a0e−ri1ni1 Pi1P

a1 · · ·P a�−1e−ri�ni� Pi�P
a�δx, δe

〉
.

Each term in the double sum corresponds to the weight of several trajectories. We
will say that the associated sequence t = (a0, i1, a1, . . . , a�) is a template for this
set of trajectories. The norm of P a on �2(�) is bounded by ρa , and the norm of
Pi is at most 1. Hence, the sum of the weights of trajectories in a template t is
bounded by its weight π(t) defined by

π(t) = ρa0+···+a�e−ri1ni1 · · · e−ri�ni� .

Summing over the templates, we obtain

G(e, x) ≤ ∑′
π(t),(3.3)

where the notation
∑′ indicates that we can remove from the sum all those tem-

plates that give a vanishing contribution to G(e, x), that is, those for which no
trajectory can go from e to x.

It is not clear that the Green function of μ is well defined, since μ is not a
probability measure. We can use (3.3) to show its finiteness, uniformly in x. We
have

∑
t

π(t) ≤ ∑
�

( ∞∑
a=0

ρa

)�+1(∑
i

e−rini

)�

.(3.4)
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The sum over � is a geometric series. It is finite if its general term is < 1, that
is, 1

1−ρ

∑
e−rini < 1. This is a consequence of (stronger) condition (3.2). As

G(e, x) ≤ ∑
π(t), this shows that G(e, x) is well-defined and uniformly bounded.

We need more notation regarding templates. Given a template t = (a0, i1,

a1, . . . , a�), define its length |t | = ∑
ak + ∑

nik : any trajectory in the template
ends at a point at distance at most |t | of the origin. Let also max t = sup ik give
the size of the biggest jump in t . We will write t1 · t2 for the concatenation of two
templates t1 and t2. It satisfies π(t1 · t2) = π(t1)π(t2).

The crucial estimates for template weights are the following.

LEMMA 3.1. For every integers i and n,∑
max t≥i

π(t) ≤ Ce−rini(3.5)

and ∑
max t<i,|t |≥n

π(t) ≤ Ce−sin.(3.6)

As a consequence, for every i ∈N and for every z ∈ �,

G(e, z) ≤ Ce−rini + Ce−si |z|.(3.7)

Inequality (3.5) controls what happens when there is at least one big jump,
while (3.6) controls the combination of several small jumps. The last inequal-
ity (3.7) is a consequence of the other two. Note that, if |z| is comparable
to ni , then the second term in (3.7) is negligible compared to the first one since
sini − rini → +∞ by (3.1). This shows rigorously that the most efficient way to
visit z is to do one big jump rather than many small jumps, as we already explained
informally.

PROOF OF LEMMA 3.1. Let us first show (3.5). A template t with max t ≥ i

can be decomposed as t = t1 · (j) · t2 where t1 and t2 are shorter templates and j

corresponds to a jump of size nj ≥ ni . Therefore,

∑
max t≥i

π(t) ≤
(∑

t1

π(t1)

)( ∞∑
j=i

e−rj nj

)(∑
t2

π(t2)

)
.

The first sum and the last sum are finite by (3.4). The middle one is bounded by
Ce−rini thanks to (3.1). This proves (3.5).

Let us now show (3.6). Writing t = (a0, i1, . . . , a�), the corresponding sum is∑
max t<i,|t |≥n

e−si (a0+···+a�+ni1+···+ni�
)(ρesi

)a0+···+a�e−(ri1−si )ni1 · · · e−(ri�−si )ni� .
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The first factor is e−si |t | ≤ e−sin. This yields a bound

e−sin
∑

max t<i

(
ρesi

)a0+···+a�e−(ri1−si )ni1 · · · e−(ri�−si )ni�

= e−sin
∑
�

( ∞∑
a=0

(
ρesi

)a)�+1(
i−1∑
j=0

e−(rj−si )nj

)�

.

This is again a geometric series. Let us bound esi with er0 in the first factor, and
e−(rj−si )nj with e−(rj−sj+1)nj in the second factor. We get that the general term of
this geometric series is bounded by

1

1 − ρer0

∑
j≥0

e−(rj−sj+1)nj .

Condition (3.2) guarantees that this is ≤ 1/2. Hence, the geometric series is uni-
formly bounded, yielding a bound Ce−sin. This proves (3.6).

Let us finally prove (3.7) using (3.3). To go from e to z, the templates with
max t ≥ i give an overall contribution at most Ce−rini , by (3.5). On the other hand,
if max t < i, then it is possible to reach z using a trajectory in the template only if
|t | ≥ |z|. By (3.6), those terms contribute at most Ce−si |z|. �

This lemma implies that, in general, there is no Ancona inequality (1.1) in non-
amenable groups, for measures with exponential tails.

PROPOSITION 3.2. Let � be a finitely generated nonamenable group. There
exists on � an admissible symmetric probability measure μ′ with exponential tails
whose Green function G′ = Gμ′ does not satisfy Ancona inequalities: there is
no constant C such that G′(x, z) ≤ CG′(x, y)G′(y, z) for any x, y, z ∈ � on a
geodesic in this order.

PROOF. We use the previous construction, with μi = (δzi
+ δ

z−1
i

)/2 where zi

is a point at distance ni of e. We will assume that ni is even, and we will denote
by yi the midpoint of a geodesic segment from e to zi . We will show that

G′(e, zi) ≥ Ce−rini(3.8)

and

G′(e, z) ≤ Ce−sini/2(3.9)

for any z with d(e, z) = ni/2. Hence, G′(e, yi)G
′(yi, zi) ≤ C2e−sini =

o(G′(e, zi)), contradicting any Ancona inequality.
Inequality (3.8) is obvious since the Green function is bounded from below by

the contribution of single jumps: G′(e, zi) ≥ μ′(zi) = μ(�)−1e−rini /2.
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As G′ ≤ G, inequality (3.9) follows from (3.7) since |z| = ni/2. [The first term
in (3.7) is dominated by the second term since we have requested that si < 2ri .]

�

We now turn to the proof of Theorem 1.1. Starting from a sequence yn going to
infinity, we wish to construct the measures μ and μ′ (using the above construction)
so that G′ = Gμ′ is such that, for some point z, the sequence G′(z, yn)/G′(e, yn)

does not converge. We will write G′ = Gμ′ and G = Gμ.
We need to fix an additional sequence s′

i ∈ (ri, si), for instance the middle of
this interval, to get some additional freedom. Taking a subsequence of yn, we can
assume that (

s′
i/ri − 1

)|yi | → ∞,
(
1 − s′

i/si
)|yi | → ∞.(3.10)

Let ni = (s′
i/ri)|yi |. One has yi ∈ B(e,ni) by construction. The condition (3.10)

ensures that, for any C, for large enough i, a point y with |y| ≤ |yi | + C belongs
to B(e,ni). Taking a further subsequence of yi if necessary, we can also assume
that growth conditions (3.1) and (3.2) are satisfied by ni .

To get the divergence of G′(z, yi)/G′(e, yi) for some point z, we will choose
the measures μi so that the limits of this sequence are different along even and odd
values of i (with a limit of the order of 1 along odd i, and a small limit along a
subsequence of even i). For i even, we let μi = (δyi

+ δ
y−1
i

)/2. The choice of μi

for odd i is postponed, let us first see the consequences of our choice for even i.
The statements we will give now are valid for any choice of μi for odd i, with the
only restriction that it has to be a probability measure, supported in B(e,ni).

Let us describe the asymptotics of G(e, zyi) for any fixed z.

LEMMA 3.3. There exists a function 
 :� → (0,+∞), tending to 0 at infinity,
such that for every z there exist infinitely many even indices i for which

G(e, zyi) ≤ 
(z)e−rini .

Let us stress that the function 
 does not depend on the choice of μi for odd i.

PROOF OF LEMMA 3.3. The idea is that, to go from e to zyi , the random walk
will most likely make one big jump of size ni (corresponding to the measure μi),
with weight e−rini /2, and several small jumps. If z is large enough, a large number
of small jumps will be needed, giving a small contribution 
(z). The other cases
(no big jump, or too many big jumps) will have a very small contribution. In this
proof, i will implicitly be restricted to even values.

For the rigorous computation, we start from the bound (3.3) and cut the sum into
several pieces. We should specify in which piece a template t = (a0, i1, . . . , a�)

goes.

• We put in J1 the templates with max t > i.
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• We put in J2 the templates where at least two jumps ik are equal to i.
• We put in J3 the templates with max t < i for which a trajectory can go from e

to zyi .
• Finally, we put in J4 the remaining templates, that is, those with a single jump

of size ni and other shorter jumps, for which a trajectory can go from e to zyi .

Denote by �p the sum corresponding to templates in Jp . We will show that, for
p ≤ 3, one has �p = o(e−rini ) when i tends to infinity, and that for infinitely many
indices i one has �4 ≤ �(z)e−rini for some function � tending to 0 at infinity. The
result follows with 
 = 2� .

Inequality (3.5) implies that �1 ≤ Ce−ri+1ni+1 . As ri+1ni+1 > rini + i + 1
by (3.1), this is negligible compared to e−rini , as desired.

A template t ∈ �2 can be decomposed as t = t1 · (i) · t2 · (i) · t3, for some
templates t1, t2 and t3. Since the sum of the weights of all templates is bounded,
we obtain

�2 ≤ Ce−riniCe−riniC.

This is again negligible with respect to e−rini .
A template t in J3 satisfies |t | ≥ |zyi | and max t < i. Hence, (3.6) gives the

bound �3 ≤ Ce−si |zyi |. We have

si |zyi | − rini ≥ si
(|yi | − |z|) − rini = si

(|yi | − |z|) − s′
i |yi |

= si

((
1 − s′

i

si

)
|yi | − |z|

)
.

As (1 − s′
i/si)|yi | → ∞ by (3.10), this tends to infinity. Hence,

e−si |zyi | = o
(
e−rini

)
.(3.11)

This shows that �3 is negligible with respect to e−rini .
It remains to estimate �4. A template t ∈ J4 can be decomposed uniquely as

t = t1 · (i) · t2, for some templates t1 and t2 with maximum < i. If this tem-
plate contributes to G(e, zyi), then zyi can be written as uy±1

i v with |u| ≤ |t1|
and |v| ≤ |t2|. Denote by ϕi(z) the minimum of the quantities |u| + |v| over all de-
compositions zyi = uy±1

i v, we get |t1| + |t2| ≥ ϕi(z). In particular, |t1| ≥ ϕi(z)/2
or |t2| ≥ ϕi(z)/2. It follows that

�4 ≤ 2
( ∑

max t1<i,|t1|≥ϕi(z)/2

π(t1)

)
e−rini

(∑
t2

π(t2)

)
.

The first sum is bounded by Ce−siϕi(z)/2 ≤ Ce−rϕi(z)/2 by (3.6), and the last sum
is uniformly bounded. Hence,

�4 ≤ Ce−rϕi(z)/2e−rini .
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To conclude, we have to show that ϕi(z) is large for infinitely many values of i,
if z is far away from e. Let A > 0, let us denote by Bi the set of z that can be
written as uy±1

i vy−1
i for some u and v with |u| + |v| ≤ A. The set Bi is finite,

with cardinality at most f (A) = 2(CardB(e,A))2. If z /∈ Bi , it satisfies ϕi(z) > A

by definition. The points with lim supϕi(z) ≤ A belong to
⋃

n

⋂
i>n Bi . This is an

increasing union of sets of cardinality at most f (A), hence it has cardinality at
most f (A). This shows that, apart from finitely many exceptions, lim supϕi(z) >

A; hence, �4 ≤ Ce−rA/2e−rini for infinitely many i’s. �

Let us fix a point z away from the origin, so that 
(z) is suitably small (how
small will be seen later in the proof). We now define the measures μi for odd i. If
i is large enough, zyi ∈ B(e,ni) thanks to (3.10). For those i’s, let

μi = 1
4(δyi

+ δzyi
+ δ

y−1
i

+ δ(zyi)
−1).

The choice of μi for smaller i is not relevant (take, e.g., μi = δe).
If i is large and odd, Lemma 3.1 gives G(e, zyi) ≤ Ce−rini + Ce−si |zyi |.

By (3.11), the second term is negligible with respect to the first one. Hence,
G(e, zyi) ≤ Ce−rini . In the same way G(e, yi) ≤ Ce−rini .

The Green function G′ = Gμ′ is bounded by G = Gμ. For i large and odd,
we obtain G′(e, zyi) ≤ Ce−rini and G′(e, yi) ≤ Ce−rini . As it is possible to jump
directly from e to zyi or yi with weight μ(�)−1e−rini /4, corresponding lower
bounds hold. In particular, there exists a constant C0 such that, for i large and
odd,

G′(e, zyi)

G′(e, yi)
∈ [

C−1
0 ,C0

]
.

For infinitely many (even) values of i, we have G′(e, zyi) ≤ 
(z)e−rini by
Lemma 3.3. Moreover, G′(e, yi) ≥ C−1e−rini [since one can jump directly from
e to yi with weight μ(�)−1e−rini /2]. Hence, for those values of i, there exists a
constant C1 such that

G′(e, zyi)

G′(e, yi)
≤ C1
(z).

We can finally specify the choice of z: as 
 tends to 0 at infinity, we may choose
z such that C1
(z) < C−1

0 . The previous estimates imply that

lim inf
i

G′(e, zyi)

G′(e, yi)
≤ C1
(z) < C−1

0 ≤ lim sup
G′(e, zyi)

G′(e, yi)
.

In particular, the sequence G′(e, zyi)/G′(e, yi) does not converge when i tends to
infinity. Equivalently, G′(z−1, yi)/G′(e, yi) does not converge. This completes the
proof of Theorem 1.1.
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4. Positive results in hyperbolic groups.

4.1. Preliminaries. A hyperbolic group is a finitely generated group in which
geodesic triangles are δ-thin for some δ, that is, each side of the triangle is included
in the δ-neighborhood of the union of the other sides. This notion is independent
of the choice of the generating system (albeit the constant δ does change with
the generating system). See, for instance, [6]. This essentially means that finite
configurations of points in the group resemble finite configurations of points in a
tree—this intuition is made precise by the following classical theorem.

THEOREM 4.1. For any n ∈ N and δ > 0, there exists a constant C = C(n, δ)

with the following property. Consider a subset A of a δ-hyperbolic group, of car-
dinality at most n. There exists a map 
 from A to a metric tree such that, for any
x, y ∈ A,

d(x, y) − C ≤ d
(

(x),
(y)

) ≤ d(x, y).

Another intuition is that δ-hyperbolic spaces resemble the usual hyperbolic
space H

m. Again, this is made precise by the following theorem [4]. We will write
dH for the hyperbolic distance in H

m, and |x|H = dH(x,O) where O is a fixed
reference point in H

m.

THEOREM 4.2. Consider a hyperbolic group �. If m is large enough, there
exist a mapping � :� →H

m and λ > 0, C > 0 such that, for all x, y ∈ �,∣∣λdH
(
�(x),�(y)

) − d(x, y)
∣∣ ≤ C.

Ancona’s original strategy [1] to prove Ancona inequalities (1.1) for finitely
supported measures, based on a subtle induction, is apparently difficult to extend
to measures with infinite support. We will rather rely on the strategy of [8], and in
particular on the following lemma (see the proofs of Theorems 4.1 and 4.3 in [8]).
We recall that the relative Green function G(x,y;	) has been defined in Section 2.

DEFINITION 4.3. Let μ be an admissible measure with finite Green func-
tion on a hyperbolic group. It satisfies pre-Ancona inequalities if, for all K > 0,
there exists n0 such that, for all n ≥ n0, for all points x, y, z on a geodesic seg-
ment (in this order) with d(x, y) ∈ [n,100n] and d(y, z) ∈ [n,100n], one has
G(x, z;B(y,n)c) ≤ K−n.

LEMMA 4.4. Let μ be an admissible measure on a hyperbolic group. Assume
that μ satisfies pre-Ancona inequalities. Then it satisfies Ancona inequalities (1.1).
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This lemma justifies the name “pre-Ancona inequalities.” It is proved in [8] as
follows. Assume that x, y, z are given along a geodesic, and one wants to prove
that G(x, z) ≤ CG(x, y)G(y, z). One constructs a string of beads along a geodesic
segment [x, z], the size of a bead being proportional to its distance to y. Then, us-
ing pre-Ancona inequalities, one shows inductively that the weight of trajectories
avoiding any bead is comparatively small. It follows that most weight comes from
trajectories passing in a bead within distance O(1) of y, as desired.

To prove Ancona inequalities, our strategy will always be to show that pre-
Ancona inequalities are satisfied.

4.2. Ancona inequalities for measures satisfying Anc∗. In this paragraph, we
prove Theorem 1.2. Consider an admissible measure μ on a hyperbolic group,
with superexponential tails and satisfying Anc∗, we will show that it satisfies pre-
Ancona inequalities. We have to show that, for any points x, y, z on a geodesic in
this order with n ≤ d(x, y), d(y, z) ≤ 100n, the Green function G(x, z;B(y,n)c)

decays superexponentially fast in terms of n.
We express things in terms of operators. Let P = Pμ be the operator associated

to μ. We decompose P as An +Bn where An corresponds to jumps of size at most
n/2, and Bn to the bigger jumps. On �2, they satisfy ‖An‖ ≤ ‖P‖ ≤ μ(�) (which
is finite since μ has well-defined tails), and ‖Bn‖ decays superexponentially fast
in terms of n by assumption.

Let us fix a constant C0. The Green function G(x, z) is the sum of the weights
π(τ) of all paths τ from x to z. The contribution of paths with length at most C0n

is

C0n∑
k=0

P kδz(x) =
C0n∑
k=0

(An + Bn)
kδz(x) ≤

C0n∑
k=0

∥∥(An + Bn)
k
∥∥

≤
C0n∑
k=0

k∑
�=0

(
k

�

)
‖An‖�‖Bn‖k−�.

By Anc∗, there exists r > 1 such that the measure rμ has a finite Green function.
The contribution to G(x, z) of paths longer than C0n is∑

k>C0n

pk(x, z) ≤ r−C0n
∑

k>C0n

rkpk(x, z) ≤ r−C0nGrμ(x, z).

The quantity Grμ(x, z) grows at most exponentially in terms of n, thanks to Har-
nack inequality (2.2) and since d(x, z) ≤ 200n. Hence, we obtain from some con-
stant D0 independent of C0

G(x, z) ≤
C0n∑
k=0

k∑
�=0

(
k

�

)
‖An‖�‖Bn‖k−� + r−C0nDn

0 .(4.1)
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Let us now estimate G(x, z;B(y,n)c). Consider a trajectory from x to z outside
of B(y,n) with jumps bounded by n/2. Putting geodesics between the successive
points of the trajectory, one obtains a path from x to z avoiding B(y,n/2). This
path is exponentially long (since this is the case in hyperbolic space, to which the
group can be compared thanks to Theorem 4.2). Hence, the number of jumps is at
least Ceαn/n ≥ Ceβn. It follows that, among trajectories of length at most C0n,
it is necessary to have a jump larger than n/2 if n is large enough. This shows
that, in (4.1), the terms with k = � (i.e., coming from Ak

n) do not contribute to
G(x, z;B(y,n)c). This equation gives

G
(
x, z;B(y,n)c

) ≤
C0n∑
k=0

k−1∑
�=0

(
k

�

)
‖An‖�‖Bn‖k−� + r−C0nDn

0 .

As k − � ≥ 1, we can bound ‖Bn‖k−� with ‖Bn‖, yielding

G
(
x, z;B(y,n)c

) ≤ ‖Bn‖
C0n∑
k=0

k−1∑
�=0

(
k

�

)
‖An‖� + r−C0nDn

0

≤ ‖Bn‖
C0n∑
k=0

(‖An‖ + 1
)k + r−C0nDn

0

≤ ‖Bn‖
C0n∑
k=0

(‖P‖ + 1
)k + r−C0nDn

0

≤ ‖Bn‖DC0n
1 + r−C0nDn

0 ,

for some constant D1 independent of C0.
Let us complete the proof. Fix K > 1, we want to show that G(x, z;B(y,n)c) ≤

2K−n if n is large enough. First, we choose C0 with r−C0D0 < K−1, so that the
second term in the previous equation is bounded by K−n. Then, as ‖Bn‖ decays
superexponentially, we have ‖Bn‖DC0n

1 ≤ K−n if n is large enough.

REMARK 4.5. If the measure μ has finite support, the proof simplifies dras-
tically since there is no trajectory from x to z with length at most C0n avoiding
B(y,n). Hence, one gets a very simple proof of Ancona’s original results [1] (most
of the complexity is in fact hidden in Lemma 4.4).

4.3. Ancona inequalities in the free group. In this paragraph, we prove the
second item of Theorem 1.3: in a free group, an admissible measure μ with su-
perexponential tails and finite Green function satisfies Ancona inequalities. Since
Ancona inequalities for finitely supported measures are trivial in the free group, the
only difficulty comes from long jumps. The trick we will devise to handle those
long jumps (replacing a trajectory involving a long jump by a longer trajectory
with short jumps) will be used several times in the rest of the paper.
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By Lemma 4.4, it suffices to show that μ satisfies pre-Ancona inequalities. Con-
sider three points x, y, z on a geodesic in this order with n ≤ d(x, y), d(y, z) ≤
100n, we want to show that G(x, z;B(y,n)c) is superexponentially small. We may
assume without loss of generality that y = e. We will first give the proof assuming
for simplicity that μ gives positive mass to every generator of the group.

Denote by Z0, . . . ,ZN the finitely many connected components of � −
B(e,n/2), with x ∈ Z0 and z ∈ ZN . Let also Ai = Zi ∩ (� − B(e,n)).

Consider a trajectory τ = (x0 = x, x1, . . . , xk−1, xk = z) of the random walk
from x to z, avoiding B(e,n). It cannot stay forever in A0, let us say that the first
jump outside of A0 is from xi to xi+1. We associate to τ a modified trajectory
m(τ) (again from x to z) as follows. Let a and b be different elements in the
support of μ. Let τi be a geodesic from xi to e, with length ni = |xi |, and let τi+1
be a geodesic from e to xi+1, with length ni+1 = |xi+1|. We let

m(τ) = (
x0, . . . , xi−1, (τi), a, a−1, . . . , a, a−1,

(4.2)
b, b−1, . . . , b, b−1, (τi+1), xi+2, . . . , xk = z

)
,

where we put ni copies of a, a−1 and ni+1 copies of b, b−1. The interest of this
insertion is that the map τ → m(τ) is one-to-one: if one knows m(τ), then the
number of a, a−1 following the first return to e gives ni . In the same way, one can
determine ni+1. Removing the pieces of length ni − 1 before the first return to e,
and ni+1 − 1 after the last return to e, one recovers the initial trajectory τ .

To get m(τ), we removed a big jump of τ , and we added 3(ni + ni+1) jumps
of length 1 (with weight uniformly bounded from below, by a constant C−1

0 ). We
obtain

π
(
m(τ)

) ≥ π(τ)C
−3(ni+ni+1)

0 /π(xi, xi+1).

For any constant K , there exists CK such that π(e,u) = μ(u) ≤ CKK−|u| since μ

has superexponential tails. Hence, we get

π(τ) ≤ π
(
m(τ)

)
C

3(ni+ni+1)

0 CKK−d(xi ,xi+1).

Since xi and xi+1 belong to different connected components of � − B(e,n/2),
we have d(xi, xi+1) ≥ |xi | + |xi+1| − n. As |xi | ≥ n and |xi+1| ≥ n, this gives
d(xi, xi+1) ≥ (|xi | + |xi+1|)/2 = (ni + ni+1)/2. We get

π(τ) ≤ π
(
m(τ)

)
C

3(ni+ni+1)

0 CKK−(ni+ni+1)/2.

If K is large enough so that C3
0K−1/4 ≤ 1, we obtain

π(τ) ≤ π
(
m(τ)

)
CKK−(ni+ni+1)/4 ≤ π

(
m(τ)

)
CKK−n/2.

The map τ 
→ m(τ) is one-to-one. Summing over all trajectories from x to z out-
side of B(e,n), we obtain

G
(
x, z;B(e,n)c

) ≤ CKK−n/2G(x, z).
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Since d(x, z) ≤ 200n, we have G(x, z) ≤ Cn by Harnack inequalities (2.2). As
K can be arbitrarily large, this shows that G(x, z;B(e,n)c) is smaller than any
exponential, as desired. This completes the proof of pre-Ancona inequalities when
μ gives positive mass to all generators.

In the general case, one has to tweak the definition of the modified trajectory
m(τ) to ensure that m(τ) has positive weight, while retaining the injectivity of
the map τ 
→ m(τ). One can, for instance, proceed as follows. To each genera-
tor s, let us associate a path σs from e to s with π(σs) > 0—such a path exists
since μ is admissible. Then, in the definition of m(τ), one replaces the geodesic
τi = s1 · · · sni

with the concatenation τ̃i of the paths σs1 · · ·σsni
. In the same way,

one replaces τi+1 with the corresponding path τ̃i+1. Note that π(τ̃i) ≥ C
−ni

1 and
π(τ̃i+1) ≥ C

−ni+1
1 for some constant C1, since the lengths of τ̃i and τ̃i+1 are

bounded, respectively, by Cni and Cni+1.
A problem that may appear with this construction is that the first return to e in

m(τ) might happen before the end of τ̃i , so that the reconstitution of τ from m(τ)

is problematic. To avoid this problem, one may add a loop γ from e to itself, with
π(γ ) > 0, that does not appear when one concatenates paths σs along a geodesic
segment. In the end, one chooses for m(τ) the trajectory(

x0, . . . , xi−1, (τ̃i), (γ ), (α), . . . , (α), (β), . . . , (β),
(4.3)

(γ ), (τ̃i+1), xi+2, . . . , xk = z
)
,

where α and β are two fixed distinct loops from e to e with positive weight, and
one puts |τ̃i | terms α and |τ̃i+1| terms β . By construction, τ 
→ m(τ) is one-to-one
and π(m(τ)) ≥ π(τ)C

ni+ni+1
2 /π(xi, xi+1) for some constant C2. The rest of the

argument goes through.

4.4. Ancona inequalities for symmetric measures. In this paragraph, we prove
the first item of Theorem 1.3: in a hyperbolic group, a symmetric admissible
measure μ with superexponential tails and finite Green function satisfies An-
cona inequalities. By Lemma 4.4, it suffices to show that it satisfies pre-Ancona
inequalities. Consider three points x, y, z on a geodesic in this order with n ≤
d(x, y), d(y, z) ≤ 100n; we want to show that G(x, z;B(y,n)c) is superexponen-
tially small. We may assume without loss of generality that y = e.

The proof follows the strategy in [7], Theorem 2.3: we will construct several
barriers so that most trajectories from x to z will visit them. The construction is
made in H

m, using an approximate embedding � of � inside H = H
m given by

Theorem 4.2. We will think of Hm using the model of the unit ball in R
m, hence

its boundary is identified with the unit sphere Sm−1. We denote by O the center
of the unit ball in R

m. Changing the generators of the group if necessary, we may
assume that μ gives positive mass to all of them. We will need to choose at some
point in the proof some very small ε, and we will denote by C a generic constant
that does not depend on ε.

We will use the following easy lemma of hyperbolic geometry.
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LEMMA 4.6. There exist α > 0 and C > 0 with the following property: for
any points a and b in a ball BH(u, |u|H/9) of Hm, the angle between [Oa] and
[Ob] is at most Ce−α|u|H .

The hyperbolic geodesic from �(x) to �(z) can be extended biinfinitely. Com-
posing � with a hyperbolic isometry, we can assume that the center O of the unit
ball in R

m belongs to this geodesic, and that �(e) is at a bounded distance of O .
Let ξ denote the limit in negative time of this geodesic.

To an angle θ ∈ (0, π), we associate the union Y(θ) of all semiinfinite geodesics
[Oζ) (with ζ ∈ Sm−1) making an angle θ with [Oξ) (its boundary at infinity is the
set of points of Sm−1 at distance θ of ξ ). This is the boundary of a cone based
at O . Let Z(θ) be the union of all hyperbolic balls BH(u, |u|H/10) for u ∈ Y(θ).
This is a thickening of Y(θ), thicker and thicker close to infinity. It cuts H

m into
two connected components.

LEMMA 4.7. If u and v are two points in the two components of Hm − Z(θ),
one has

dH(u, v) ≥ (|u|H + |v|H)
/11.

PROOF. The hyperbolic geodesic from u to v intersects Y(θ) at a sin-
gle point w. It satisfies dH(u, v) = dH(u,w) + dH(w, v). By assumption, u /∈
BH(w, |w|H/10), hence dH(u,w) ≥ |w|H/10. Trivially, dH(u,w) ≥ |u|H − |w|H.
For any t ∈ [0,1], we obtain

dH(u,w) ≥ t |w|H/10 + (1 − t)
(|u|H − |w|H)

.

Let t = 10/11, so that the terms involving |w|H cancel each other. We are left with
dH(u,w) ≥ |u|H/11. Since an analogous estimate is true for v, this completes the
proof. �

Let A(θ) = B(e,n)c ∩ �−1(Z(θ)) ⊂ � be the set of points of � outside of
B(e,n) whose image under � belongs to Z(θ). The previous lemma shows that,
if a trajectory in � jumps past A(θ), it has to make a big jump.

Let N = �eεn�. In X = [0, π], let Xi = [(2i − 1)/N,2i/N] for 1 ≤ i ≤ N . For
any θi ∈ Xi and θi+1 ∈ Xi+1, the visual angle from O between two points in Y(θi)

and Y(θi+1) is at least e−εn. It follows from Lemma 4.6 that, if ε is small enough
and if n is large enough, the angle between two points in Z(θi) and Z(θi+1) is at
least e−εn/2. This shows in particular that A(θi) and A(θi+1) are disjoint.

LEMMA 4.8. If ε is small enough, there exist angles θi ∈ Xi such that, for all
0 ≤ i ≤ N , ∑

u∈Ai,v∈Ai+1

G(u,v)2 ≤ 1/4,(4.4)
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where G is the Green function associated to μ and we denoted A0 = {x}, AN+1 =
{z} and Ai = A(θi) for 1 ≤ i ≤ N .

This lemma shows that one can choose barriers so that the weight of trajectories
going from one barrier to the next is small. This will guarantee that trajectories vis-
iting all barriers have a superexponentially small weight. It will remain to handle
trajectories jumping past barriers—we will use Lemma 4.7 to show that the jumps
have to be large, implying that these trajectories contribute again with a very small
weight thanks to the argument of Section 4.3.

PROOF OF LEMMA 4.8. The proof is similar to that of Lemma 2.6 in [7]; the
difference is that we are considering thicker barriers. For a ∈ �, let Xi(a) be the
set of angles θ ∈ Xi such that a ∈ A(θ). If one shows that

Leb
(
Xi(a)

) ≤ Ce−α|a|(4.5)

for some α independent of ε, the remaining part of the argument of [7] will apply
verbatim. We sketch very quickly the rest of the argument in [7] for the conve-
nience of the reader.

Using hyperbolicity, one checks that a supermultiplicative function H with∑
x∈� H(e, x) < ∞ has bounded sum on any sphere S

k , that is,
∑

x∈Sk H(e, x) ≤
C uniformly in k, where C does not depend on H . This estimate applies to
Hr(e, x) = Grμ(e, x)Grμ(x, e) for any r < 1. Letting r tend to 1 and using the
symmetry of μ, we obtain

∑
x∈Sk G(e, x)2 ≤ C. Hence, the function G(e, x) is not

in �2(�), but close. In particular, if A is a subset such that Card(A∩S
k) is exponen-

tially smaller than S
k , one expects that typically

∑
x∈A G(e, x)2 will be finite (and

small if A is thin enough). Of course, this might not be true for all such subsets A,
but it will be true for most subsets A in a suitable sense. The lemma is proved by
showing that, if one chooses θi randomly in Xi , then the estimate (4.4) holds with
positive probability. This follows from the combination of inequality (4.5) with the
estimate

∑
x∈Sk G(e, x)2 ≤ C.

It remains to prove (4.5). Since distances in the group and in hyperbolic space
are equivalent, it is sufficient to show the corresponding estimate in H, that is, for
all u ∈ H,

Leb
{
θ :u ∈ Z(θ)

} ≤ Ce−α|u|H .

For u ∈ Z(θ), there exists v ∈ Y(θ) such that dH(u, v) ≤ |v|H/10. Since |v|H/10 ≤
(dH(u, v) + |u|H)/10, we get dH(u, v) ≤ |u|H/9, that is, v ∈ BH(u, |u|H/9).
Lemma 4.6 shows that the trace at infinity of this ball gives rise to an exponen-
tially small angle. This completes the proof. �

Let us prove the pre-Ancona inequalities. The Green function G(x, z;B(e,n)c)

is the sum of the weights π(τ) of the trajectories τ from x to z avoiding B(e,n).
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We will say that such a trajectory is walking if it visits in this order the barriers
A1, . . . ,AN constructed in Lemma 4.8, and jumping otherwise.

Decomposing walking trajectories according to their first visits to the barriers,
we get that their contribution to G(x, z;B(e,n)c) is bounded by∑

a1∈A1,...,aN∈AN

G(x, a1)G(a1, a2) · · ·G(aN−1, aN)G(aN, z).

Using the estimate (4.4) on barriers and Cauchy–Schwarz inequality, one shows
that this is bounded by 2−N ≤ 2−eεn+1 (see the beginning of the proof of
Lemma 2.6 in [7]). Hence, the contribution of walking trajectories is smaller than
any exponential, as desired.

Consider now a jumping trajectory τ = (x0 = x, x1, . . . , xk−1, xk = z), and as-
sume that the first jump past a barrier happens at index i, from xi to xi+1. One
associates to τ a modified trajectory m(τ) as in Section 4.3 [see equation (4.2)
there—as we assume that μ gives positive weight to the generators, there is no
need to use the more complicated definition (4.3)]. Lemma 4.7 shows that there
exists a constant C such that d(xi, xi+1) ≥ C−1(|xi | + |xi+1|). This is sufficient
for all the computations of Section 4.3. It follows that the contribution of jumping
trajectories is smaller than any exponential, as desired.

4.5. Ancona inequalities in Fuchsian groups. In this paragraph, we prove the
third item of Theorem 1.3: an admissible measure μ with superexponential tails
and finite Green function on a cocompact lattice � of PSL(2,R) satisfies Ancona
inequalities. Since the argument follows rather closely the previous subsection, we
will only sketch the argument. Note that � is quasi-isometric with H

2, giving an
identification of the boundary ∂� with the circle S1. The planarity of H2 will be
essential.

Again, we want to prove pre-Ancona inequalities between points x, y and z

with n ≤ d(x, y), d(y, z) ≤ 100n, and we may assume that y = e. As in the previ-
ous subsection, we will construct several barriers between x and z, and treat sep-
arately trajectories that visit all the barriers (walking trajectories) and trajectories
that jump past a barrier (jumping trajectories).

The basic ingredient for the barriers is constructed in [7], Appendix A: it is
shown there that, for any finite family of disjoint subintervals I (1), . . . , I (N) of S1,
one can find for 1 ≤ i ≤ N paths X

(i)
n in the Cayley graph of � starting from e

such that:

• One has d(X
(i)
k ,X

(i)
k+1) ≤ 1.

• The path X
(i)
k converges to a point in I (i) when k → ∞.

• There exist α > 0 and C > 0 such that

G
(
e,X

(i)
k

) ≤ Ce−αk and G
(
X

(i)
k ,X

(j)
�

) ≤ Ce−α(k+�) for all i �= j.(4.6)



2394 S. GOUËZEL

• For some s > 0, one has d(e,X
(i)
k ) ∼ sk.

The constant C in the third item depends on N , while the other constants do not.
The paths X

(i)
k are constructed as typical trajectories of another (symmetric) ran-

dom walk. The inequalities for G only rely on the supermultiplicativity (2.3) of the
Green function of μ (and a version of Kingman’s ergodic theorem)—in particular,
the finiteness of the support of μ is not required.

Given such trajectories, one can replace each point X
(i)
k by a ball B(X

(i)
k ,C)

of some fixed radius C. This yields barriers that random walks with finite range
cannot avoid, as in [7]. The inequalities in (4.6) guarantee that such barriers
satisfy an inequality similar to (4.4). However, such a thickening does not im-
ply that a jump past the barrier has to be long. Let us define a thicker bar-
rier by Zi = ⋃

k B(X
(i)
k , ck), where c ≤ 1 is a suitably small constant, and let

Ai = Zi ∩ (� − B(e,n)).
As in Lemma 4.7, one shows that jumps above such barriers have to be long. It

follows that jumping trajectories will give a contribution to G(x, z;B(e,n)c) that
is smaller than any exponential, as in Section 4.3.

To control the contribution of walking trajectories, it only remains to prove that
an inequality similar to (4.6) holds: if n is large enough,∑

u∈Ai,v∈Aj

G(u, v)2 ≤ 1/4.(4.7)

To prove this estimate, consider two points u and v in Ai and Aj . They belong to

balls B(X
(i)
k , ck) and B(X

(j)
� , c�). Note first that

n ≤ |u| ≤ ∣∣X(i)
k

∣∣ + ck ≤ (1 + c)k.

In particular, k ≥ n/2. In the same way, � ≥ n/2. Thanks to Harnack inequali-
ties (2.2), we have

G(u,v) ≤ C
d(u,X

(i)
k )

0 C
d(X

(j)
� ,v)

0 G
(
X

(i)
k ,X

(j)
�

) ≤ Cck+c�
0 Ce−α(k+�).

If c is small enough, this is bounded by Ce−α(k+�)/2. Hence, we get∑
u∈Ai,v∈Aj

G(u, v)2 ≤ C
∑

k,�≥n/2

CardB
(
X

(i)
k , ck

)
CardB

(
X

(j)
� , c�

)
Ce−α(k+�).

If c is small enough, CardB(X
(i)
k , ck) = CardB(e, ck) grows at most like eαk/2.

The estimate (4.7) follows for large n.

4.6. Strong Ancona inequalities. The proof of Theorem 1.4 on the asymptotics
of transition probabilities involves a reinforcement of Ancona inequalities, called
strong Ancona inequalities and defined as follows.
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DEFINITION 4.9. An admissible measure μ with finite Green measure on a
hyperbolic group satisfies strong Ancona inequalities if it satisfies Ancona inequal-
ities and, additionally, there exist constants C > 0 and ρ > 0 such that, for all
points x, x′, y, y′ whose configuration is approximated by a tree as follows:

y

y′ x
x′

≥ n

one has ∣∣∣∣ G(x,y)/G(x′, y)

G(x, y′)/G(x′, y′)
− 1

∣∣∣∣ ≤ Ce−ρn.(4.8)

Usual Ancona inequalities ensure that (G(x, y)/G(x′, y))/(G(x, y ′)/G(x′, y′))
[the quantity on the left-hand side of (4.8)] is bounded from above and from below.
Strong Ancona inequalities strengthen this by saying that it is exponentially close
to 1, in terms of the distance between {x, x′} and {y, y′}.

In this paragraph, we will prove the following theorem.

THEOREM 4.10. In a hyperbolic group �, consider an admissible measure
μ with finite Green function and superexponential tails. Assume that μ satisfies
pre-Ancona inequalities. Then it satisfies strong Ancona inequalities.

Quantitative inequalities such as strong Ancona inequalities are instrumental
to get asymptotics of transition probabilities. Indeed, the following holds. Con-
sider an admissible symmetric probability measure μ on a hyperbolic group, let
R denote the inverse of the spectral radius of the corresponding random walk, and
assume that the measures rμ (for 1 ≤ r ≤ R) satisfy strong Ancona inequalities,
uniformly in r (i.e., with the same C and the same ρ). If the random walk generated
by μ is aperiodic, it follows that pn(x, y) ∼ C(x, y)R−nn−3/2 for all x, y ∈ �. If
μ is periodic, this is true for even n (resp., odd n) if the distance from x to y is even
(resp., odd). This statement follows from [8], Theorem 9.1 and [7], Theorem 3.1.

PROOF OF THEOREM 1.4. Consider an admissible symmetric probability
measure μ with superexponential tails in a hyperbolic group �. Let R denote the
inverse of its spectral radius.

It follows from the discussion in the previous paragraph that, to prove Theo-
rem 1.4, it suffices to prove strong Ancona inequalities for the measures rμ, uni-
formly in 1 ≤ r ≤ R. Pre-Ancona inequalities have been proved in Section 4.4
for each of those measures, hence they also satisfy strong Ancona inequalities by
Theorem 4.10. The only remaining problem is the uniformity of those inequalities
for 1 ≤ r ≤ R. One checks in the proof of Theorem 4.10 that the constants C and
ρ one obtains only depend on the constants in the pre-Ancona inequalities and
in the Harnack inequalities. The pre-Ancona inequalities for Rμ imply the same
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inequalities for rμ for any r , since rμ ≤ Rμ. Hence, the pre-Ancona inequalities
are uniform. Moreover, it is clear that the Harnack inequality are also uniform in r .

�

The rest of this subsection is devoted to the proof of Theorem 4.10. The argu-
ment dates back to Anderson and Schoen [2]. For finitely supported measures, the
methods of [2] were adapted to the free group by Ledrappier [10], and then to any
hyperbolic group by Izumi, Neshveyev and Okayasu [9]. The idea is to define a
sequence of shrinking domains on which two given positive harmonic functions
(with a common normalization) have to be closer and closer, by an inductive ar-
gument: one shows that two positive harmonic functions defined on one of those
domains have a common significant part on a smaller domain. One can then sub-
tract this common part to both functions in the smaller domain, and repeat the
argument. In particular, one always works with positive harmonic functions, but
defined on smaller and smaller domains.

While we will essentially follow the same strategy, the difficulty in the case
of infinitely supported measures is that harmonicity becomes a global property,
involving the whole group: it will not be possible to work with functions defined
only on subdomains, we will need to keep track of the behavior of functions in
the whole group. We will retain positivity in the smaller domains, but we will also
need quantitative controls everywhere in the group.

The proof will involve not only global Ancona inequalities, but also Ancona
inequalities for Green functions restricted to some classes of domains (as defined
in Section 2).

DEFINITION 4.11. Let H0 be a constant. Let [x, z] be a geodesic in �, and let
y ∈ [x, z]. We say that a subset 	 of � is H0-hourglass-shaped around x, y, z if,
for any w ∈ [x, z], the ball B(w,H0 + d(w,y)/2) is included in 	.

The proof of Ancona inequalities from pre-Ancona inequalities (that we de-
scribed briefly after Lemma 4.4) still works in H0-hourglass-shaped domains,
since it shows that most trajectories flow along the hourglass. This implies the
following lemma (this is Theorem 4.1 in [8]).

LEMMA 4.12. Consider an admissible measure μ satisfying pre-Ancona in-
equalities in a hyperbolic group. Let H0 be large enough. There exists C > 0 such
that, for any domain 	 which is H0-hourglass-shaped around three points x, y, z

on a geodesic (in this order), the Green function relative to 	 satisfies Ancona
inequalities, that is,

G(x, z;	) ≤ CG(x, y;	)G(y, z;	).
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z̃

�

y∗ L L

z0

L L L

z∗
L

x∗

	(6)

u ≥ 0, u harmonic

	(5) ∼ D

	(2)

	(1)

FIG. 1. The domains in Lemma 4.13.

From this point on, we fix an admissible measure μ with superexponential tails,
which satisfies pre-Ancona inequalities. We will prove that it satisfies strong An-
cona inequalities. We fix the constant H0 given by Lemma 4.12 for this measure.

The next lemma gives the basic inductive step for the proof of Theorem 4.10.
For u, v, z ∈ �, we write (u, v)z for their Gromov product, given by (u, v)z =
(d(u, z) + d(v, z) − d(u, v))/2. This is essentially the length of the part that is
common to two geodesics [z,u] and [z, v].

LEMMA 4.13. There exists C1 > 1 such that, for any D > 0, the following
holds if L is a large enough even integer. Consider a geodesic segment γ between
two points x∗ and y∗, of length 7L. Let 	(j) = {z : (y∗, z)x∗ ≤ jL} for 1 ≤ j ≤ 6
(this is essentially the set of points whose projection on γ is at distance at most
jL of x∗) and let z∗ be the point at distance 3L/2 of x∗ on γ . Let H be the set of
functions u :� →R satisfying the following properties:

1. the function u is positive on 	(6);
2. for all z ∈ �, one has |u(z)| ≤ Dd(z,z∗)u(z∗);
3. the function u is harmonic on 	(6), that is, u(z) = ∑

w∈� p(z,w)u(w) for
all z ∈ 	(6) (note that the previous property ensures that this sum is well defined,
since μ has superexponential tails);

4. the function |u(z)| is bounded by a finite linear combination of functions
G(z, ti).
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Then there exists a domain D, included in 	(6) and including 	(5) such that, for
all z ∈ 	(1), for all u ∈ H,

C−1
1 ≤ u(z)

G(z, z∗;D)u(z∗)
≤ C1.

Note that the Green function G(z, z∗;D) satisfies a Harnack inequality on 	(1),

of the form G(z, z∗;D) ≤ C
d(z,z′)
0 G(z′, z∗;D) where the constant C0 only depends

on μ. Therefore, the conclusion of the lemma implies that, for all z, z′ ∈ 	(1), one
has

u(z) ≤ C2
1C

d(z,z′)
0 u

(
z′).

This inequality should be compared to the second assumption on u, involving an
arbitrarily large constant D. Hence, the lemma asserts that a weak growth control
implies in fact a much stronger growth control (but on a smaller domain). This
remark will be crucial to check inductively the assumptions of the lemma.

PROOF OF LEMMA 4.13. Let D > 0 be fixed, we will show the conclusion of
the lemma if L is large enough. We will write oL(1) for a term that may depend
on D and L, and tends to 0 when L tends to infinity (with fixed D). We will also
write C for generic constants that do not depend on D. In particular, the constants
in various Harnack inequalities will be denoted by C0.

STEP 1. There exists a domain D, containing 	(5) and contained in a fixed
size neighborhood of 	(5), such that for all z, z′ ∈ D there exists a path in D from

z to z′ with weight at least C
−d(z,z′)
0 .

PROOF. The set 	(5) is convex, up to a constant K0: any geodesic between two
points in 	(5) is contained in its neighborhood B(	(5),K0). Let K1 be such that
any generator can be written as the product of at most K1 elements in the support
of μ. Between any points z, z′ ∈ 	(5), there exists a path staying in B(	(5),K0 +
K1) of length at most K1d(z, z′) whose transitions are all in a finite subset of

the support of μ. The weight of this path is therefore at least C̄
−d(z,z′)
0 , for some

C̄0 > 0.
For all z ∈ B(	(5),K0 +K1), choose a point ζz in 	(5) with d(z, ζz) ≤ K0 +K1,

and choose two paths τz and τ ′
z, respectively, from z to ζz and from ζz to z, with

uniformly bounded length, and weight uniformly bounded from below. Let finally
D be the union of all the (points visited by the) paths τz and τ ′

z.
This set satisfies the required properties. Indeed, fix w and w′ ∈ D, we construct

a path from w to w′ with weight at least C
−d(w,w′)
0 as follows. First, let z be such

that w ∈ τz ∪ τ ′
z, and z′ be such that w′ ∈ τz′ ∪ τ ′

z′ . We can go from w to ζz in
τz ∪ τ ′

z ⊂D with weight bounded from below, then from ζz to ζz′ in B(	(5),K0 +
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K1) ⊂ D with weight at least C̄
−d(ζz,ζz′ )
0 ≥ C−1C̄

−d(w,w′)
0 , and then from ζz′ to w′

in τz′ ∪ τ ′
z′ ⊂ D with weight bounded from below. The concatenation of these three

paths stays in D and has weight at least C
−d(w,w′)
0 for some C0, as desired. �

We deduce in particular of the properties of D that, for all z, z′ ∈ D,

G
(
z, z∗;D) ≥ C

−d(z′,z∗)
0 G

(
z, z′;D)

(4.9)

since a path from z to z′ can be extended in D by a path from z′ to z∗ with weight

at least C
−d(z′,z∗)
0 .

Let u be a function in H.

STEP 2. For all z ∈ 	(2),

u(z) = ∑
w∈	(6)−D

G(z,w;D)u(w) + oL(1)G
(
z, z∗;D)

u
(
z∗)

.(4.10)

One interest of this formula is that the values of u appearing on the right-hand
side are all positive since w ∈ 	(6).

PROOF OF STEP 2. We start from z and follow the random walk given by μ

until time n, stopping it when one exits D. Since u is harmonic on D, the average
value of u at time n coincides with u(z), that is,

u(z) = ∑
w/∈D

G≤n(z,w;D)u(w) + ∑
w∈D

pn(z,w;D)u(w),(4.11)

where G≤n(z,w;D) is the sum of the weights of all paths from z to w of length
at most n that stay in D except maybe at the last step, and pn(z,w;D) is the same
quantity but for paths of length exactly n. Note that G≤n(z,w;D) converges to
G(z,w;D) when n tends to infinity.

By assumption, the function |u| is bounded by a linear combination of functions
G(z, ti). For each of those functions,

∑
w∈� pn(z,w)G(w, ti) tends to 0 when n

tends to infinity (since this is the sum of the weights of paths from z to ti of length
at least n). It follows that the last sum in (4.11) converges to 0 with n. If u were
positive, one would readily deduce that u(z) = ∑

w/∈D G(z,w;D)u(w) by passing
to the limit. However, since u can be negative on the complement of 	(6), we
should be more careful. To justify the limit and equation (4.10), it suffices to show
that ∑

w/∈	(6)

G(z,w;D)
∣∣u(w)

∣∣ ≤ oL(1)G
(
z, z∗;D)

u
(
z∗)

.

Denoting by z′ the last point in D of a trajectory from z to w, this sum can be
written as ∑

w/∈	(6)

∑
z′∈D

G
(
z, z′;D)

p
(
z′,w

)∣∣u(w)
∣∣.
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Bounding |u(w)| by u(z∗)Dd(w,z∗) and using inequality (4.9), we get that this is at
most ∑

w/∈	(6)

∑
z′∈D

G
(
z, z∗;D)

C
d(z′,z∗)
0 p

(
z′,w

)
Dd(w,z∗)u

(
z∗)

.

The required factor G(z, z∗;D)u(z∗) can be factorized out, one should show that
the remaining term is oL(1). The measure μ has superexponential tails. Hence, for
any K , one has p(z′,w) ≤ K−d(z′,w) if L is large enough (since the jump from z′
to w has size at least L/2). Hence, it suffices to show that∑

w/∈	(6)

∑
z′∈D

C
d(z′,z∗)
0 Dd(w,z∗)K−d(z′,w) = oL(1).

Let z0 be the point on γ at distance 3L/2 of y∗. By hyperbolicity, any geodesic
segment from w to z′ passes within bounded distance of z0, and its length is at
least L/2. Hence,

d
(
z′, z∗) ≤ d

(
z′, z0

) + d
(
z0, z

∗) ≤ d
(
z′,w

) + 7L ≤ d
(
z′,w

) + 14d
(
z′,w

)
= 15d

(
z′,w

)
.

Moreover, d(w, z∗) ≤ d(w, z′) + d(z′, z∗) ≤ 16d(z′,w). Writing n = d(z′,w), we
deduce that the above sum is bounded by

∞∑
n=L/2

Card
{(

z′ ∈ D,w /∈ 	(6)) :d
(
z′,w

) = n
}(

C15
0 D16K−1)n

.

If z′ and w are at distance n, they both belong to the ball B(z0, n + C). Hence,
Card{(z′,w) :d(z′,w) = n} grows at most exponentially fast, let us say that it is
bounded by Cn

2 . If K was chosen so that C2C
15
0 D16K−1 < 1, the above series is

converging, and can be made arbitrarily small by increasing L, as desired. �

STEP 3. Define a domain � = 	(4) − 	(3). For all z ∈ 	(2),

u(z) = ∑
w∈	(6)−D

∑
w′∈�

G
(
z,w′;D)

G
(
w′,w;D − �

)
u(w)

(4.12)
+ oL(1)G

(
z, z∗;D)

u
(
z∗) + oL(1)u(z).

PROOF. We start from expression (4.10). By (2.1), every term G(z,w;D) can
be decomposed as

G(z,w;D) = ∑
w′∈�

G
(
z,w′;D)

G
(
w′,w;D − �

) + G(z,w;D − �),

by considering the last visit of a trajectory to � if it exists. We have to show that the
contribution of the terms G(z,w;D−�) is negligible. Let us consider a trajectory
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τ from z to w that does not visit �, it has to jump past �. Say that the first jump
happens from a point wi to a point wi+1.

If wi+1 = w, that is, the trajectory has jumped directly out of D, then we can
use the same argument as in Step 2 since we are considering a trajectory ending
with a very big jump. The same argument shows that the overall contribution of
those trajectories to (4.10) is bounded by oL(1)G(z, z∗;D)u(z∗).

Assume now that wi+1 �= w, and in particular wi+1 ∈ D. Let z̃ be the middle
point of �, located on γ at distance 7L/2 of x∗. As in Section 4.3, we define a
modified trajectory m(τ) by removing the big jump, and replacing it with two al-
most geodesic trajectories in D from wi to z̃ and from z̃ to wi+1. The construction
of D in Step 1 ensures that one can find such trajectories, with positive weight.
One also adds loops around z̃, counting the lengths of the trajectories from wi to
z̃ and from z̃ to wi+1, to make sure that the map τ 
→ m(τ) is one-to-one. As in
Section 4.3, one verifies that the weight of m(τ) is larger than the weight of τ [the
ratio π(m(τ))/π(τ) even tends to infinity when L tends to infinity]. Summing over
all those trajectories, we get that their weight is bounded by oL(1)G(z,w;D).

It follows that the term we have to estimate, coming from (4.10), is bounded by

oL(1)
∑

w∈	(6)−D
G(z,w;D)u(w).

Formula (4.10) shows that the sum is bounded by u(z) + oL(1)G(z, z∗;D)u(z∗).
This completes the proof. �

In expression (4.12), we can bound each factor G(z,w′;D) using Ancona in-
equalities in the hourglass-shaped domain D if z ∈ 	(1). Indeed, a geodesic from
z ∈ 	(1) to w′ ∈ � passes within bounded distance of z∗ by hyperbolicity, and
D is H0-hourglass-shaped around z, z∗,w′ if L is large enough. It follows from
Lemma 4.12 that G(z,w′;D) = C±1

3 G(z, z∗;D)G(z∗,w′;D) for some constant
C3 (this notation means that the ratio of those quantities belongs to [C−1

3 ,C3]). As
all the relevant values u(w) are positive, we obtain

u(z) = C±1
3 G

(
z, z∗;D) ∑

w∈	(6)−D

∑
w′∈�

G
(
z∗,w′;D)

G
(
w′,w;D − �

)
u(w)

+ oL(1)G
(
z, z∗;D)

u
(
z∗) + oL(1)u(z).

Applying again (4.12), but to the point z∗ ∈ 	(2), we get that the double sum on
the right-hand side of the first line is equal to u(z∗) + oL(1)u(z∗). This yields

u(z) = C±1
3 G

(
z, z∗;D)

u
(
z∗) + oL(1)G

(
z, z∗;D)

u
(
z∗) + oL(1)u(z).

Let L be large enough so that the oL(1) terms are bounded by min(C−1
3 /2,1/2).

We obtain that the ratio between u(z) and G(z, z∗;D)u(z∗) is bounded from above
and from below. This completes the proof of Lemma 4.13. �
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PROOF OF THEOREM 4.10. Let us fix a large enough constant D (several
conditions will appear in the proof below), and let L be given for this value of D

by Lemma 4.13.
Starting with 4 points x, x′, y, y′ as in the statement of strong Ancona inequal-

ities, we want to show that (4.8) holds. Let x̃ and ỹ denote the branching points
of the tree between {x, x′} and {y, y′}. We can without loss of generality assume
that d(x̃, ỹ) is of the form 7nL for some large integer n. We have to show that the
functions u0(z) = G(z, y)/G(x̃, y) and v0(z) = G(z, y′)/G(x̃, y′) are exponen-
tially close (in terms of n) in a domain containing x and x′.

Let γ be a geodesic of length 7nL from ỹ to x̃; we chop it into n pieces γi of
length 7L (the piece γ1 is closest to ỹ). We will successively apply Lemma 4.13
along those pieces. We will denote by y∗

i and x∗
i the endpoints of γi , by z∗

i the point

at distance 3L/2 of x∗
i on γi , and by 	

(j)
i the corresponding domains defined in

Lemma 4.13 for 1 ≤ j ≤ 6.
Harnack inequalities show that u0 satisfies |u0(z)/u0(z

′)| ≤ C
d(z,z′)
0 for some

constant C0. In particular, if D ≥ C0, the function u0 satisfies all the assumptions
of Lemma 4.13 along the geodesic γ1. We obtain a domain D1 (that does not
depend on u0) such that

C−1
1 ≤ u0(z)

G(z, z∗
1;D1)u0(z

∗
1)

≤ C1,(4.13)

for all z ∈ 	
(1)
1 . Using (4.13) at the point x̃ and dividing, we get on 	

(1)
1

C−2
1 ≤ u0(z)

G(z, z∗
1;D1)u0(x̃)/G(x̃, z∗

1;D1)
≤ C2

1 .

Let

ϕ1(z) = 1

2C2
1

G(z, z∗
1;D1)

G(x̃, z∗
1;D1)

u0(x̃).

We note that ϕ1 depends on u0 only through its value at x̃. By construction, we
have on 	

(1)
1

ϕ1 ≤ u0/2 ≤ C4
1ϕ1.(4.14)

In particular, the function u1 = u0 − ϕ1 is positive on 	
(1)
1 . It is also harmonic

there. We will show that u1 satisfies the assumptions of Lemma 4.13 with respect
to the geodesic segment γ2. Since assumption (4) is trivial, we only have to prove
the growth control (2).

Let z ∈ �, we have to show that |u1(z)| ≤ Dd(z,z∗
2)u1(z

∗
2). We start with the

case z ∈ 	
(1)
1 − {z∗

2} (the case z = z∗
2 is trivial). By construction, u1(z) ≥ 0. Using

(twice) (4.13), and thanks to Harnack inequality, we get∣∣u1(z)
∣∣ ≤ u0(z) ≤ C1G

(
z, z∗

1;D1
)
u0

(
z∗

1
) ≤ C1C

d(z,z∗
2)

0 G
(
z∗

2, z
∗
1;D1

)
u0

(
z∗

1
)

≤ C2
1C

d(z,z∗
2)

0 u0
(
z∗

2
) ≤ 2C2

1C
d(z,z∗

2)

0 u1
(
z∗

2
)
.
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If D is large enough so that 2C2
1C0 ≤ D, we obtain |u1(z)| ≤ Dd(z,z∗

2)u1(z
∗
2) for

z ∈ 	
(1)
1 −{z∗

2}, as desired. Assume now that z /∈ 	
(1)
1 . Thanks to Harnack inequal-

ities,

G
(
z, z∗

1;D1
) ≤ G

(
z, z∗

1
) ≤ C

d(z,z∗
1)

0 G
(
z∗

1, z
∗
1
) ≤ C2C

d(z,z∗
1)

0 G
(
z∗

1, z
∗
1;D1

)
for some C2 > 0. Hence, ϕ1(z) ≤ C2C

d(z,z∗
1)

0 ϕ1(z
∗
1). As ϕ1(z

∗
1) ≤ u0(z

∗
1) by (4.14),

we obtain∣∣u1(z)
∣∣ ≤ ∣∣u0(z)

∣∣ + ϕ1(z) ≤ Dd(z,z∗
1)u0

(
z∗

1
) + C2C

d(z,z∗
1)

0 u0
(
z∗

1
)
.

If D is large enough, this is bounded by 2Dd(z,z∗
1)u0(z

∗
1). Inequality (4.13) at z =

z∗
2, combined with Harnack inequality, yields u0(z

∗
1) ≤ C1C

d(z∗
1,z∗

2)

0 u0(z
∗
2). Since

u0 ≤ 2u1 on 	
(1)
1 , we obtain

∣∣u1(z)
∣∣ ≤ 4C1D

d(z,z∗
1)C

d(z∗
1,z∗

2)

0 u1
(
z∗

2
)
.

As z /∈ 	
(1)
1 , we have d(z, z∗

2) ≥ d(z, z∗
1) + L, whereas d(z∗

1, z
∗
2) = 7L. Hence,∣∣u1(z)

∣∣ ≤ 4C1
(
C7

0D−1)L
Dd(z,z∗

2)u1
(
z∗

2
)
.

If D is large enough so that 4C1C
7
0D−1 ≤ 1, we finally get |u1(z)| ≤

Dd(z,z∗
2)u1(z

∗
2). This is the requested inequality.

We have shown that the function u1 satisfies the assumptions of Lemma 4.13
along the geodesic segment γ2. Hence, we may apply the same argument: we ob-
tain a function ϕ2 with ϕ2 ≤ u1/2 ≤ C4

1ϕ2 on 	
(2)
1 , only depending on u1 through

the value of u1(x̃) [and, therefore, only depending on u0(x̃)]. Let u2 = u1 − ϕ2,
it again satisfies the assumptions of the lemma along γ3, and we can continue the
construction inductively.

In the end, we construct n functions ϕ1, . . . , ϕn such that u0 = un + ϕ1 + · · · +
ϕn, only depending on u0(x̃). As uk = uk−1 − ϕk ≤ (1 − C−4

1 /2)uk−1, we have

in particular un ≤ (1 − ε)nu0 on 	
(1)
n , for ε = C−4

1 /2 > 0. The same construction
can be done starting from the function v0(z) = G(z, y′)/G(x̃, y′). Since v0(x̃) =
u0(x̃) = 1, the functions ϕi that we get are the same. Hence, on 	

(1)
n ,∣∣u0(z) − v0(z)

∣∣ = ∣∣un(z) − vn(z)
∣∣ ≤ (1 − ε)n

(
u0(z) + v0(z)

)
.

Therefore, ∣∣u0(z)/v0(z) − 1
∣∣ ≤ (1 − ε)n

(
u0(z)/v0(z) + 1

)
.

This implies that u0(z)/v0(z) is bounded by (1 + (1 − ε)n)/(1 − (1 − ε)n) ≤ 2/ε,
yielding ∣∣u0(z)/v0(z) − 1

∣∣ ≤ C(1 − ε)n.
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In other words, ∣∣∣∣ G(z, y)/G(x̃, y)

G(z, y′)/G(x̃, y′)
− 1

∣∣∣∣ ≤ C(1 − ε)n.

Using this inequality at z = x and z = x′ (those points belong to 	
(1)
n ), we get the

conclusion of the theorem. �
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