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THE SHAPE OF A RANDOM AFFINE WEYL GROUP ELEMENT
AND RANDOM CORE PARTITIONS

BY THOMAS LAM1

University of Michigan

Let W be a finite Weyl group and Ŵ be the corresponding affine Weyl
group. We show that a large element in Ŵ , randomly generated by (reduced)
multiplication by simple generators, almost surely has one of |W |-specific
shapes. Equivalently, a reduced random walk in the regions of the affine Cox-
eter arrangement asymptotically approaches one of |W |-many directions. The
coordinates of this direction, together with the probabilities of each direction
can be calculated via a Markov chain on W .

Our results, applied to type Ãn−1, show that a large random n-core ob-
tained from the natural growth process has a limiting shape which is a
piecewise-linear graph. In this case, our random process is a periodic ana-
logue of TASEP, and our limiting shapes can be compared with Rost’s theo-
rem on the limiting shape of TASEP.

1. Introduction. Let W denote a finite Weyl group with root system R, and
let Ŵ denote the corresponding affine Weyl group, acting on a real vector space V .
They are the most important and classical reflection groups.

1.1. Random walks in the affine Coxeter arrangement. The affine Coxeter ar-
rangement of W gives a regular tessellation of V . Define a random walk X =
(X0,X1, . . .) in the alcoves, called the reduced random walk. We start at the fun-
damental alcove and at each step we cross one adjacent hyperplane chosen uni-
formly at random, subject to the condition that we never cross a hyperplane twice.
See Figure 1.

This process is a transient Markov chain. More algebraically, it is equivalent to a
random infinite reduced word for Ŵ obtained by multiplying by simple generators
one at a time, subject to the condition that the length increases. Nonrandom infinite
reduced words in the affine Weyl group have a beautiful structure theory, which we
recently studied in relation to factorizations in loop groups [18]. We prove here the
following.
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FIG. 1. A reduced random walk in the alcoves of the Ã2 arrangement. The shown walk has reduced
word · · ·1020120210. The random walk will almost surely be asymptotically parallel to the red
dashed line. The thick lines divide V into Weyl chambers.

THEOREM 1. Let (X0,X1, . . .) be a reduced random walk in Ŵ . There exists
a unit vector ψ ∈ V so that almost surely we have

lim
N→∞v(XN) ∈ W · ψ,(1)

where v(Xi) denotes the unit vector pointing toward the central point of Xi .

Thus the reduced walk has one of finitely many asymptotic directions. The ran-
dom walk we study here is different to the walks on hyperplane arrangements that
we have seen in the literature; see for example [4, 7].

1.2. A remarkable Markov chain on W . In Section 3.1, we define a Markov
chain on the finite Weyl group W . Roughly speaking, this Markov chain is obtained
by projecting the affine Grassmannian weak order onto W . Unlike the reduced
random walk on Ŵ , this Markov chain is irreducible and aperiodic (Proposition 1),
and thus has a unique invariant distribution {ζ(w) | w ∈ W }.

The vectors W ·ψ lie in different Weyl chambers Cw , and we let X ∈ Cw denote
the event that the reduced random walk X eventually stays in Cw . The probabilities
Prob(X ∈ Cw) vary depending on w: in Ã4, one Weyl chamber is 96 times more
likely than another. The root system notation of the next theorem is reviewed in
Section 2.1.

THEOREM 2. The vector ψ of Theorem 1 is given by

ψ = 1

Z

∑
w∈W : rθw>w

ζ(w)w−1(
θ∨)

,
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FIG. 2. A large random 4-core, and the piecewise-linear curve C4.

where θ is the highest root of W and Z is a normalization factor. Furthermore,

Prob(X ∈ Cw) = ζ
(
w−1w0

)
.

Thus, the invariant distribution ζ determines two apparently unrelated quan-
tities: the coordinates of the asymptotic directions, and the probabilities of each
direction. This surprising duality is ultimately related to the associativity of the
Demazure or monoidal product in a Coxeter group. In Section 4.2, we give an al-
ternative formula for ζ(w), expressed as a calculation involving a sum over the
regions of the Shi arrangement of W . We also conjecture (Conjecture 2) that in
type A the point ψ of Theorem 1 is in the same direction as ρ∨. In joint work
with Williams [20], we conjecture that a multivariate generalization of this Markov
chain on the symmetric group has remarkable Schubert positivity properties. Some
of these conjectures have been established by Ayyer and Linusson [3] and Linus-
son and Martin [22].

1.3. Random n-core partitions. In the case of W = An−1, Theorem 1 applied
to a random reduced walk conditioned to remain in the fundamental Weyl chamber
can be interpreted in terms of n-core partitions. Recall that a Young diagram is an
n-core if no n-ribbon can be removed from it. Grow a random n-core from the
empty partition by randomly adding boxes to the Young diagram, subject to the
condition that the shape is always an n-core. The notation in the following theorem
is explained in Section 5.

THEOREM 3. For each n, there exists a piecewise-linear curve Cn, so that for
each ε, δ > 0, there exists an M such that for every N > M , we have

Prob
(∣∣D(

λ(N)) − C
∣∣ > δ

)
< ε,

where D(λ(N)) is the diagram of a random n-core of degree N .

Conjecture 2 (verified for n ≤ 6)2 gives explicit coordinates for the curve Cn

(see Figure 2).

2Ayyer and Linusson [2] have reported that they have established Conjecture 2.
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There is a growth model on partitions naturally obtained from TASEP on the
integer lattice [13, 25], where initially the negative integers are all occupied by
balls/particles and the nonnegative integers are all vacant. The particles jump to-
ward the right into adjacent vacant spaces. Our growth process on n-cores corre-
sponds to a periodic analogue of TASEP: now particles that are distance n apart
are conditioned to jump together. As explained in Section 5, after appropriate scal-
ing (and assuming Conjecture 2), the limit curve Cn of Theorem 3 approaches,
in the limit n → ∞, the degree 2 curve which is the limit shape of TASEP with
exponential waiting time [25].

1.4. (Co)homology of the affine Grassmannian. In this project, we were ini-
tially motivated by the study of families of symmetric functions which represent
Schubert classes in the (K)-cohomology of the affine Grassmannian GrSL(n) of
SL(n) [16, 19]. These symmetric functions, called k-Schur functions and affine
Stanley symmetric functions, are “affine” analogues of Schur functions, the latter
playing a key role in the theory of Schur-measure and Plancherel-measure random
partitions. In a similar manner, the symmetric functions mentioned above give rise
to Plancherel-like measures on n-cores. These measures are however distinct from
the random growth processes studied in this paper.

Instead, our main result may have an interpretation in terms of large prod-
ucts ξN ∈ K∗(GrSL(n)) of an element ξ in the K-homology of the affine
Grassmannian—it describes the asymptotics of the “spreading out” over the affine
Grassmannian of products of this class under the Pontryagin multiplication of a
loop group (see Section 5.5).

This connection to the infinite-dimensional geometry of GrSL(n) has concrete
probabilistic consequences: in a separate article, we plan to apply this geometry to
the calculation of the boundary of the affine Grassmannian weak order.

2. Walks in the affine Coxeter arrangement and reduced words.

2.1. Affine Weyl groups. For affine Weyl groups, we use the references [11,
14].

We denote the simple generators of W by {si | i ∈ I } and by w0 the longest
element of W . Let s0 be the additional simple generator of Ŵ . The Weyl group
acts as linear reflections in a real vector space V , and the affine Weyl group act
as affine reflections in V . We let 
 :W → Z and 
 : Ŵ → Z denote the length
functions.

We let R ⊂ V ∗ denote the set of roots of W , and let R = R+ 	 R− denote
the decomposition into positive and negative roots. The set Raf of affine roots
consists of the elements {α + nδ | α ∈ R and n ∈ Z} ∪ {nδ | n ∈ Z − {0}}. The
roots α̂ = α + nδ are the real affine roots, and α̂ is positive (resp., negative) if and
only if either (a) α ∈ R+ and n ≥ 0 (resp., α ∈ R+ and n < 0), or (b) α ∈ R− and
n > 0 (resp., α ∈ R− and n ≤ 0). We denote the positive affine roots by R+

af and the
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negative affine roots by R−
af . The simple roots are denoted {αi | i ∈ I ∪ {0}}, and

we have α0 = δ − θ , where θ is the highest root. We let rθ denote the reflection in
the hyperplane perpendicular to θ .

To each real affine root α̂ = α + kδ, we associate the (affine) hyperplane
Hα̂ = Hk

α = {v ∈ V | 〈v,α〉 = −k}. The affine Coxeter arrangement is the hyper-
plane arrangement consisting of all such Hα̂ . We also associate to each real affine
root α̂ a coroot α̂∨. The connected components of the complement of affine Cox-
eter arrangement are known as alcoves. The fundamental alcove A◦ is bounded by
the hyperplanes corresponding to the simple roots. There is a bijection x �→ Ax

between the alcoves and Ŵ , and we shall pick conventions so that Asix and Ax

are adjacent, separated by the hyperplane corresponding to x−1 · αi . The Weyl
chambers are the connected components of the complement to the finite Coxeter
arrangement, where only the Hα’s are used for α ∈ R. The fundamental chamber
is the Weyl chamber containing the fundamental alcove. Affine Weyl group ele-
ments corresponding to alcoves inside the fundamental chamber are called affine
Grassmannian. We shall also need the right action w :Ax �→ Axw−1 of W on the
set of alcoves. The right action of w−1 takes the fundamental chamber to the Weyl
chamber Cw labeled by w (the one containing the alcove Aw). The elements in Cw

are of the form xw, where x is an affine Grassmannian element.
There is an isomorphism Ŵ = W × Q∨, where Q∨ denotes the coroot lattice

of W . If λ ∈ Q∨, we denote by tλ ∈ Ŵ the corresponding element in Ŵ , called a
translation element. For x = wtλ ∈ Ŵ , we have

wtλ · (α + nδ) = wα + (
n − 〈λ,α〉)δ.(2)

The inversions Inv(x) ⊂ R+
af of x are exactly the real affine roots which are sent to

negative roots. Equivalently, Inv(x) consists of the roots corresponding to hyper-
planes separating Ax from A◦. Note that with these conventions, Atλ is obtained
from A◦ by translation by the vector −λ. The left weak order on Ŵ is given by
x � x′ if and only if Inv(x) ⊆ Inv(x′). We shall also write A � A′ for the weak
order applied to alcoves, and write A � A′ for the cover relations. We say that an
alcove A is of type w if A = Awtλ .

Let ρ = 1
2

∑
α∈R+ α be the half-sum of positive roots. Recall that λ ∈ Q∨ is

antidominant if 〈λ,α〉 ≤ 0 for α ∈ R+. The following result is standard [16, 17].

LEMMA 1. Suppose x = wtλ. Then x is affine Grassmannian if and only if λ

is antidominant and for every α ∈ R+ such that wα ∈ R− we have 〈λ,α〉 < 0. We
then have 
(x) = −〈λ,2ρ〉 − 
(w).

2.2. The reduced random walk on alcoves. We define a random walk on al-
coves. The walk begins at X0 = A◦. Given (X0,X1, . . . ,X
), we pick X
+1 uni-
formly at random among the alcoves adjacent to (i.e., sharing a facet with) X
, with
the constraint that the hyperplane separating X
 and X
+1 has not been crossed
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previously. It follows easily from Coxeter group theory that such walks can never
“get stuck.”

Based on the definition, somewhat surprisingly we get:

LEMMA 2. The process (X0,X1, . . .) is a Markov chain.

PROOF. The hyperplanes that have been crossed during the first 
 steps of the
walk (X0,X1, . . . ,X
) are exactly the hyperplanes separating X
 from X0 = A◦.

�

We call this process the random walk in Ŵ (or sometimes the reduced random
walk in Ŵ ), starting at the fundamental alcove. We shall also consider the process
(Y0, Y1, . . .) where the random walk is constrained to stay within the fundamental
Weyl chamber. We call this the reduced affine Grassmannian random walk in Ŵ .

2.3. Reformulation in terms of infinite reduced words. An infinite reduced
word i = · · · i3i2i1 is an infinite word such that ir ir−1 · · · i1 is a reduced word for
Ŵ , for any r . The Coxeter-equivalence of reduced words can be extended to braid
limits of infinite reduced words. It is known that any infinite reduced word i of Ŵ

is braid equivalent to an infinite reduced word of the form · · · τττu, where τ is
the reduced word of a translation element, and u is a finite reduced word for Ŵ

(see [12, 18]).
Sequences (X0,X1, . . .) of alcoves as considered in Section 2.2 are tautologi-

cally in bijection with infinite reduced words. Thus, Theorem 1 says that a random
infinite reduced word i is not only almost surely braid equivalent to τ∞ for one of
|W |-many τ ’s, but indeed that almost surely i and τ∞ asymptotically converge to
the same point of the boundary of the Tits cone (cf. [18], Remark 4.5).

3. Projection to the finite Weyl group.

3.1. A Markov chain on W . We define a Markov chain with finite state
space W , which appears to be of independent combinatorial interest. Let r =
|I | + 1 be the rank of Ŵ . The transition probability from w to v is given by

pw,v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/r, if v = siw and 
(v) < 
(w),
1/r, if v = rθw and 
(v) > 
(w),
k/r, if v = w,
0, otherwise,

where k is chosen so that
∑

v∈W pw,v = 1. Let P = (pw,v) denote the transition
matrix. Let 
W denote the directed graph on W with edges given by the nonzero
transitions (see Figure 3). Let Z0,Z1, . . . be the Markov chain on 
W with transi-
tion matrix P .
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FIG. 3. The graph 
S3 (with the transitions from a vertex to itself removed) and the stationary
distribution ζS3 .

PROPOSITION 1. The Markov chain (Z0,Z1, . . .) is irreducible and aperi-
odic.

PROOF. Aperiodicity is clear from the definition. Strong connectedness fol-
lows from [10], Theorem 4.2. �

It follows that (Z0,Z1, . . .) has a unique limit stationary distribution.

PROBLEM 1. Explicitly describe the stationary distribution ζ = ζW of
(Z0,Z1, . . .) for each W .

This distribution appears to have remarkable enumerative properties, especially
for the symmetric group [20].

CONJECTURE 1. Let W = Sn. Then ζ(w)/ζ(w0) is an integer for all w ∈ W ,
and ζ(1)/ζ(w0) = ∏n−1

k=0

(n
k

) = maxw∈W(ζ(w)/ζ(w0)).3

REMARK 1. The integrality part of Conjecture 1 fails for other types. For
example, it is false for W of type B3. However, the weighted version of 
W , as
described in Remark 5 and Section 5.5, still appears to retain these properties.

REMARK 2. Let μN be the probability measure on length N elements of Ŵ ,
where μN(x) is proportional to the number of reduced words of x. Define P ′ by

3After this paper was written, Svante Linusson pointed out to us that the integrality part of Conjec-
ture 1 follows from the work of Ferrari and Martin [8] on multitype TASEP. Aas [1] has announced
a proof of the product expression for ζ(1)/ζ(w0).
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setting the diagonal entries of P to 0. The matrix P ′ is a sub-stochastic matrix,
which nevertheless calculates the projected measures π(μN) after scaling. (The
matrix P ′ weights each path equally regardless of the valency of the vertices that
it passes through.)

After scaling, and conjugation by a suitable diagonal matrix D, one does obtain
a Markov chain with transition matrix given by Q = rD−1P ′D. The methods in
this section will still prove Corollary 1 for the measures μN (but with a different
limit ψ).

3.2. Projection. Let (Y0, Y1, . . .) denote the affine Grassmannian random walk
of 2.2. We let (Ỹ0, Ỹ1, . . .) denote the delayed random walk, where Ỹi+1 has prob-
ability k/r of being equal to Ỹ , where r = |I | + 1 is the rank of the affine Weyl
group, and k is the number of facets of Ỹi which separate Ỹi from A◦. Each of
the transitions in the original random walk now have probability 1/r . Similarly,
define X̃.

Let π : Ŵ → W be the projection given by wtλ �→ w. The following proposition
is a key observation of the paper.

PROPOSITION 2. The projection π(Ỹ0, Ỹ1, . . .) of the delayed affine Grass-
mannian random walk is the Markov chain (Z0,Z1, . . .), with initial condition
Z0 = id.

The result follows from Lemmas 1 and 4.

LEMMA 3. Let α ∈ R+ − {θ}. Then 〈θ∨, α〉 ∈ {0,1}.

PROOF. The sum α − kθ can be a root only if k ∈ {0,1}. �

LEMMA 4. Suppose x = wtλ ∈ Waf is affine Grassmannian. Then 
(rθw) >


(w) in W if and only if s0x is affine Grassmannian and s0x � x.

PROOF. Suppose that 
(rθw) > 
(w). Let α = w−1θ ∈ R+. To show that
s0x � x, we compute

x−1α0 = t−λw
−1(δ − θ) = δ − t−λα = (

1 − 〈λ,α〉)δ − α ∈ R+
af

since λ is antidominant by Lemma 1. To show that s0x is affine Grassmannian, we
calculate for β ∈ R+

rθ t−θ∨x(β) = rθ t−θ∨
(
wβ − 〈λ,β〉δ)

= (rθw)(β) + (〈
θ∨,wβ

〉 − 〈λ,β〉)δ.
We need to show that the root (rθw)(β) + (〈θ∨,wβ〉 − 〈λ,β〉)δ is positive.
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First suppose that 〈λ,β〉 = 0. Then by Lemma 1, we have wβ ∈ R+, so since
θ is the highest root we must have 〈θ∨,wβ〉 ≥ 0 by Lemma 3. If 〈θ∨,wβ〉 > 0,
we are done. If 〈θ∨,wβ〉 = 0, we must show that (rθw)β ∈ R+. We calculate that
(rθw)β = wrαβ . But 〈α∨, β〉 = 〈θ∨,wβ〉 = 0, so that wrαβ = wβ ∈ R+.

Now suppose 〈λ,β〉 < 0. If wβ ∈ R+ then by Lemma 3 we have 〈θ∨,wβ〉 ≥ 0,
so we would be done. If wβ ∈ R−, we note that wβ �= −θ so by Lemma 3 it
suffices to assume that 〈θ∨,wβ〉 = −1 and show that rθwβ ∈ R+. But rθwβ =
wrαβ = w(β + α) = wβ + θ ∈ R+.

For the converse, let us suppose that 
(rθw) < 
(w). Let α = −w−1θ ∈ R+. We
have

x−1α0 = t−λw
−1(δ − θ) = α + (

1 + 〈λ,α〉)δ.
But wα = −θ ∈ R−, so by Lemma 1, we have 〈λ,α〉 < 0. If 〈λ,α〉 < −1, then
x−1α0 is a negative root, so that s0x ≺ x. Otherwise, we have 〈λ,α〉 = −1. In this
case, we calculate that

(s0x)α = (rθ t−θ∨wtλ)α = (rθwtλ+α∨)α = rθwα − 〈
λ + α∨, α

〉
δ.

But 〈α∨, α〉 = 2, so (s0x)α ∈ R−
af , and thus s0x is not affine Grassmannian. �

3.3. Proof of Theorem 1. Let Z = (Z0,Z1, . . .) be a random walk on 
W

with transition matrix P , and e = (w → u) an edge in 
W . Write κe,N(Z) for the
number of times the edge e is used in (Z0,Z1, . . . ,ZN).

LEMMA 5. We have

lim
N→∞

1

N
κe,N(Z) = ζ(w)/r,

almost surely.

PROOF. This follows from the ergodic theorem for Markov chains; see for
example [6], Corollary 4.1. �

PROOF OF THEOREM 1 AND FIRST STATEMENT OF THEOREM 2. We
first establish the statement for the delayed affine Grassmannian random walk
(Ỹ0, Ỹ1, . . .). Outside a set of measure 0 (those Ỹ that eventually stop), Ỹ natu-
rally maps (by removing repeats) to the random walk Y defined in Section 2.2.

Let the projection of Ỹ to W be π(Ỹ ) = Z, which is a Markov chain on 
W

by Proposition 2. Write Ỹi = Axi
, where xi = witλ(i) . The translation element λ(i)

only changes from i to i + 1 if xi+1 = s0xi . By Lemma 4, this corresponds to tran-
sitions (wi → rθwi) in Z, which changes λ(i) by w−1

i (−θ∨) (using s0 = rθ t−θ∨ ).

For two edges e, e′, by Lemma 5, the ratio κe,N (Z)

κe′,N (Z)
converges almost surely to

ζ(w)/ζ(w′). It follows that

lim
N→∞ span

(
λ(N)) → span

( ∑
w∈W : 
(rθw)>
(w)

ζ(w)w−1(−θ∨))
(3)
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almost surely. The alcove Awitλ(i)
shares a vertex with the alcove At

λ(i)
, and so

−λ(i) points in almost the same direction as v(Ỹi). We thus obtain Theorem 1
and the first statement of Theorem 2 for the reduced affine Grassmannian random
walk Y .

Now, the random walk X = (X0,X1, . . .) will eventually stay in some Weyl
chamber, since each Weyl chamber is separated from the fundamental alcove by
some hyperplanes which can be crossed at most once, and there are finitely many
Weyl chambers.

The asymptotic direction of Y does not depend on initial point of the random
walk, but only the constraint that the walk remains inside the fundamental chamber
and heads away from A◦. Thus, if we know that X ∈ Cw , we can apply the right
action of W to the part of X lying inside Cw to get a random walk in the funda-
mental chamber which almost surely has asymptotic direction ψ , completing the
proof. �

The almost sure convergence of Theorem 1 implies convergence in probability.
Pick a norm on V .

COROLLARY 1. For each ε > 0 and δ > 0, there is a M = M(ε, δ) so that

Prob
(∣∣v(YN) − ψ

∣∣ ≥ ε
)
< δ

for N > M .

REMARK 3. It follows from the proof of Theorem 1 that the point ψ has
rational coordinates, when written in terms of simple coroots. This implies that
there is a translation element of Ŵ which points in the same direction as ψ .

REMARK 4. In Theorem 1 and Corollary 1, only the limiting direction is dis-
cussed. The formula in Lemma 1 for the length 
(tλ) of a translation element al-
lows us to calculate the speed that the random walk is traveling from the funda-
mental alcove.

We give an explicit conjecture for ψ when W = Sn. In the next result we treat
ρ as a point in V by identifying V and V ∗ in the usual way.

CONJECTURE 2. For W = Sn, we have ψ = γρ for some γ > 0.

REMARK 5. Conjecture 2 does not hold as stated for other types. Define {ai |
i ∈ I } by θ = ∑

i aiαi , and set a0 = 1. Now, weight the transitions corresponding
to left multiplication by si by a factor of ai . Then our computations suggest that
Conjecture 2 still holds for type Bn, and that it is close to holding in other types.
The coefficients ai here are connected via affine Dynkin diagram duality to the
coefficients a∨

i that we expected to see for reasons related to the topology of the
affine Grassmannian; see Section 5.5. The duality may be an artifact of our choice
of Q∨ instead of Q for the definition of an affine Weyl group.
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4. The probability of eventually staying in a Weyl chamber.

4.1. Global reversal of the random walk on Ŵ . Let X = (X0,X1, . . .) be the
reduced random walk in Ŵ . Write X ∈ Cw for the event that X eventually stays in
the Weyl chamber Cw . Write XN ∈ Cv

w if XN ∈ Cw and the type of XN is v. We
use the same notation for the delayed random walk X̃.

The reverse of the random walks X or X̃ is a very different process to the orig-
inal process. For example, X can go in many directions, at least at the beginning
of the walk, but reversing X gives a walk which heads toward the fundamental
chamber. Thus, the next result is very surprising. It relies on a very special feature
of Coxeter groups, namely the associativity of the Demazure product.

Let K denote the affine 0-Hecke algebra of Ŵ (see [19]), with generators {Ti |
i ∈ I ∪ {0}}, a Z-basis {Tx | x ∈ Ŵ } where Tid = 1, satisfying the multiplication
formulae

TiTx =
{

Tsix, if 
(six) > 
(x),
Tx, otherwise,

and also

TxTi =
{

Txsi , if 
(xsi) > 
(x),
Tx, otherwise.

In the following, we will freely identify alcoves with elements of Ŵ .

LEMMA 6. For each x ∈ Ŵ , we have Prob(X̃N = x) = Prob(X̃N = x−1), and
Prob(XN = x) = Prob(XN = x−1).

PROOF. Let ξ = 1
|I |+1(

∑
i∈I∪{0} Ti) ∈ K . Then Prob(X̃N = x) = [Tx](ξ)N

where [Tx] denotes the coefficient of Tx when an element of K is written in the
basis {Ty | y ∈ Ŵ }. But the element ξ of K is invariant under the algebra antimor-
phism Tx �→ Tx−1 of K . It follows that the coefficient of Tx and Tx−1 in the product
ξN coincides. Restricting to elements with length N gives the second statement.

�

We call x = wtλ ∈ Ŵ regular if λ ∈ Q∨ is regular, that is, the stabilizer subgroup
of W acting on λ is trivial.

LEMMA 7. Suppose x ∈ Cv
w is regular. Then x−1 ∈ Cv−1

w0wv−1 .

PROOF. If x ∈ Cv
w is regular, then x = vtw−1μ, where μ is a regular and an-

tidominant. Then x−1 = w−1t−μwv−1 = w−1w0tw0(−μ)w0wv−1, and w0(−μ) is
antidominant. �
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PROOF OF SECOND STATEMENT OF THEOREM 2. It is clear that Prob(X ∈
Cw) = Prob(X̃ ∈ Cw), so we shall focus on the delayed walk. Let η(w) =
Prob(X̃ ∈ Cw). In the proof of Theorem 1, we considered the delayed affine Grass-
mannian walk Ỹ , or equivalently, a walk conditioned to lie in Cid. It follows from
Proposition 2 that for such a walk Prob(Ỹ ∈ Cv

id) = ζ(v). This same argument can
be applied to a walk conditioned to lie in any of the cones Cw , and we obtain

lim
N→∞ Prob

(
X̃N ∈ Cv

w

) = η(w)ζ
(
vw−1)

.

It follows from Theorem 1 that Prob(X̃N is regular) → 1 as N → ∞. Thus, using
Lemmas 6 and 7, for each ε we can find N sufficiently large so that

∣∣Prob
(
X̃N ∈ Cv

w

) − Prob
(
X̃N ∈ Cv−1

w0wv−1

)∣∣ < ε.

It follows that η(w)ζ(vw−1) = η(w0wv−1)ζ(w−1w0) for every v,w ∈ W . We
note that setting η(w) = ζ(w−1w0) solves this equation, and since η is a probabil-
ity measure on W this must be the solution. �

4.2. The Shi arrangement. The ideas here are related to the language of re-
duced words in affine Coxeter groups; see, for example, [5, 9]. The Shi arrange-
ment is the hyperplane arrangement consisting of the hyperplanes {H 0

α ,H 1
α | α ∈

R+}. One of the regions (connected components of the complement) of the Shi
arrangement is exactly the fundamental alcove A◦.

Let B and B ′ be two regions of the Shi arrangement. We say that B is less than
or equal to B ′, and write B � B ′ if the set of hyperplanes of the Shi arrangement
separating B ′ from the fundamental alcove, contains the same set for B .

Let � denote the set of pairs (B,w), where B is a region of the Shi arrangement,
and w ∈ W is such that B contains an alcove of type w. We make � into a directed
graph by defining edges (B,w) → (B ′,w′) whenever B � B ′, and an alcove A

of type w in B is adjacent (shares a facet) with an alcove A′ of type w′ in B ′,
satisfying A�A′.

LEMMA 8. If (B,w) → (B ′,w′) then every alcove A of type w in B shares a
facet with an alcove A′ of type w′ in B ′, and we have A�A′.

PROOF. Suppose A and Ã are both of type w inside B . Set Ã = A + λ. Let
H be a hyperplane (not necessarily belonging to the Shi arrangement) cutting out
a facet of (the closure of) A, and suppose A′ is on the other side of H , adjacent to
A and satisfying A � A′. Similarly, define Ã′ adjacent to Ã, on the other side of
H̃ := H + λ. Clearly, Ã′ = A′ + λ.

Since A and Ã belong to the same region of the Shi arrangement, the line seg-
ment joining the center of A to the center of Ã does not intersect the Shi arrange-
ment. But one can go from A′ to Ã′ by crossing H , traveling from A to Ã and
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crossing H̃ . Thus, the only hyperplanes of the Shi arrangement that could separate
A′ from Ã′ are the parallel hyperplanes H and H̃ .

Suppose first that H belongs to the Shi arrangement. If at least one of H or H̃

separates A′ from Ã′, then since A and Ã are on the same side of H , it follows
that H separates A′ from Ã′. We have that λ cannot be parallel to H (otherwise
H = H̃ ). Let H be orthogonal to the root α, so that we must have 〈λ,α〉 �= 0. But
from (2) it is easy to see that one of the hyperplanes Hk

α was crossed going from A

to Ã. It follows that the region B is not bounded in the α direction. The hyperplane
H must thus be H 0

α or H 1
α . In either case, it separates A from A◦, contradicting

the assumption A�A′.
So if H belongs to the Shi arrangement, we conclude that H = H̃ , and that Ã′

and A′ belong to the same region B ′ of the Shi arrangement. Since H separates A′
from A◦, and we also have Ã� Ã′.

Finally, suppose that H does not belong to the Shi arrangment. Then A,A′, Ã,

Ã′ all belong to the same region B , and are all separated from A◦ by some H 0
α or

H 1
α parallel to H . In this case, the claim is clear. �

Denote by Bw the unique region of the Shi arrangement that is a translation
of the Weyl chamber Cw . Let �′ be the graph obtained from � by removing
{(Bv,u) | v,u ∈ W }. Let M be the transition matrix of � and let M ′ be its re-
striction to �′. Let pw be the vector with components labeled by vertices of
�′, given by pw

(B,v) = ∑
u∈W Prob((B, v) → (Bw,u)). Note that for each (B, v),

there is at most one u ∈ W for which the probability Prob((B, v) → (Bw,u)) is
nonzero.

Let ε(B,w) denote the unit vector corresponding to a vertex of �, and 〈·, ·〉 denote
the natural inner product on the vertex space spanned by vertices of �.

THEOREM 4. For each w ∈ W ,

ζ
(
w−1w0

) = Prob(X ∈ Cw) = 〈(
I − M ′)−1 · ε(A◦,1),pw〉

.

PROOF. Lemma 8 guarantees that the Markov chain X = (X0,X1, . . .)

projects to a Markov chain on � via x = vtλ �→ (B, v) where the alcove Ax

lies in the region B . Thus, the probability Prob(X ∈ Cw) we desire is equal to
the probability that a random walk in � starting from (A◦,1), with transition
matrix M , eventually ends up at one of the vertices (Bw, v). This immediately
gives the stated formula, assuming that (I − M ′)−1 is invertible, and is equal to
I + M ′ + (M ′)2 + · · · .

Let B be a region of the Shi arrangement which lies between two parallel hy-
perplanes H 0

α and H 1
α . Then for each A ∈ B , there is some A′ � A outside of B . It

follows that the random walk (X0,X1, . . .) has probability 0 of staying in a region
of the Shi arrangement other than one of the Bw’s. Thus, I −M ′ must be invertible,
M ′ must be strictly substochastic, and I + M ′ + (M ′)2 + · · · = I − M ′. �
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FIG. 4. Probabilities that X passes through each region of the Shi arrangement of Ã2. The proba-
bilities of the (translated) Weyl chambers should be compared with Figure 3, illustrating Theorems 2
and 4.

Theorem 4 is illustrated in Figure 4.

5. n-cores, periodic TASEP and the connection to symmetric functions.

5.1. n-cores and affine Grassmannian permutations. In this section, we sup-
pose W = Sn is the symmetric group. We assume basic familiarity with Young di-
agrams. Recall that a skew Young diagram λ/μ is a ribbon if it is edge-connected
and does not contain any 2 × 2 square. A Young diagram λ is called an n-core
if no ribbons of size n can be removed from it (and still leaving a Young dia-
gram).

The set of n-cores can be built from the empty partition by the following pro-
cedure. Take an n-core λ, and suppose b is an addable-corner of λ on diagonal d .
Then the Young diagram obtained from λ by adding all addable-corners on diag-
onals d ′ satisfying d ′ ≡ d mod n, is also an n-core, and recursively one obtains
every n-core in this way. Figure 5 shows the start of the 3-core graph, where the
edges denote the above box adding operation. The 3-core graph is the one-skeleton
of a hexagonal planar tiling. The following result is well known; see [17].

PROPOSITION 3. There is a natural bijection between n-cores and the affine
Grassmannian elements of S̃n. The edges of the n-core graph correspond to left-
multiplication by simple generators.

In the following, we use the standard coordinates for Q∨, so that α∨
i = ei −ei+1.
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FIG. 5. The graph of 3-cores, with edges labeled by the corresponding simple generator. Note that
3-cores on the same level do not have the same number of boxes.

LEMMA 9. Let μ = (μ1,μ2, . . . ,μn) ∈ Q∨ be an antidominant element of
the coroot lattice. Then the n-core of the translation element t(μ1,μ2,...,μn) has slope
(n− i)/i between diagonals nμi + i−2 and nμi+1 + i−2, for i = 1,2, . . . , n−1.4

PROOF. Follows from [17], Proposition 8.10. �

The 4-core in Figure 2 corresponds to (−7,−2,3,6) ∈ Q∨.

5.2. The shape of a random n-core. By a random n-core we will mean an
n-core generated by applying the bijection in Proposition 3 to the Markov chain
Y described in Section 2.2. If λ is a n-core, then we let D(λ) denote the curve
drawing out the lower-right boundary of λ, scaled by the degree deg(λ) in both di-
rections. Here, the degree is the length of the corresponding affine Grassmannian
element from Proposition 3, or equivalently, the distance from the empty partition
in the n-core graph. By convention, D(λ) includes a vertical ray going to −∞
along the y-axis, and a horizontal ray going to +∞ along the x-axis. Given two
curves D,D′ of this form, we write |D − D′| to denote the supremum of the dis-
tance between D and D′, measured along the diagonals y = −x + k. With this
notation, Corollary 1 combined with Lemma 9 translates to Theorem 3.

Let us use Conjecture 2 to predict the piecewise-linear curve Cn of Theorem 3.
Let μ be an antidominant element of Q∨ satisfying μ2 − μ1 = μ3 − μ2 = · · · =
μn − μn−1 = A (i.e., μ is in the same direction as ρ). To calculate the correct

4The slope should be calculated between the points of intersection of the boundary of the core, and
the diagonals, but for our asymptotic purposes this is not important.
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scaling we use Lemma 1 which says that 
(tμ) = ∑
1≤i<j≤n μj −μi = A/α, where

α = 6
(n−1)n(n+1)

.
Now consider the piecewise-linear curve Cρ which successively connects the

points

(0,−∞),

(
0,−n(n − 1)

2
α

)
,

(
α,−(1 + 2 + · · · + n − 2)α

)
,

(
(1 + 2)α,−(1 + 2 + · · · + n − 3)α

)
, . . . ,

(
(1 + 2 + · · · + n − 2)α,−α

)
,

(
n(n − 1)

2
α,0

)
, (∞,0).

Using Lemma 9, one calculates that the core λ corresponding to tμ has diagram
D(λ) extremely close to Cn: namely, it passes through the specified points but may
not be linear in between those points. Thus, we have the following proposition.

PROPOSITION 4. Assuming Conjecture 2, the curve Cn of Theorem 3 is Cρ .

This proposition allows us to make some predictions, for example, of the length
of the first row of a random n-core. This might be compared to corresponding
results for random partitions (see, e.g., [23, 27]).

COROLLARY 2. Assuming Conjecture 2, the expected length of the first row
of a random n-core of degree d is asymptotic to 3d

n+1 .

The area between Cρ and the axes is equal to

area(Cρ) = 1

2
α2(

(n − 1)2 + 2(n − 2)2 + · · · + (n − 1)12) = n2(n2 − 1)α2

24
.

If we scale the limit shape so that this area is normalized to 1, then the x-intercept

of Cρ would become
√

6(n−1)√
n2−1

.

COROLLARY 3. Assuming Conjecture 2, the first row of a large random n-

core is asymptotic to
√

6(n−1)√
n2−1

√
N , where N is the number of boxes in the n-core.

5.3. Periodic TASEP. There is a well-known correspondence between growth
models on Young diagrams, and the totally asymmetric exclusion process
(TASEP). The random growth model on n-cores we have described gives rise
to a periodic analogue of TASEP that we now describe.

Let σ = (σi ∈ {0,1} | i ∈ Z) be a doubly infinite sequence of 0-s and 1-s, labeled
by the integers. The sequence σ is to be thought of as a sequence of balls and empty
spaces: σi = 0 mean that position i is empty, and σi = 1 means that position i is
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FIG. 6. The calculation of σ((3,2,2)) is illustrated here: we first rotate the Young diagram 135
degrees counterclockwise, then we draw the outline curve (illustrated in solid lines). Downward steps
in the outline curve corresponds to 1-s, and upward steps correspond to 0-s.

occupied. There is a natural map λ �→ σ(λ), illustrated in Figure 6. The indexing
is normalized so that σ(∅) is the step-function satisfying σi = 1 for i < 0 and
σi = 0 for i ≥ 0. It is clear that adding a box to λ corresponds to moving a ball to
an empty space immediately to its right.

Suppose λ is an n-core. Then σ(λ) satisfies:

(1) σi = 1 for i � 0,
(2) if σi = 1 then σi−n = 1 and
(3) if d1, d2, . . . , dn ∈ Z are such that σdj

= 1 and σdj+n = 0, then we have∑n
j=1 dj = −(n+1

2

)
,

and these conditions characterize the sequences that arise from n-cores. Periodic
TASEP is a random process on these sequences, given by the rules:

(1) At time t = 0, we have σ(0) is the step-function.
(2) At each time t , an element ī ∈ Z/nZ is chosen uniformly at random, sub-

ject to the condition that there exists i0 ≡ ī mod n satisfying σi0 = 1 and σi0+1 = 0.
We then define σ(t + 1) by moving all balls at positions i ≡ ī mod n one step to
the right, if possible.

The conditioning implies that at each time step finitely many, but nonzero number
of balls are moved.

PROPOSITION 5. The random n-core process is transformed under λ �→ σ(λ)

to the periodic TASEP process.

When n = ∞, periodic TASEP becomes one of the standard discrete time ver-
sions of the TASEP process. Namely, at each time t , one of the balls that can be
moved is chosen uniformly at random, and moved one step to the right. The asymp-
totic behavior of TASEP is a very well-studied problem. In particular, Rost [25]
(see also Johansson [13]) has described the asymptotic shape of the result.
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FIG. 7. The limiting curve C for TASEP.

We describe their result in terms of Young diagrams, and also rotated so that
Young diagrams are upper-left justified. As t → ∞, the Young diagram of this
growth process, after suitable scaling, approaches the limiting curve (see Figure 7)

C = {
(x,0) | x ∈ [1,∞)

} ∪ {
(x, y) ∈ [0,1] × [−1,0] | √x + √−y = 1

}
∪ {

(y,0) | y ∈ [−1,−∞)
}
.

It is not hard to see that after a suitable scaling, the piecewise-linear curves Cρ

of Section 5.2 approaches C pointwise, as n → ∞.

5.4. Plancherel measure for n-cores. This work was motivated by the connec-
tions to a family F̃x(X) of symmetric functions labeled by x ∈ S̃n, known as affine
Stanley symmetric functions [15] (and also a closely related family G̃x(X) called
the affine stable Grothendieck polynomials [19]). The coefficient [m1
(x)]F̃x(X)

of the square-free monomial in F̃x is equal to the number of reduced words of x.
Whereas Stanley’s seminal work [26] studies exact formulae for the number of
reduced words, our approach looks for asymptotic formulae. The symmetric func-
tions F̃x plays the same role for affine permutations, namely, a generating function
for “semi-standard” objects, as the Schur functions sλ play for Grassmannian per-
mutations. Schur functions play a crucial role in the study of random partitions;
see, for example, [24].

The measure we obtain on the set {x ∈ S̃n | 
(x) = N} of affine permutations of
length N from our random walk is not the same measure as the one obtained by
letting Prob(x) be proportional to the number of reduced words of x. Nevertheless,
Corollary 1 and Theorem 3 still apply (see Remark 2).

In [17], we proved an enumerative identity

m! = ∑
λ

#{weak tableaux of shape λ} · #{strong tableaux of shape λ},(4)

where the sum is over n-cores of degree m. Weak tableaux count paths in the n-core
graph. Strong tableaux are defined in terms of the strong (Bruhat) order. The terms
on the right-hand side of (4) would give the natural analogue of the Plancherel
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measure for partitions. In [17], a symmetric function generalization of (4) is also
given, and involves affine Stanley symmetric functions and k-Schur functions. The
identity (4) is generalized to the Kac–Moody case in [21].

5.5. K-homology of the affine Grassmannian. Recall from the proof of
Lemma 6 in Section 4.1 that the probabilities Prob(XN = x) were given by the
coefficients [Tx]ξN for an element ξ ∈ K . In the case W = Sn, by [19], Corol-
lary 7.5, the element ξ can be interpreted (up to a factor) as the divisor Schubert
class in the K-homology K∗(GrSL(n)) of the affine Grassmannian of SL(n). The
affine Grassmannian GrSL(n) is an infinite-dimensional space of central impor-
tance in representation theory. In the case of a complex simple algebraic group
with Weyl group W , the natural element to consider from the point of view of the
geometry of GrG is

ξ ′ = ∑
i=I∪{0}

a∨
i Ti,

where the definition of the weights a∨
i can be found in [14]; see [21], Proposi-

tion 2.17, for an explanation of these weights (the argument in [21] is for the ho-
mology case, but easily extends to K-homology). Probabilistically, this amounts to
considering random walks where the allowable transitions are not taken uniformly
at random, but left multiplication by si is weighted by the a∨

i . Note that Theorem 1
and its proof still remain valid in this situation. See also Remark 5.
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