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GLOBAL ESTIMATION OF CHILD MORTALITY USING
A BAYESIAN B-SPLINE BIAS-REDUCTION MODEL1

BY LEONTINE ALKEMA AND JIN ROU NEW

National University of Singapore

Estimates of the under-five mortality rate (U5MR) are used to track
progress in reducing child mortality and to evaluate countries’ performance
related to Millennium Development Goal 4. However, for the great majority
of developing countries without well-functioning vital registration systems,
estimating the U5MR is challenging due to limited data availability and data
quality issues.

We describe a Bayesian penalized B-spline regression model for assessing
levels and trends in the U5MR for all countries in the world, whereby biases
in data series are estimated through the inclusion of a multilevel model to
improve upon the limitations of current methods. B-spline smoothing param-
eters are also estimated through a multilevel model. Improved spline extrap-
olations are obtained through logarithmic pooling of the posterior predictive
distribution of country-specific changes in spline coefficients with observed
changes on the global level.

The proposed model is able to flexibly capture changes in U5MR over
time, gives point estimates and credible intervals reflecting potential biases
in data series and performs reasonably well in out-of-sample validation ex-
ercises. It has been accepted by the United Nations Inter-agency Group for
Child Mortality Estimation to generate estimates for all member countries.

1. Introduction. The under-five mortality rate (U5MR) is a key barometer
of the well-being of a country’s children and, more broadly, an indicator of so-
cioeconomic progress. The U5MR is strictly not a rate, but the probability that a
child born in a given year will die before reaching the age of five if subject to cur-
rent age-specific mortality rates (UN IGME 2013), often expressed as the number
of deaths per 1000 live births. National estimates of the U5MR are used to track
progress in reducing child mortality and to evaluate countries’ performance with
respect to the United Nations’ Millennium Development Goal 4 (MDG 4), which
calls for a two-thirds reduction in the U5MR between 1990 and 2015 (UN IGME
2013), corresponding to an annual rate of reduction of 4.4%.

For the great majority of developing countries without well-functioning vital
registration systems, estimating levels and trends in U5MR is challenging, not only

Received May 2014.
1Supported by Grants R-155-000-099-133 and R-155-000-146-112 at the National University of

Singapore and the United Nations Children’s Fund.
Key words and phrases. Bayesian hierarchical model, Millennium Development Goal 4, logarith-

mic pooling, penalized B-spline regression model, under-five mortality rate, United Nations Inter-
agency Group for Child Mortality Estimation.

2122

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS768
http://www.imstat.org


GLOBAL ESTIMATION OF CHILD MORTALITY 2123

because of limited data availability but also because of issues with data quality.
Every year, the United Nations Inter-agency Group for Child Mortality Estima-
tion (UN IGME, including the United Nations Children’s Fund, the World Health
Organization, the World Bank, and the United Nations Population Division) pro-
duces and publishes estimates of child mortality comparable across countries and
years for 194 countries. In 2012, a Loess regression model was used to estimate the
U5MR (UN IGME 2012). For each country, the default setting for its smoothness
parameter α was determined by the type and availability of data in the country.
A bootstrap method was used to assess the uncertainty in the U5MR estimates
[Alkema and New (2012)]. A number of limitations with this approach were iden-
tified. The first limitation was that for a subset of countries, the fitted Loess curve
was deemed to not fit the data well and post-hoc adjustments in the α value were
necessary. The second limitation was that all observations were weighted equally
to obtain point estimates; standard errors, potential data biases and indicators of
data quality were not accounted for. The calibration of the resulting point esti-
mates and uncertainty intervals left room for improvement.

Alternative methods for estimating child mortality for all countries have been
developed by the Institute for Health Metrics and Evaluation (IHME) [Rajaratnam
et al. (2010), Wang et al. (2012)], which uses Gaussian process regression model-
ing to obtain U5MR estimates. A model validation exercise to check model per-
formance based on the 2010 version of the IHME approach also indicated room
for improvement [Alkema, Wong and Seah (2012)], possibly explained by the ap-
proach not fully accounting for potential data biases. To the best of our knowledge,
the same exercise has not been repeated for the most recent iteration of the IHME
model [Wang et al. (2012)]. We expect that issues with model calibration have
not yet been fully addressed given that the data model has not been updated to
incorporate the possibility of data biases.

In this paper we propose an alternative U5MR estimation approach to improve
upon the limitations and lack of calibration of existing methods. The approach is
given by a Bayesian B-spline Bias-reduction model, referred to as the B3 model.
The UN IGME has decided to use the B3 model to assess countries’ progress
toward MDG 4 and B3 estimates are included in “A Promise Renewed Progress
Report 2013” [United Nations Children’s Fund, Division of Policy and Strategy
(2013)] and the “Child Mortality Report 2013” (UN IGME 2013).

The paper is organized as follows. Section 2 provides background information
on child mortality estimation. In Section 3 we present the B3 model specification,
followed by validation results and resulting U5MR estimates in Section 4. We end
with a discussion of the model and scope for future research.

2. Background. U5MR data series are constructed from information from vi-
tal registration (VR) and sample vital registration (SVR) systems, surveys and cen-
suses. U5MR data for selected countries are shown in Figures 1 and 2. The selected
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FIG. 1. U5MR data series and estimates for the Netherlands, Mexico and Moldova. Connected dots
represent data series from the same source, as explained in the legend. B3 estimates are illustrated
by the solid red lines and 90% CIs are shown by the red shaded areas. The fitted Loess curve based
on UN IGME 2012 methodology is illustrated with the solid black line. Shaded areas around series
of observations represent the sampling variability in the series (quantified by two times the sampling
standard errors).

countries differ with respect to U5MR level and trend, as well as data availability
and data quality.

In the Netherlands, data from the VR system capturing all births and deaths
are available since 1940. Such data from well-functioning VR systems are the pre-
ferred data source for calculating U5MR. However, in 2013, 60 countries for which
the UN IGME produces U5MR estimates did not have any data from VR sys-
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FIG. 2. U5MR data series and estimates for Cambodia, Ghana, Pakistan and Papua New Guinea.
Connected dots represent data series from the same source, as explained in the legend. B3 estimates
are illustrated by the solid red lines and 90% CIs are shown by the red shaded areas. The fitted Loess
curve based on UN IGME 2012 methodology is illustrated with the solid black line. Shaded areas
around series of observations represent the sampling variability in the series (quantified by two times
the sampling standard errors).
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tems. Among the 135 countries with VR or SVR systems, recording of birth and/or
deaths is not necessarily complete; illustrations are given for Mexico and Moldova.
In Mexico, VR data were deemed complete only since 2005. For Moldova, VR data
are considered incomplete for all observation years.

For countries without (or with limited information from) well-functioning VR
systems, complete or summary birth histories of women, collected in surveys and
censuses, are often the main source of information on U5MR. A complete birth
history lists all the live births a woman has had, including information on the date
of birth of each child, whether the child is still alive, and if the child has died, the
age at death. U5MR observations are calculated from such information through
a synthetic cohort approach, whereby for a given period before the survey, sur-
vival probabilities are calculated for small age intervals and combined to obtain the
U5MR for that period [Pedersen and Liu (2012)]. These observations are referred
to as direct estimates of U5MR. Many of these direct series are obtained from
complete birth histories that were collected as part of the international household
survey program Demographic and Health Surveys (DHS). Other direct series are
obtained from data from survey programs similar to the DHS [here referred to as
Other DHS as opposed to (Standard) DHS], as well as other national surveys (re-
ferred to as Others Direct). Examples of direct series are shown in Figures 1 and 2.
Because of the retrospective nature of the data, direct series can extend for up to
decades before the survey. For example, the DHS in Cambodia that was carried
out in 2005–2006 provides data from 1979 to 2004.

As the name suggests, summary birth histories provide a summary of complete
birth histories: they list the number of live births a woman has had and the num-
ber of children that have died. These summarized histories are more commonly
collected than complete birth histories because of the simplicity of data collection.
For summary birth histories, demographic models are used to calculate the U5MR
from the recorded proportion of dead children for different time references [Brass
(1964), United Nations (1983)]. Because of the dependency on models, these es-
timates based on summary birth histories are referred to as indirect estimates. In-
direct series are most commonly obtained using information from censuses and
surveys such as the Multiple Indicator Cluster Survey (MICS), an international
survey program that collects summary birth histories in many developing coun-
tries. Examples of indirect series are shown in Figures 1 and 2. As discussed for
direct data series, indirect series also provide data points for a long retrospective
period. For example, the Cambodian census from 1998 provides indirect estimates
from 1983 to 1994.

The availability of nationally-representative surveys and censuses carried out in
developing countries varies greatly. For instance, a large number of data series are
available from various sources in Pakistan, but only five data series are available
for Papua New Guinea. Moreover, data series do not necessarily tell a similar story
about levels and/or trends in U5MR. For example, in Papua New Guinea, there are
large differences between U5MR estimates from the various sources. In Pakistan,
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the DHS 2006–2007 survey suggests lower levels of U5MR than data from its sam-
ple registration system. The spread in data points for countries without data from
well-functioning VR systems is not specific to the selected countries in Figures 1
and 2, but is observed in many developing countries, as U5MR data are associated
with a variety of data quality issues. Apart from sampling error, observations from
non-VR sources may also be subject to bias and nonsampling error, for example,
because of recall biases when collecting birth histories. Specific data series may
be entirely biased upward or downward, for example, based on inaccuracies in the
indirect estimation method that was used to translate the summary birth histories
from a census or survey in U5MR observations.

Given issues with data quantity and quality, estimating the U5MR is challenging
for many countries. A modeling approach needs to be flexible enough to capture
short-term fluctuations in U5MR without being overly sensitive to erroneous data
fluctuations.

3. Constructing U5MR estimates. We developed a modeling approach that
combines a flexible curve fitting method with a comprehensive data model to ac-
count for data quality issues. In the model description, lowercase Greek letters
refer to unknown parameters, uppercase Greek letters to functions of unknown pa-
rameters, and Roman letters to fixed variables, including data (lowercase). �c(t)

denotes the quantity of interest, the true U5MR in country c in year t . U5MR obser-
vations are combined across countries and indexed by i = 1,2, . . . ,N ; ui denotes
observed U5MR for observation i in country c[i] and year t[i].

The complete model overview is given in Figure 3. In the center of the overview
and the model is the description of the “Model fitting” for the true U5MR on the
log-scale, �c(t) = log(�c(t)) for country c at time t . log(U5MR) was modeled
with a Bayesian penalized spline regression model, explained further in Section 3.1
and summarized in block 1 (spline coefficients) of Figure 3. For U5MR observa-
tions, we assumed

yi = �c[i]
(
t[i]) + δi,(1)

where yi = log(ui) and δi is the error term on the log-scale. The data and spec-
ification of error term δi are discussed further in Section 3.2 and summarized in
blocks 2a and b (VR and non-VR data model) in Figure 3. Finally, short-term
projections are discussed in Section 3.3 and summarized in block 3 (short-term
projections).

Our analysis included 194 countries. For countries with high HIV prevalence,
conflicts or natural disasters, we applied a modified estimation method based on
the UN IGME 2012 estimation method, as explained in Alkema and New (2013).

3.1. Bayesian penalized spline regression. The regression spline model for
log-transformed U5MR, �c(t) in equation (1), is given by

�c(t) =
Kc∑
k=1

bc,k(t)αc,k,(2)
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FIG. 3. Model overview. This chart summarizes the model used to estimate the U5MR. In the center is the description of the “Model fitting” part,
where �c(t) refers to the true U5MR on the log-scale, which was modeled with a Bayesian penalized spline regression model, as summarized in block 1
(see Section 3.1). The models for the error term δi for observed log(U5MR) are described separately for VR and non-VR data in blocks 2a and 2b (see
Section 3.2). Short-term projections are summarized in block 3 (see Section 3.3).
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where αc,k refers to spline coefficient k in country c and bc,k(t) the kth B-spline
in country c, evaluated in year t . Kc refers to the index of the most recent spline
which is nonzero during the observation period.

In this application, B-splines, as discussed in Eilers and Marx (1996, 2010),
were used, specifically third-degree (cubic) B-splines, illustrated for selected coun-
tries in (the bottom of) Figure 4. Equally spaced knots were used such that the
resulting splines are nonzero for a total of 4 · I years, where I refers to the in-
between-knots interval length. The same interval length of 2.5 years was used
in each country regardless of the number/spacing of observations, to be able to
exchange information across countries about the variability in changes between
spline coefficients and assess the uncertainty in periods with limited data (further
explained below).

When fitting the spline model from equation (2) to the observations, second-
order differences in adjacent spline coefficients (�2αk = αk − 2αk−1 + αk−2) are
penalized to guarantee smoothness of the resulting U5MR trajectory. To implement
the smoothing, for each country c, spline coefficients αc,k for k = 1,2, . . . ,Kc

were rewritten as follows [Currie and Durban (2002), Eilers (1999), Eilers and
Marx (2010)]:

αc,k = λc,0 + λc,1(k − Kc/2) + [
D′

Kc

(
DKcD′

Kc

)−1
εc

]
k,(3)

where λc,0 and λc,1 are the unknown level and slope parameters for the spline
coefficients in country c and parameter vector εc = (εc,1, . . . , εc,Qc)

′ contains the
Qc = Kc − 2 second-order differences in the spline coefficients, εc,q = �2αc,q+2
for q = 1, . . . ,Qc; [D′

Kc
(DKcD′

Kc
)−1εc]k refers to the kth element of vector

D′
Kc

(DKcD′
Kc

)−1εc, with known difference matrix DKc (defined by DKc,i,i =
DKc,i,i+2 = 1, DKc,i,i+1 = −2 and DKc,i,j = 0 otherwise).

Second-order differences are penalized by imposing

εc,q |σ 2
c ∼ N

(
0, σ 2

c

)
for q = 1, . . . ,Qc,(4)

where variance σ 2
c determines the extent of smoothing; a smaller variance cor-

responds to smoother trajectories. In the limit when σc decreases to zero (as the
penalty increases), a linear fit for log(U5MR) is obtained.

The model was fitted in the Bayesian framework. When estimating the spline
coefficients, no information on levels or trends during the observation period was
exchanged across countries to avoid the situation where estimates for a country A
with little information are pooled downward because it is neighboring country B,
where much progress has been made in reducing child mortality or vice versa.
Diffuse priors were used for the λc,0’s and the λc,1’s (see Block 2 in Figure 3 and
the Appendix).

Information on spline coefficients is exchanged across countries only through a
multilevel model for the variance of the differences in the spline coefficients, that
is, the standard deviation of εc,q was estimated hierarchically:

log(σc)|χ,ϕ2
σ ∼ N

(
χ,ϕ2

σ

)
,(5)
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where χ and ϕ2
σ refer to the mean and variance of the log-transformed standard de-

viations. Given the limited information on shorter term fluctuations in some coun-
tries, there was not sufficient information to estimate the variance parameter for
each country separately. The hierarchical model allows for sharing of information
across countries about the variability in changes between spline coefficients and
for assessing the uncertainty in periods with limited data. Diffuse prior distribu-
tions were assigned to χ and ϕ2

σ (see the Appendix).
The in-between-knots interval length I = 2.5 years was set by comparing

U5MR estimates obtained using a range of I ’s, for the full data set as well as
for a subset of data in a validation exercise. U5MR estimates were found to be
similar for interval lengths up to around 3 years, but for larger I , shorter term fluc-
tuations were not captured, suggesting that the intervals of up to 3 years can be
used. Here I = 2.5 years was used such that each spline is nonzero for 10 years.
At any time t , there are four nonzero B-splines bc,k(t) such that

∑
k bc,k(t) = 1. In

each country, knot placement was fixed by setting Tc,Kc = tnc + 1.5 · I , where tnc

denotes the most recent observation year and Tc,Kc the knot for the Kcth spline in
country c (motivated further in Section 3.3).

3.2. Database and data model. Under-five mortality data for all countries
were taken from the UN IGME database. This database is publicly available on
CME Info (http://www.childmortality.org).

Section 2 provided an introduction to U5MR data sources. A more detailed
overview and explanation on data sources is given elsewhere [Hill et al. (2012)].
The breakdown of the U5MR observations by their main source types is given in
Table 1. Based on potential differences in biases and nonsampling errors across
data sources (explained further below), a distinction was made between series of
observations from complete and summary birth histories (direct and indirect esti-
mates, resp.), and observations based on different data sources and data collection
methods (e.g., VR systems, records based on household deaths and life tables ob-
tained from reports).

3.2.1. Data model. VR data from complete registration systems. The error dis-
tribution for observations from complete VR or SVR indexed by i ∈ V(VR standard)

is given by

δi ∼ N
(
0, v2

i

)
,

where vi is the stochastic error variance. The stochastic error variance was calcu-
lated using a Poisson approximation and the delta method, assuming that

Dc,t |�c,t ∼ Poisson(Bc,t · �c,t/1000),

where Dc,t is the number of under-five deaths and Bc,t is the number of live births
for country c in year t .

http://www.childmortality.org
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TABLE 1
Summary of the U5MR data series and observations in the UN IGME 2013 database by source type

Number of Number of
data series observations

VR (including SVR) 110 2968
(Standard) DHS Direct (with reported sampling errors) 203 2902
(Standard) DHS Direct (without reported sampling errors) 15 56
Other DHS Direct (with reported sampling errors) 49 634
Other DHS Direct (without reported sampling errors) 25 107
MICS Indirect (with reported sampling errors) 55 248
MICS Indirect (without reported sampling errors) 20 80
Census Indirect 228 1074
Others Direct 144 507
Others Indirect 168 793
Others Household Deaths 56 56
Others Life Table 56 56

Note: “Other DHS” refers to nonstandard demographic and health surveys, that is, Special, Interim
and National DHS, Malaria Indicator Surveys, AIDS Indicator Surveys and World Fertility Surveys.

The number of births were obtained from the World Population Prospects
[United Nations, Department of Economic and Social Affairs, Population Divi-
sion (2011)] and stochastic errors were set to a minimum of 0.025 (i.e., 2.5%). For
VR-type data from sample vital registration systems where the number of sam-
pled live births was not available, it was set to 0.1 (i.e., 10%) based on the target
standard error for the Indian sample registration system (Census of India, 2011).

VR observations were typically calculated for single-year periods but longer
periods were used for smaller countries in instances where the coefficient of vari-
ation of the observation was larger than 10% (due to small numbers of births and
deaths).

VR data from incomplete registration systems. For 10 countries in the re-
gional grouping of the Central and Eastern Europe/Commonwealth of Independent
States (CEE/CIS) (namely, Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzs-
tan, Moldova, Tajikistan, Turkmenistan, Ukraine and Uzbekistan), VR data were
incomplete with respect to the reporting of deaths (biased downward) and gen-
erally excluded from the estimation procedure in previous rounds of UN IGME
estimation. However, although not informative about the level of U5MR, these ob-
servations were deemed to provide information on U5MR in the early 1990s and
for recent years. During the early 1990s, in several CEE/CIS countries, data from
the VR suggested a plateauing of or even an increase in U5MR. This is illustrated
in Figure 1 for Moldova. This observed trend is assumed to reflect a true stagna-
tion in progress in reducing U5MR. To use this information, we incorporated the
option to include incomplete VR data into the model to inform trend estimates in
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the country-specific B3 model. We also included the option to set upper and lower
bounds for recent years. (These options were used in the country-specific models,
as described in Section 3.5.)

To use the observed trend in VR data in the early 1990s to inform the U5MR
estimates, the VR observation in 1990 and the maximum observed VR observation
from 1991 to 1995 in each CEE/CIS country were selected, with indices denoted
by index set V (VR,trend). For each selected observation i ∈ V (VR,trend), the distribu-
tion of the error term δi was given by

δi |ϑc[i] ∼ N
(
log(ϑc[i]), v2

i

)
,

ϑc ∼ U(0,1),

where country-specific bias parameter ϑc[i] was added such that the two selected
observations in country c could inform the trend in U5MR estimates but not the
level.

For the most recent period starting from 2005, for a subset of CEE/CIS coun-
tries, U5MR extrapolations based on the global model either decreased below in-
complete VR observations (where incomplete refers to incomplete reporting of
deaths resulting in downward biased VR observations) or the extrapolation re-
sulted in estimates far above VR observations for which an external assessment of
VR data by the UN IGME suggested a minimum level of completeness ranging
from 50% to 90%. We resolved the U5MR discrepancies between the B3 extrap-
olations and (assumed completeness of) VR data by including a subset of VR
observations as a minimum U5MR value into the model (accounting for stochas-
tic errors). More precisely, based on the most recent incomplete VR observation yi

(with i ∈ V(VR,incomplete)), the lower bound Lc[i],t[i] for the log(U5MR) for country
c[i] in year t[i] was obtained as follows:

Lc[i],t[i] ∼ N
(
yi, v

2
i

)
.

For selected observations, where a minimum level of completeness mi was set
for incomplete VR observation yi , we also included the upper bound Lc[i],t[i] −
log(mi) for log(U5MR). For example, if the minimum completeness for obser-
vation i is 80%, then mi = 0.8 and the upper bound for the U5MR is given by
exp(Lc[i],t[i])/mi = exp(Lc[i],t[i])/0.8. VR-based upper and lower bounds were
incorporated into the model by excluding any log(U5MR) estimates which fell
outside the interval (Lc,t ,Uc,t ).

Non-VR data. For non-VR data, the data model needs to account for (i) sampling
and nonsampling errors, (ii) potential biases in trends and levels of U5MR data
series, and (iii) possibility of outliers.

For observations from Standard and Other DHS Direct series, indexed by i ∈
V(DHS), the error was assumed to be normally distributed

δi |
i,�
2
i ∼ N

(

i,�

2
i

)
,
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with mean bias 
i and standard deviation �i . For observations from other source
types, indexed by i ∈ V(other), posterior predictive checks suggested that more out-
liers were present, therefore, a t-distribution with unknown ν degrees of freedoms
was used:

δi |
i,�
2
i ∼ tν

(

i,�

2
i

)
,

ν ∼ U(2,30),

where tν(
i,�
2
i ) denoted a t-distribution with ν degrees of freedom, centered at


i and rescaled by �i .
For observations from non-VR source types d with potentially multiple observa-

tions per series, mean biases were modeled as a linear function of the retrospective
period of the observation in the survey (the difference between the observation ref-
erence date and the date of the survey/census). This setup was motivated by known
problems with retrospective data, such as the occurrence of recall biases and vi-
olations of modeling assumptions when calculating indirect U5MR observations.
The linear model for mean bias 
i for observation i is given by


i = β0,s[i] + β1,s[i] · zi,

where β0,s[i] + β1,s[i] · zi represents the bias in level and trend as a function of the
retrospective period zi for observation i (centered at 10 years) in data series s[i].
The bias in the level of the series β0,s was estimated with a multilevel model:

β0,s |μ0,d[s], φ2
0,d[s] ∼ N

(
μ0,d[s], φ2

0,d[s]
)
,

where d[s] refers to the source type of series s. The set of source types with po-
tentially multiple observations per series, indexed by D(repeated), is given by (Stan-
dard) DHS Direct, Other DHS Direct (including Special, Interim and National
DHS, Malaria Indicator Surveys, AIDS Indicator Surveys and World Fertility Sur-
veys), MICS Indirect, Census Indirect, Others Direct and Others Indirect. μ0,d

and φ2
0,d represent source type-specific mean bias and between-series variance,

respectively. These two hyperparameters were unknown and were assigned prior
distributions, as illustrated in Figure 3.

A similar approach was used to estimate the slope β1,s :

β1,s |μ1,d[s], φ2
1,d[s] ∼ N

(
μ1,d[s], φ2

1,d[s]
)
,

where μ1,d and φ2
1,d represent the mean slope and the between-series variance for

source type d . For observations constructed from source types without repeated ob-
servations (reported household deaths and reported life tables, d ∈ D(nonrepeated)),
we assumed that 
i = μ0,d[s[i]].

Scale parameter �i was modeled as a combination of sampling variance v2
i and

nonsampling variance ω2
d ′[s[i]]:

�2
i = ω2

d ′[s[i]] + v2
i ,
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where source type d ′[s] for series s refers to a further breakdown of source types
to distinguish between DHS, Other DHS and MICS surveys with and without re-
ported sampling errors for their observations (as indicated in Table 1). If the sam-
pling standard errors were not reported, a sampling standard error of 2.5% was
used for Census Indirect observations and 10% for all other observations. Non-
sampling variance refers to variability because of random errors that arise through
imperfections in the data collection process and is unknown.

Hyperparameters μ0,d , φ2
0,d ,μ1,d , φ2

1,d , ω2
d ′ and ν were assigned prior distribu-

tions, as listed in the Appendix. Diffuse priors were used for all hyperparameters,
with the exception of the mean bias μ0,d for the DHS Direct series: an informative
prior distribution was used, based on an analysis of these biases in the previous
2012 round of UN IGME estimates.

3.3. Extrapolation using a logarithmic pooling approach. The one-step-ahead
projection of a future change in spline coefficients based on the penalized spline
regression model is given by

γc,k|γc,k−1, σ
2
c ∼ N

(
γc,k−1, σ

2
c

)
,(6)

where γc,k = �αc,k = αc,k − αc,k−1. This extrapolation can result in a high prob-
ability of unusually low or high projected rates of change in the spline coeffi-
cients for a specific U5MR trajectory if σc is large and/or if γc,k−1 is unusually
small or large. If projected changes in spline coefficients are unusually low or
high over longer periods, so are the projected changes in the U5MR, potentially
giving rise to unrealistic U5MR projections. To overcome this potential problem
with the spline extrapolations, we implemented a logarithmic pooling procedure to
combine country-specific posterior predictive distributions (PPDs) for changes in
spline coefficients with a global PPD and verified whether this approach improved
out-of-sample projections. This procedure was applied to modify the PPDs for αc,k

for k = Kc,Kc +1, . . . ,Pc, where Kc and Pc refer to the indices of the most recent
splines in the observation and projection periods, respectively. Spline coefficient
αc,Kc was included in the set of “projected” coefficients to be pooled because it
is based on very limited information only; the Kcth spline is placed such that it is
nonzero only for 1.25 years during the observation period, from tnc − 1.25 to tnc .

The approach is summarized as follows (see also block 3 in Figure 3): Let α
(j)
c,k

denote the j th posterior sample of spline coefficient k for country c, j = 1, . . . , J

and let �
(j)
c,k+1 = �α

(j)
c,k+1 = α

(j)
c,k+1 − α

(j)
c,k , the j th posterior sample of the dif-

ferences between two adjacent spline coefficients. After fitting the B3 model, we
obtain γ

(j)
c,k for k = 1,2, . . . ,Kc − 1, while γc,k’s for k = Kc,Kc + 1, . . . ,Pc are

drawn from a pooled PPD (see Figure 4). The pooled PPD is a combination of the
“model-induced” country-specific PPD for γ

(j)
c,k , defined by the penalized splines

model and a global PPD for future changes in the spline coefficients. The global
PPD was based on the set of posterior median estimates of the γ

(j)
c,k ’s, γ̂c,k for
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c = 1, . . . ,C and k = 2, . . . ,Kc − 1 (during the observation period for each coun-
try). We used country-projection-step-specific logarithmic pooling weights to ob-
tain the same extent of pooling for all countries. The resulting pooled PPD for
γ

(j)
c,Kc+a for a ≥ 0 is given by

γ
(j)
c,Kc+a|�(j)

c,Kc+a,�
(j)
c,Kc+a ∼ N

(
�

(j)
c,Kc+a,�

(j)
c,Kc+a

)
,

where

�
(j)
c,k = W · G + (1 − W) · γ (j)

c,k−1,

�
(j)
c,k = W · V + (1 − W) · �(j)

c,k−1,

with G and V equal to the median and variance of the γ̂c,k’s, respectively,
γ

(j)
c,Kc−1 = α

(j)
c,Kc−1 − α

(j)
c,Kc−2 and �

(j)
c,Kc−1 = σ

(j)
c .

The overall pooling weight 0 ≤ W ≤ 1 was chosen through an out-of-sample
validation exercise (described in Section 3.6). Further details of the logarithmic
pooling procedure are given in the Appendix.

3.4. Computation. A Markov Chain Monte Carlo (MCMC) algorithm was
employed to sample from the posterior distribution of the parameters with the use
of the software JAGS [Plummer (2003)]. Six parallel chains with different starting
points were run with a total of 50,000 iterations in each chain. Of these, the first
10,000 iterations in each chain were discarded as burn-in and every 20th iteration
after was retained. The resulting chains contained 2000 samples each. Standard di-
agnostic checks (using trace plots, the Raftery and Lewis diagnostic [Raftery and
Lewis (1992, 1996)] and the Gelman and Rubin diagnostic [Gelman and Rubin
(1992)]) were used to check convergence.

Estimates of relevant quantities are given by the posterior medians, while 90%
credible intervals (CIs) were constructed from the 5% and 95% percentiles of the
posterior sample. Given the inherent uncertainty in U5MR estimates, 90% CIs are
used by UN IGME instead of the more conventional 95% ones.

3.5. Country-specific UN IGME model and adjustments. The B3 model was
accepted by UN IGME to evaluate countries’ progress and performance in reduc-
ing U5MR. For this purpose, a computationally cheaper and more user-friendly
country-specific model was implemented, with noncountry-specific parameters
(marked with a star in Figure 3) fixed at the posterior medians from the global
model run, which resulted in very similar estimates. For the country-specific runs,
we ran 6 chains with a total of 35,000 iterations in each chain. Of these, the first
10,000 iterations in each chain were discarded as burn-in and every 20th iteration
after was retained. The resulting chains contained 1250 samples each.

After reviewing the estimates, two model adjustments were incorporated in
the country-specific models to consistently adjust the level of under- or over-
smoothing in a subset of countries [see Alkema and New (2013) for details].
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Adjustments were also applied to the Democratic Republic of Congo and So-
malia, where the U5MR data are not deemed to be representative of the country’s
past. Specifically, B-splines corresponding to conflict periods where the U5MR is
unlikely to have declined were combined such that only one spline coefficient was
estimated for each conflict period. The resulting fit is constant during the conflict
periods.

3.6. Model validation. Model performance was assessed through an out-of-
sample validation exercise. Given the retrospective nature of U5MR data and the
occurrence of data in series, the training set was not constructed by leaving out
observations at random, but based on all available data in some year in the past
[Alkema, Wong and Seah (2012)]; here 2006 was chosen. To construct the training
set, all data that were collected in or after 2006 were removed. For example, if a
DHS was carried out in 2006, all (retrospective) observations from that DHS were
left out of the training set. Fitting the B3 model to the training set resulted in point
estimates and CIs that would have been constructed in 2006 based on the proposed
method.

To validate model performance, we calculated various validation measures
based on the left-out observations and based on the estimates obtained from the
full data set and the estimates obtained from the training data set. The validation
measures considered were mean and median errors, coverage of prediction inter-
vals (to quantify the calibration of the prediction intervals) and interval scores (to
quantify calibration and sharpness of the prediction intervals).

For the left-out observations, errors are defined as ei = ui − ũi , where ũi denotes
the posterior median of the predictive distribution for a left-out observation ui

based on the training set. Coverage is given by 1/N
∑

1[ui ≥ lc[i](t[i])] · 1[ui ≤
rc[i](t[i])], where N denotes the total number of left-out observations considered
and lc[i](t[i]) and rc[i](t[i]) the lower and upper bounds of the 90% predictions
intervals for the ith observation. The (negatively oriented) interval score ni for
observation i is given by Gneiting and Raftery (2007)

ni = (
log(rc[i]) − log(lc[i])

) + 2/x
(
log(lc[i]) − yi

) · 1[ui < lc[i]]
+ 2/x

(
yi − log(rc[i])

) · 1[ui > rc[i]],
with significance level x = 0.1. This score combines the width of the prediction
interval with a penalty for any intervals that do not contain the left-out observa-
tion. The validation measures were calculated for 100 sets of left-out observations,
where each set consisted of a random sample of one left-out observation per coun-
try. Reported results include the median and standard deviation of the validation
measures based on the outcomes in the 100 sets.

“Updated” estimates, denoted by �̂c(t) for country c in year t , refer to the
median U5MR estimates obtained from the full data set. The error in the estimate
based on the training sample is defined as ec,t = �̂c(t)− �̃c(t), where �̃c(t) refers
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to the posterior median estimate based on the training sample, while relative error
is defined as ec,t /�̂c(t) · 100. Coverage and interval scores were calculated in
a similar matter as for the left-out observations, based on the lower and upper
bound of the 90% CIs for log(U5MR) obtained from the training set. Coverage,
mean/median errors and interval scores were also evaluated for the annual rate of
reduction (ARR) from 1990 to 2005.

Particular attention was paid to the performance of the B3 model for the group
of high mortality countries, where high here refers to a U5MR of at least 40 deaths
per 1000 births in 1990. This set was selected because of the importance of the
UN IGME U5MR estimates for tracking progress in reducing child mortality. Cri-
sis years and HIV adjustments were not considered in the out-of-sample model
validation because the calculation of crisis-related and HIV-related U5MR is not
included in the B3 method (so it is not possible to reconstruct these estimates).

4. Results.

4.1. Model validation and choice of pooling weight. To set the pooling
weight W (to combine the PPD of country-specific changes in spline coefficients
with the global PPD), validation measures were obtained for W = 0,0.1, . . . ,0.6,
where W = 0 corresponds to the “no-pooling” (country-specific) variant. In gen-
eral, differences between country-specific and pooling variants were small for the
posterior median point estimates but more noticeable for projection intervals. An
illustration of the default (unpooled) and pooled projections (using W = 0.5) are
shown in Figure 4 for Cambodia, Ghana and Papua New Guinea. The introduction

FIG. 4. Illustration of differences in estimates and projections for Cambodia, Ghana and Papua
New Guinea between the unpooled (country-specific) and pooled B-spline model projection ap-
proach. U5MR estimates based on the unpooled (country-specific) projection approach are displayed
in green, and results based on the pooling approach, using weight W = 0.5, are displayed in red.
Solid lines denote posterior medians and shaded areas denote 90% CIs. Additionally, the placement
of B-splines is shown in the bottom of the graph (scaled vertically for display purposes) in different
colors. The dashed lines are used for B-splines for which the corresponding coefficient is included
in the set of “projected” coefficients (with index k ≥ Kc). Gray dotted vertical lines indicate knot
positions of the B-splines.
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of the pooling procedure increased the U5MR projections in Cambodia and led to a
decrease in Ghana and Papua New Guinea, but differences in point estimates were
minor. Projection intervals varied more across countries; the bounds were similar
for weights 0 and 0.5 for Ghana, but narrowed down in Cambodia and were lower
for the pooled projections in Papua New Guinea.

Model validation results based on the left-out observations and the compari-
son between estimates based on the training and full data set are shown in Ta-
bles 2, 3 and 4 in the Appendix for the range of pooling weights. Differences in
mean/median (absolute) errors were small. While for median errors the compar-
ison across the different weights varied by indicator, mean errors generally de-
creased with increasing pooling weights. Coverage and interval width scores for
left-out observations generally improved slightly with increasing pooling weight.
For the estimated U5MR and ARR, findings on coverage of 90% credible intervals
were mixed, but mean interval scores for U5MR decreased with increasing pooling
weight.

Based on these findings, we chose to apply the pooling. Because differences in
validation outcomes were small when comparing the results for W = 0.5 to those
with W = 0.6, and because of the convenient interpretation of W = 0.5 (the pro-
jected mean and variance of the differences in the spline coefficients are the simple
average of the country-specific and global estimates), we set W = 0.5. A compar-
ison of estimates and short-term projections based on W = 0 and W = 0.5 for all
countries is included in supplementary Figure S1 [Alkema and New (2014)].

With this choice of W , the model validation results for the B3 model showed
an improvement over those for the UN IGME 2012 estimation approach. In a sim-
ilar validation exercise carried out for the UN IGME 2012 estimation approach
[Alkema and New (2012)], the updated estimate of ARR for 1990–2005 (based on
the full data set) was above the training 90% CI for 16% of the high mortality coun-
tries (11 out of 70 countries) and below that for only 6% of those countries. This
indicates that declines in U5MR were underestimated for a substantial proportion
of high mortality countries. The same effect is observed in the validation results
for the B3 model but to a much lesser extent, with only 9% of the updated upper
bounds for the ARR being too low and 3% of the updated lower bounds being too
high. Overall, the calibration measures are better with the B3 model. Specifically,
the percentages of updated estimates falling below and above the 90% uncertainty
intervals were 4% and 5%, respectively, for the U5MR in 2000 and 8% and 1%
for the U5MR in 2005 in the B3 model. These percentages were 10% and 6% for
the U5MR in 2000 and 17% and 7% for the U5MR in 2005 in the IGME 2012
estimation approach.

4.2. Data model biases. Mean biases in U5MR levels and trends, as well as
90% prediction intervals for the expected range of U5MR values, were calculated
based on the posterior sample of data quality parameters and are visualized in
Figure 5 for the different source types. Mean biases and prediction intervals are
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FIG. 5. Visualization of 90% prediction intervals for new data points by source type and retro-
spective period. For a “true” U5MR of 100 deaths per 1000 live births (represented by the black
line), the 90% prediction interval for a U5MR observation with a retrospective period of 5/15 years
is shown in light blue/pink (excluding the sampling variability) and the predicted mean observed
U5MR is represented by the dark blue/red vertical line (the difference between the mean U5MR and
100 represents the mean bias). The dark blue/red horizontal line represents the 90% prediction in-
terval for an observation based on uncertainty in the bias parameters only (excluding sampling and
nonsampling variability).

relative to the unknown true U5MR level, which in the figure is assumed to be
100 deaths per 1000 live births for ease of interpretation. The prediction intervals
thus illustrate the expected range of U5MR values for a “new” data series when
the true U5MR is 100 deaths per 1000 births. Results are shown for retrospective
periods of 5 and 15 years, thus for observations that refer to 5 and 15 years before
the survey date.

For indirect series, the 90% prediction intervals based on uncertainty in biases
alone (the dark blue horizontal lines) are wide, indicating substantial variability in
biases across data series. For example, the prediction interval ranges from about 87
to about 143 deaths per 1000 live births for an observation from a MICS Indirect
series, with a retrospective period of 5 years. The error variance tends to contribute
less to the width of the 90% prediction intervals, implying that there is significant
variability in data series that is not attributed to random error. For retrospective
periods of 5 years, mean biases are slightly positive for indirect series, but almost
zero or negative for direct series: observations from direct series tend to be below
indirect series for these retrospective periods.

4.3. U5MR estimates. U5MR data series and B3 estimates for all 194 coun-
tries are shown in supplementary Figure S2 [Alkema and New (2014)]. For the
selected illustrative countries in Figures 1 and 2, B3 estimates are displayed in the
country-specific figures, together with the estimates that would have been obtained
using the default Loess estimation approach used for constructing the IGME 2012
estimates.
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Point estimates from the B3 model and default Loess are almost identical for
the Netherlands during the entire observation period, but differ for all or a subset
of observation years in the other countries. For Mexico, the trend in the Loess
estimates for the late 2000s contradicts the observed trend in VR data. B3 estimates
take into account the small stochastic error in the VR and follow the data points
closely. For Moldova, the inclusion of the VR observations in the early 1990s
with a VR bias parameter for those years results in U5MR estimates that capture
the VR-indicated trend. The inclusion of VR data for recent years guarantees that
the point estimates and credible intervals do not cross through the VR. In future
revisions for Moldova, a further extension could be to include all incomplete VR
observations as a minimum to avoid the situation in the early 1980s, when the
lower bound of the CI is below the incomplete VR.

For Ghana, B3 estimates and Loess estimates are similar. Small differences are
observed in the years with VR data, where the B3 estimates capture these points
while the Loess does not. In more recent years, the extrapolated decline is slightly
steeper for the B3 model, as indicated by the decline in the most recent observa-
tions. Differences between B3 and Loess estimates are much larger in the other
countries in the figure. In Cambodia, the B3 estimates follow the trend as observed
in the data series, including the stagnation of child mortality decline in the 1980s
and 1990s and the more recent acceleration in the decline of child mortality. The
default Loess fit does not capture these fluctuations. In the IGME 2012 method,
this country would be a candidate for an expert-based adjustment of the Loess
smoothing parameter to better capture the trend. In the B3 penalized spline model
approach, such expert adjustments are not necessary.

In Pakistan, the B3 estimates follow the registration data. The DHS from 2006–
2007 does not bias downward the estimates (as observed in the Loess estimates)
because of the inclusion of bias parameters for survey data; we estimate that the
DHS Direct series is biased downward. Last, in PNG, B3 estimates suggest a
slightly flatter trend in U5MR than the Loess during the 1980s and 1990s based on
the lack of downward trends in all individual series during that period.

5. Discussion. The estimation of child mortality is challenging for the great
majority of developing countries without well-functioning VR systems due to is-
sues with data quantity and quality. In this paper, we described a Bayesian penal-
ized B-spline regression model to evaluate levels and trends in the U5MR for all
countries in the world. This model estimates biases in data series for all non-VR
source types using a multilevel model to improve upon the limitations of current
methods. Improved spline extrapolations are obtained via logarithmic pooling of
the posterior predictive distribution of country-specific changes in spline coeffi-
cients with observed changes on the global level. The proposed model can flexibly
capture changes in U5MR over time, provides point estimates and credible inter-
vals that take into consideration potential biases in data series and gives better
model validation results than the UN IGME 2012 estimation approach.
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The differences between the B3 estimates and the default Loess fits as discussed
in Section 4.3 highlight the need for more attention for appropriate data models in
U5MR estimation. When treating all observations equally, U5MR estimates can
end up below (incomplete) VR observations or follow a trend in U5MR that is
dictated by the (lack of) overlap of different data series with potentially different
level biases.

While our data model overcomes the main limitations of the previous UN IGME
estimation methods, there remains room for improvement. The primary issue with
child mortality estimation is data quality. In the B3 data model, we incorporated
source-specific bias parameters, that are drawn from a source type-specific distri-
bution based on the assumption that biases are comparable across data series of
the same source type. However, large variation exists across series; ideally, ex-
ternal information on data quality should be included to distinguish between the
more or less reliable series in the database. In a residual analysis, (absolute) resid-
uals were plotted against a number of data quality predictors (region that country
belongs to, series source type, series year, observation year, retrospective period,
level of U5MR in observation year, total fertility rate in the series year and change
in the total fertility rate in the last 15 years before the series) to explore whether
any of those covariates should be incorporated into the model for biases in direct
and indirect series. Overall, the linear model without covariates seemed to work
reasonably well except for some DHS Direct series, for which an additional neg-
ative bias for observations with retrospective periods shorter than 5 years may be
present. This may be due to birth transference, whereby dates of birth are incor-
rectly reported to avoid answering more questions pertaining to those births in the
DHS questionnaires [Sullivan (2008)]. Given the importance of the observations
with short retrospective periods in driving recent estimates and short-term projec-
tions, this issue needs to be investigated more in future work.

Improved spline extrapolations were obtained via logarithmic pooling of the
posterior predictive distribution of country-specific changes in spline coeffi-
cients with observed changes on the global level. While short-term projections
that are based only on country-specific information may be preferred from a
political/country-user point of view, the pooling procedure was used because it was
found to improve out-of-sample model performance and deemed to lead to more
plausible projection intervals in countries where differences between the pooled
and unpooled predictions occurred. In summary, the pooling approach reduces the
probability of unrealistically high or low rates of changes in extrapolations and
also reduces the probability of sustained high or low rates of change over longer
projection periods by pooling the predictive distribution for rates of change toward
a global distribution. This procedure did not result in large differences in point esti-
mates for the majority of countries (as illustrated in Figure S1); its main effect was
a reduction of upper bounds for the U5MR by reducing the probability of very low
or even negative rates of change. Alternative projection methods may be consid-
ered, for example, based on country-specific covariates which may be informative
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of U5MR declines. However, given the limited availability of such covariates for
recent years, we did not pursue this research direction.

Ultimately, the issues of data quality and availability of more recent data can
only be resolved by implementing fully functioning VR systems that can provide
accurate data on births and deaths in every country. However, currently only about
50 countries have such VR systems in place; the implementation of VR systems for
all countries remains an ambitious and long-term goal [United Nations Children’s
Fund and USAID (2012)]. In the short term, the B3 model allows for inclusion of
information from incomplete VR systems, as illustrated for Moldova. The inclu-
sion of data from alternative data sources and the implementation of novel data
collection methods, that can provide accurate and timely child mortality data [e.g.,
see Clark et al. (2012) and Amouzou (2011)], could further aid child mortality
estimation. The advantage of the use of the Bayesian framework in the B3 model
is that the model can be readily extended to incorporate such information into the
estimation process.

To assess progress toward MDG 4, much focus is placed on the point estimates
of the U5MR and ARR despite the large uncertainty in estimates because commu-
nication of uncertainty in U5MR estimates is challenging [Oestergaard, Alkema
and Lawn (2013)]. To provide a straightforward inclusion of the uncertainty as-
sessment into the MDG 4 progress assessment, countries could be categorized by
whether the attainment of the MDG target of an ARR of 4.4% is considered to be
unlikely, not clear or likely based on the uncertainty intervals of the ARR estimate
[Alkema and New (2012)].

Moving beyond the MDGs, the issue of inequality is likely to feature promi-
nently in the post-2015 development agenda. While the MDGs have focused much
attention on national, regional and global averages of key indicators, they have also
potentially masked growing disparities at the intra-national level [UN System Task
Team on the Post-2015 UN Development Agenda (2012)]. In light of this, disag-
gregated estimates of child mortality (e.g., by state, wealth quintile, residence) will
be increasingly important to evaluate progress for all population groups to better
address inequalities. Further work can be carried out to extend the B3 model so
that this growing body of disaggregated data can be fully utilized to produce dis-
aggregated estimates in the future.

APPENDIX

Prior distributions. Prior distributions for the spline model parameters are spec-
ified as follows:

exp(λc,0) ∼ U(1,1000),

λc,1/I ∼ U(−0.25,0.2),

χ ∼ N(−3,10),

ϕ ∼ U(0,5),
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where exp(λc,0) represents the level of U5MR in the approximate midyear of the
observation period, and λc,1/I is approximately the average ARR over the obser-
vation period (I is the interval length between knots).

Diffuse prior distributions were assigned to all data model parameters, with the
exception of the mean bias μ0,d for the DHS Direct series, which has an informa-
tive prior distribution:

μ0,d ∼ N
(
M0,d , S2

0,d

)
,

μ1,d ∼ N
(
M1,d , S2

1,d

)
,

φ0,d ∼ U(0,5),

φ1,d ∼ U(0,5),

ωd ′ ∼ U(0,0.5),

where M0,d = −0.0123 for d = DHS direct and 0 otherwise, M1,d = 0 for all d ,
S0,d = 0.00556 for DHS Direct and 0.15 otherwise, S1,d = 0.02 for all d .

Logarithmic pooling approach. The penalized spline model-induced PPD for
γ

(j)
c,Kc

= �α
(j)
c,Kc

= α
(j)
c,Kc

− α
(j)
c,Kc−1, based on (4), is given by

γ
(j)
c,Kc

|γ (j)
c,Kc−1,�

(j)
c,Kc

∼ N
(
γ

(j)
c,Kc−1,�

(j)
c,Kc

)
,(7)

where �
(j)
c,Kc

= (σ 2
c )(j). Its density function (leaving out superscripts to denote

the posterior sample for notational convenience) p∗(γc,Kc) = f (γc,Kc |γc,Kc−1,

�c,Kc), where f (�|μ,σ 2) denotes the probability density function for a normal
random variable with mean μ and variance σ 2.

The model-induced PPD is pooled with a (direct) global PPD for future changes
in the spline coefficients, which was based on the set of posterior median estimates
of the γ

(j)
c,k ’s, γ̂c,k for c = 1, . . . ,C and k = 2, . . . ,Kc − 1 (during the observation

period for each country):

p(γ ) = f (γ |G,V ),(8)

where G and V were given by the median and variance of the γ̂c,k’s, respectively.
Logarithmic pooling is used to combine both density functions:

p̃(�c,Kc) ∝ p∗(γc,Kc)
1−wc,Kc · p(γc,Kc)

wc,Kc = f (γc,Kc |�c,Kc,�c,Kc),

where wc,Kc is the country-projection-step specific logarithmic pooling weight that
determines the extent of pooling,

wc,Kc = W · V
W · V + (1 − W)�c,Kc−1

,

with overall weight 0 ≤ W ≤ 1 such that

�c,Kc = W · G + (1 − W) · γc,Kc−1,

�c,Kc = W · V + (1 − W) · �c,Kc−1.
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TABLE 2
Validation results based on left-out observations I. Results refer to the median (and standard

deviation) of outcomes based on 100 sets of left-out observations, where each set contains one
randomly selected observation per included country (before/including 2005, and after 2005).

Included countries are given by high mortality countries (high means U5MR of at least 40 deaths
per 1000 births in 1990) without crises or HIV adjustments, with data in both training and test set
and left-out observations in the period of interest, 71 and 65 countries in total for the indicators

left-out observations before and including 2005, and left-out observations after 2005, respectively.
The outcome measures are as follows: % of observations below and above the 90% prediction

interval based on the training set. The lowest value for each outcome measure is bolded

% of observations outside 90% prediction interval

Year ≤ 2005 Year > 2005

W % below % above % below % above

0 8.5 (2.6) 7.0 (1.9) 9.2 (1.2) 4.6 (1.9)
0.1 7.0 (2.6) 7.0 (2.0) 6.2 (1.2) 3.1 (1.3)
0.2 7.0 (2.6) 7.0 (2.0) 6.2 (1.2) 3.1 (1.2)
0.3 7.0 (2.5) 7.0 (2.0) 6.2 (1.2) 1.5 (1.0)
0.4 7.0 (2.5) 7.0 (1.9) 6.2 (1.3) 1.5 (1.0)
0.5 7.0 (2.4) 7.0 (1.8) 6.2 (1.5) 1.5 (1.0)
0.6 7.0 (2.5) 7.0 (1.7) 6.2 (1.5) 1.5 (1.0)

For a ≥ 1, the induced PPD is defined as

p∗(γc,Kc+a) = f (γc,Kc+a|�c,Kc+a−1,�c,Kc+a−1).

With the global distribution from equation(8) and logarithmic pooling weights
wc,Kc+a = W ·V

W ·V +(1−W)�c,Kc+a−1
, the pooled distribution for γc,Kc+a is given by

p̃(γc,Kc+a) ∝ p∗(γc,Kc+a)
1−wc,Kc+a · p(γc,Kc+a)

wc,Kc+a

= f (γc,Kc+a|�c,Kc+a,�c,Kc+a),

�c,Kc+a = W · G + (1 − W) · γc,Kc+a−1,

�c,Kc+a = W · V + (1 − W) · �c,Kc+a−1.

Validation results. Validation results are described in Tables 2, 3 and 4.
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TABLE 3
Validation results based on left-out observations II. Results refer to the median (and standard
deviation) of outcomes based on 100 sets of left-out observations, where each set contains one
randomly selected observation per included country (before/including 2005, and after 2005).

Included countries are given by high mortality countries (high means U5MR of at least 40 deaths
per 1000 births in 1990) without crises or HIV adjustments, with data in both training and test set
and left-out observations in the period of interest, 71 and 65 countries in total for the indicators

left-out observations before and including 2005, and left-out observations after 2005, respectively.
The outcome measures are as follows: median or mean relative error (MRE), median or mean

absolute relative error (MARE), median or mean interval score (Score) based on the training set.
The lowest value for each outcome measure is bolded

W ME MAE MRE MARE Score

Year ≤ 2005
Median

0 −2.2 (1.4) 11.3 (1.2) −2.2 (1.8) 13.2 (1.3) 0.64 (0.01)
0.1 −2.2 (1.3) 11.2 (1.2) −2.2 (1.7) 13.2 (1.3) 0.64 (0.01)
0.2 −1.9 (1.3) 10.9 (1.3) −2.1 (1.7) 12.9 (1.4) 0.64 (0.01)
0.3 −1.9 (1.4) 10.8 (1.3) −2.1 (1.7) 12.9 (1.4) 0.64 (0.01)
0.4 −1.9 (1.3) 10.8 (1.3) −2.0 (1.7) 12.9 (1.4) 0.64 (0.01)
0.5 −1.7 (1.3) 10.7 (1.3) −1.9 (1.7) 12.9 (1.4) 0.64 (0.01)
0.6 −1.5 (1.3) 10.6 (1.3) −1.9 (1.7) 12.9 (1.5) 0.64 (0.01)

Mean
0 −2.9 (1.6) 16.6 (1.2) −4.4 (1.8) 18.6 (1.5) 1.03 (0.11)
0.1 −2.5 (1.5) 16.4 (1.2) −4.2 (1.7) 18.3 (1.4) 1.02 (0.11)
0.2 −2.3 (1.5) 16.2 (1.2) −4.0 (1.7) 18.1 (1.4) 1.01 (0.10)
0.3 −2.2 (1.4) 16.1 (1.2) −3.9 (1.7) 17.9 (1.4) 1.00 (0.10)
0.4 −2.0 (1.4) 16.0 (1.2) −3.9 (1.6) 17.7 (1.4) 0.99 (0.10)
0.5 −1.9 (1.4) 15.8 (1.1) −3.8 (1.6) 17.6 (1.3) 0.98 (0.10)
0.6 −1.9 (1.4) 15.6 (1.1) −3.7 (1.6) 17.4 (1.3) 0.98 (0.10)

Year > 2005
Median

0 −3.6 (0.4) 10.4 (0.6) −10.2 (1.1) 17.6 (0.7) 0.88 (0.03)
0.1 −3.6 (0.3) 9.1 (1.0) −9.6 (0.7) 17.9 (0.8) 0.91 (0.02)
0.2 −3.7 (0.2) 8.4 (1.5) −8.8 (1.2) 17.3 (0.7) 0.89 (0.02)
0.3 −3.5 (0.2) 7.6 (1.6) −9.2 (1.3) 17.1 (0.9) 0.88 (0.01)
0.4 −3.6 (0.1) 7.3 (1.4) −10.0 (0.9) 17.2 (1.3) 0.86 (0.01)
0.5 −3.7 (0.1) 7.6 (1.2) −10.7 (1.1) 17.5 (1.5) 0.86 (0.01)
0.6 −3.8 (0.2) 7.9 (1.0) −10.3 (1.0) 18.2 (1.3) 0.84 (0.01)

Mean
0 −8.1 (0.5) 18.3 (0.4) −15.7 (1.7) 30.0 (1.6) 1.38 (0.09)
0.1 −7.1 (0.5) 17.0 (0.5) −14.8 (1.5) 28.3 (1.4) 1.35 (0.08)
0.2 −6.6 (0.5) 16.0 (0.5) −14.6 (1.4) 27.2 (1.3) 1.32 (0.08)
0.3 −6.2 (0.5) 15.2 (0.5) −14.6 (1.3) 26.6 (1.2) 1.30 (0.08)
0.4 −6.1 (0.5) 14.7 (0.5) −14.7 (1.3) 26.1 (1.2) 1.28 (0.08)
0.5 −6.0 (0.5) 14.2 (0.5) −14.8 (1.2) 25.8 (1.1) 1.27 (0.08)
0.6 −5.9 (0.5) 13.9 (0.5) −14.8 (1.2) 25.6 (1.1) 1.25 (0.08)



2146 L. ALKEMA AND J. R. NEW

TABLE 4
Validation results for U5MR and ARR estimates. Results refer to high mortality countries (high

means U5MR of at least 40 deaths per 1000 births in 1990) without crises or HIV adjustments, with
data in both training and test set, 78 countries in total. Median and mean outcome measures are
reported for the U5MR in 2000 and 2005, and the annual rate of reduction (ARR) from 1990 to

2005. Outcome measures are given by the following: median/mean relative error (MRE) and
median/mean absolute relative error (MARE) for the U5MR, median or mean error (ME) and

median/mean absolute error (MAE) for the ARR, and median/mean interval score (Score) as well
as % of countries below and above the 90% uncertainty intervals based on the training set. The

lowest value for each outcome measure is bolded

U5MR 2000

% of countries
Median Mean outside 90% UI

W MRE MARE Score MRE MARE Score % Below % Above

0 −2.4 4.5 0.30 −4.8 9.9 0.56 3.8 5.1
0.1 −2.4 4.5 0.30 −4.6 9.7 0.56 3.8 5.1
0.2 −2.4 4.5 0.30 −4.5 9.6 0.55 3.8 5.1
0.3 −2.4 4.5 0.29 −4.3 9.3 0.55 3.8 5.1
0.4 −2.5 4.5 0.29 −4.2 9.2 0.54 3.8 5.1
0.5 −2.4 4.4 0.29 −4.1 9.0 0.53 3.8 5.1
0.6 −2.5 4.5 0.29 −4.0 8.8 0.52 3.8 5.1

U5MR 2005

% of countries
Median Mean outside 90% UI

W MRE MARE Score MRE MARE Score % Below % Above

0 −5.0 10.4 0.51 −11.0 18.9 0.95 6.4 5.1
0.1 −4.7 9.4 0.35 −10.2 17.5 0.92 6.4 3.8
0.2 −4.8 8.9 0.53 −9.6 16.4 0.89 6.4 2.6
0.3 −5.3 8.1 0.53 −9.3 15.7 0.88 7.7 2.6
0.4 −5.3 8.1 0.54 −9.0 15.2 0.86 7.7 2.6
0.5 −6.1 8.1 0.53 −8.9 14.7 0.85 7.7 1.3
0.6 −6.0 8.5 0.53 −8.7 14.4 0.83 7.7 2.6

ARR 1990–2005

% of countries
Median Mean outside 90% UI

W ME MAE Score ME MAE Score % Below % Above

0 0.2 0.7 3.5 0.3 1.0 5.7 5.1 7.7
0.1 0.2 0.6 3.7 0.3 1.0 5.5 5.1 6.4
0.2 0.2 0.5 3.7 0.3 0.9 5.3 3.8 7.7
0.3 0.1 0.6 3.7 0.3 0.9 5.2 3.8 7.7
0.4 0.1 0.5 3.8 0.3 0.8 5.1 2.6 9.0
0.5 0.2 0.5 3.7 0.3 0.8 5.0 2.6 9.0
0.6 0.2 0.5 3.7 0.3 0.8 5.0 2.6 9.0
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SUPPLEMENTARY MATERIAL

Figure S1: Illustration of differences in estimates and projections for all
194 countries between the unpooled (country-specific) and pooled B-spline
model projection approach (DOI: 10.1214/14-AOAS768SUPPA; .pdf). Country-
specific graphs to illustrate the effect of the pooling, as in Figure 4, for all 194
countries.

Figure S2: U5MR data series and estimates for all 194 countries (DOI:
10.1214/14-AOAS768SUPPB; .pdf). Country-specific graphs, as in Figures 1
and 2, for all 194 countries.
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