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A natural experiment is a type of observational study in which treatment
assignment, though not randomized by the investigator, is plausibly close to
random. A process that assigns treatments in a highly nonrandom, inequitable
manner may, in rare and brief moments, assign aspects of treatments at ran-
dom or nearly so. Isolating those moments and aspects may extract a nat-
ural experiment from a setting in which treatment assignment is otherwise
quite biased, far from random. Isolation is a tool that focuses on those rare,
brief instances, extracting a small natural experiment from otherwise use-
less data. We discuss the theory behind isolation and illustrate its use in a
reanalysis of a well-known study of the effects of fertility on workforce par-
ticipation. Whether a woman becomes pregnant at a certain moment in her
life and whether she brings that pregnancy to term may reflect her aspirations
for family, education and career, the degree of control she exerts over her
fertility, and the quality of her relationship with the father; moreover, these
aspirations and relationships are unlikely to be recorded with precision in
surveys and censuses, and they may confound studies of workforce participa-
tion. However, given that a women is pregnant and will bring the pregnancy
to term, whether she will have twins or a single child is, to a large extent,
simply luck. Given that a woman is pregnant at a certain moment, the dif-
ferential comparison of two types of pregnancies on workforce participation,
twins or a single child, may be close to randomized, not biased by unmea-
sured aspirations. In this comparison, we find in our case study that mothers
of twins had more children but only slightly reduced workforce participation,
approximately 5% less time at work for an additional child.

1. Constructing natural experiments.

1.1. Natural experiments. Natural experiments are a type of observational
study, that is, a study of the effects caused by treatments when random assignment
is infeasible or unethical. What distinguishes a natural experiment from other ob-
servational studies is the emphasis placed upon finding unusual circumstances in
which treatment assignment, though not randomized, seems to resemble random-
ized assignment in that it is haphazard, not the result of deliberation or considered
judgement, not confounded by the typical attributes that determine treatment as-
signment in a particular empirical field. The literature on natural experiments spans
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the health and social sciences; see, for instance, Arpino and Aassve (2013), Imai
et al. (2011), Meyer (1995), Rutter (2007), Sekhon and Titiunik (2012), Susser
(1981) and Vandenbroucke (2004).

Traditionally, natural experiments were found, not built. In one sense, this
seemed inevitable: one needs to find haphazard treatment assignment in a world
that typically assigns treatments in a biased fashion, often assigning treatments
with a view to achieving an objective. There is, however, substantial scope for
constructing natural experiments. When treatment assignment is biased, there may
be aspects of treatment assignment, present only briefly, that are haphazard, close
to random. The key to constructing natural experiments is to isolate these transient,
haphazard aspects from typical treatment assignments that are biased. If brief hap-
hazard aspects of treatment assignment can be isolated from the rest, in the isolated
portion it is these haphazard elements that are decisive. This is analogous to a lab-
oratory in which a treatment is studied in isolation from disruptions that would
obscure the treatment’s effects. Laboratories are built, not found.

1.2. A natural experiment studying effects of fertility on workforce participa-
tion. Does having a child reduce a mother’s participation in the workforce? If it
does, what is the magnitude of the reduction? The question is relevant to individ-
uals planning families and careers and to legislators and managers who determine
policies related to fertility, such as family leaves. A major barrier to answering
this question is that, for many if not most women, decisions about fertility, edu-
cation and career are highly interconnected, and each decision has consequences
for the others. Here we follow Angrist and Evans (1998) and seek to determine
if there is some source of variation in fertility that does not reflect career plans
and is just luck. Although a woman has the ability to influence the timing of her
pregnancies, given that she is pregnant at a particular age, she has much less in-
fluence about whether she will have a boy or a girl, whether she will have a single
child or twins—to a large extent, that is just luck. More precisely, that a woman is
pregnant at a certain moment in her life may be indicative of her unrecorded plans
and aspirations for education, family and career, but conditionally given that she is
pregnant at that moment, the birth outcome, a boy or a girl or twins, is unlikely to
indicate much about her plans and aspirations.

We focus here on the haphazard contrast most likely to shift the total number of
children, namely, a comparison of similar women, one with a twin at her kth birth,
the other with children of mixed sex at her kth birth since, as Angrist and Evans
(1998) noted, many women or families in the US prefer to have children of both
sexes, rather than just boys or just girls, that is, a third child is seen in data to be
more common if the first two children have the same sex. While we could compare
women having twins with women having a single child whose sex is the same as
her first child, we focus on comparing women having twins with women having a
single child whose sex is different from her first since the first woman may end up
with one more child than she intended, whereas the other woman will, at least, not
have additional children simply to have one of each sex.
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What question does such a natural experiment answer? Conditionally given that
a woman with a certain prior history of fertility is currently pregnant, having a girl
or a boy or twins does not pick out a particular type of woman. So the study is
accepting whatever process led a particular woman to be pregnant at a certain mo-
ment in her life, and it is asking: What would happen if she unexpectedly had two
children at that pregnancy rather than one? How would that event alter her subse-
quent workforce participation? We use the idea from Angrist and Evans (1998) to
illustrate and discuss tools to extract natural experiments from larger biased data
sets, in particular, risk set matching [Li, Propert and Rosenbaum (2001)], differen-
tial effects [Rosenbaum (2006, 2013a)] and strengthening an instrumental variable
[Baiocchi et al. (2010), Zubizarreta et al. (2013)].

1.3. Informal review of two key concepts: Differential effects; risk-set match-
ing. Because differential effects and risk set matching may be unfamiliar, we
now review the motivation for these techniques. Consider, first, differential effects
and generic biases acting at a single point in time [Rosenbaum (2006, 2013a)].
Treatment assignment may be biased by certain unmeasured covariates that pro-
mote several treatments in a similar way. When this is true, receiving a treatment
s may be very biased by these covariates, while receiving one treatment s in lieu
of another s ′ may be unbiased or less biased or biased in a different way. Here,
attention shifts from whether or not a person received treatment s (i.e., the main
effect of s) to whether a person received treatment s rather than treatment s ′ con-
ditionally given that the person received either treatment s or treatment s′ (i.e., the
differential effect of s in lieu of s′). Consider an example discussed in detail by
Anthony et al. (2000). There is a theory that nonsteroidal anti-inflammatory drugs
(NSAIDs), such as ibuprofen (e.g., brand Advil), may reduce the risk of Alzheimer
disease. There is an obvious bias in comparing people who regularly take ibuprofen
and people who do not. In all likelihood, a person who regularly takes ibuprofen is
experiencing chronic pain, perhaps arthritis or back pain, is aware of that pain, and
is capable of acting deliberately on the basis of that awareness. It has been sug-
gested that people in the early undiagnosed stages of Alzheimer disease are less
aware of pain and less able to act on what awareness they have, so that fact alone
might produce a spurious association between use of ibuprofen and lower risk of
later diagnosed Alzheimer disease. There are, however, pain relievers that are not
NSAIDs, for example, acetaminophen (e.g., brand Tylenol). While limited aware-
ness of pain or limited ability to act on awareness might reduce use of pain relievers
of all kinds, it seems far less plausible that it shifts people away from ibuprofen and
toward acetaminophen. That is, the differential effect of acetaminophen-versus-
ibuprofen—of one treatment in lieu of the other—may not be biased by unmea-
sured covariates that would bias straightforward estimates of the main effect of
either drug. Differential effects are not main effects, but when differential effects
are interesting, they may be immune to certain biases that distort main effects. See
also Gibbons et al. (2010) for differential effects in the study of medications.
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Consider, second, risk-set matching, a device for respecting the temporal struc-
ture of treatment assignment in observational studies [Li, Propert and Rosenbaum
(2001)]. For each subject in a randomized experiment, there is a specific moment
at which this subject is assigned to treatment or to control. In some observational
studies, there is no corresponding moment. Some people receive treatment at a
specific time, others receive it later or never receive it, but anyone who does not
receive treatment today might receive it tomorrow. Risk-set matching pairs two
individuals at a specific time, two individuals who looked similar in observed co-
variates prior to that specific time, a time at which one individual was just treated
and the other was not-yet-treated. The not-yet-treated individual may be treated to-
morrow, next year or never. We compare two individuals who looked similar prior
to the moment that one of them was treated, avoiding matching or adjustment for
events subsequent to that moment [cf. Rosenbaum (1984)]. That is, in the language
of Cox’s proportional hazards model, risk-set matching pairs two individuals who
were both at risk of receiving the treatment a moment before one of them actually
received it, two individuals who looked similar in time-dependent covariates prior
to that moment. Taken alone, without differential comparisons, risk-set matching is
a method for controlling measured time-dependent covariates respecting the tem-
poral structure of treatment assignment; see van der Laan and Robins (2003) for
other methods for this task.

1.4. Outline of the paper. Section 2 discusses new relevant theory, specifically
theory linking risk-set matching for time-dependent measured covariates with dif-
ferential comparisons unaffected by certain unmeasured time dependent covari-
ates. Fertility is commonly modeled in terms of “event history” or point process
models determining the timing of events together with “marks” or random vari-
ables describing these randomly timed events. The mark may record the occur-
rence of twins. Temporal order is key and must be respected. Sections 3 and 4
complete the case study of twin births with the construction of the matched sam-
ple using combinatorial optimization for risk-set matching discussed in Section 3
and a detailed analysis presented in Section 4. Section 5 includes a discussion of
related work.

2. Risk-set matching to control generic unmeasured biases.

2.1. Notation for treatments over time. The population before matching con-
tains statistically independent individuals. At time t , individual � has a history of
events prior to t , the observed history being recorded in x�t and the unobserved
history being recorded in u�t . To avoid a formal notation that we would rarely use,
we write histories as variables, x�t or u�t , but we intend to convey a little more
than this. Both the quantity and types of information in x�t or in u�t or in (x�t , u�t )

increase as time passes, that is, as t increases [or, formally, the sigma algebra gen-
erated by (x�t , u�t ) is contained within the sigma algebra generated by (x�t ′, u�t ′)
for t < t ′].
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In our case study, x�t records such things as the ages at which mother � gave
birth to the children she had prior to time t , her years of education attained at
the times of those births before time t , and unchanging characteristics such as her
place of birth, race or ethnicity. In parallel, u�t might be an unmeasured quantity
reflecting the entire history of a woman’s inclination to work full time in the year
subsequent to time t . Obviously, a birth at time t might, often would, alter x�t ′ or
u�t ′ for t ′ > t .

There is also a treatment process Z�t that is in one of K +1 states, s0, s1, . . . , sK .
That is, at any time t , individual � is in exactly one of these states, Z�t = sk for
some k ∈ {0,1, . . . ,K}. Also, write Z�t for the history of the Z�t process strictly
prior to time t , so Z�t records Z�t ′ for t ′ < t but it does not record Z�t . In our case
study, state s0 is the interval state of not currently giving birth to a child, state s1
is the point state of giving birth to a single female child, state s2 is the point state
of giving birth to a single male child, state s3 is the point state of giving birth to a
pair of female twins and so on. Most women are in state Z�t = s0 at most times t .
The history Z�t records mother �’s births up to time t , their timing, the sex of the
child, twins, etc.

Consider a specific individual � at a specific time t . At this moment, the in-
dividual has a treatment history Z�t prior to t and is about to receive a current
treatment Z�t . Given the past, Z�t , we are interested in the effect of the current
treatment Z�t on some future (i.e., after t) outcome R�. Write F�t = (Z�t ,x�t , u�t )

for the past at time t . In parallel with Neyman (1923) and Rubin (1974), this in-
dividual � at this time t has K + 1 possible values for R� depending upon the
treatment Z�t assigned at time t , that is, R� = rk� if Z�t = sk , where only one R�

is observed from an individual, and the effect of giving treatment k rather than k′
at time t , namely, rk� − rk′� is not observed for any person at any time. This struc-
ture is for individual � at a specific time t with treatment history Z�t ; typically,
everything about this structure would change if the history Z�t to time t had been
different. The question is what effect treatment at time t has on an individual with
a specific treatment and covariate history prior to t . It is entirely possible—indeed,
in typical applications, it is likely—that the treatments Z�t ′ at times t ′ < t alter the
value of observed or unobserved subsequent history (x�t , u�t ), but the history at t ,
namely, (x�t , u�t ), records the situation just prior to t and hence is unaffected by
the treatment assignment Z�t at t . Quite often, the outcome R� is a future value of
a quantity that is analogous to a past quantity recorded in the history (x�t , u�t ). In
our case study, R� might measure an aspect of future workforce participation be-
yond time t where (x�t , u�t ) records workforce participation prior to time t , or R�

might measure educational attainment at some time after t where (x�t , u�t ) records
educational attainment prior to time t .

In our case study, aspects of the record of a woman’s fertility, Z�t , are likely
to be strongly predicted by aspects of her observed and unobserved histories
(x�t , u�t ). A woman � aged t ′ = 18 years whose private aspiration u�t is to earn a
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Ph.D. in molecular biology and an MBA and to start her own biotechnology com-
pany is likely to take active steps to ensure Z�t = s0 for t ∈ (18,22] or longer, that
is, she is likely to postpone having children for at least several years. In contrast,
another woman �′ whose private aspiration u�′t at age t ′ = 18 is to stay at home as
the mother of many children may take active steps to ensure Z�t �= s0 for several
t ∈ (18,22], that is, she may actively pursue her goal of a large family. A com-
parison of the workforce participation of woman � and woman �′ will be severely
biased as an estimate of the effects of having a child before age 22 on workforce
participation, because � tried to shape her fertility to fit her work plans and �′ tried
to shape her fertility to fit her family plans—even if, by some accident, they had
the same pattern of fertility over t ∈ (18,22], we would not be surprised to learn
that � subsequently worked more for pay than did �′. What is an investigator to
do when unmeasured aspirations, intentions and goals are strongly associated with
treatment assignment?

2.2. What is risk-set matching? Risk-set matching compares people, say, �

and �′, who received different treatments at time t , Z�t �= Z�′t , but who looked
similar in their observed histories prior to t , x�t = x�′t and Z�t = Z�′t ; see Li,
Propert and Rosenbaum (2001), Lu (2005) and Rosenbaum [(2010), Section 12].
Importantly, � and �′ are similar prior to t in terms of observable quantities that
may be controlled by matching, but they may not be similar in terms of unmea-
sured histories, u�t �= u�′t , and of course they may differ in the future, after time
t , not least because they received different treatments at time t . Risk-set matching
does not solve the problem of unmeasured histories. Risk-set matching does re-
spect the temporal structure of the data, avoiding adjustment for variables affected
by the treatment [Rosenbaum (1984)]. Risk-set matching also “simplifies the con-
ditions of observation,” to use Mervyn Susser’s [(1973), Section 7] well-chosen
phrase, ensuring that comparisons are of people with histories that look compa-
rable, even though those histories may be of different lengths, and hence may
contain qualitatively different information. Although individuals have histories of
different lengths containing qualitatively different information, matched individ-
uals have histories of the same length. For instance, a woman giving birth to her
3rd child has in her history ages of birth of her first three children, where a mother
giving birth to her second child does not have in her history her age at the birth of
her third child, if indeed she had a third child.

In implementing risk-set matching in Section 3, we match women of the same
age, with the same history of fertility—the same numbers of prior children born at
the same ages in the same patterns. We also control for temporally fixed quantities
associated with fertility, such as ethnicity. A delicate issue that risk-set matching
would straightforwardly address with adequate data is “education.” On the one
hand, education is strongly related to wage income and is related to employment,
so it may strongly predict certain workforce outcomes R�. On the other hand, edu-
cation may itself be affected by fertility: a mother who has her first child at age 16
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may as a consequence have difficulty completing high school. In principle, the is-
sue is straightforward with risk-set matching: in studying the effects of fertility Z�t

at time t , one compares two people who had the same education prior to t , with-
out equating their educations subsequent to time t . Again, this avoids adjustment
for variables affected by the treatment [Rosenbaum (1984)]. If the adjustment for
education at time t controlled for subsequent education at time t ′ > t , it might—
probably would—remove a substantial part of the actual effect on workforce par-
ticipation of having a child at age 16. Not finishing high school is a good way to
have trouble in the labor market, and having a child at age 16 is a good way to have
trouble finishing high school; everyone remembers this until they start running re-
gressions, but then, too often, part of an actual effect is removed by adjusting for a
posttreatment variable that was also affected by the treatment.

Risk-set matching was discussed by Li, Propert and Rosenbaum (2001) and
Lu (2005). It has been applied in criminology [Nieuwbeerta, Nagin and Blokland
(2009), Apel et al. (2010), Murray, Loeber and Pardini (2012)], sociology [Wilde-
man, Schnittker and Turney (2012)] and medicine [Kennedy et al. (2010)]. See
Marcus et al. (2008), Rosenbaum [(2010), Section 12], Stuart (2010) and Lu et al.
(2011) for related discussion.

2.3. Removing generic unmeasured biases by differential comparisons in risk
sets. The model for biased treatment assignment in risk-set matching is intended
to express the thought that matching for the observed past, (Z�t ,x�t ), has con-
trolled for the observed past but typically did not control for the unobserved
past u�t . The model is a slight generalization to multiple states of the model for
two states in Li, Propert and Rosenbaum [(2001), Section 4], and that model is it-
self closely patterned after Cox’s (1972) proportional hazards model for outcomes
rather than treatments. People are in state s0 almost all the time, and are in states
s1, . . . , sK only at points in time. Let λk(F�t ) = λk(Z�t ,x�t , u�t ) be the hazard,
assumed to exist, of entering state k ≥ 1 at time t given past F�t . The hazard
is assumed to be of the form λk(Z�t ,x�t , u�t ) = exp{κk(Z�t ,x�t ) + φku�t } where
κk(·, ·) is unknown. Because x�t may include as one of its coordinates the time t ,
this model permits the hazards to vary with time t . For state s0, it is notationally
convenient to define λ0(·, ·, ·) = 1 and φ0 = 0.

In Section 2.1, u�t was described as a possibly multivariate history of a possi-
bly continuous process in time, whereas in the hazard model, exp{κk(Z�t ,x�t ) +
φku�t }, the unobserved element has become a scalar. This seems at first to be an
enormous and disappointing loss of generality, but upon reflection one sees that
the loss is not great. Suppose u�t did record a multivariate history over time, and
consider the hazard model exp{κk(Z�t ,x�t ) + φkf (u�t )} where f (·) is some un-
known real-valued functional of that multivariate, temporal history. Although this
appears at first to be a more general model, writing ũi� = f (u�t ), the model be-
comes exp{κk(Z�t ,x�t )+φkũi�}, a scalar model essentially as before. In words, in
exp{κk(Z�t ,x�t ) + φkf (u�t )}, not knowing u�t and not knowing f (·) is no better
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and no worse than not knowing the scalar ũi� = f (u�t ). It is the impact of un-
measured history on the hazard—a scalar—that matters, not the particulars of that
history. See Li, Propert and Rosenbaum (2001) and Lu (2005) for related discus-
sion.

Let s ∈ {s1, . . . , sK} be one of the point states or birth outcomes (single girl,
etc.), and let s′ �= s be any one of the other states, s ′ ∈ {s0, s1, . . . , sK}. Here, s′
may be either the state s0 of not giving birth or a point state. Suppose that we form
a risk-set match of one individual with Z�t = s and J − 1 ≥ 1 other individuals �′
in state s′ at t , where all J individuals have the same observed history to time t ,
Z�t = Z�′t and x�t = x�′t . For instance, this might be a match of J women with
the same observed history to time t , one of whom gave birth to her first child at t ,
a single girl s1, where the other J − 1 women had had no child up to and including
time t . Despite looking similar prior to time t , it is possible, perhaps likely, that
these J women differed in their ambitions u�t for school or work. After all, one
had a child at time t while the others did not. Alternatively, the matching might
compare a woman who had her first child, a girl or point state s1, at time t to
J − 1 women with the same observable past who had a first child, a boy or point
state s2, at time t . Perhaps this second comparison is closer to random than the
previous comparison of women with and without children at time t , because now
all J women had their first child at time t , and it was only the sex of the child
that varied. Obviously, there are many analogous possibilities, but we suppose the
investigator will focus on one such comparison at a time, for now, s and s′ with
s �= s′ and s, s ′ ∈ {s0, . . . , sK}.

The risk-set match is built rolling forward in time t , matching women with
states s or s ′ at t and with identical observable pasts, (Z�t ,x�t ), possibly differ-
ent unobservable pasts u�t , removing individuals once matched; however, events
subsequent to time t are not used in matching at time t . In the end, there are
I nonoverlapping matched sets, each containing J individuals. It is notationally
convenient to replace the label �, where � does not indicate who is matched to
whom, by noninformative labels for sets, i = 1, . . . , I , and for individuals within
sets, j = 1, . . . , J , for instance, random labels could be used. We then have
Zijt = Zij ′t and xij t = xij ′t for all i, j , j ′, but possibly uijt �= uij ′t . Also, write
Fit = (Zi1t ,xi1t , ui1t , . . . ,ZiJ t ,xiJ t , uiJ t ). Let Z be the event that for each i, ex-
actly one individual j has Zijt = s and the remaining J − 1 individuals j ′ have
Zij ′t = s′, so the risk-set matched design ensures that Z occurs. Given Z , the time
t is fixed, and the two states, s and s′, are fixed, so it is convenient to write Zij = 1
if Zijt = s and Zij = 0 if Zijt = s′, so that 1 = ∑J

j=1 Zij for each i.

The next step is key. Although there are
(K+1

2

)
possible choices of two states s,

s′ ∈ {s0, . . . , sK} to compare by risk-set matching, the same unobserved covari-
ate uijt can severely bias some choices of two states, while others may be nearly
random or only slightly biased. Consider the conditional probability that, in set
i of this risk-set matched design, it is individual j who received treatment s,
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with Zijt = s, the remaining J − 1 individuals receiving treatment s′. Using (i)
λk(Zijt ,xij t , uij t ) = exp{κk(Zijt ,xij t ) + φkuijt }, (ii) Zijt = Zij ′t and xij t = xij ′t ,
and (iii)

∑
j ′ �=j φs′uij ′t = −φs′uijt + ∑J

j ′=1 φs′uij ′t yields

Pr(Zijt = s|Fit ,Z)

= exp{κs(Zijt ,xij t ) + φsuij t }∏J
j ′ �=j exp{κs′(Zij ′t ,xij ′t ) + φs′uij ′t }∑J

m=1 exp{κs(Zimt ,ximt ) + φsuimt }∏J
m′ �=m exp{κs′(Zim′t ,xim′t ) + φs′uim′t }

= exp(φsuij t + ∑
j ′ �=j φs′uij ′t )∑J

m=1 exp(φsuimt + ∑
m′ �=m φs′uim′t )

(1)

= exp{(φs − φs′)uij t }∑J
m=1 exp{(φs − φs′)uimt }

= exp(γ uij t )∑J
m=1 exp(γ uimt )

where γ = φs − φs′,

where the last expression (1) is the same as the sensitivity analysis model in Rosen-
baum (2007, 2013b) for comparing treatment and control in I matched sets.

The key point is that there may be reason to believe that |φs − φs′ | is small for
some choices of s, s ′, and large for other choices. Refraining from having a child,
s = 0, is often a carefully planned event, but whether a child is a boy or a girl,
twins or a single birth, is a much more haphazard event. Some comparisons are
expected to be less biased by unmeasured intentions and preferences than other
comparisons. If a careful choice of s, s′ implies that |γ | = |φs − φs′ | is small, then
the inference about treatment effects may be convincing if it is insensitive to small
biases |γ | even if it is sensitive to moderate biases. If φs − φs′ = 0, then (1) is the
randomization distribution, Pr(Zijt = s|Fit ,Z) = 1/J for each ij t ; moreover, this
is true even if φs and φs′ are large, so that comparing mothers who had children at
different times would be severely biased by uijt .

2.4. Sensitivity analysis for any remaining differential biases. If φs �= φs′ , but
|γ | = |φs − φs′ | is small in (1), then the differential comparison of treatments s

and s′ in (1) may still be biased by uijt , and the sensitivity analysis examines the
possible consequences of biases of various magnitudes γ . In the current paper, the
sensitivity analyses use (1) with a test statistic that is either the mean difference in
workforce participation or a corresponding M-estimate with Huber’s weights. Of
course, the mean difference is one particular form of M-estimate. The sensitivity
analysis was implemented as described in Rosenbaum (2007) with the restriction
that uijt ∈ [0,1], so that under (1) matched mothers may differ in their hazards of
birth outcome s versus s ′ by at most a factor of � = exp(γ ). In the comparison in
Section 4, this means that two mothers with the same pattern of fertility and ob-
served covariates to time t , both of whom gave birth at time t , may differ in their
odds of having a twin, s, rather than a single child of a different sex than her earlier
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children, s′, by at most a factor of � because of differences in the unmeasured uij .
Although biases of this sort are not inconceivable, perhaps as a consequence of
differential use of abortion or fertility treatments, presumably such a bias � is not
very large, much smaller than the biases associated with efforts to control the tim-
ing of births. The one parameter � may be reinterpreted in terms of two parameters
describing treatment-control pairs, one � relating uij to the outcome (rT ij , rCij ),
the other 	 relating uij to the treatment Zij , such that a single value of � cor-
responds to a curve of values of (�,	) defined by � = (�	 + 1)/(� + 	), so
a brief unidimensional analysis in terms of � may be interpreted in terms of in-
finitely many two-dimensional analyses in terms of (�,	); see Rosenbaum and
Silber (2009). For instance, the curve for � = (�	+ 1)/(�+	) = 1.25 includes
the point (�,	) = (2,2) for a doubling of the odds of treatment and a doubling of
the odds of a positive pair difference in outcomes. Hsu and Small (2013) show how
to calibrate a sensitivity analysis about an unobserved covariate using the observed
covariates.

What is the role of the restriction uijt ∈ [0,1]? The restriction uijt ∈ [0,1] gives
a simple numerical meaning to γ and � by fixing the scale of the unobserved co-
variate: in (1), two subjects may differ in their hazard of treatment s rather that
treatment s′ at time t by at most a factor of � because they differ in terms of uijt .
It is possible to replace the restriction that uijt ∈ [0,1] for all ij t by the restriction
that uijt ∈ [0,1] for, say, 99% of the ij t with the remainder unrestricted [Rosen-
baum (1987), Section 4]; however, when using robust methods, small parts of the
data make small contributions to the inference, so this replacement has limited im-
pact. Permitting 1% of the uijt to be unrestricted should count as a larger bias, in
some sense a larger γ , and Wang and Krieger (2006) explore this possibility in a
special case, concluding that binary uijt do the most damage among all uijt with
a fixed standard deviation.

For discussion of a variety of methods of sensitivity analysis in observational
studies, see Baiocchi et al. (2010), Cornfield et al. (1959), Diprete and Gangl
(2004), Egleston, Scharfstein and MacKenzie (2009), Gastwirth (1992), Hosman,
Hansen and Holland (2010), Li, Propert and Rosenbaum (2001), Lin, Psaty and
Kronmal (1998), Liu, Kuramoto and Stuart (2013), Marcus (1997), McCandless,
Gustafson and Levy (2007), Robins, Rotnitzky and Scharfstein (2000), Rosen-
baum (2007, 2013b), Small (2007), Small and Rosenbaum (2008) and Yu and
Gastwirth (2005).

2.5. What is isolation? Isolation refers to equation (1) and is motivated by
the possibility that |φs − φs′ | may be small or zero when neither φs nor φs′ is
small or zero. If φs is not small, receipt of treatment s rather than no treatment
will be biased by the unmeasured time-dependent covariate uijt . In parallel, if φs′
is not small, receipt of treatment s ′ rather than no treatment will be biased by
uijt . However, if φs = φs′ , then the differential comparison of treatments s and s′,
conditionally given one of them, will not be biased by uijt , even though φs and
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φs′ may both be large. If unmeasured aspirations and plans (uijt ) influence the
timing of fertility but not whether twins (s) or a single child (s′) is born, then a
comparison of two mothers with the same timing, one with twins, the other with a
single child, is not biased by the unmeasured aspirations and plans. Equation (1)
isolates biased timing from possibly unbiased birth outcomes given timing. The
sensitivity analysis considers the possibility that |φs −φs′ | is small but not zero, so
there is some differential bias.

In the case study, it seems likely that the timing of births is affected by unmea-
sured covariates uijt but, conditionally given a birth, specific birth outcomes are
close to random; that is, each φs is not small but each |φs − φs′ | is small. In some
other context, it might be that |φs − φs′ | is thought to be small for some pairs s,
s′ ∈ {1, . . . ,K} and not for others, and, in this case, attention might be restricted
to a few comparisons for which |φs − φs′ | is thought to be small.

No matter how deliberate and purposeful a life may be, there are brief moments
when some consequential aspect of that life is determined by something haphazard.
Isolation narrows the focus in two ways: the moment and the aspect. One compares
people who appeared similar a moment before luck played its consequential role.
Among such people, one considers only a consequential aspect controlled by luck.
Isolation refers to the joint use of risk-set matching to focus on a moment and
differential effects to focus on an aspect.

2.6. Selecting strong but haphazard comparisons. To emulate a randomized
experiment, a natural experiment should have a consequential difference in treat-
ments determined by something haphazard. The strongest contrast is twins at birth
k versus mixed sex children at birth k, because this comparison is expected to do
the most to shift the number of children. The population of pregnant women would
not be distorted by limiting attention to these two groups, providing that the unob-
served uijt affects the timing but not the outcome of pregnancies (i.e., providing
φs = φs′ for s, s′ ∈ {1, . . . ,K}).

Natural experiments may yield instrumental variables where “strong” refers to
the strength of the instrument. An instrument is a haphazard nudge to accept a
higher dose of treatment, where the nudge affects the outcome only if it alters the
dose of treatment, the so-called “exclusion restriction”; see Holland (1988) and
Angrist, Imbens and Rubin (1996). In Section 2.3, some patterns of births (e.g.,
twins) may induce women to have more children than they would have had with
a different pattern of births, so perhaps certain patterns are instruments for family
size (the dose). An instrument is weak if most nudges are ignored, rarely altering
the dose. An instrument is strong if it typically materially alters the dose. Weak
instruments create inferential problems with limited identification [Bound, Jaeger
and Baker (1995), Imbens and Rosenbaum (2005), Small (2007)] and, more im-
portantly, inferences based on weak instruments are invariably sensitive to tiny
departures from randomized assignment [Small and Rosenbaum (2008)]. There-
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fore, it is often advantageous to strengthen an instrument [Baiocchi et al. (2010),
Zubizarreta et al. (2013)].

Is the exclusion restriction plausible here? Perhaps not. The exclusion restriction
would mean that having twins affects workforce participation only by altering the
total number of children. If a mother wanted three children but had twins at her
second pregnancy, the occurrence of twins might have altered the timing of her
children’s births rather than the total number of children. A mother who wished
to stay at home until her three children had entered kindergarten might return to
work sooner because of twins at the second birth without altering her total number
of children, and in this case the exclusion restriction would not be satisfied.

Even if the exclusion restriction does not hold, so the natural experiment does
not yield an instrument, it is nonetheless advantageous to have a consequential
difference in treatments determined by something that is haphazard. In particular,
the Wald estimator commonly used with instrumental variables estimates a ratio
of treatment effects—a so-called effect ratio—when the exclusion restriction does
not hold. The effect ratio is a local-average treatment effect when the exclusion
restriction holds, but it is interpretable without that condition; see Section 4 and
Baiocchi et al. (2010) for further discussion.

A distinction is sometimes made between internal and external validity, a dis-
tinction introduced by Donald T. Campbell and colleagues, a distinction that
Campbell (1986) later attempted to revise. In revised form, internal validity be-
came “local causal validity,” meaning correct estimation of the effects of the treat-
ments actually studied in the populations actually studied. What had been exter-
nal validity separated into several concepts, each referring to some generalization,
perhaps from the treatments under study to other related treatments, from the pop-
ulations under study to other related populations, or from the outcome measures
under study to other related measures. Because it uses Census data from 1980,
Angrist and Evans’ (1998) study concerns of a well-defined population at a par-
ticular era in history, and results about women’s workforce participation might
easily be different in the US in earlier and later eras. It would be comparatively
straightforward to replicate their study using Census data from other eras or using
similar data in other countries. Their study is reasonably compelling as a study of
the effects of having twins rather than a single child but, as the discussion of the
exclusion restriction above makes clear, it is not certain that having twins has the
same effect on workforce participation as having two children at different times.
Moreover, the study provides no information about women who have no children
at all. In brief, twinning is typically an unintended and somewhat random event,
whereas many women attempt to carefully, thoughtfully and deliberately control
the timing of fertility, so Angrist and Evan’s study has unusual strengths in local
causal validity, but one needs to avoid extrapolating their findings to other eras or
types of fertility that they did not study.
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3. The risk-set match.

3.1. One matched risk set. We created nonoverlapping matched sets of 6
women who were similar prior to the birth of their kth child, for k = 2, 3, 4, one of
whom had a twin on this kth birth, whereas the others had children of both sexes
as of the kth child. For instance, matched set #836 consisted of six women. All six
women had their first child at age 18 and their second child at age 22, and all were
white. After the birth of the second child, five of the mothers had one boy and
one girl, and one of the mothers had twins at the second pregnancy. A mother’s
plans for education, career and family may easily influence the timing of her preg-
nancies, but these six women gave birth at the same ages. A mother’s plans for
education, career and family are much less likely to determine which of the six
pregnancies will end with twins and which will end with two children of different
sexes—for most mothers, that’s just luck. All six mothers had 12 years of educa-
tion at the time of their first and second births at ages 18 and 22, respectively; see
Section 3.2 for technical details about this statement.

Matched sampling controls, or should control, for the past, not the future
[Rosenbaum (1984)]. The six women were similar prior to their second pregnancy.
They had different outcomes at their second pregnancy. What happened subse-
quently? The woman with twins ended up with 3 children in total, the other five
woman ended up with two children each—that is, none of these women went on
to have additional children beyond their second pregnancy. The pattern is different
in other matched sets. In this one matched set, all six women had no additional
education beyond the 12 years they had at age 18, the age of their first birth. In
this particular matched set, the mother of twins ranked third in workforce partici-
pation. In the year prior to the 1980 Census, two of the women with two children
had worked at least 40 hours in the previous week and 52 weeks in the previous
year, while the remaining three women with two children had not worked at all
in the previous year. The woman with twins, with three children, had worked 40
hours in the previous week and 20 weeks in the previous year.

Matched sets varied, but set #836 was typical in one respect. In the matched
comparison, it was uncommon for women who had children by age 18 to ulti-
mately complete a BA degree—only 5.5% did so—whereas it was much more
common for women who did not have a child by age 18 to complete a BA degree—
28.2% did so. Total lifetime education is the sum of two variables, a covariate
describing education prior to the kth birth and an outcome describing additional
education subsequent to the kth birth. Risk-set matching entails matching for the
covariate—the past—but not for the outcome—the future.

3.2. Technical detail: How the matching was done. Matches were constructed
in temporal order, beginning with the second pregnancy. Mothers not matched at
the second pregnancy might be matched later. The matching was exact for three
variables—age category at the second pregnancy, race/ethnicity and region of the
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US; see Table 1. Within each of these 64 = 43 cells, the match solved a combina-
torial optimization problem to make the mother of twins similar to the five control
mothers in the same matched set. Similarity was judged by a robust Mahalanobis
distance [Rosenbaum (2010), Section 8.3] using observed covariates xit prior to
this pregnancy. Forming nonoverlapping matched sets to minimize the sum of the
treated-versus-control distances within sets is a version of the optimal assignment
problem, and it may be solved using the pairmatch function of Hansen’s (2007)
optmatch package in R. [We used mipmatch in R available at http://www-
stat.wharton.upenn.edu/~josezubi/; see Zubizarreta (2012).]

From the Census data, we can know the education of the mother prior to the
Census, her age at the Census and the ages of her children, and from this we can
deduce her ages at the births of her children. Ideally, we would know exactly her
years of education at the birth of each of her children, but the Census provides
slightly less information. The norm in the US is to complete high school with 12
years of education at age 18. If a woman had a total of E years of education at
the time of the census and if she was age A at her kth pregnancy, we credited
her with min(E,A − 6) years of education at her kth pregnancy. For instance,
a woman who had a BA degree with 16 years of education and a first child at age
26 was credited with 16 years of education at the birth of her first child. This is a
reasonable approximation but will err in some cases. The exact timing of education
is available in some longitudinal data sets.

3.3. Covariate balance prior to the kth birth in the risk-set match. Figures 1
and 2 show the balance on age at each pregnancy and education at each pregnancy.
The match at the second pregnancy should balance age and education at the first
two pregnancies, viewing subsequent events as outcomes. The match at the third
pregnancy should balance age and education at the first three pregnancies, viewing
subsequent events as outcomes. The match at the fourth pregnancy is analogous.
Figures 1 and 2 show the desired balance was achieved.

Tables 1 and 2 show the comparability of the matched groups separately for the
matches at the second, third and fourth pregnancy. Table 1 exhibits perfect balance
for categories of race/ethnicity, region of the US and age at the second pregnancy.
Moreover, the interactions of these three variables are also exactly balanced.

4. Inference: Tobit effects, proportional effects, sensitivity analysis. Fig-
ure 3 depicts two outcomes recorded on Census day for the 30,240 mothers in
5040 matched sets, each set containing one mother who had a twin at the indicated
pregnancy and 5 mothers who had at least one child of each sex at the indicated
pregnancy. One outcome is the total number of children recorded on Census day.
The other outcome is the work fraction where 0 indicates no work for pay and 1
indicates full time work (≥ 40 hours per week). The work fraction is the number of
weeks worked in the last year multiplied by the minimum of 40 and the number of

http://www-stat.wharton.upenn.edu/~josezubi/
http://www-stat.wharton.upenn.edu/~josezubi/
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FIG. 1. Age at births in 5040 1–5 nonoverlapping matched sets containing 30,240 mothers, specif-
ically 5040 mothers who gave birth to a twin at the indicated pregnancy and 25,200 mothers who
had at least one child of each sex by the end of the indicated pregnancy. For 3380 sets matched at the
second pregnancy, matching controlled the past, namely age at the first and second births. For 1358
sets matched at the third pregnancy, matching controlled the past, namely age at the first, second and
third births. For 302 sets matched at the fourth pregnancy, matching controlled the past, namely age
at the first, second, third and fourth births.

hours worked in the last week, and then this product is divided by 40 × 52 to pro-
duce a number between 0 and 1. (A small fraction of mothers worked substantially
more than 40 hours in the previous week.)

In the top half of Figure 3, at the second pregnancy, a twin birth shifted upward
by about 1 child the boxplot of number of children. The shift is smaller at the
third and fourth pregnancies, where the lower quartile and median increase by 1
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FIG. 2. Mother’s education at the time of various births in 5040 1–5 nonoverlapping matched
sets containing 30,240 mothers, specifically 5040 mothers who gave birth to a twin at the indicated
pregnancy and 25,200 mothers who had at least one child of each sex by at the end of the indi-
cated pregnancy. Each match controls the past, not the future. For graphical display in the boxplots,
education is truncated at 6 years despite a few values below that.

child, but the upper quartile is unchanged. Presumably, some mothers pregnant for
the third or fourth time intend to have large families and twins did not alter their
plans. In the bottom half of Figure 3, mothers of twins worked somewhat less,
but the difference in work fraction is not extremely large. Figure 4 displays the
information about work fraction in a different format, as a quantile–quantile plot.

We consider two models for the effect on the fraction worked, Rij . One model
is a so-called Tobit effect, named for James Tobin, of twin versus different-sex-
single-child, Zij . The Tobit effect has rT ij = max(0, rCij − τ) and it reflects the
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TABLE 1
In each matched risk set containing J = 6 mothers, a mother of a twin at birth k is matched to

J − 1 = 5 control mothers whose kth birth was a single child whose sex was different from one of
her previous children. The matching was exact for four age categories, for four race/ethnicity

categories and for four regions of the US, and because it was exact, it controlled their interactions.
The table displays counts and percents, where the count for controls is always five times the count

for twins. Only one column of percents is displayed because the percents in the two groups are
identical

2nd birth 3rd birth 4th birth

Covariate Twin Control % Twin Control % Twin Control %

Age Mother’s age at her second pregnancy
≤ 18 182 910 5 167 835 12 63 315 21
19–22 1239 6195 37 677 3385 50 163 815 54
23–25 1044 5220 31 350 1750 26 63 315 21
≥ 26 915 4575 27 164 820 12 13 65 4

Race/ethnicity Mother’s race/ethnicity
Black 505 2525 15 242 1210 18 81 405 27
Hispanic 87 435 3 63 315 5 11 55 4
White 2707 13,535 80 1023 5115 75 203 1015 67
Other 81 405 2 30 150 2 7 35 2

Region Region of the US
Northeast 685 3425 20 270 1350 20 60 300 20
South 1081 5405 32 426 2130 31 100 500 33
Central 988 4940 29 391 1955 29 93 465 31
West 626 3130 19 271 1355 20 49 245 16

fact that a woman’s workforce participation may decline to zero but not further. For
instance, if τ = 0.1 = 10%, then a mother who would have worked at least rCij =
10% of full-time without twins would work 10% less with twins, rT ij = rCij −
10%, but a mother who would have worked rCij = 5% or rCij = 0% of full-time
without twins would not work with twins, rT ij = 0%. For the Tobit effect, we draw
inferences about τ . If H0 : τ = τ0 were true, then max{0,Rij − (1 −Zij )τ0} = rT ij

does not vary with Zij and satisfies the null hypothesis of no treatment. Therefore,
H0 : τ = τ0 is the hypothesis of no treatment effect on max{0,Rij − (1 − Zij )τ0}
and the confidence interval is obtained in the usual way by inverting the test. In
the usual way, the point estimate solves for τ an estimating equation that equates
the test statistic to its null expectation. We use the treated-minus-control mean
as the test statistic, but very similar results were obtained using an M-estimate
with Huber’s weight function trimming at twice the median absolute deviation. See
Rosenbaum (2007) and the senmwCI function in the sensitivitymw package
in R for computations.

Table 3 displays inferences about τ , the effect of a twin on hours worked or,
more precisely, on the work fraction. For � = 1, Table 3 displays randomization
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TABLE 2
Baseline comparison of 30,240 distinct mothers in I = 5040 = 3380 + 1358 + 302 nonoverlapping
matched sets of J = 6 mothers, each set containing one mother who gave birth to a twin and J − 1
control mothers who gave birth to a single child whose sex differed from that of one of her previous

children. The table shows age and education of mothers at their various births prior to risk-set
matching

2nd birth 3rd birth 4th birth

Covariate Twin Control Twin Control Twin Control

Sample size
# of mothers 3380 16,900 1358 6790 302 1510

Mother’s age in years, mean
At the census 30.4 30.4 30.7 30.7 31.6 31.6
At 1st birth 20.4 20.4 19.5 19.5 18.8 18.8
At 2nd birth 23.5 23.4 21.8 21.8 20.7 20.7
At 3rd birth 25.1 25.1 23.5 23.4
At 4th birth 26.7 26.6

Mother’s education in years, mean
At 1st birth 11.9 12.0 11.4 11.4 10.8 10.9
At 2nd birth 12.2 12.2 11.6 11.6 11.0 11.1
At 3rd birth 11.6 11.6 11.1 11.2
At 4th birth 11.1 11.2

Mother’s education at 1st birth, %
High school 43 43 42 42 32 33
Some college 19 19 14 14 15 14
BA or more 09 09 05 05 03 03

Mother’s education at 2nd birth, %
High school 47 47 48 48 39 40
Some college 20 20 15 15 16 15
BA or more 11 11 06 06 04 04

Mother’s education at 3rd birth, %
High school 48 48 41 41
Some college 16 16 16 16
BA or more 06 06 05 05

Mother’s education at 4th birth, %
High school 41 41
Some college 16 16
BA or more 05 05

inferences assuming the differential comparison of twins versus different-single-
sex-child is free of bias from unmeasured covariates. For � > 1, sensitivity to
unmeasured bias is displayed. The point estimate of τ in the absence of bias is
0.0793 or about 8% reduction in work hours (0.08 × 40 = 3.2 hours per week) for
a mother with twins. More precisely, this is an 8% reduction in work fraction or a
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FIG. 3. Two outcomes in 5040 1–5 nonoverlapping matched sets containing 30,240 mothers,
specifically 5040 mothers who gave birth to a twin at the indicated pregnancy and 25,200 moth-
ers who had at least one child of each sex by at the end of the indicated pregnancy. The upper
boxplots indicate the number of children. The lower boxplots indicate the work fraction, defined to
be min(hours worked in the previous week, 40) × (weeks worked in the previous year)/(40 × 52), so
a value of 1 is similar to “full time employment.”

reduction of 3.2 hours per week for any mother who would work at least 3.2 hours
if she did not have twins. The results are insensitive to small biases, say, � ≤ 1.2,
but are sensitive to moderate bias, � = 1.25; however, we do not expect much bias
in the differential comparison. As noted in Section 2.3 and Rosenbaum and Silber
(2009), in a matched pair, treatment-versus-control comparison, a bias � = 1.25
is produced by an unobserved covariate that doubles the odds of treatment and
doubles the odds of a positive treatment-minus-control pair difference in outcomes.
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FIG. 4. Quantile–quantile plots of work fraction for twins (vertical) and controls (horizontal) with
the line of equality. The plot shows that women with twins were more likely to not work, as seen in
the horizontal start to the plot, and they worked fewer hours in total, as quantiles fall below the line
of equality.

Figure 5 looks at residuals. With τ0 = 0.0793, Figure 5 plots max{0,Rij − (1 −
Zij )τ0}. In an infinite sample without bias, this plot would have identical pairs of
boxplots if the Tobit effect were correct. Though not identical in pairs, the boxplots
are similar, except perhaps at the 4th pregnancy where the sample size is not large.
Arguably, the data do not sharply contradict a Tobit effect.

The second model related the effect on workforce participation to the effect
on the number of children, that is, the two outcomes in Figure 3. Write Dij for
the number of children, with Dij = dT ij if Zij = 1 and Dij = dCij if Zij = 0.
The second model says the effect of twin-versus-different-sex-single child on
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TABLE 3
Inference about the Tobit effect τ . For each �, the sensitivity analysis gives the maximum possible
P -value testing the null hypothesis of no treatment effect, H0 : τ = 0, the minimum one-sided 95%

confidence interval and the minimum possible point estimate. Inferences use the mean, but
M-estimates with Huber weights produced similar results

� P -value 95% CI Estimate

1.0 1.6 × 10−13 τ ≥ 0.0616 0.0793
1.1 2.0 × 10−6 τ ≥ 0.0324 0.0502
1.2 0.0148 τ ≥ 0.0058 0.0237
1.25 0.1512

FIG. 5. Residuals from the Tobit effect model. The boxplots display max{0,Rij − (1 − Zij )τ0} for
τ0 = 0.0793, the point estimate of τ at � = 1. In an infinitely large sample, if the Tobit model were
true with this τ and �, then the pair of boxplots at each pregnancy would be identical.
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TABLE 4
Inference about the proportional effect, β . For each �, the sensitivity analysis gives the maximum

possible P -value testing the null hypothesis of no treatment effect, H0 :β = 0, the minimum
one-sided 95% confidence interval and the minimum possible point estimate. Inferences use the

mean, but M-estimates with Huber weights produced similar results

� P -value 95% CI Estimate

1.0 1.6 × 10−13 β ≤ −0.0365 −0.0470
1.1 2.0 × 10−6 β ≤ −0.0191 −0.0296
1.2 0.0148 β ≤ −0.0034 −0.0139
1.25 0.1512

the workforce outcome is proportional to the effect on the number of children,
rT ij − rCij = β(dT ij − dCij ). Under this model, Rij − βDij = rT ij − βdT ij =
rCij − βdCij does not change with Zij , so (i) the null hypothesis H0 :β = β0 is
tested by testing the hypothesis of no effect of the treatment Zij on Rij − β0Dij ,
(ii) a confidence interval for β is obtained in the usual way by inverting the test,
and (iii) a sensitivity analysis for biased Zij is conducted in the usual way; see
Rosenbaum (1996) and Imbens and Rosenbaum (2005). This model embodies the
exclusion restriction in saying that if the twin did not alter the total number of
children for mother ij , so dT ij = dCij , then it did not alter her workforce partic-
ipation, rT ij = rCij . For instance, if mother ij had a twin on her second birth,
Zij = 1, she might have three children, dT ij = 3, where perhaps she would have
had two children if she had had a different-sex-single child at the second birth,
dCij = 2, so for this mother the twin causes a 1 child increase in her number
of children, dT ij − dCij = 1, and hence a change in workforce participation of
rT ij − rCij = β(dT ij − dCij ) = β . Some other mother, i ′j ′, might have had three
children regardless, dT ij = dCij = 3, in which case the twin caused no increase in
her number of children, dT ij − dCij = 0 so rT ij − rCij = 0. Baiocchi et al. (2010)
show that randomization inferences (i.e., inferences with γ = φs − φs′ = 0) for β

under the model rT ij − rCij = β(dT ij − dCij ) are identical to randomization in-
ferences for the effect ratio, (

∑I
i=1

∑J
j=1 rT ij − rCij )/(

∑I
i=1

∑J
j=1 dT ij − dCij ),

which is the effect on workforce participation per added child, and this is true
whether or not the exclusion restriction holds. For instance, β = −0.1 would
be a 0.1 reduction in the average work fraction per additional child, whether
or not rT ij − rCij = β(dT ij − dCij ) for each individual ij . Without the model
rT ij − rCij = β(dT ij −dCij ), but with the exclusion restriction, the effect ratio can
be interpreted as the average effect on workforce participation per child among
mothers who had additional children because of the twin; see Angrist, Imbens and
Rubin (1996).

Table 4 draws inferences about the proportional effect, β . The test of no treat-
ment effect is the same as in Table 3, so the P -values in the two analyses are
equally sensitive to unmeasured biases. In the absence of unmeasured bias, � = 1,
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the point estimate of β suggests a 5% reduction in the work fraction per addi-
tional child. We have been looking at the effects of twins versus the popular mix
of children of both sexes. The effects appear to be small.

5. Discussion. Isolation, as we have defined it, is used in the following situa-
tion. One of several treatments may be inflicted upon individuals (or self-inflicted)
at certain moments in time. The timing t of treatment may be severely biased
by both measured and unmeasured time-varying covariates, but there may be two
treatments, s and s′, such that conditionally given some treatment at t , the occur-
rence of treatment s in lieu of treatment s ′ is close to random. Isolation focuses
attention on that brief moment and random aspect by controlling for measured
time-dependent covariates using risk-set matching and by removing a generic bias
using a differential comparison. Stated precisely, isolation refers to the radical sim-
plification of the conditional probability in (1) that occurs when φs = φs′ ; then, the
unobserved time dependent covariate uijt that would bias most comparisons does
not bias a risk-set match of treatment s in lieu of s′. This radical simplification,
when it occurs, justifies one very specific analysis: the comparison of matched sets
with similar observed histories to time t where some individual received treatment
s and the rest received treatment s ′. In the case study, the timing of births is biased
by a woman’s plans and aspirations for education, career and family, but condi-
tionally given a birth at time t , the occurrence of twins rather than a single birth is
largely unaffected by her plans.

In a different study that employed similar reasoning, Nagin and Snodgrass
(2013) examined the effects of incarceration on subsequent criminal activity. The
substantial difficulty is that judges decide in a thoughtful manner whether to im-
prison an individual convicted for a crime. When two people are convicted of
the same crime, it is far from a random event when one is sent to prison and
the other is punished in a different way. Nagin and Snodgrass looked at coun-
ties in Pennsylvania in which some judges were much harsher than others, send-
ing many more convicts to prison. Committing a crime is not haphazard, nor is
a judge’s decision, but having your case come to trial when judge A rather than
judge B is next available is, in most instances, a haphazard event. Nagin and Snod-
grass contrasted the subsequent criminal activity of individuals with similar pasts
who were tried before harsh judges and those tried before lenient judges in the
same county at about the same time, so each convict might have received either
judge. They found little or no evidence in support of the widespread belief that
harsher judges and harsher sentences reduce the frequency of subsequent rear-
rest.

A similar strategy is sometimes used in studies of differential effects of biolog-
ically different drugs used to treat the same disease. The differential effect may be
less confounded than the absolute effect of either drug, particularly if the choice of
drug is determined by something haphazard. For example, Brookhart et al. (2006)
compared the gastrointestinal toxicity caused by COX-II inhibitors versus NSAIDs
by comparing the patients of physicians who usually prescribe one versus those
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who usually prescribe the other. See also Gibbons et al. (2010) and Ryan et al.
(2012).
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