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MULTIPLE POINTS OF THE BROWNIAN SHEET
IN CRITICAL DIMENSIONS

BY ROBERT C. DALANG1 AND CARL MUELLER2

Ecole Polytechnique Fédérale de Lausanne and University of Rochester

It is well known that an N -parameter d-dimensional Brownian sheet has
no k-multiple points when (k − 1)d > 2kN , and does have such points when
(k − 1)d < 2kN . We complete the study of the existence of k-multiple points
by showing that in the critical cases where (k − 1)d = 2kN , there are a.s. no
k-multiple points.

1. Introduction and main theorems. Let d and N be positive integers, and
let B = (B1, . . . ,Bd) denote an N -parameter Brownian sheet with values in R

d ,
that is, B is a centered R

d -valued Gaussian random field with continuous sam-
ple paths, defined on a probability space (�,F,P ), with parameter set RN+ and
covariances

Cov
(
Bi(s),Bj (t)

) = δi,j

N∏
�=1

(s� ∧ t�),

where δi,j = 1 if i = j and δi,j = 0 otherwise, s, t ∈ R
N+ , s = (s1, . . . , sN) and

t = (t1, . . . , tN).
The Brownian sheet is perhaps the most studied extension to multiparameter

Gaussian processes of classical Brownian motion, to which it reduces when N = 1.
Khoshnevisan devotes a chapter to this process in his book [6]. The CIME Summer
School lectures [1] contain a presentation of the history of the study of this ran-
dom field, and its connections to statistics, Markov properties, level sets, stochastic
partial differential equations, potential theory and Malliavin calculus.

Here, we are interested in a fundamental sample path property of this random
field, namely multiple points, or self-intersections. For ω ∈ � and integers k ≥ 2,
a point x ∈ R

d is a k-multiple point of t �→ B(t,ω) if there exist distinct parame-
ters t1, . . . , tk ∈]0,∞[N such that B(t1,ω) = · · · = B(tk,ω) = x. We denote the
(random, possibly empty) set of all k-multiple points of t �→ B(t,ω) by Mk(ω).
Note that Mk+1(ω) ⊂ Mk(ω).
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Typically, for d small and N large, the set of k-multiple points is a.s. nonempty,
while for d large and N small, Mk is empty a.s. See [2] for the history of this
problem in the case of Brownian motion (N = 1).

When N > 1 and k ≥ 2, it was shown in [5] that k-multiple points exist if
(k − 1)d < 2kN and do not exist if (k − 1)d > 2kN . The critical case k = 2 and
d = 4N was handled in [2], where it was shown, via quantitative estimates on the
conditional distribution of a pinned Brownian sheet and a decoupling method, that
there are no double points in the critical case. It is also shown in [2] that there are
no k-multiple points that arise from ordered configurations of distinct parameters,
such as t1 ≺ · · · ≺ tk , where “≺” denotes the componentwise (partial) order.

In this paper, we solve the remaining critical cases, where N > 1, k ≥ 2 and
(k − 1)d = 2kN , without any constraints on the parameters t1, . . . , tk . The main
result of this paper is the following statement concerning the absence of k-multiple
points in these critical cases.

THEOREM 1.1. Fix N > 1 and k ≥ 2. If N , d and k are such that (k − 1)d =
2kN , then an N -parameter d-dimensional Brownian sheet has no k-multiple
points, that is, P {Mk 
=∅} = 0.

The proof of this theorem relies on known results for hitting probabilities of the
Brownian sheet, due to Khoshnevisan and Shi [7], on results for intersections of k

independent Brownian sheets, due to Peres [10], and a decoupling idea. While [2]
used quantitative estimates to obtain their decoupling, we will achieve our decou-
pling here by using Girsanov’s theorem. Our decoupling result is the following.

Let T k
N denote the set of parameters (t1, . . . , tk) with ti ∈]0,∞[N such that no

two ti and tj (i 
= j ) share a common coordinate:

T k
N = {(

t1, . . . , tk
) ∈ (]0,∞[N )k : t i� 
= t

j
� , for all � = 1, . . . ,N

and 1 ≤ i < j ≤ k
}

[here, ti = (t i1, . . . , t
i
N ), so in our notation, the coordinates t i� of ti inherit the su-

perscript].

THEOREM 1.2. Let A ⊂ R
d be a Borel set. For all k ∈ {2,3, . . .}, we have

P
{∃(t1, . . . , tk

) ∈ T k
N :B

(
t1) = · · · = B

(
tk
) ∈ A

}
> 0

if and only if

P
{∃(t1, . . . , tk

) ∈ T k
N :W1

(
t1) = · · · = Wk

(
tk
) ∈ A

}
> 0,

where W1, . . . ,Wk are independent N -parameter Brownian sheets with values
in R

d .
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The proof of this theorem uses an explicit formula for the conditional expecta-
tion B̃(t) of B(t) given the values of the sheet in a product of N − 1 complements
of intervals and a single interval (see Lemma 3.3), together with the fact that Gir-
sanov’s theorem can be used to show that the law of the process B(t) − B̃(t) is
mutually absolutely continuous with respect to the law of B (see Lemma 3.6).

In order to deal with the possibility of a k-multiple point arising from parameters
t1, . . . , tk that share a common coordinate, define

Hk
N(i, j ;�) = {(

t1, . . . , tk
) ∈ (]0,∞[N )k : t i� = t

j
�

}
.

That is, Hk
N(i, j ;�) is the set of (t1, . . . , tk) for which ti and tj share their �th

coordinate.
Our next theorem states that in the critical case (k − 1)d = 2kN , there are (with

probability one) no k-multiple points arising from parameters in Hk
N(i, j ;�).

THEOREM 1.3. Suppose (k−1)d = 2kN , 1 ≤ i < j ≤ k and 1 ≤ � ≤ N . Then

P
{∃(t1, . . . , tk

) ∈ Hk
N(i, j ;�) :B

(
t1) = · · · = B

(
tk
)} = 0.

This theorem is proved by using a covering argument. It requires checking that
certain finite-dimensional distributions of increments of the Brownian sheet have
a uniformly bounded density, provided the increments are taken at points that are
at least δ units apart (δ > 0); see Lemma 2.4. This uses an explicit formula for the
conditional expectation B̄(t) of B(t) given the values of the sheet in a product of
N complements of intervals (see Lemma 2.1).

The paper is structured as follows. First, in Section 2, assuming Theorems 1.2
and 1.3, we easily deduce Theorem 1.1 from the results of Khoshnevisan and
Shi [7] and Peres [10]. Then we prove Theorem 1.3 via an argument based on
Hausdorff dimension, as just mentioned. Finally, in Section 3, we show how to use
Girsanov’s theorem in order to prove Theorem 1.2.

2. Proof of Theorems 1.1 and 1.3. We first prove Theorem 1.1, assuming
Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.1. Clearly,

P {Mk 
= ∅}
≤ P

{∃(t1, . . . , tk
) ∈ T k

N :B
(
t1) = · · · = B

(
tk
)}

+
k−1∑
i=1

k∑
j=i+1

N∑
�=1

P
{∃(t1, . . . , tk

) ∈ Hk
N(i, j ;�) :B

(
t1) = · · · = B

(
tk
)}

.

By Theorem 1.3, the second term vanishes, and by Theorem 1.2, the first term
vanishes if and only if

P
{∃(t1, . . . , tk

) ∈ T k
N :W1

(
t1) = · · · = Wk

(
tk
)} = 0,(2.1)
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where W1, . . . ,Wk are independent N -parameter Brownian sheets with values
in Rd . According to [7], for all sets of the form R = ∏N

�=1[s0
� , s1

� ] ⊂ ]0,∞[N , there
is a finite constant C ≥ 1 such that for all nonrandom Borel sets A ⊂ R

d contained
in a fixed compact subset of Rd ,

C−1 Capd−2N(A) ≤ P
{∃t ∈ R :Wi(t) ∈ A

} ≤ C Capd−2N(A),

where Cap(·) denotes Bessel–Riesz capacity. We recall that Cap(A) is defined
as follows. Let P(K) denote the collection of all probability measures that are
supported by the Borel set K ⊆ R

d , and define the β-dimensional capacity of A

by

Capβ(A) :=
[

inf
μ∈P(K) :

K⊂A is compact

Iβ(μ)
]−1

,

where inf∅ := ∞, and Iβ(μ) is the β-dimensional energy of μ, defined as follows
for all μ ∈ P(Rd) and β ∈ R:

Iβ(μ) :=
∫∫

κβ(x − y)μ(dx)μ(dy).

In this formula, the function κβ :Rd →R+ ∪ {∞} is defined by

κβ(x) :=
⎧⎪⎨
⎪⎩

‖x‖−β, if β > 0,
log+

(‖x‖−1), if β = 0,
1, if β < 0,

where, as usual, 1/0 := ∞ and log+(z) := 1 ∨ log(z) for all z ≥ 0.
Since d −2N > 0 because (k−1)d = 2kN , it follows from [10], Corollary 15.4,

that (2.1) will hold provided Capk(d−2N)(R
d) = 0. According to [6], Appendix C,

Corollary 2.3.1, this is indeed the case since k(d − 2N) = d , because we are in the
critical dimension where (k − 1)d = 2kN . �

Before proving Theorem 1.3, we need some preliminary lemmas. For U ⊂ R
N+ ,

we set F(U) = σ(B(t), t ∈ U).

LEMMA 2.1. For � = 1, . . . ,N , fix 0 < s0
� < s1

� , and set

R =
N∏

�=1

[
s0
� , s1

�

]
and S =

N∏
�=1

]
s0
� , s1

�

[c
.

Let J denote the set of functions from {1, . . . ,N} into {0,1}. Then for t ∈ R, set

B̄(t) = ∑
γ∈J

( ∏
�∈γ −1({1})

t� − s0
�

s1
� − s0

�

)( ∏
�∈γ −1({0})

s1
� − t�

s1
� − s0

�

)
B
(
s
γ (1)
1 , . . . , s

γ (N)
N

)
(2.2)

(we use the convention that a product over an empty set of indices is equal to 1).
Then B̄(t) = E(B(t) | F(S)).
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REMARK 2.2. The set of corners (extreme points) of R is

C = {(
s
γ (1)
1 , . . . , s

γ (N)
N

)
:γ ∈ J

}
,

so the sum over γ in (2.2) involves B evaluated at each corner of R.

PROOF OF LEMMA 2.1. Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, since we are working with
Gaussian random variables, it suffices to prove that for each s ∈ S,

E
(
B̄(t)B(s)

) = E
(
B(t)B(s)

)
.(2.3)

The right-hand side of (2.3) is equal to
∏N

�=1(t� ∧ s�), so we compute the left-hand
side of (2.3). Clearly,

E
(
B̄(t)B(s)

) = ∑
γ∈J

( ∏
�∈γ −1({1})

t� − s0
�

s1
� − s0

�

)( ∏
�∈γ −1({0})

s1
� − t�

s1
� − s0

�

) N∏
�=1

(
s
γ (�)
� ∧ s�

)

=
N∏

�=1

[(
s1
� ∧ s�

) t� − s0
�

s1
� − s0

�

+ (
s0
� ∧ s�

) s1
� − t�

s1
� − s0

�

]
.

Therefore, (2.3) will be proved if we show that for each � ∈ {1, . . . ,N},

t� ∧ s� = (
s1
� ∧ s�

) t� − s0
�

s1
� − s0

�

+ (
s0
� ∧ s�

) s1
� − t�

s1
� − s0

�

.(2.4)

There are two cases to distinguish.
Case 1. s� ≤ s0

� . In this case, sk
� ∧ s� = s� for k ∈ {0,1} and t� ∧ s� = s�, since

s0
� ≤ t� ≤ s1

� , so the right-hand side of (2.4) is equal to

s�
t� − s0

�

s1
� − s0

�

+ s�
s1
� − t�

s1
� − s0

�

= s�,

which is also the left-hand side of (2.4).
Case 2. s� ≥ s1

� . In this case, sk
� ∧ s� = sk

� for k ∈ {0,1} and t� ∧ s� = t�, so the
right-hand side of (2.4) is equal to

s1
�

t� − s0
�

s1
� − s0

�

+ s0
�

s1
� − t�

s1
� − s0

�

= t�,

and which is also the left-hand side of (2.4).
This completes the proof of Lemma 2.1. �
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REMARK 2.3. We note that the right-hand side of (2.2) is in fact a convex
combination of the values of B at the corners of R, since each coefficient is non-
negative and

∑
γ∈J

( ∏
�∈γ −1({1})

t� − s0
�

s1
� − s0

�

)( ∏
�∈γ −1({0})

s1
� − t�

s1
� − s0

�

)

=
N∏

�=1

[
t� − s0

�

s1
� − s0

�

+ s1
� − t�

s1
� − s0

�

]
= 1.

LEMMA 2.4. Fix δ > 0 (small), K ∈ N (positive and large), and k ∈ N, k ≥ 2.

(a) There is C > 0 such that for all t1, . . . , tk such that ‖ti − tj‖ ≥ δ, for all i 
=
j with i, j ∈ {1, . . . , k}, and K ≥ t i� ≥ δ, for all � = 1, . . . ,N and i ∈ {1, . . . , k},
the random vector (B(t1), . . . ,B(tk)) has a joint probability density function that
is bounded by C.

(b) For the same choices of t1, . . . , tk , the (Rd)
k−1

-valued random vector(
B
(
t1)− B

(
t2),B(

t2)− B
(
t3), . . . ,B(

tk−1)− B
(
tk
))

has a bounded probability density function (with bound depending only on δ, K

and k, as well as d and N ).

PROOF. Since the B1, . . . ,Bd are independent Brownian sheets, we may and
will assume in this proof that d = 1.

We first deduce (b) from (a). Let

Y = (
B
(
t1)− B

(
t2), . . . ,B(

tk−1)− B
(
tk
)
,B

(
tk
))

.

Then Y is obtained from (B(t1), . . . ,B(tk)) by applying an invertible linear trans-

formation from (Rd)
k

into (Rd)
k
. Therefore, by (a), Y has a bounded joint

probability density function. It follows that the probability density function of
(B(t1)−B(t2), . . . ,B(tk−1)−B(tk)), which is a marginal density of Y , is bounded
by the same constant. This proves (b).

We now prove (a). Set

n = inf
{
n ∈ N : 2−n <

δ

3
√

N

}
,

and consider a dyadic grid in R
N+ with edges of length 2−n. We let Gδ,K denote

the set of such grid points with all coordinates ≤ K .
By construction, each closed box in this grid contains at most one of the ti , and

we denote by Ri the box containing ti . Suppose that

Ri =
N∏

�=1

[
s
i,0
� , s

i,1
�

]
and set Si =

N∏
�=1

]
s
i,0
� , s

i,1
�

[c
.
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Because of our choice of n, the set Ci of corners of Ri is distinct from Cj when
i 
= j .

Define

Y i = E
(
B
(
ti
)|F(

Si)), i = 1, . . . , k.

Then B(ti )−Y i is orthogonal to Y i , and for j 
= i, since Y j is a linear combination
of values of B at elements of Si (because Cj ∩ Ci = ∅), B(ti ) − Y i is orthogonal
to Y j . Letting Y = (Y 1, . . . , Y k) and Z = (B(t1) − Y 1, . . . ,B(tk) − Y k), we see
that the Gaussian vectors Y and Z are independent, and(

B
(
t1), . . . ,B(

tk
)) = Y + Z.

Using properties of convolution, we see that it suffices to show that the joint
probability density function of Y is bounded [uniformly over the (t1, . . . , tk)].

Since Y is a Gaussian random vector, let M be its variance–covariance matrix.
It suffices to show that

detM > c > 0,(2.5)

where c depends only on δ, K and k, as well as d and N .
Consider the random vector (B(r), r ∈ Gδ,K). Observe that this random vector

can be obtained by applying an invertible linear transformation, from R
((2nK)N )

into itself (recall that d = 1), to the random vector (W(R), R a box in the grid),
which has i.i.d. components, each with variance (2−n)

N
> 0. Therefore, (B(r), r ∈

Gδ,K) has a bounded density, where the bound depends only on δ and K (and d

and N ). This implies that (B(t), t ∈ Ci , i = 1, . . . , k) has a joint probability density
function that is bounded, since it is a marginal density of (B(r), r ∈ Gδ,K).

Let M̃ be the variance–covariance matrix of the Gaussian random vector
(B(t), t ∈ Ci , i = 1, . . . , k). Then by the above, there is c > 0 such that det M̃ > C.
In particular, there is c0 > 0 such that

λT M̃λ ≥ c0‖λ‖2 for all λ ∈ R
k2N

.

Note that c0 depends only on (δ,K, k, d,N).
Let μ ∈ R

k . Then

μT Mμ = Var

(
k∑

i=1

μiY
i

)

= Var

(
k∑

i=1

μi

∑
si,j∈Ci

ai,jB
(
si,j ))

≥ c0

k∑
i=1

∑
si,j∈Ci

μ2
i a

2
i,j ,
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where the ai,j are the coefficients obtained in formula (2.2) of Lemma 2.1. Ac-
cording to Remark 2.3,

∑
si,j∈Ci ai,j = 1 and ai,j ≥ 0, therefore, there is α > 0

such that
∑

si,j∈Ci a2
i,j > α. We conclude that

μT Mμ ≥ c0α

k∑
i=1

μ2
i ,

and this implies that det M > c1 > 0, where c1 depends only on (δ,K, k, d,N). In
turn, this proves (2.5) and completes the proof of (a) in Lemma 2.4. �

PROOF OF THEOREM 1.3. It suffices to prove the theorem in the case where
i = 1, j = 2 and � = 1. Therefore, we write Hk

N instead of Hk
N(1,2;1).

For δ > 0, set

Hk
N(δ) = {(

t1, . . . , tk
) ∈ Hk

N : t i� ≥ δ,
∥∥ti − tj

∥∥ ≥ δ,

for all i 
= j, � = 1, . . . ,N, i, j ∈ {1, . . . , k}}.
Since Hk

N = ⋃∞
n=1 Hk

N( 1
n
), it suffices to prove that for fixed δ > 0,

P
{∃(t1, . . . , tk

) ∈ Hk
N(δ) :B

(
t1) = · · · = B

(
tk
)} = 0.

Consider the random field indexed by (]0,∞[N)k with values in (Rd)
k−1

de-
fined by

X
(
t1, . . . , tk

) = (
B
(
t1)− B

(
t2),B(

t2)− B
(
t3), . . . ,B(

tk−1)− B
(
tk
))

.

Then

B
(
t1) = · · · = B

(
tk
) ⇐⇒ X

(
t1, . . . , tk

) = 0,

so parameters which give rise to a k-multiple point of B are k-tuples at which X

hits 0 (∈ (Rd)
k−1

). Therefore, it will suffice to show that

P
{∃(t1, . . . , tk

) ∈ Hk
N(δ) :X

(
t1, . . . , tk

) = 0
} = 0.(2.6)

Let D(K) = Hk
N(δ) ∩ ([0,K]N)

k
. Since Hk

N is a vector space of dimension
kN − 1, there is C > 0 such that for all large n ≥ 1, we can cover D(K) by

C(22n)
kN−1

dyadic boxes in (RN)k with edges of length 2−2n. Let Dn be the
set of boxes in such a covering, and for D ∈ Dn, let tn(D) be the corner of D for
which all coordinates are smallest possible.

For (t1, . . . , tk) ∈ D, let p(t1,...,tk)(z1, . . . , zk−1) be the value of the joint

probability density function of X(t1, . . . , tk) at (z1, . . . , zk−1) ∈ (Rd)
k−1

. By
Lemma 2.4, there is C < +∞ such that

p(t1,...,tk)(z1, . . . , zk−1) ≤ C.(2.7)
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Let B(0, n2−n) denote the ball in (Rd)
k−1

centered at 0 with radius n2−n. By (2.7),

P
{
X
(
t1, . . . , tk

) ∈ B
(
0, n2−n)} ≤ C

(
n2−n)d(k−1)

.(2.8)

In order to prove (2.6), it suffices to prove (2.6) with Hk
N(δ) replaced by D(K).

So, we compute

P
{∃(t1, . . . , tk

) ∈ D(K) :X
(
t1, . . . , tk

) = 0
}

≤ P
{∃(t1, . . . , tk

) ∈ D(K) :X
(
t1, . . . , tk

) ∈ B
(
0,2−n)}

≤ ∑
D∈Dn

P
{∃(t1, . . . , tk

) ∈ D :X
(
t1, . . . , tk

) ∈ B
(
0,2−n)}

≤ ∑
D∈Dn

P
({

X
(
tn(D)

) ∈ B
(
0, n2−n)}

∪
{
sup
t∈D

∥∥X(t) − X
(
tn(D)

)∥∥ ≥ (n − 1)2n
})

.

We now use (2.8) to bound this by

22n(kN−1)
[
C
(
n2−n)d(k−1) + sup

D∈Dn

P
{
sup
t∈D

∥∥X(t) − X
(
tn(D)

)∥∥ ≥ (n − 1)2−n
}]

.

It follows from the scaling property of the Brownian sheet ([12], Chapter 1) that
the supremum over D ∈ Dn is no greater than that achieved by the box D∗ =
[K − 2−2n,K]Nk , and we will show below that

lim
n→+∞ 22n(kN−1)P

{
sup
t∈D∗

∥∥X(t) − X
(
tn
(
D∗))∥∥ ≥ (n − 1)2−n

}
= 0,(2.9)

so it remains to examine the term nd(k−1)(2−n)
d(k−1)−2kN+2. Since we are in the

critical case, 2kN = (k − 1)d , so the exponent of 2−n is equal to 2 and, therefore,

nd(k−1)(2−n)d(k−1)−2kN+2 = nd(k−1)2−2n → 0

as n → +∞. This will prove (2.8) and complete the proof of Theorem 1.3 once
we establish (2.9), to which we now turn.

We can write D∗ = D1 × · · · × Dk , where each Di is a box in R
N with edges

of length 2−2n, and we can write tn(D
∗) = (t1

n(D1), . . . , t
k
n(Dk)). Clearly,

∥∥X(t) − X
(
tn
(
D∗))∥∥ ≤ 2

k∑
i=1

∥∥B(
ti
)− B

(
t in(Di)

)∥∥,
so it suffices to prove that for each i ∈ {1, . . . , k} and n sufficiently large, there are
constants C < ∞ and c > 0 such that

P

{
sup

ti∈Di

∥∥B(
ti
)− B

(
t in(Di)

)∥∥ ≥ (n − 1)2−n

2k

}
≤ Ce−c2(n−1)2/2.(2.10)
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In order to simplify the notation, we assume that Di = [1,1 + 2−2n]N , so
t in(Di) = (1, . . . ,1), and we write ti = (t i1, . . . , t

i
N ). We use the decomposition of

the Brownian sheet presented in [4], proof of Theorem (1.1), to write

B
(
ti
)− B

(
t in(Di)

) =
N∑

m=1

∑
1≤�1<···<�m≤N

W
(m)
�1,...,�m

(
t i�1

− 1, . . . , t i�m
− 1

)
,

where the W
(m)
�1,...,�m

are m-parameter Brownian sheets and all are mutually in-

dependent. There are 2N − 1 terms in this decomposition, so, using the scaling
property of the Brownian sheet, we see that

P

{
sup

ti∈Di

∥∥B(
ti
)− B

(
t in(Di)

)∥∥ ≥ (n − 1)2−n

2k

}

≤
N∑

m=1

∑
1≤�1<···<�m≤N

P

{
sup

t∈[0,1]m
W

(m)
�1,...,�m

(t) ≥ (n − 1)2(m−1)n

2k2N

}
.

Using [9], Lemma 1.2, we see that the largest probability in this sum is obtained
when m = 1, and in this case it is bounded by 4NP {Z ≥ c(n − 1)}, where Z is a
standard normal random variable and c = 2−N−1/k. Therefore,

P

{
sup

ti∈Di

∥∥B(
ti
)− B

(
t in(Di)

)∥∥ ≥ (n − 1)2−n

2k

}
≤ N !8Ne−c2(n−1)2/2,

which proves (2.10) and completes the proof of Theorem 1.3. �

3. Proof of Theorem 1.2. The main ingredient in the proof of Theorem 1.2 is
the following result.

THEOREM 3.1. Let W1, . . . ,Wk be independent Brownian sheets. Fix M > 0
and let RM denote the set of k-tuples of boxes (R1, . . . ,Rk), where each box Ri

is contained in [M−1,M]N and for each coordinate axis, the projections of the Ri

onto this coordinate axis are pairwise disjoint. Then, for all (R1, . . . ,Rk) ∈ RM ,
the random vectors(

B|R1, . . . ,B|Rk

)
and

(
W1|R1, . . . ,Wk|Rk

)
[with values in (C(R1,R

d) × · · · × C(Rk,R
d))] have mutually absolutely contin-

uous probability distributions.

REMARK 3.2. Using the results of Walsh [11] on propagation of singularities
in the Brownian sheet, it is easy to see that the conclusion of Theorem 3.1 does not
remain valid without the assumption that the projections of the Ri onto each axis
are pairwise disjoint.
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Before proving Theorem 3.1, we show that it readily implies Theorem 1.2.

PROOF OF THEOREM 1.2. Let A ⊂ R
d be a Borel set. Fix M > 0 and set

T k
N(M) = T k

N ∩ [M−1,M]N . Then T k
N = ⋃∞

M=1 T k
N(M). Therefore,

P
{∃(t1, . . . , tk

) ∈ T k
N :B

(
t1) = · · · = B

(
tk
) ∈ A

} = 0(3.1)

is equivalent to

∀M ∈ N
∗ P

{∃(t1, . . . , tk
) ∈ T k

N(M) :B
(
t1) = · · · = B

(
tk
) ∈ A

} = 0,

and this in turn is equivalent to

∀M ∈ N
∗,∀(R1, . . . ,Rk) ∈RM

(3.2)
P
{∃(t1, . . . , tk

) ∈ R1 × · · · × Rk :B
(
t1) = · · · = B

(
tk
) ∈ A

} = 0.

Similarly, the property

P
{∃(t1, . . . , tk

) ∈ T k
N :W1

(
t1) = · · · = Wk

(
tk
) ∈ A

} = 0(3.3)

is equivalent to

∀M ∈N
∗,∀(R1, . . . ,Rk) ∈ RM :

(3.4)
P
{∃(t1, . . . , tk

) ∈ R1 × · · · × Rk :W1
(
t1) = · · · = Wk

(
tk
) ∈ A

} = 0.

According to Theorem 3.1, properties (3.2) and (3.4) are equivalent and, therefore,
(3.1) and (3.3) are also equivalent. This proves Theorem 1.2. �

For Theorem 3.1, we will need a variant of Lemma 2.1.

LEMMA 3.3. For � = 1, . . . ,N , fix 0 < s0
� < s1

� and set

R =
N∏

�=1

[
s0
� , s1

�

]
and S =

(
N−1∏
�=1

]
s0
� , s1

�

[c)× [
0, s0

N

]
.

Let JN denote the set of functions from {1, . . . ,N − 1} into {0,1} and set

CN = {(
s
γ (1)
1 , s

γ (2)
2 , . . . , s

γ (N−1)
N , s0

N

)
:γ ∈ JN

}
.

For t ∈ R, set

B̃(t) = ∑
γ∈JN

( ∏
�∈γ −1({1})

t� − s0
�

s1
� − s0

�

)( ∏
�∈γ −1({0})

s1
� − t�

s1
� − s0

�

)

× B
(
s
γ (1)
1 , . . . , s

γ (N−1)
N−1 , s0

N

)
.

Then B̃(t) = E(B(t) | F(S)).
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REMARK 3.4. CN is the set of corners of R with the smallest of the two pos-
sible N th coordinates, and SN is in the “past” of R if we define the “past” using
the (partial) order s ≤N t if and only if sN ≤ tN .

PROOF OF LEMMA 3.3. Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, as in the proof of Lemma 2.1,
it suffices to prove that for each s ∈ S,

E(B̃N(t)B(s) = E
(
B(t)B(s)

)
.(3.5)

The right-hand side of (3.5) is equal to sN
∏N−1

�=1 (t� ∧ s�), so we compute the
left-hand side of (3.5). Clearly,

E
(
B̃(t)B(s)

) = sN
∑

γ∈JN

[ ∏
�∈γ −1({1})

t� − s0
�

s1
� − s0

�

][ ∏
�∈γ −1({0})

s1
� − t�

s1
� − s0

�

](
s
γ (�)
� ∧ s�

)

= sN

N−1∏
�=1

[(
s1
� ∧ s�

) t� − s0
�

s1
� − s0

�

+ (
s0
� ∧ s�

) s1
� − t�

s1
� − s0

�

]
,

so (3.5) will be proved if we check that for each � ∈ {1, . . . ,N − 1},

t� ∧ s� = (
s1
� ∧ s�

) t� − s0
�

s1
� − s0

�

+ (
s0
� − s�

) s1
� − t�

s1
� − s0

�

.

But this is simply equality (2.4), and the proof of Lemma 3.3 is complete. �

We will need the following form of Girsanov’s theorem for the Brownian sheet,
which is essentially the version given in [8], Proposition 1.6. Fix M > 0. Define
the one-parameter filtration G = (Gu, u ∈ [0,M]) by

Gu = σ
{
B(t1, . . . , tN−1, v) : (t1, . . . , tN−1) ∈ R

N−1+ , v ∈ [0, u]}(3.6)

(the filtration is completed and made right-continuous). Let (Z(s), s ∈ R
N−1+ ×

[0,M]) be a (jointly measurable) Rd -valued random field that is adapted to G, that
is, for all s ∈R

N−1+ × [0,M], Z(s) is GsN -measurable. Suppose that

E

(∫
R

N−1+ ×[0,M]
∥∥Z(s)

∥∥2
ds
)

< +∞.(3.7)

For u ∈ [0,M], define

Lu = exp
(∫

R
N−1+ ×[0,u]

Z(s) · dB(s) − 1

2

∫
R

N−1+ ×[0,u]
∥∥Z(s)

∥∥2
ds
)
,

where “·” denotes the Euclidean inner product and, for each component, the
stochastic integral

∫
Zi(s) dBi(s) is defined in the sense of [12], with the N th

coordinate playing the role of the time variable and the other coordinates playing
the role of the spatial variables.
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THEOREM 3.5 (Cameron–Martin–Girsanov). If (Z(s), s ∈ R
N−1+ × [0,M]) is

such that (Lu,u ∈ [0,M]) is a martingale with respect to the filtration G, then the
process (B̃(t), t ∈R

N−1+ × [0,M]) defined by

B̃(t1, . . . , tN) = B(t1, . . . , tN ) −
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN

is an R
d -valued Brownian sheet under the probability measure Q, where Q is

defined by

dQ

dP
= LM.

We now fix k ≥ 2 and consider k boxes R1, . . . ,Rk as in the statement of Theo-
rem 3.1:

Rj =
N∏

�=1

[
s0
j,�, s

1
j,�

]
, j = 1, . . . , k,

where, for � = 1, . . . ,N , the intervals[
s0

1,�, s
1
1,�

]
,
[
s0

2,�, s
1
2,�

]
, . . . ,

[
s0
k,�, s

1
k,�

]
are pairwise disjoint (i.e., the projection of the Rj onto each coordinate axis are
pairwise disjoint). Without loss of generality, we assume that

s1
j−1,N < s0

j,N , j = 2, . . . ,N

(i.e., the projections of the Rj onto the N th-coordinate axis are in increasing or-
der).

Let

R =
(

N−1∏
�=1

[
s0
k,�, s

1
k,�

])× [
s1
k−1,N , s1

k,N

]
,

S =
(

N−1∏
�=1

]
s0
k,�, s

1
k,�

[c)× [
0, s1

k−1,N

]
.

Notice that Rk ⊂ R and for j = 1, . . . , k − 1, Rj ⊂ S.

LEMMA 3.6. Let M be as in Theorem 3.1. There is a process (B̂t, t ∈ [0,M]N)

with law mutually equivalent to the law of (Bt, t ∈ [0,M]N) such that

B̂(t) = B(t) for t ∈ [0,M]N−1 × [
0, s1

k−1,N

]
and

B̂(t) = B(t) − E
(
B(t) | F(S)

)
for t ∈ Rk.

In particular, B̂|Rk
and (B|R1, . . . ,B|Rk−1) are independent.
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PROOF. We apply Lemma 3.3 to the sets R and S, yielding the process
(B̃(t), t ∈ R), such that B̃(t) = E(B(t) | F(S)), t ∈ Rk . In particular, if we set

B̂(t) = B(t) for t ∈ [0,M]N−1 × [
0, s1

k−1,N

]
,(3.8)

B̂(t) = B(t) − B̃(t) for t ∈ Rk,(3.9)

then B̂|Rk
and (B|R1, . . . ,B|Rk−1) are independent, since B is a Gaussian process.

The main point of this lemma is to establish, after extending the definition of B̂(t)
to t ∈ [0,M]N , that the law of (B̂(t), t ∈ [0,M]N) is mutually equivalent to the
law of (B(t), t ∈ [0,M]N).

For this, we will use Girsanov’s theorem (Theorem 3.5), by constructing a pro-
cess (Z(s)) satisfying the assumption of Theorem 3.5 and such that

B(t) −
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN,

(3.10)
t ∈R

N−1 × [0,M],
agrees with B̂(t) on [0,M]N−1 × [0, s1

k−1,N ] and on Rk . Using the formula

in (3.10) to define B̂(t) for all t ∈ R
N−1 × [0,M], this immediately implies that

the laws of (B̂(t), t ∈ [0,M]N) and (B(t), t ∈ [0,M]N) are mutually equivalent.
We note that for t = (t1, . . . , tN ) ∈ R,

B̃(t) = B̃(t1, . . . , tN−1, tN) = B̃
(
t1, . . . , tN−1, s

1
k−1,N

)
,

so B̃(t) does not depend explicitly on the N th-coordinate of t .
We now construct Z(s). Let

U =
(

N−1∏
�=1

[
0, s1

k,�

])× [
s1
k−1,N , s0

k,N

]
.

We set

Z(s) ≡ 0 for s /∈ U,(3.11)

and we define Z(s) for s ∈ U as follows. For t ∈ U ∪ R, define

p�(t) = s0
k,� ∨ t�, � = 1, . . . ,N − 1,

pN(t) = s1
k−1,N , and p(t) = (p1(t), . . . , pN(t)). Now let

F(t) =
⎧⎪⎨
⎪⎩

tN − s1
k−1,N

s0
k,N − s1

k−1,N

(
N−1∏
�=1

t� ∧ s0
k,�

s0
k,�

)
B̃
(
p(t)

)
, if t ∈ U,

0, otherwise,

(3.12)

so that F(t) is an R
d -valued multilinear interpolation of B̃(p(t)) with the process

which vanishes on the coordinate hyperplanes 1 to N − 1, and on the hyperplane
R

N−1 × {s1
k−1,N }. In particular, for t ∈ U ,

F(t) = 0 if t1 = 0 or · · · or tN−1 = 0 or tN = s1
k−1,N(3.13)
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and

F(t) = tN − s1
k−1,N

s0
k,N − s1

k−1,N

B̃
(
t1, . . . , tN−1, s

1
k−1,N

)
if t ∈ R.(3.14)

We note that t �→ F(t) is piecewise C∞, and we set

Z(s1, . . . , sN) = ∂N

∂s1 · · · ∂sN
F(s1, . . . , sN).

It is clear that Z(s) is a linear combination of the random variables B(s
j (1)
k,1 , . . . ,

s
j (N−1)
k,N−1 , s1

k−1,N ) that come from Lemma 3.3. Explicit formulas can be given, for
instance, letting Ḃ denote the white noise associated to B ,

Z(s) =
(

N−1∏
�=1

1

s1
k,� − s0

k,�

)
1

s0
k,N − s1

k−1,N

× Ḃ
([

s0
k,1, s

1
k,1

]× · · · × [
s0
k,N−1, s

1
k,N−1

]× [
0, s1

k−1,N

])
if s ∈ R,

but we will not need them. We note, however, that (Z(s)) is adapted to the filtration
(Gu) defined in (3.6).

For t = (t1, . . . , tN ) ∈ R
N , let

B̂(t) = B(t) −
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN .

Then (3.8) is clearly satisfied by (3.11), and (3.9) is satisfied since for t ∈ Rk ,
by (3.13) and (3.14),∫

[0,t1]×···×[0,tN ]
Z(s1, . . . , sN) ds1 · · · dsN

=
∫ t1

0
ds1 · · ·

∫ tN−1

0
dsN−1

∫ s0
k,N

s1
k−1,N

dsN
∂N

∂s1 · · · ∂sN
F(s1, . . . , sN)

= s0
k,N − s1

k−1,N

s0
k,N − s1

k−1,N

B̃
(
t1, . . . , tN−1, s

1
k−1,N

)

= B̃
(
p(t)

)
= B̃(t).

In order to complete the proof, it remains to check that the assumption of The-
orem 3.5 is satisfied, and, in particular, that the process

Lu = exp
[∫

R
N−1+ ×[0,u]

Z(s) · dB(s) − 1

2

∫
R

N−1+ ×[0,u]
∥∥Z(s)

∥∥2
ds
]
, u ∈ [0,M],
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is a martingale. Since Z vanishes on R
N \U , it suffices, according to the extension

of Novikov’s criterion presented in [3], Chapter 3.5, Corollary 5.14, to check that
for n sufficiently large and ti = s1

k−1,N + i
n
(s0

k,N − s1
k−1,N ), i = 0, . . . , n,

E

[
exp

(
1

2

∫ s1
k,1

0
ds1 · · ·

∫ s1
k,N−1

0
dsN−1

∫ ti

ti−1

dsN
∥∥Z(s)

∥∥2
)]

< +∞.

But this follows from the fact that the integral is bounded by

C

n
sup

j∈JN

∥∥(B(
s
j (1)
k,1 , . . . , s

j (N−1)
k,N−1 , s0

k−1,N

))∥∥2

for some constant C that depends only on Rk−1 and Rk , and this random variable
has a finite exponential moment if n is sufficiently large. The proof of Lemma 3.6
is complete. �

PROOF OF THEOREM 3.1. We proceed by induction on k. For k = 1, there is
nothing to prove. So, assume that k ≥ 2 and that we have proved the statement for
k − 1.

We consider the two independent Brownian sheets B and Wk . We apply
Lemma 3.6 to both of these processes, producing processes B̂ and Ŵk such that,
in particular:

(1) B̂|R1 = B|R1, . . . , B̂|Rk−1 = B|Rk−1 ;
(2) B̂|Rk

and (B|R1, . . . ,B|Rk−1) are independent;
(3) B|[0,M]N and B̂|[0,M]N have mutually equivalent probability laws;

(4) Ŵk|Rk
and Wk|Rk

have mutually equivalent probability laws;
(5) B̂|Rk

and Ŵk|Rk
have the same probability law.

We write L(B|R1, . . . ,B|Rk
) for the probability law of the random vector

(B|R1, . . . ,B|Rk
), and use “∼” to indicate mutually equivalent probability laws.

Then, by (3) and (1),

L(B|R1, . . . ,B|Rk
) ∼ L(B̂|R1, . . . , B̂|Rk−1, B̂|Rk

)

= L(B|R1, . . . ,B|Rk−1, B̂|Rk
).

By (2) and (5), and since B and Wk are independent,

L(B|R1, . . . ,B|Rk−1, B̂|Rk
) = L(B|R1, . . . ,B|Rk−1, Ŵk|Rk

).

Let W1, . . . ,Wk−1 be independent Brownian sheets independent of Wk and B .
Since B and Wk are independent, we can use the induction hypothesis to see that

L(B|R1, . . . ,B|Rk−1, Ŵ |Rk
) ∼ L(W1|R1, . . . ,Wk−1|Rk−1, Ŵk|Rk

).

By (4) and the independence of (W1, . . . ,Wk−1) and Wk , we conclude that

L(W1|R1, . . . ,Wk−1|Rk−1, Ŵk|Rk
) ∼ L(W1|R1, . . . ,Wk−1|Rk−1,Wk|Rk

),

and this proves Theorem 3.1. �
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