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Expert opinion plays an important role when selecting promising clusters
of chemical compounds in the drug discovery process. We propose a method
to quantify these qualitative assessments using hierarchical models. However,
with the most commonly available computing resources, the high dimension-
ality of the vectors of fixed effects and correlated responses renders maximum
likelihood unfeasible in this scenario. We devise a reliable procedure to tackle
this problem and show, using theoretical arguments and simulations, that the
new methodology compares favorably with maximum likelihood, when the
latter option is available. The approach was motivated by a case study, which
we present and analyze.

1. Introduction.

1.1. Motivating case study. Janssen Pharmaceutica carried out a project to as-
sess the potential of 22,015 clusters of chemical compounds to identify those that
warranted further screening. In total, 147 experts took part in the study. For the
analysis, their assessments were coded as 1 if the expert recommended the cluster
for inclusion in the sponsor’s database and 0 otherwise.

The experts used the desk-top application Third Dimension Explorer (3DX) and
had no contact with one another during the evaluation sessions [Agrafiotis et al.
(2007)]. In a typical session, an expert evaluated a subset of clusters selected at
random from the entire set of 22,015. Each cluster was presented with additional
information that included its size, the structure of some of its distinctive members
such as the compound with the lowest/highest molecular weight, and 1–3 other
randomly chosen members of the cluster. 3DX supported multiple sessions, so an
expert could stop and resume the evaluation when convenient. The expert could
evaluate the clusters in the subset in any order, but a new random subset of clus-
ters, excluding the ones already rated, was assigned for evaluation only when all
the clusters in the previous subset had been evaluated or when the expert resumed
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FIG. 1. Histograms of the number of clusters evaluated by the experts: The left panel displays the
information from all experts, and the right panel displays the information for experts who evaluated
fewer than 4000 clusters.

the evaluation after interrupting the previous session for a break. Clusters assigned
but not evaluated could, in principle, be assigned again in another session. Inter-
estingly, some experts rated all compounds, for which they took a considerable
amount of time, which is necessary to avoid jeopardizing face-validity.

The histogram in the left panel of Figure 1 displays the distribution of the num-
ber of clusters evaluated by the experts. As one would expect, many experts opted
to evaluate a relatively small number of clusters. Indeed, 25% of the experts eval-
uated fewer than 345 clusters, 50% fewer than 1200, and 75% fewer than 2370
clusters. The right panel displays the distribution for those experts who evaluated
fewer than 4000 clusters. It confirms that experts tended to evaluate only a small
percentage of all the clusters and has notable peaks at 0–200 and 2000. In total,
the final data set contained 409,552 observations.

1.2. High-dimensional data. Steady advances in fields like genetics and
molecular biology are dramatically increasing our capacity to create chemical
compounds for therapeutic use. Nevertheless, developing these compounds into
effective drugs is an expensive and lengthy process, and consequently pharmaceu-
tical companies need to carefully evaluate their potential before investing more
resources. Expert opinion has been acknowledged as a crucial element in this
evaluation process [Oxman, Lavis and Fretheim (2007), Hack et al. (2011)]. In
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practice, similar compounds are grouped into clusters whose potential is quali-
tatively assessed by experts. We show that, using these qualitative assessments
and hierarchical models, a probability of success can be assigned to each cluster,
where success entails recommending the inclusion of a cluster in the sponsor’s
database for future scrutiny. However, the presence of several experts and many
clusters leads to a high-dimensional vector of repeated responses and fixed effects,
creating a serious computational challenge.

Facets of the so-called curse of dimensionality are numerous in statistics and
constitute active areas of research [Donoho (2000), Fan and Li (2006)]. Tibshirani
(1996) studied regression shrinkage and selection via the lasso; his paper is an
excellent example of the need for and popularity of methods for high-dimensional
data. Fieuws and Verbeke (2006) proposed several approaches to fit multivariate
hierarchical models in settings where the responses are high-dimensional vectors
of repeated observations.

Xia et al. (2002) categorized methods that deal with high dimensionality
into data reduction and functional approaches [Johnson and Wichern (2007), Li
(1991)]. Following the data reduction route, we propose a method that circumvents
the problem of dimensionality and allows a reliable assessment of the probability
of success for each cluster. The approach is based on permuting and splitting the
original data set into mutually exclusive subsets that are analyzed separately and
the posterior combination of the results from these analyses. It aims to render the
use of random-effects models possible when the data involve a huge number of
clusters and/or a large number of experts.

Data-splitting methods have already been used for tackling high-dimensional
problems. For instance, Chen and Xie (2012) used a split-and-conquer approach
to analyze extraordinarily large data in penalized regression, Fan, Guo and Hao
(2012) employed a data-splitting technique to estimate the variance in ultrahigh-
dimensional linear regression, and Molenberghs, Verbeke and Iddi (2011) formu-
lated a splitting approach for model fitting when either the repeated response vector
is high-dimensional or the sample size is too large.

Nonetheless, the scenario studied in this paper is radically different because
both the response vector and the vector of fixed effects are high dimensional. This
structure requires a splitting strategy in which the parameters and Hessian ma-
trices estimated in each subsample are not the same and, therefore, the methods
mentioned above do not directly apply.

The paper is organized as follows. Section 2 introduces the methodology men-
tioned above. Section 3 discusses results from applying the methodology to the
case study. To assess the performance of the new approach, we carried out a simu-
lation study. Section 4 outlines its design and main findings. Section 5 gives some
final comments and conclusions.

2. Estimating the probability of success. To facilitate the decision-making
process, it is desirable to summarize the qualitative assessments in a single prob-
ability of success for each cluster. One approach uses generalized linear mixed
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models. A simpler method uses the observed probabilities of success, estimated as
the proportion of 1’s that each cluster received. There are, however, good reasons
to prefer the model-based approach. Hierarchical models can include covariates
associated with the clusters and the experts. They also permit extensions to com-
pensate for selection bias or missing data and explicitly account for an expert’s
evaluation of several clusters. In addition, the model-based approach naturally de-
livers an estimate of the inter-expert variability. Although it is not the focus of the
analysis, a measure of heterogeneity among experts is valuable for interpretation
of the results and for design of future evaluation studies.

To estimate the probability of success for each of the N clusters, we denote the
vector of ratings associated with expert i by Yi = (Yij )j∈�i

, where �i is the set of
clusters evaluated by expert i (i = 1, . . . , n). A natural choice is the logistic-normal
model

logit
[
P(Yij = 1|βj , bi)

] = βj + bi,(1)

where βj is a fixed effect for cluster Cj with j ∈ Λi and bi ∼ N(0, σ 2) for ex-
pert i is a random effect. Models similar to (1) have been successfully applied in
psychometrics to describe the ratings of individuals on the items of a test or psy-
chiatric scale. In that context, model (1) is known as the Rasch model and plays an
important role in conceptualization of fundamental measurement in psychology,
psychiatry and educational testing [Bond and Fox (2007), De Boeck and Wilson
(2004)]. The problem studied in this work has clear similarities with the measure-
ment problem in psychometrics. For instance, the clusters in our setting parallel the
items in a test or psychiatric scale, and the ratings of an individual on these items
would be equivalent to the ratings given by the experts in our setting. Nonetheless,
differences in the target of inference and the dimension of the parameter space
imply that the two areas need distinct approaches.

Parameter estimates for model (1) are obtained by maximizing the likelihood,

L
(
β, σ 2) =

n∏
i=1

∫ ∞
−∞

∏
j∈Λi

π
yij

ij (1 − πij )
1−yij φ

(
bi |0, σ 2)

dbi,(2)

using, for example, a Newton–Raphson optimization algorithm, where πij =
P(Yij = 1|βj , bi), β = (β1, . . . , βN)′ contains the cluster effects and φ(bi |0, σ 2)

denotes the normal density with mean 0 and variance σ 2. The integral can be ap-
proximated by applying numerical procedures such as Gauss–Hermite quadrature.

Using model (1), one can calculate the marginal probability of success for clus-
ter Cj by integrating over the distribution of the random effects

Pj = P
(
Yj = 1|βj , σ

2) =
∫ exp(βj + b)

1 + exp(βj + b)
φ

(
b|0, σ 2)

db.(3)

One first estimates the cluster effects βj , after adjusting for the expert effects,
by maximizing the likelihood (2). One then uses these estimates to estimate the
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probability of success by averaging over the entire population of experts. However,
the vector of fixed effects β in (2) has dimension 22,015, and the dimension of
the response vector Yi ranges from 20 to 22,015. Hence, maximum likelihood is
not feasible with the most commonly available computing resources. In particular,
Gauss–Hermite or other quadrature methods, used to evaluate the integrals in (3),
can be particularly challenging [Molenberghs and Verbeke (2005), Pinheiro and
Bates (1995)]. The challenge is then to find a reasonable strategy for estimating
the probabilities of interest. Alternatively, one may consider stochastic integration
instead, as we do below.

2.1. A permutational-splitting sample procedure. Let C = {C1, . . . ,CN } de-
note the collection of ratings on the N clusters, where Cj is a vector containing
all the ratings cluster Cj received. Our procedure partitions the set of cluster eval-
uations C into S disjoint subsets of relatively small size. As with any splitting
procedure, one must decide on the size of these subsets. In our setting, if Nk de-
notes the number of vectors Cj in subset k (where N1 + N2 + · · · + NS = N ), then
one needs to determine the Nk so that model (1) can be fitted, with commonly
available computing resources, using maximum likelihood and the information in
each subset. Even though the search for appropriate Nk may produce more than
one plausible choice, a sensitivity analysis could easily explore the impact of these
choices on the conclusions. For instance, in our case study, Nk = 15 and Nk = 30
gave very similar results, indicating a degree of robustness to the choice of Nk . In
general, the subsets’ size may vary from one application to another. However, 30–
40 clusters per subset seem to be a reasonable starting point. Clearly, the choice of
the Nk determines S, and some subsets may have slightly more or fewer clusters
than Nk when N/Nk is not a whole number. Taking these ideas into account, we
developed the following procedure:

1. Splitting. Split the set C into S mutually exclusive and exhaustive subsets Ck

(k = 1, . . . , S) with Nk < N denoting the number of clusters in Ck . The informa-
tion in these subsets may not be independent because ratings from the same expert
may appear in more than one subset. However, because the subsets are exclusive
and exhaustive, a given cluster belongs to a single subset.

2. Estimation. Using maximum likelihood and the information included in
each Ck , fit model (1) S times. For all k, Nk < N (typically Nk � N ), so the
dimensions of the response and fixed-effect vectors in these models are much
smaller. Merging all estimates obtained from these fittings leads to an estimate
of the vector of fixed-effect parameters and S estimates of the random-effect vari-
ance σ 2. Clearly, within each subset, the estimator of the inter-expert variance σ̂ 2

k

uses information from only a subgroup of all experts and thus is less efficient than
the estimator based on all data. The pooling of the subset-specific estimates should
not be done mechanically; a careful analysis should look for unusual behavior.
The procedure described in the next step may help in checking the stability of the
parameter estimates.
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3. Permutation. Randomly permute the elements of C, and repeat steps 1 and 2
W times. This step is equivalent to sampling without replacement from the set
of all possible partitions introduced in step 1. Consequently, instead of estimating
the parameters of interest based on a single arbitrary partition, their estimation is
based on multiple randomly selected partitions of the set of clusters. The permu-
tation step serves several purposes. It yields estimates of the parameters based on
different subsamples of the same data and, hence, makes it possible to check the
stability of the estimates. This diversity may be especially relevant for the variance
component, because it is estimated with multiple sample sizes. In addition, com-
bining estimates from different subsamples produces more reliable final estimates.
To capitalize on these features, one should ideally consider a large number of per-
mutations (W ). Our results, however, indicate little gain from taking W larger
than 20.

4. Estimation of the success probabilities. Step 3 produces the estimates β̂w

and σ̂ 2
kw , where w = 1, . . . ,W and k = 1, . . . , S. Subsequently, based on β̂w and

σ̂ 2
w = 1

S

∑S
k=1 σ̂ 2

kw , estimates of the success probability of each cluster can be ob-
tained using (3), with the integral computed via stochastic integration by drawing
Q elements bq from N(0, σ̂ 2

w). Importantly, unlike σ̂ 2
kw , which only uses informa-

tion from the experts in subset k, σ̂ 2
w is based on information from all experts and

hence offers a better assessment of the inter-expert variance. It is of course possi-
ble, when needed, to optimize this stochastic procedure. Eventually, the probability
of success for cluster Cj can be estimated as

P̂j = 1

W

W∑
w=1

P̂wj where P̂wj = P̂w(Yj = 1) = 1

Q

Q∑
q=1

exp(β̂wj + bq)

1 + exp(β̂wj + bq)
.

Similarly,

β̂j = 1

W

W∑
w=1

β̂wj and σ̂ 2 = 1

W

W∑
w=1

σ̂ 2
w.

One may heuristically argue that step 3 also ensures that final estimates of the
cluster effects are similar to those obtained if maximum likelihood were used with
the whole data. Indeed, let β̂wj denote again the maximum likelihood estimators
for the effect of cluster Cj computed in each of the W permutations and β̂Nj the
maximum likelihood estimator based on the entire set of N clusters. Further, con-
sider the expression β̂wj = β̂Nj + ewj , where ewj is the random component by
which β̂wj differs from β̂Nj . Because maximum likelihood estimators are asymp-
totically unbiased, provided maximum likelihood is estimating the same parame-
ters, one has E(ewj ) ≈ 0; and extensions of the law of large numbers for corre-
lated, not identically distributed random variables, may suggest that, under certain
assumptions, for a sufficiently large W [Birkel (1992), Newman (1984)]

β̂j = 1

W

W∑
w=1

β̂wj = β̂Nj + 1

W

W∑
w=1

ewj ≈ β̂Nj .
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Similar arguments apply to the variance component and the success probabilities.
The findings of the simulation study presented in Section 4 support these heuristic
results. In a particular data set, this argument could further be verified by compar-
ing the split procedure with full maximum likelihood. When the latter is not fea-
sible, one could consider a subset for which full likelihood is feasible. Of course,
when chosen too small, the discrepancy between the two procedures could well be
considerably larger than what it is for the entire set of data.

5. Confidence intervals for the success probabilities. To construct a confidence
interval for the success probability of cluster Cj , we consider the results from
one of the W permutations described in step 3. To simplify notation, we omit
the subscript w, but these calculations are meant to be done for each of the W

permutations.
If Ck denotes the unique subset of C containing Cj , then fitting model (1) to Ck

produces the maximum likelihood estimator θ̂ j = (β̂j , σ̂
2
k )′. Classical likelihood

theory guarantees that, asymptotically, θ̂ j ∼ N(θ j ,�), where a consistent estima-
tor of the 2 × 2 matrix � can be constructed using the Hessian matrix obtained
from fitting the model. Even though the estimator σ̂ 2

k is not efficient, its use is nec-
essary in this case to directly apply asymptotic results from maximum likelihood
theory. For a sufficiently large value of W , one could derive a confidence interval
for each Pj , based on replication.

The success probability Pj is a function of θ j , such that if one defines γj =
log{Pj/(1 − Pj )}, then the delta method leads to γ̂j ∼ N(γj , σ

2
γ ) asymptotically,

where γ̂j = log{P̂j /(1 − P̂j )} and

σ 2
γ =

(
∂γj

∂θ j

)
�

(
∂γj

∂θ j

)′
,

∂γj

∂θ j

= 1

Pj (1 − Pj )

∂Pj

∂θ j

,

with

∂Pj

∂βj

=
∫ exp(βj + b)

{1 + exp(βj + b)}2 φ
(
b|0, σ 2

k

)
db,

∂Pj

∂σ 2
k

=
∫ exp(βj + b)

1 + exp(βj + b)

b2 − σ 2
k

2σ 4
k

φ
(
b|0, σ 2

k

)
db.

The necessary estimates can be obtained by plugging θ̂ j into the corresponding
expressions and using stochastic integration as previously described. Finally, an
asymptotic 95% confidence interval for Pj is given by

CIPj
= exp(γ̂j ± 1.96 · σ̂γ )

1 + exp(γ̂j ± 1.96 · σ̂γ )
.
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The overall confidence interval follows from averaging the lower and upper bounds
of all confidence intervals from the W partitions. A more conservative approach
would consider the minimum of the lower bounds and the maximum of the upper
bounds, that is, the union interval. In reverse, the intersection interval (maximum
of the lower bounds; minimum of the upper bounds) might be too liberal. In princi-
ple, one should adjust the coverage probabilities using, for example, a Bonferroni
correction when constructing these intervals. If the overall coverage probability
for the entire family of confidence intervals is 95%, then it is easy to show that
the overall confidence interval will have a coverage probability of at least 95%.
This implies construction of confidence intervals with level (1 − 0.05/W ) for Pj

in each permutation, which are likely to be too wide for useful inference. In Sec-
tion 4 we study the performance of this interval via simulation without using any
correction, and the results confirm that in many practical situations this simpler
approach may work well. Of course, the resulting interval is then for a single Pj .
In case simultaneous inference for several Pj is needed, conventional adjustments
need to be made.

In these developments, we assume that, given cluster and expert effects, an ex-
pert’s evaluations of different clusters are independent. The correctness of this as-
sumption is relevant when different clusters, evaluated by the same expert, end up
in the same partitioning set. Our assumption is similar to the psychometric assump-
tion that items’ difficulties are intrinsic characteristics. Even though we believe that
this assumption is reasonable, it is nevertheless important to be aware of it.

3. Data analysis.

3.1. Unweighted analysis. The procedure introduced in Section 2 was applied
to the data described in Section 1.1, using Nk = 30, Q = 10,000, S = 734 and
W = 20. Table 1 gives the results for the 20 top-ranked clusters, that is, the clusters
with the highest estimated probability of success. All clusters in the table have an
estimated probability larger than 60%, and the top 3 have probability of success
around 75%. The observed probabilities (proportion of 1’s for each cluster) lie
within the 95% confidence limits of their corresponding model-based probability
estimates. In spite of this, reasonable differences, close to 0.1, are observed for
some clusters (e.g., 296443, 296427 and 333529) and this may signal a potential
problem in regard to the use of observed probabilities. Importantly, these naive
estimates completely ignore the correlation between ratings from the same expert.
Therefore, they do not correct for the possibility that some experts may tend to give
higher/lower ratings than others and may lead to biased estimates for clusters that
are mostly evaluated by definite/skeptical experts. In addition, the results indicate
high heterogeneity among experts, with estimated variance

σ̂ 2 = 1

W

W∑
w=1

σ̂ 2
w ≈ 10.
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TABLE 1
The 20 clusters (ID) with highest estimated probability of success: Estimated cluster effect (β̂j ),

Estimated/Observed success probabilities (proportion of 1’s for each cluster) and confidence
interval limits

Probability 95% CI

ID ̂βj Estimated Observed Lower Upper

295061 3.07 0.80 0.82 0.58 0.92
296535 2.51 0.76 0.81 0.51 0.90

84163 2.40 0.75 0.78 0.48 0.90
313914 2.30 0.74 0.80 0.39 0.93
265441 2.16 0.72 0.69 0.50 0.87
296443 2.09 0.72 0.62 0.52 0.86
277774 2.01 0.71 0.71 0.49 0.86
265222 1.96 0.71 0.70 0.53 0.84
178994 1.84 0.69 0.73 0.50 0.84
462994 1.73 0.69 0.69 0.44 0.86
292579 1.76 0.69 0.75 0.45 0.84
296560 1.71 0.68 0.72 0.47 0.83
277619 1.67 0.68 0.63 0.47 0.83
315928 1.67 0.68 0.75 0.47 0.84
296427 1.69 0.68 0.78 0.35 0.91
263047 1.60 0.68 0.76 0.45 0.84
333529 1.62 0.67 0.80 0.45 0.84
292805 1.52 0.67 0.72 0.43 0.85
178828 1.43 0.66 0.72 0.43 0.83
265229 1.39 0.65 0.65 0.47 0.80

σ̂ 2 10.279

On the one hand, this large variance may indicate a need to select experts from a
more uniform population by applying, for example, more stringent selection cri-
teria. On the other hand, more stringent selection criteria may conflict with hav-
ing experts that represent an appropriately broad range of opinions. In this sense,
a broad range may be considered beneficial, provided the model used properly
accommodates between-expert variability. Finding a balance between these two
considerations is very important for the overall quality of the study. In general, if
experts show substantial heterogeneity, then additional investigation should try to
determine the source before further actions are taken.

In principle, it is possible to use fixed effects for the 147 experts. Of course,
this would raise the issue of inconsistency when the number of experts increases.
Apart from this, the estimated fixed effects could be examined informally to assess
heterogeneity in the sample of raters.

The general behavior of the estimated probabilities of success is displayed in
Figure 2. Visibly, most clusters have a quite low probability of success, with the



2328 E. MILANZI ET AL.

FIG. 2. Distribution of estimated probabilities of success.

median around 26%, and 75% of the clusters have an estimated probability of suc-
cess smaller than 40%. About 120 clusters are unanimously not recommended, as
evidenced by the peak at zero probability. This is in line with the observed data:
none of them received a positive recommendation, though their numbers of eval-
uations ranged between 11 and 23. Another conspicuous group contains clusters
that had only 1–3 positive evaluations and, as expected, produced low estimated
proportions of success, ranging between 8 and 10%.

The interpretation of these probabilities will frequently be subject-specific. Tak-
ing into account the economic cost associated with the development of these clus-
ters, the time frame required to develop them, and the potential social and eco-
nomic gains that they may bring, researchers can define the minimum probability
of success that would justify further study.

The analysis of the confidence intervals also offers some important insight.
First, although moderately wide, the confidence intervals still allow useful infer-
ences. The large inter-expert heterogeneity may hint at possible measures to in-
crease precision in future studies. Second, using the lower bound of the confidence
intervals to rank the clusters, instead of the point estimate of the probability of suc-
cess, may yield different results. By this criterion, cluster 265222, ranked eighth by
the point estimate, would become the second most promising candidate. Clearly,
some more fundamental, substantive considerations may be needed to complement
the information in Table 1 during the decision-making process.
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TABLE 2
Estimates for the fixed effects and probabilities of success obtained from the weighted and

unweighted analyses for the top 20 clusters in terms of unweighted probability; β̂weighted and
β̂unweighted are the estimated cluster effects with the ranks in parentheses, and p̂robweighted and

p̂robunweighted are the corresponding probabilities of success

ID ̂βweighted
̂βunweighted ̂probweighted ̂probunweighted

295061 3.86 3.33 0.90 (2) 0.80 (1)
296535 1.99 2.71 0.74 (54) 0.76 (2)

84163 0.86 2.42 0.61 (376) 0.73 (3)
296443 0.54 2.41 0.57 (620) 0.73 (4)
313914 3.79 2.37 0.89 (3) 0.73 (5)
265222 0.56 2.40 0.57 (653) 0.73 (6)
333529 1.85 1.99 0.73 (67) 0.69 (7)
296560 1.26 1.91 0.66 (198) 0.69 (8)
178994 2.25 1.91 0.77 (28) 0.69 (9)
265441 1.22 1.94 0.66 (211) 0.69 (10)
277774 2.26 1.87 0.77 (29) 0.69 (11)
292579 2.69 1.91 0.81 (10) 0.69 (12)
315928 1.18 1.87 0.65 (233) 0.68 (13)
277619 −0.63 1.74 0.42 (3165) 0.67 (14)
263047 3.85 1.78 0.90 (1) 0.67 (15)
296427 2.70 1.65 0.81 (12) 0.67 (16)
292805 1.00 1.60 0.63 (313) 0.66 (17)
178828 2.26 1.52 0.77 (27) 0.66 (18)
462994 1.31 1.46 0.67 (183) 0.65 (19)
159643 1.93 1.50 0.74 (55) 0.65 (20)

σ̂ 2 3.19 15.80

As a sensitivity analysis we also considered Nk = 15, W = 20, S = 1468, with
Q = 10,000. The results appear in the columns labeled “unweighted” in Table 2.
Clearly, the differences with the original analysis are negligible.

3.2. Weighted analysis. An important issue discussed in Section 1.1 was the
differences encountered in the numbers of clusters evaluated by the experts. One
may wonder whether experts who evaluated a large number of clusters gave as
careful consideration to each cluster as those who evaluated only a few. Impor-
tantly, the model-based approach introduced in Section 2 can take into account
these differences by carrying out a weighted analysis, which maximizes the likeli-
hood function

L
(
β, σ 2) =

n∏
i=1

ωi

∫ ∞
−∞

∏
j∈Λi

π
yij

ij (1 − πij )
1−yij φ

(
bi |0, σ 2)

dbi,(4)
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where ωi = N/|Λi | and |Λi | denotes the size of Λi . Practically, a weighted anal-
ysis, using the SAS procedure NLMIXED, implies replication of each response
vector by ωi , resulting in a pseudo-data set with larger sample size than in the
unweighted analysis. Using partitions with Nk = 30 was rather challenging; con-
sequently, the weighted analysis was carried out with Nk = 15. The main results
are displayed in Table 2.

Interestingly, some important differences emerge from the two approaches. For
instance, the top-ranked cluster in the unweighted analysis received rank 2 in the
weighted approach. Some differences are even more dramatic; for example, the
fourth cluster in the unweighted analysis received rank 620 in the weighted ap-
proach. Clearly, a very careful and thoughtful discussion of these differences will
be needed during the decision-making process. In addition, these results also point
out the importance of a careful design of the study and may suggest changes in
the design to avoid large differences in the numbers of clusters evaluated by the
experts. The top 20 in Table 2 is very similar to the one in Table 1, but it is not
exactly the same. For example, the cluster ranked 20th is not in Table 1, probably
because of the change in σ̂ 2.

Fitting model (1) to the entire data set using maximum likelihood was unfeasi-
ble in this case study. Therefore, all previous conclusions were derived by imple-
menting the procedure described in Section 2. One may wonder how the previous
procedure would compare with maximum likelihood when the latter is tractable.
In the next section we investigate this important issue via simulation.

4. Simulation study. The simulations were designed to mimic the main char-
acteristics encountered in the case study. Two hundred data sets were generated,
with the following parameters held constant across data sets: (1) Number of clus-
ters N = 50, chosen to ensure tractability of maximum likelihood estimation for
the whole data, (2) number of experts n = 147, and (3) a set of 50 values assigned
to the parameters characterizing the cluster effects (βj ), which were sampled from
a N(−2,2) one time and then held constant in all data sets. Factors varying among
the data sets were as follows: (1) the number of ratings per expert ni , independently
sampled from Poisson(25) and restricted to the range of 8 to 50, and (2) a set of
147 expert random effects bi , independently sampled from N(0,12.25). Concep-
tually, each generated data set represents a replication of the evaluation study in
which a new set of experts rates the same clusters. Therefore, varying bi from one
data set to another resembles the use of different groups of experts in each study,
sampled from the entire population of experts. Clearly, ni needs to vary simulta-
neously with bi . The probability that expert i would recommend the inclusion of
cluster j in the sponsor’s database, Pij = P(Yij = 1|βj , bi), was computed using
model (1) and the response Yij ∼ Bernoulli(Pij ). Finally, model (1) was fitted us-
ing full maximum likelihood and the procedure introduced in Section 2, and their
corresponding probabilities of success, given by (3), were compared. Parameters
used in the split procedure were Nk = 5, W = 20, Q = 10,000 and S = 10.
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TABLE 3
True value and average parameter estimate for the top 20 clusters (ID) in the simulation study,

estimated from full maximum likelihood (likelihood) and the split procedure (procedure)

βj

ID True Likelihood Procedure

3 2.33 2.38 2.36
1 1.60 1.63 1.65

33 1.52 1.56 1.54
47 1.43 1.45 1.48
50 1.04 1.03 1.05
27 0.13 0.07 0.11
30 0.06 0.01 0.05
32 0.06 0.03 0.06
14 −0.11 −0.14 −0.11

7 −0.30 −0.33 −0.29
9 −0.49 −0.50 −0.46

48 −0.63 −0.65 −0.61
10 −0.71 −0.70 −0.66
21 −0.97 −1.00 −0.98
11 −1.12 −1.19 −1.14
26 −1.13 −1.12 −1.07
15 −1.32 −1.33 −1.29
13 −1.40 −1.42 −1.38

4 −1.42 −1.47 −1.42
42 −1.61 −1.69 −1.66

σ̂ 2 12.25 12.96 12.74

The main results of the simulation study for the top 20 clusters (those with the
highest true probability of success) are summarized in Tables 3 and 4. Table 3
clearly shows that the proposed procedure performs as well as maximum likeli-
hood, for the point estimates of the cluster effect. Further, Figure 3 shows that this
is true for most of the clusters, as the average relative differences from the true val-
ues, for the maximum likelihood estimators [(β̂j,mle − βj )/βj ] and the estimators
obtained from the split procedure [(β̂j,split − βj )/βj ], are very close to zero most
of the time. Interestingly, maximum likelihood cluster-effect estimates for clusters
14, 27, 30 and 32 have a noticeably larger average relative bias than their split-
procedure counterparts (#30 is off the scale). This results from the fact that, for
these four clusters, the denominator in the relative-difference expression is very
small, highlighting a well-known shortcoming of ratios and relative differences. In
Table 4, the corresponding values are unremarkable.

Further scrutiny of the estimated success probabilities in Table 4 confirms the
similarity in performance between the two methods. Here again the point estimates
are very close to the true values, and the coverage of the confidence intervals lies
around 95% for maximum likelihood as well as for the split procedure. Relative
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TABLE 4
Average estimated success probabilities for top 20 clusters (ID) in the simulation study, using full
likelihood (lik.) and the split procedure (proc.), percentage of coverage of the confidence intervals

(coverage %), percentage of times the true value was less than lower confidence limit [noncov.
(above) %], and percentage of times the true value was greater than upper confidence limit

[noncoverage (below) %]

Probability Noncov. Noncov.
of success Coverage % (above) % (below) %

Rank ID True Lik. Proc. Lik. Proc. Lik. Proc. Lik. Proc.

1 3 0.72 0.72 0.73 0.94 0.95 0.02 0.02 0.05 0.04
2 1 0.66 0.66 0.66 0.95 0.96 0.03 0.02 0.03 0.03
3 33 0.65 0.65 0.65 0.98 0.97 0.01 0.01 0.02 0.02
4 47 0.64 0.64 0.65 0.96 0.96 0.02 0.02 0.02 0.02
5 50 0.60 0.60 0.61 0.96 0.96 0.02 0.02 0.03 0.01
6 27 0.51 0.51 0.51 0.96 0.96 0.02 0.02 0.03 0.02
7 30 0.51 0.50 0.51 0.93 0.94 0.03 0.02 0.04 0.03
8 32 0.51 0.50 0.51 0.94 0.96 0.04 0.02 0.03 0.01
9 14 0.49 0.49 0.49 0.97 0.96 0.01 0.01 0.03 0.03

10 7 0.47 0.47 0.47 0.94 0.96 0.01 0.02 0.05 0.02
11 9 0.45 0.45 0.45 0.97 0.96 0.02 0.02 0.02 0.02
12 48 0.44 0.44 0.44 0.96 0.96 0.03 0.03 0.01 0.01
13 10 0.43 0.43 0.43 0.92 0.95 0.04 0.03 0.05 0.03
14 21 0.40 0.40 0.40 0.97 0.97 0.02 0.02 0.01 0.01
15 11 0.39 0.38 0.39 0.95 0.95 0.03 0.03 0.03 0.02
16 26 0.39 0.39 0.39 0.94 0.95 0.04 0.04 0.02 0.01
17 15 0.37 0.37 0.37 0.96 0.97 0.03 0.02 0.01 0.01
18 13 0.36 0.36 0.36 0.95 0.96 0.04 0.03 0.02 0.02
19 4 0.36 0.36 0.36 0.94 0.95 0.03 0.03 0.04 0.02
20 42 0.34 0.34 0.34 0.95 0.97 0.04 0.02 0.02 0.01

differences between the true values and estimates from the two methods are mostly
positive, suggesting that many cluster effects were slightly overestimated. These
results further confirm the heuristic conclusions derived in Section 2, stating that
the split procedure should often yield results very similar to maximum likelihood
when W is sufficiently large.

5. Conclusion. In our quest to quantify expert opinion on the potential of
clusters of chemical compounds, we have introduced a permutational-splitting
sample procedure. A combination of maximum likelihood estimation, resampling
and stochastic methods produced parameter estimates and confidence intervals
comparable to those obtained from full maximum likelihood. Loss in precision
with the split procedure, apparent in wider confidence intervals, is anticipated, be-
cause the procedure splits the data into dependent subsamples, resulting in a less
efficient estimate of the random-effect variance.
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FIG. 3. Average relative difference between the true values and the estimates obtained from maxi-

mum likelihood,
β̂j,mle−βj

βj
(left) and the split procedure

β̂j,split−βj

βj
(right). (Results of the simulation

study.)

The model used for the statistical analysis and the conclusions derived from it
rest on a number of assumptions, such as the distribution of the expert-specific
effect bi . Although the normality assumption for the random effects is standard
in most software packages, in principle, it would be possible to consider other
distributions. For instance, using probability integral transformations in the SAS
procedure NLMIXED, other distribution could be fitted, but obtaining convergence
is much more challenging with these models [Nelson et al. (2006)].

One could also extend the model by letting the expert effects vary among clus-
ters. However, this extension would dramatically increase the dimension of the
vector of random effects, aggravating the already challenging numerical prob-
lems. In general, the successful application of the Rasch model in psychometrics to
tackle problems similar to the one considered here makes us believe that, although
it cannot be formally proven, model (1) may offer a feasible and reliable way to
estimate the success probabilities of interest.

More simulation studies and applications to real problems will shed light on the
potential and limitations of the model and fitting procedure proposed in the present
work. Importantly, their application is possible with commonly available software,
and a simulated data set with the corresponding SAS code for the analysis can be
freely downloaded from http://www.ibiostat.be/software/.

http://www.ibiostat.be/software/


2334 E. MILANZI ET AL.

Even though it was not the focus of the present work, it is clear that the design
of the study is another important element to guarantee the validity of the results.
Optimal designs are a class of experimental designs that are optimal with respect to
some statistical criterion [Berger and Wong (2009)]. For instance, one may aim to
select the number of experts, the number of clusters assigned to the experts and the
assignment mechanism to maximize precision when estimating the probabilities of
success. In principle, it seems intuitively desirable for each cluster to be evaluated
by the same number of experts and for each pair of experts to have a reasonable
number of clusters in common. However, more research will be needed to clarify
these issues and establish the best possible design for this type of study.
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