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FUNCTIONAL CLUSTERING IN NESTED DESIGNS: MODELING
VARIABILITY IN REPRODUCTIVE EPIDEMIOLOGY STUDIES

BY ABEL RODRIGUEZ1 AND DAVID B. DUNSON2

University of California, Santa Cruz and Duke University

We discuss functional clustering procedures for nested designs, where
multiple curves are collected for each subject in the study. We start by consid-
ering the application of standard functional clustering tools to this problem,
which leads to groupings based on the average profile for each subject. After
discussing some of the shortcomings of this approach, we present a mixture
model based on a generalization of the nested Dirichlet process that clusters
subjects based on the distribution of their curves. By using mixtures of gen-
eralized Dirichlet processes, the model induces a much more flexible prior
on the partition structure than other popular model-based clustering methods,
allowing for different rates of introduction of new clusters as the number of
observations increases. The methods are illustrated using hormone profiles
from multiple menstrual cycles collected for women in the Early Pregnancy
Study.

1. Introduction. The literature on functional data analysis has seen a spec-
tacular growth in the last twenty years, showing promise in applications rang-
ing from genetics [Luan and Li (2003), Ramoni, Sebastiani and Kohane (2002),
Wakefield, Zhou and Self (2003)] to proteomics [Ray and Mallick (2006)], epi-
demiology [Bigelow and Dunson (2009)] and oceanography [Rodríguez, Dunson
and Gelfand (2009)]. Because functional data are inherently complex, functional
clustering is useful as an exploratory tool in characterizing variability among
subjects; the resulting clusters can be used as a predictive tool or simply as a
hypothesis-generating mechanism that can help guide further research. Some ex-
amples of functional clustering methods include Abraham et al. (2003), who use
B-spline fitting coupled with k-means clustering; Tarpey and Kinateder (2003),
who apply k-means clustering via the principal points of random functions; James
and Sugar (2003), who develop methods for sparsely sampled functional data
that employ spline representations; García-Escudero and Gordaliza (2005), where
the robust k-means method for functional clustering is developed; Serban and
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Wasserman (2005), who use a Fourier representation for the functions along with
k-means clustering; Heard, Holmes and Stephens (2006), where a Bayesian hi-
erarchical clustering approach that relies on spline representations is proposed;
Ray and Mallick (2006), who build a hierarchical Bayesian model that employs a
Bayesian nonparametric mixture model on the coefficients of the wavelet represen-
tations; and Chiou and Li (2007), where a k-centers functional clustering approach
is developed that relies on the Karhunen–Loève representation of the underlying
stochastic process generating the curves and accounts for both the means and the
modes of variation differentials between clusters.

All of the functional clustering methods described above have been designed for
situations where a single curve is observed for each subject or experimental condi-
tion. Extensions to nested designs where multiple curves are collected per subject
typically assume that coefficients describing subject-specific curves arise from a
common parametric distribution, and clustering procedures are then applied to the
parameters of this underlying distribution. The result is a procedure that generates
clusters of subjects based on their average response curve, which is not appropri-
ate in applications in which subjects vary not only in the average but also in the
variability of the replicate curves. For example, in studies of trajectories in repro-
ductive hormones that collect data from repeated menstrual cycles, the average
trajectory may provide an inadequate summary of a woman’s reproductive func-
tioning. Some women have regular cycles with little variability across cycles in the
hormone trajectories, while other women vary substantially across cycles, with a
subset of the cycles having very different trajectory shapes. In fact, one indication
of impending menopause and a decrease in fecundity is an increase in variability
across the cycles. Hence, in forming clusters and characterizing variability among
women and cycles in hormone trajectories, it is important to be flexible in charac-
terizing both the mean curve and the distribution about the mean. This situation is
not unique to hormone data, and similar issues arise in analyzing repeated medical
images as well as other applications.

This paper discusses hierarchical Bayes models for clustering nested functional
data in the context of the Early Pregnancy Study (EPS) [Wilcox et al. (1998)],
where progesterone profiles were collected for both conceptive and nonconcep-
tive women from multiple menstrual cycles. Our models use spline bases along
with mixture priors to create sparse but flexible representations of the hormone
profiles, and can be applied directly to other basis systems such as wavelets. We
start by introducing a hierarchical random effects model on the spline coefficients
which, along with a generalization of the Dirichlet process mixture (DPM) prior
[Escobar and West (1995), Ferguson (1973), Sethuraman (1994)], allows for mean-
response-curve clustering of women, in the spirit of Ray and Mallick (2006). Then,
we extend the model to generate distribution-based clusters using a nested Dirich-
let process (NDP) [Rodríguez, Dunson and Gelfand (2008)]. The resulting model
simultaneously clusters both curves and subjects, allowing us to identify outlier
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curves within each group of women, as well as outlying women whose distribu-
tion of profiles differs from the rest. To the best of our knowledge, there is no
classical alternative for this type of distribution-based multilevel clustering.

In order to provide some insight into the challenges associated with functional
clustering in the context of the EPS, consider the hormonal profiles depicted in Fig-
ure 1. Frames (a) to (c) depict the hormone profiles for 3 women, while frame (d)
shows the mean profile corresponding to each one of them, obtained by simply
averaging all available observations at a given day within the cycle. When looking

FIG. 1. Comparison of hormone profiles for three women in the Early Pregnancy Study. Frames
(a) to (c) show multiple profiles for each woman, while frame (d) shows the average profile for each
woman.
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at the mean profiles in (d), women 43 and 36 seem to have very similar hormonal
responses, which are different from those of woman 3. However, when the individ-
ual profiles are considered, it is clear that most of the cycles of woman 43 look like
those of woman 3 and that the big difference in the means is driven by the single
abnormal cycle. This result, although not surprising if we consider that means are
notoriously nonrobust, suggests that simple approaches that average profiles over
individuals (or, equivalently, use Gaussian distributions to describe subject-specific
variability) might not be the most appropriate for this type of data.

The use of Bayesian nonparametric mixture models for clustering has a long his-
tory [Lau and Green (2007), Medvedovic and Sivaganesan (2002), Quintana and
Iglesias (2003)] and presents a number of practical advantages over other model-
based clustering techniques. Nonparametric mixtures induce a probability distri-
bution on the space of partitions of the data, therefore, we do not need to specify
in advance the number of clusters in the sample. Once updated using the data, this
distribution on partitions allows us to assess variability, and hence characterize
uncertainty in the clustering structure (including that associated with the estima-
tion of the curves), providing a more complete picture than classical methods. In
this paper, we work with a generalized Dirichlet process (GDP) first introduced
by Hjort (2000) and study some of its properties as a clustering tool. In particu-
lar, we show that the GDP generates a richer prior on data partitions than those
induced by popular models such as the Dirichlet process [Ferguson (1973)] or
the two-parameter Poisson–Dirichlet process [Pitman (1996)], as it allows for an
asymptotically bounded number of clusters in addition to logarithmic and power-
law rates of growth.

The paper is organized as follows: Section 2 reviews the basics of nonparamet-
ric regression and functional clustering, while Section 3 explores the design of
nonparametric mixture models for functional clustering. Building on these brief
reviews, Section 4 describes two Bayesian approaches to functional clustering in
nested designs, while Section 5 describes Markov chain Monte Carlo algorithms
for this problem. An illustration focused on the EPS is presented in Section 6.
Finally, Section 7 presents a brief discussion and future research directions.

2. Model-based functional clustering. To introduce our notation, consider
first a simple functional clustering problem where multiple noisy observations are
collected from functions f1, . . . , fI . More specifically, for subjects i = 1, . . . , I

and within-subject design points t = 1, . . . , Ti , observations consist of ordered
pairs (xit , yit ), where

yit = fi(xit ) + εit , εit ∼ N
(
0, σ 2

i

)
.

For example, in the EPS, yit corresponds to the level of progesterone in the blood
of woman i collected at day xit of the menstrual cycle, and fi denotes a smooth
trajectory in progesterone for woman i (initially supposing a single menstrual cycle
of data from each woman), and clusters in {fi}Ii=1 could provide insight into the
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variability in progesterone curves across women, while potentially allowing us to
identify abnormal or outlying curves.

If all curves are observed at the same covariate levels (i.e., Ti = T and xit = xt

for every i), a natural approach to functional clustering is to apply standard clus-
tering methods to the data vectors, yi = (yi1, . . . , yiT )′. For example, in the spirit
of Ramsay and Silverman (2005), one could apply hierarchical or k-means clus-
tering to the first few principal components [Yeung and Ruzzo (2001)]. Alterna-
tively, with uneven spacings or missing observations, nonparametric regression
techniques such as kernel regression [e.g., see Li and Racine (2004), Racine and
Li (2004)] could be used to interpolate the value of the curves to a common grid,
and then traditional clustering techniques could be applied. From a model-based
perspective, one could instead suppose that yi is drawn from a mixture of k mul-
tivariate Gaussian distributions, with each Gaussian corresponding to a different
cluster [Fraley and Raftery (2002), Yeung et al. (2001)]. The number of clusters
could then be selected using the BIC criteria [Fraley and Raftery (2002), Li (2005)]
or a nonparametric Bayes approach could be used to bypass the need for this selec-
tion, while allowing the number of clusters represented in a sample of I individuals
to increase stochastically with sample size [Medvedovic and Sivaganesan (2002)].

A more general approach that allows us to deal with unevenly spaced and miss-
ing observations is to fit a nonparametric model to each curve and then project
all the curves onto a common space. For example, we can represent the unknown
function fi as a linear combination of prespecified basis functions {bk}pk=1, that is,
we can write

fi(xit ) = θi0 +
p∑

k=1

θikbk(xit ),

where θ i = (θi0, θi1, . . . , θip) are basis coefficients specific to subject i, with vari-
ability in these coefficients controlling variability in the curves {fi}Ii=1. A com-
mon approach to functional clustering is to induce clustering of the curves through
clustering of the basis coefficients [Abraham et al. (2003), Heard, Holmes and
Stephens (2006)]. Then the methods discussed above for clustering of the data
vectors {yi}Ii=1 in the balanced design case can essentially be applied directly to
the basis coefficients {θ i}Ii=1.

Although the methods apply directly to other choices of basis functions, our fo-
cus will be on splines, which have been previously used in the context of hormone
profiles [Bigelow and Dunson (2009), Brumback and Rice (1998)]; given a set of
knots τ1, . . . , τp , the kth member of the basis system is defined as

bk(x) = (x − τk)
q
+,

where (·)+ = max{·,0}. Given the knot locations, inferences on θ i and σ 2
i can be

carried out using standard linear regression tools, however, selecting the number
and location of the nodes τ1, . . . , τp can be a challenging task. A simple solution is
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to use a large number of equally spaced knots, together with a penalty term on the
coefficients to prevent overfitting. From a Bayesian perspective, this penalty term
can be interpreted as a prior on the spline coefficients; for example, the maximum
likelihood estimator (MLE) obtained under an L2 penalty on the spline coefficients
is equivalent to the maximum a posteriori estimates for a Bayesian model under a
normal prior, while the MLE under an L1 penalty is equivalent to the maximum
a posterior estimate under independent double-exponential priors on the spline
coefficients.

Instead of the more traditional Gaussian and double exponential priors, in this
paper we focus on zero-inflated priors, in the spirit of Smith and Kohn (1996).
Priors of this type enforce sparsity by zeroing out some of the spline coefficients
and, by allowing us to select a subset of the knots, provides adaptive smoothing. In
their simpler form, zero-inflated priors assume that the coefficients are independent
from each other and that

θik|γ,σ 2
i ∼ γ N

(
0,ωkσ

2
i

) + (1 − γ )δ0, σ 2
i ∼ IGam(ν1, ν2),(1)

where δx denotes the degenerate distribution putting all its mass at x, ωk controls
the overdispersion of the coefficients with respect to the observations and γ is the
prior probability that the coefficient θik is different from zero. In order to incor-
porate a priori dependence across coefficients, we can reformulate the hierarchical
model by introducing Bernoulli random variables λi1, . . . , λip such that

yi |θ i , σ
2
i ,�i ∼ N

(
B(xi )�iθ i , σ

2
i I

)
, θ i |σ 2

i ∼ N
(
0, σ 2

i �
)
,

σ 2
i ∼ IGam(ν1, ν2),

where yi = (yi1, . . . , yiTi
) and xi = (xi1, . . . , xiTi

) are, respectively, the vectors
of responses and covariates associated with subject i, B(xi ) is the matrix of
basis functions also associated with subject i with entries [B(xi )]tk = bk(xit ),
�i = diag{λi1, . . . , λip} and λi equals 1 independently with probability γ , and �
is a p × p covariance matrix. Note that if � is a diagonal matrix and [�]kk = ωk ,
we recover the independent priors in (1). For the single curve case, choices for �
based on the regression matrix B(xi ) are discussed in DiMatteo, Genovese and
Kass (2001), Liang et al. (2008) and Paciorek (2006).

Although the preceding two-stage approach is simple to implement using off-
the-shelf software, it ignores the uncertainty associated with the estimation of the
basis coefficients while clustering the curves. In the spirit of Fraley and Raftery
(2002), an alternative that deals with this issue is to employ a mixture model of the
form

yi |{θ∗
k

}
,
{
σ ∗2

k

}
,
{
�∗

k

} ∼
K∑

k=1

wkN
(
B(xj )�

∗
kθ

∗
k, σ

∗2
k I

)
,

K∑
k=1

wk = 1,(2)

where θ∗
k is the vector of coefficients associated with the kth cluster, �∗

k is the
diagonal selection matrix for the kth cluster, σ ∗2

k is the observational variance as-
sociated with observations collected in the kth cluster, wk can be interpreted as
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the proportion of curves associated with cluster k, and K is the maximum num-
ber of clusters in the sample. From a frequentist perspective, estimation of this
model can be performed using expectation–maximization (EM) algorithms, while
selection of the number of mixture components can be carried out using the BIC.
Alternatively, Bayesian inference can be performed for this model using Markov
chain Monte Carlo (MCMC) algorithms once appropriate priors for the vector
w = (w1, . . . ,wK) and the cluster-specific parameters (θ∗

k,�
∗
k, σ

∗2
k ) have been

chosen, opening the door to simple procedures for the estimation of the number
of clusters in the sample.

3. Bayesian nonparametric mixture models for functional data. Note that
the model in (2) can be rewritten as a hierarchical model by introducing latent
variables {(θ i , σ

2
i ,�i )}Ii=1 so that

yi |θ i , σ
2
i ,�i ∼ N

(
B(xi )�iθ i , σ

2
i I

)
, θ i , σ

2
i ,�i |G ∼ G,

(3)

G(·) =
K∑

k=1

wkδ(θ∗
k ,σ

∗2
k ,�∗

k)
(·).

Therefore, specifying a joint prior on w and {(θ∗
k, σ

∗2
k ,�∗

k)}Kk=1 is equivalent to
specifying a prior on the discrete distribution G generating the latent variables
{(θ i , σ

2
i ,�i )}Ii=1. In this section we discuss strategies to specify a flexible prior

distribution on this mixing distribution in the context of functional clustering. In
particular, we concentrate on nonparametric specifications for G through the class
of stick-breaking distributions.

A stick-breaking prior [Ishwaran and James (2001), Ongaro and Cattaneo
(2004)] with baseline measure G0 and precision parameters {al}Ll=1 and {bl}Ll=1
is defined as

G(·) =
K∑

k=1

wkδϑk
(·),(4)

where the atoms {ϑk}Kk=1 are independent and identically distributed samples
from G0 and the weights {wk}Kl=1 are constructed as wk = uk

∏
s<k(1 − us), with

{uk}Kk=1 another independent and identically distributed sequence of random vari-
ables such that uk ∼ Beta(ak, bk) for k < K and uK = 1. For example, taking
K = ∞, ak = 1 − a and bk = b + ka for 0 ≤ a < 1 and b > −a yields the
two-parameter Poisson–Dirichlet process [Ishwaran and James (2001), Pitman
(1995)], denoted PY(a, b,G0), with the choice a = 0 resulting in the Dirichlet
process [Ferguson (1973), Sethuraman (1994)], denoted DP(b,G0). In mixture
models such as (3), G0 acts as the common prior for the cluster-specific parame-
ters {ϑk}Kk=1, while the sequences {ak}Kk=1 and {bk}Kk=1 control the a priori expected
number and size of the clusters.
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The main advantage of nonparametric mixture models such as the Poisson–
Dirichlet process as a clustering tool is that they allow for automatic inferences
on the number of components in the mixture. Indeed, these models induce a prior
probability on all possible partitions of the set of observations, which is updated
based on the information contained in the data. However, Poisson–Dirichlet pro-
cesses have two properties that might be unappealing in our EPS application; first,
they place a relatively large probability on partitions that include many small clus-
ters and, second, they imply that the number of clusters will tend to grow logarith-
mically (if a = 0) or as a power law (if a > 0) as more observations are included in
the data set. However, priors that favor Introduction of increasing numbers of clus-
ters without bound as the number of subjects increase have some disadvantages in
terms of interpretability and sparsity in characterizing high-dimensional data. For
example, in applying DP mixture models for clustering of the progesterone curves
in EPS, Bigelow and Dunson (2009) obtained approximately 32 different clusters,
with half of these clusters singletons. Many of the clusters appeared similar, and
it may be that this large number of clusters was partly an artifact of the DP prior.
Dunson (2009) proposed a local partition process prior to reduce dimensionality
in characterizing the curves, but this method does not produce easily interpretable
functional clusters. Hence, it is appealing to use a more flexible global clustering
prior that allows the number of clusters to instead converge to a finite constant.

With this motivation, we focus on the generalized Dirichlet process (GDP) intro-
duced by Hjort (2000), denoted GDP(a, b,G0). The GDP corresponds to a stick-
breaking prior with K = ∞, ak = a and bk = b for all k. When compared against
the Poisson–Dirichlet process, the GDP has quite distinct properties.

THEOREM 1. Let Zn be the number of distinct observations in a sample of
size n from a distribution G, where G ∼ GDP(a, b,G0). The expected number of
clusters E(Zn) is given by

E(Zn) =
n∑

i=1

ia�(a + b)�(b + i − 1)

�(b)�(a + b + i) − �(a + b)�(b + i)
.(5)

The proof can be seen in Appendix A. Note that for a = 1, this expression sim-
plifies to E(Zn) = ∑n

i=1
b

b+i−1 ∼ o(logn), a well-known result for the Dirichlet
process [Antoniak (1974)]. Letting Wn = Zn − Zn−1 denote the change in the
number of clusters in adding the nth individual to a sample with n − 1 subjects,
Stirling’s approximation can be used to show that

E(Wn) = na�(a + b)�(b + n − 1)

�(b)�(a + b + n) − �(a + b)�(b + n)
≈ C(a, b)n−a,

where C(a, b) = {a�(a + b)/�(b)} exp{−2(a + 1)}. Hence, E(Wn) → 0 as
n → ∞ and new clusters become increasingly rare as the sample size increases.
Note that for a ≤ 1, the number of clusters will grow slowly but without bound



1424 A. RODRIGUEZ AND D. B. DUNSON

as n increases, with E(Zn) → ∞. The rate of growth in this case is proportional
to n1−a , which is similar to what is obtained by using the Poisson Dirichlet prior
[Sudderth and Jordan (2009)]. However, when a > 1 the expected number of clus-
ters instead converges to a finite constant, which is a remarkable difference com-
pared with the Dirichlet and Poisson–Dirichlet process. As mentioned above, there
may be a number of practical advantages to bounding the number of clusters. In
addition, a finite bound on the number clusters seems to be more realistic in many
applications, including the original species sampling applications that motivated
much of the early development in this area [McCloskey (1965), Pitman (1995)].

In order to gain further insight into the clustering structure induced by the
GDP(a, b,G0), we present in Figure 2 the relationship between the size of the
largest cluster and the mean number of clusters in the partition (left panel), and
the mean cluster size and the number of clusters (right panel) for a sample of
size n = 1000. The numbers presented in this figure are based on the results
from 20,000 simulations from the stick-breaking prior. Each continuous line cor-
responds to a combination of shape parameters such that a/(a + b) is constant,
while the dashed line in the plots corresponds to the combinations available under
a Dirichlet process. The plots demonstrate that the additional parameter in the GDP
allows us to simultaneously control the number of clusters and the relative size of
the clusters, increasing the flexibility of the model as a clustering procedure.

The previous discussion focused on the impact of the prior distribution for the
mixture weights on the clustering structure. Another important issue in the speci-
fication of the model is the selection of the baseline measure G0. Note that in the

FIG. 2. Clustering structure induced by a GDP(a, b,G0) for a sample of size n = 1000. Panel (a)
shows the relationship between the size of the largest cluster and the mean number of clusters for
different GDPs, where each curve shares a common E(uk) = a/(a +b). Panel (b) shows the relation-
ship between the average cluster size and the mean number of clusters. The dashed lines correspond
to the combinations available under a standard Dirichlet process.
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functional clustering setting ϑk = (θ∗
k, σ

∗2
k ,�∗

k) and, therefore, a computationally
convenient choice that is in line with our previous discussion on basis selection
and zero-inflated priors is to write

G0
(
θ , σ 2,�

) = N
(
θ |0, σ 2�

) × IGam
(
σ 2|ν1, ν2

) ×
p∏

s=1

Ber(λs |γ ).(6)

A prior of this form allows differential adaptive smoothing for each cluster in the
data; the level of smoothness is controlled by γ (the prior probability of inclusion
for each of the spline coefficients) and, therefore, it is convenient to assign to it a
hyperprior such as γ ∼ Beta(η1, η2).

4. Functional clustering in nested designs. Consider now the case where
multiple curves are collected for each subject in the study. In this case, the obser-
vations consist of ordered pairs (yij t , xij t ) where

yijt = fij (xij t ) + εij t ,

where fij is the j th functional replicate for subject i, with i = 1, . . . , I , j =
1, . . . , ni and t = 1, . . . , Tij . For example, in the EPS, fij is the measurement
error-corrected smooth trajectory in the progesterone metabolite PdG over the j th
menstrual cycle from woman i, with t indexing the sample number and xijt de-
noting the day within the i, j menstrual cycle relative to a marker of ovulation
day.

A natural extension of (3) to nested designs arises by modeling the expected
evolution of progesterone in time for cycle j of woman i as fij = B(xij )θ ij and
using a hierarchical model for the set of curve-specific parameters {θ ij } in order
to borrow information across subjects and/or replicates. In the following subsec-
tions, we introduce two alternative nonparametric hierarchical priors that avoid
parametric assumptions on the distribution of the basis coefficients, while induc-
ing hierarchical functional clustering.

4.1. Mean-curve clustering. As a first approach, we consider a Gaussian mix-
ture model, which characterizes the basis coefficients for functional replicate j

from subject i as conditionally independent draws from a Gaussian distribution
with subject-specific mean and variance, in the spirit of Booth, Casella and Hobert
(2008):

yij |θ ij , σi ∼ N
(
B(xij )θ ij , σ

2
i I

)
, θ ij |θ i ,�i , σ

2
i ∼ Gi,

(7)
Gi = N

(
�iθ i , σ

2
i �

)
,

where �i , θ i , σ
2
i are as described in expression (3) and � is a p × p co-

variance matrix. In this model, the average curve for subject i is obtained as
E{fij (x)|�i , θ i , σ

2
i } = B(x)�iθ i , with �i providing a mechanism for subject-

specific basis selection, so that the curves from subject i only depend on the basis
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functions corresponding to nonzero diagonal elements of �i . The variability in
the replicate curves for the same subject is controlled by σ 2

i �, with the subject-
specific multiplier allowing subjects to vary in the degree of variability across the
replicates. The need to allow such variability is well justified in the hormone curve
application.

In order to borrow information across women, we need a hyperprior for the
woman specific parameters {(�i , σ

2
i , θ i )}Ii=1. Since we are interested in clustering

subjects, a natural approach is to specify this hyperprior nonparametrically through
a generalized Dirichlet process centered around the baseline measure in (6), just
as we did for the single curve case. This yields(

θ i , σ
2
i ,�i

)|G ∼ G, G ∼ GDP(a, b,G0)

with G0 given in (6). Since the distribution G is almost surely discrete, the model
identifies clusters of women with similar average curves. This is clearer if we in-
tegrate the curve-specific coefficients {θ ij } and the unknown distribution G out of
the model to obtain

yi1, . . . ,yini
|{wk}, {

θ∗
k

}
,
{
σ ∗2

k

}
,
{
�∗

k

}
(8)

∼
K∑

k=1

wk

{
ni∏

j=1

N
(
B(xij )�

∗
kθ

∗
k, σ

∗2
k (I + �)

)}
.

By incorporating the distribution of the selection matrices �1, . . . ,�I in the
random distribution G, this model allows for a different smoothing pattern for each
cluster of curves. This is an important difference with a straight generalization
of the model in Ray and Mallick (2006), who instead treat the selection matrix
as a hyperparameter in the baseline measure G0 and therefore induce a common
smoothing pattern across all clusters.

The model is completed by assigning priors for the hyperparameters. For the
random effect variances we take inverse-Wishart priors:

� ∼ IWis(ν
,�0), � ∼ IWis(ν�,�0).

In the spirit of the unit information priors [Paciorek (2006)], the hyperparame-
ters for these priors can be chosen so that �0 and �0 are proportional to

I∑
i=1

ni∑
j=1

B(xij )
′B(xij ).

Finally, the concentration parameters a and b are given gamma priors a ∼
Gam(κa, τa) and b ∼ Gam(κb, τb) and the probability of inclusion γ is assigned a
beta prior, γ ∼ Beta(η1, η2).
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4.2. Distribution-based clustering. Because the subject-specific distributions
{Gi}Ii=1 were assumed to be Gaussian and the nonparametric prior was placed on
their means, the model in the previous section clusters subjects based on their av-
erage profile. However, as we discussed in Section 1, clustering based on the mean
profiles might be misleading in studies such as the EPS in which there are impor-
tant differences among subjects in not only the mean curve but also the distribution
about the mean. In hormone curve applications, it is useful to identify clusters of
trajectories over the menstrual cycle to study variability in the curves and identify
outlying cycles that may have reproductive dysfunction. It is also useful to cluster
women based not simply on the average curve but on the distribution of curves.
With this motivation in mind, we generalize our hierarchical nonparametric spec-
ification to construct a model with additional parameters that enables clustering
based on more than proximity between the mean curves. This generalization fur-
ther enables clustering within subjects as well as subjects.

To motivate our nonparametric construction, consider first the simpler case in
which there are only two types of curves in each cluster of women (say, normal
and abnormal), so that it is natural to model the subject-specific distribution as a
two-component mixture where

yij |�i,�1i , θ1i , σ
2
1i ,�2i , θ2i , σ

2
2i

(9)
∼ �iN

(
B(xij )�1iθ1i , σ

2
1iI

) + (1 − �i)N
(
B(xij )�2iθ2i , σ

2
2iI

)
,

�i can be interpreted as the proportion of curves from subject i that are in group 1
(say, normal), and (θ1i , σ

2
1i) are the parameters that describe curves from a normal

cycle, �1i is a diagonal variable selection matrix for the normal cycles that ze-
roes out unnecessary coefficients to avoid overfitting, (θ2i , σ

2
2i) are the parameters

describing the curves from an abnormal cycle, and �2i is the variable selection
matrix for the abnormal cycles. Note that in this case we have not one but two
variance parameters for each individual, which provide additional flexibility by al-
lowing each cluster of curves to present a different level of observational noise.
This feature is desirable in the EPS because, for a given woman, observational
noise in abnormal cycles tends to be larger than in normal cycles.

Under this formulation, the subject-specific distribution is described by the vec-
tor of parameters (�i,�1i , θ1i , σ

2
1i ,�2i , θ2i , σ

2
2i), and clustering subjects could be

accomplished by clustering these vectors. We can accomplish this by using another
mixture model that mimics (2) and (8), so that

yi1, . . . ,yini
|{πk}, {�k}, {

θ∗
1k

}
,
{
σ ∗2

1k

}
,
{
�∗

1k

}
,
{
θ∗

2k

}
,
{
σ ∗2

2k

}
,
{
�∗

2k

}

∼
K∑

k=1

πk

ni∏
j=1

{
�kN

(
B(xij )�

∗
1kθ

∗
1k, σ

∗2
1k I

)
(10)

+ (1 − �k)N
(
B(xij )�

∗
2lθ

∗
2k, σ

∗2
1k I

)}
.
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To formulate our Bayesian nonparametric model for clustering, we start by
rewriting (10) as a general mixture model where

yij |θ ij , σ
2
ij ,�ij ∼ N

(
B(xij )�ijθ ij , σ

2
ij I

)
, θ ij , σ

2
ij ,�ij |Gi ∼ Gi(11)

and Gi is a discrete distribution which is assigned a nonparametric prior. Note
that this is analogous to the formulation in (7), but by replacing the Gaussian dis-
tribution with a random distribution with a nonparametric prior we are modeling
the within-subject variability by clustering curves into groups with homogeneous
shape.

Now, we need to define a prior over the collection {Gi}Ii=1 that induces clus-
tering among the distributions. For example, we could use a discrete distribution
whose atoms are in turn random distributions, for example,

Gi ∼
∞∑

k=1

πkδG∗
k
,

where πk = vk

∏
s<k(1 − vs), vk ∼ Beta(a1, b1) and G∗

k ∼ GDP(a2, b2,G0) inde-
pendently. This implies that

G∗
k =

∞∑
l=1

�lkδ(θ∗
lk,σ

2∗
lk ,�∗

lk)
,

(
θ∗

lk, σ
2∗
lk ,�∗

lk

) ∼ G0,

with �lk = ulk

∏
s<l(1−usk) and ulk ∼ Beta(a2, b2) and G0 as in (6). Therefore, if

we were to replace the collection {G∗
k}∞k=1 with random discrete distributions with

only two atoms and we were to integrate over the random distributions {Gi}Ii=1,
this model would be equivalent to (10) with K = ∞.

This model on the collection {Gi}Ii=1 is a generalization of the nested Dirichlet
process introduced in Rodríguez, Dunson and Gelfand (2008) and, as with other
models based on nested nonparametric processes, interesting special cases can be
obtained by considering the limit of the precision parameters. For example, letting
b2 → 0 while keeping a2 fixed induces a model where all menstrual cycles within a
woman are assumed to have the same profile, and subjects are clustered according
to their mean cycle. Such a model is equivalent to the one obtained by taking
� → 0 in (7). On the other hand, by letting b1 → ∞ while keeping a1 constant,
we obtain a model where all subjects are treated as different and menstrual cycles
are clustered within each women. In this case, information is borrowed across the
menstrual cycles of each women, but not across women.

Intuitively, we can think of the model we just described as first clustering curves
within a subject via a model-based version of k-means applied to the subject-
specific basis coefficients. Then, two subjects having similar distributions of curve
clusters will be clustered together. Because we use a joint hierarchical model, these
stages are done simultaneously.

Again, the model is completed by specifying prior distributions on the re-
maining parameters. As before, we let � ∼ IWis(ν
,�0), ν2 ∼ Gam(ρ,ψ) and
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γ ∼ Beta(η1, η2), providing a conditionally conjugate specification amenable for
simple computational implementation. Finally, for the precision priors of the GDPs
we set

a1 ∼ Gam(κa1, τa1), b1 ∼ Gam(κb1, τb1),

a2 ∼ Gam(κa2, τa2), b2 ∼ Gam(κb2, τb2).

5. Computation. As is commonplace in Bayesian inference, we resort to
Markov chain Monte Carlo (MCMC) algorithms [Robert and Casella (1999)] for
computation in our functional clustering models. Given an initial guess for all un-
known parameters in the model, the algorithms proceed by sequentially sampling
blocks of parameters from their full conditional distributions. In particular, we
design our algorithms using truncated versions of the GDP and the nested GDP,
where a large but finite number of atoms are used to approximate the nonparamet-
ric mixture distributions. Well-known results on the convergence of truncations as
the number of atoms grows that were originally presented in Ishwaran and James
(2001) and Rodríguez, Dunson and Gelfand (2008) can be directly extended to this
problem (see Appendix B). Furthermore, because most components of the model
are conditionally conjugate, most of the full conditional distributions can be di-
rectly sampled using Gibbs steps. Full details of the algorithm can be seen in the
online supplementary materials [Rodriguez and Dunson (2014)].

Convergence of the MCMC algorithms was assessed using the multi-chain
method described in Gelman and Rubin (1992), which was applied to monitor the
(unnormalized) posterior distribution, as well as the number of occupied clusters
on each level of the model and the Frobenius norm of the matrices � and �.

6. The Early Pregnancy Study. Progesterone plays a crucial role in con-
trolling different aspects of reproductive function in women, from fertilization
to early development and implantation. Therefore, understanding the variability
of hormonal profiles across the menstrual cycle and across subjects is important
in understanding mechanisms of infertility and early pregnancy loss, as well as
for developing approaches for identifying abnormal menstrual cycles and women
for diagnostic purposes. Our data, extracted from the Early Pregnancy Study
[Wilcox et al. (1998)], consists of log daily creatinine-corrected concentrations
of pregnanediol-3-glucuronide (PdG) for 60 women along multiple menstrual cy-
cles, measured in micrograms per milligram of creatinine (µg/ml Cr). We focus on
13-day intervals extending from 10 days before ovulation to 2 days after ovulation.
According to the results in Dunson et al. (1999), this interval should include the
fertile window of the menstrual cycle during which noncontracepting intercourse
has a nonneglible probability of resulting in a conception. Also, for this illustration
we considered only nonconceptive cycles and women with at least four cycles in
each record. Therefore, the number of curves per woman varies between 4 and 9.
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We analyzed the EPS data using both the mean-based clustering model de-
scribed in Section 4.1 and the distribution-based clustering model of Section 4.2.
These models where fitted using the algorithms from Section 5. In the mean-
based clustering algorithm, the GDP was truncated so that K = 40, while in the
distribution-based algorithm the nested GDP was truncated so that K = 40 and
L = 30. Although these numbers might seem large given the sample sizes in-
volved, a large number of empty components are helpful in improving the mix-
ing of the algorithms. In both cases, we used piecewise linear splines (q = 1) and
p = 13 knots, corresponding to each of the days considered in the study. All in-
ferences presented in this section are based on 100,000 samples obtained after a
burn-in period of 10,000 iterations.

Prior distributions in the mean-based clustering algorithm were set as fol-
lows. For the concentration parameters, we used proper priors a ∼ Gam(3,3) and
b ∼ Gam(3,3), and for the observational variance, we set σ 2 ∼ IGam(2,0.04), so
that E(σ 2) = 0.04. Note that setting E(a) = 1 a priori is natural because (as we
discussed in Section 3) the asymptotic behavior of the expected number of clus-
ters is different if a > 1 or a ≤ 1. On the other hand, the prior mean for σ 2 is
based on information from previous studies. To allow uncertainty in the proba-
bility of basis selection within the base measure, we let γ ∼ Beta(2,4), imply-
ing that we expect about one-third of the spline basis functions to be used in
any given cluster. Priors for the distribution-based clustering algorithm were cho-
sen in a similar way, with a1 ∼ Gam(3,3), b1 ∼ Gam(3,3), a2 ∼ Gam(3,3) and
b2 ∼ Gam(3,3), while for the baseline measure we picked a prior with the inclu-
sion probabilities γ ∼ Beta(2,4) and the prior on the group specific variances as
given by IGam(2,0.04).

To better understand the effect of our prior on a, b, a1, b1, a2 and b2, we show in
Figure 3 the prior expected number of clusters implied by our choices. In particu-
lar, Figure 3(a) shows that, a priori, we expect between 1 and 8 clusters of subjects
with high probability, with the most likely prior value being 3 clusters (note that
this applies to both the mean-based and the distribution-based clustering methods).
On the other hand, Figure 3(b) shows that, for a subject for which 7 cycles have
been observed, we expect between 1 and 3 clusters with high probability. On the
other hand, to assess the effect of the prior choices on the results, we conducted
a small sensitivity analysis. In particular, the priors for a, b, a1, a2, b1 and b2
were replaced with exponential distributions with mean 2. The induced priors on
the number of clusters have similar modes to our original specifications but have
higher variability, placing substantially more mass on larger number of clusters.
Although the posterior distribution for these parameters was somewhat affected,
we did not see any substantial change in our posterior inferences on the clustering
structure or the curve shapes (which are the main focus of our analysis). Similarly,
we explored the effect of a Beta(1,1) prior on γ and an IGam(2,0.1) prior on σ 2

without any significant change in the estimates of the hormonal profiles.
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FIG. 3. Prior number of clusters implied by our specification of a, b, a1, b1, a2 and b2. (a) n = 60
(subject-level clustering), (b) n = 7 (curve-level clustering).

We start our analysis by comparing the clustering structure generated by the
mean-based and distribution-based models considered in Section 4. For this pur-
pose, we show in Figures 4 and 5 heatmaps of the average pairwise clustering
probability matrix under these two models. Entry (i, j) of the matrix contains the
posterior probability that observations i and j are assigned to the same cluster. The
black squares in the plots correspond to point estimates of the clustering structure
obtained through the method described in Lau and Green (2007). In our case, the
point estimate is obtained by minimizing a loss function that assigns equal weights
to all pairwise misclassification errors. Therefore, the resulting plots provide infor-
mation about the optimal clustering structure for the data as well as the uncertainty
associated with it.

Figures 4 and 5 show that the structure of the clusters generated by both models
are similar. For example, cluster 1 from mean-based clustering (counting from
the bottom left corner of Figure 4) contains similar subjects as cluster 1 from
distribution-based clustering (counting from the bottom left corner of Figure 5).
The same is true for cluster 2 from both algorithms, and for cluster 5 from the
mean-based clustering model and cluster 4 from the distribution-based model.
There are also similarities in the structure of the outlier clusters (corresponding
to the small clusters at the top and right of both heat maps). Both models assign
subject 25 to a singleton cluster, while grouping subjects 21 and 53 into a pair,
with subjects 40 and 51 in a separate pair. There are also some important differ-
ences between the two methods. Mean-based clustering groups subjects 36 and 43
together and assigns subject 3 to a different cluster (Figure 1 shows differences
in the mean curve of subject 3), while distribution-based cluster groups subjects
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FIG. 4. Average incidence matrix, illustrating probabilities of joint pairwise classification for the
60 women in the EPS under the mean-curve clustering procedure described in Section 4.1. White cor-
responds to zero probability, while red corresponds to 1. The squares correspond to a point estimate
of the cluster structure in the data.

3 and 43 together and assigns 36 to a different group. The behavior illustrates the
robustness of distribution-based clustering, because except for a single outlier cy-
cle for subject 43, the curves for this subject are much more similar to those of
subject 3 than those of 36. Mean-based clustering also treats subjects 11 and 56 as
singletons, while distribution-based clustering assigns them to the large cluster 4
(counting from the bottom left). Visually the raw profiles for subjects 11 and 56
are not very different from other profiles in cluster 4 [see panels (d), (e) and (f) of
Figure 6], so this behavior seems reasonable.

Figure 7 shows reconstructed profiles under the distribution-based clustering
model for some representative women in each of the main four groups. Most pro-
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FIG. 5. Average incidence matrix, illustrating probabilities of joint pairwise classification for the
60 women in the EPS under the distribution-based clustering procedure described in Section 4.2.
White corresponds to zero probability, while red corresponds to 1. The squares correspond to a point
estimate of the cluster structure in the data.

files are flat before ovulation, when hormone levels start to increase. Also, in most
clusters the profiles tend to be relatively consistent for any single woman. However,
we can see some outliers, typically corresponding to elevated post-ovulation levels
and/or early increases in the hormone levels. Cluster 3 corresponds to women with
very low hormonal levels, even after ovulation. This group has few outliers, and
those present are characterized by a slightly larger increase in progesterone after
ovulation, which is still under 1 µg/ml Cr. Group 2 shows much more diversity in
the hormonal profiles, as well as a slightly higher baseline level in progesterone
level and an earlier rise in progesterone than group 3. Group 1 tends to show few
outliers, and otherwise differs from the previous ones in a higher baseline level
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FIG. 6. Raw data associated with the hormonal profiles for three outlier subjects in the Early
Pregnancy Study.
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FIG. 7. Reconstructed profiles for some representative subjects in the study. Panel (a) corresponds
to patient 9 (who was chosen from cluster 1, counting from the bottom left), panel (b) to patient
36 (who was chosen from cluster 2), panel (c) to patient 45 (who was chosen from cluster 3), and
panel (d) corresponds to patient 13 (who was chosen from cluster 4).

and an early and very fast increase in progesterone. Finally, group 4 presents “nor-
mal” cycles with the highest baseline level of progesterone (1 µg/ml Cr) and the
fastest increase in progesterone after ovulation, along with “abnormal” cycles with
even higher baseline levels and very extreme levels of progesterone after ovulation
(close to 5 µg/ml Cr).

For comparison we also applied a simple functional clustering approach based
on kernel smoothing and hierarchical clustering. We first fitted a Gaussian ker-
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FIG. 8. Dendogram for an alternative functional clustering algorithm that uses kernel smoothing
to project all curves to a common set of grid knots and then applies complete-linkage hierarchical
clustering and BIC to create a partition of the data.

nel smoother [Li and Racine (2004), Racine and Li (2004)] to each of the curves,
generated fitted values over a common grid (in this example we used 6 equally-
spaced knots), then computed the average predicted values for each subject at each
point of the grid, and finally applied complete-linkage hierarchical clustering (as
implemented in the R package mclust), with the number of clusters selected
using BIC. This approach identified 7 clusters; Figure 8 shows the associated den-
dogram, where colors are used to represent the clusters. Some of these clusters are
similar to the ones identified by the mean-based clustering model. For example,
the small cluster of 5 subjects (3, 10, 37, 45 and 48), corresponding to the fourth
cluster from the bottom left in Figure 3, is perfectly identified by hierarchical clus-
tering. Similarly, subjects 21, 25, 40, 51 and 53, which are all identified as outliers
by the mean-based clustering model, are allocated to a single cluster by the hier-
archical clustering approach. However, the majority of the clustering pattern gen-
erated by this method is quite different from the one obtained with mean-based or
the distribution-based clustering. Furthermore, the number and structure of clus-
ters depends heavily on the number and location of grid points used to interpolate
the functions. For example, when the interpolation grid contains 5 knots we obtain
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8 clusters, while 18 clusters are obtained when 11 knots are used for interpolation.
Part of this difference could be due to the fact that, because most of the missing
values tend to concentrate at the beginning of the cycle, many of the fitted func-
tional values correspond to extrapolations rather than interpolations when a large
number of knots are used.

We also note that posterior estimates of the precision parameters on the GDP
suggest that a logarithmic rate of growth for the expected number of clusters
might be reasonable for this data. For the mean-based clustering, the posterior
mean for a was 1.06 and the 95% posterior symmetric credible interval was
(0.65,1.49), while the posterior mean for b was 0.77 with 95% credible inter-
val (0.17,1.72). For the distribution-based clustering, the corresponding estimates
are 1.03 (0.62,1.56) and 0.72 (0.20,1.73) for a1 and b1, and 1.12 (0.71,1.43)

and 0.27 (0.15,1.51) for a2 and b2.
Finally, we investigated the relationship between the clusters we identified using

our distribution-based clustering algorithm and a series of covariates available for
each subject, including age at the beginning of the study (Age), age of first menses
(Age_Mense), average length of menses (Mense_Length), race (Race), body mass
index (BMI), whether the subject had been taking contraceptives before the start
of the study (EV_Pill) and whether the subject self reports as a consumer of mari-
juana during the period of the study (Marijuana_Use). To investigate this relation-
ship, we used a classification tree, as implemented in the R package rpart. To
simplify interpretation, we merged all the small outlier clusters into a single group
(which we label cluster 5). The resulting classification tree (obtained using a Cp
value of 0.03 for pruning) can be seen in Figure 9. Note that race and marijuana
consumption do not appear to play any role in predicting the shape of the hormonal
profiles. On the other hand, BMI, along with age, menses length and menses age,
seems to have some predictive capability. For example, a BMI higher than 22 and
an age of menses under 12 years old seem to predict progesterone profiles like the
ones observed in cluster 3.

7. Discussion. We have presented two approaches to functional clustering in
nested designs. These approaches look into different features of the nested samples
and are therefore applicable in different circumstances. Our mean-based clustering
approach is easier to interpret and provides an excellent alternative when within-
subject samples are homogenous. However, when within-subject curves are het-
erogeneous, mean-based clustering can lead to biased results. Therefore, in studies
such as the EPS, distribution-based models such as the one described here provide
a viable alternative that acknowledges the heterogeneity in the function replicates
from a subject.

One interesting insight that can be gathered from the results of the EPS data
is that, for small numbers of functional replicates per subject and rare outliers,
the effect of the distribution-based clustering is to perform clustering based on the
modal rather than the mean profile. That is, the distribution-based clustering model



1438 A. RODRIGUEZ AND D. B. DUNSON

FIG. 9. Classification tree explaining cluster membership on the basis of six covariates: age
at the beginning of the study (Age), age of first menses (Age_Mense), average length of menses
(Mense_Length), race (Race), body mass index (BMI), whether the subject had been taking contra-
ceptives before the start of the study (EV_Pill) and whether the subject self reports as a consumer of
marijuana during the period of the study (Marijuana_Use).

is able to automatically discount the abnormal curves, leading to more appropriate
clustering patterns if the effect of outliers needs to be removed. Naturally, this per-
ceived advantage of the distribution-based clustering method implicitly assumes
that abnormal curves should be discounted. Although that assumption is justified
in our application, users should be aware of it when applying our method to other
data sets.

APPENDIX A: PROOF OF THEOREM 1

Let θ∗
1, θ

∗
2, . . . be a sequence of independent and identically distributed samples

from a random distribution G, which follows a GDP(a, b,G0) distribution. Also,
let Wi be 1 if θ∗

i is different from every θ∗
1, . . . , θ

∗
i−1, and zero otherwise. Clearly,

Zn = ∑n
i=1 Wi is the number of distinct values among the first n samples form a

GDP(a, b,G0). Hjort (2000) shows that

E(Wi) = i
E{u(1 − u)i−1}
1 − E{(1 − u)i}

= i
((�(a + b))/(�(a)�(b)))((�(a + 1)�(b + i − 1))/(�(a + b + i)))

1 − ((�(a + b))/(�(a)�(b)))((�(a)�(b + i))(�(a + b + i)))

= ia�(a + b)�(b + i − 1)

�(b)�(a + b + i) − �(a + b)�(b + i)
,

which completes the proof.
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APPENDIX B: TRUNCATIONS OF GENERALIZED
DIRICHLET PROCESSES

THEOREM 2. Assume that samples of n observations have been collected for
each of J distributions and are contained in vector y = (y′

1, . . . ,y′
J ). Also, let

P ∞∞(θ) =
∫ ∫

P(θ |Gj)P
∞(dGj |Q)P ∞(dQ),

P LK(θ) =
∫ ∫

P(θ |Gj)P
L(dGj |Q)P K(dQ)

be, respectively, the prior distribution of the model parameters under the nested
GDP model and its corresponding truncation after integrating out the random
distributions, and P ∞∞(y) and P LK(y) be the prior predictive distribution of the
observations derived from these priors. Then∫ ∣∣P LK(y) − P ∞∞(y)

∣∣dy ≤
∫ ∣∣P LK(θ) − P ∞∞(θ)

∣∣ ≤ εLK(α,β),

where

εLK(α,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
(

1 −
[
1 −

(
b1

a1 + b1

)K−1]J )
, if L = ∞,K < ∞,

4
(

1 −
[
1 −

(
b2

a2 + b2

)L−1]nJ )
, if L < ∞,K = ∞,

4
(

1 −
[
1 −

(
b1

a1 + b1

)K−1]J [
1 −

(
b2

a2 + b2

)L−1]nJ )
,

if L < ∞,K < ∞.

The proof is a direct extension of results in Ishwaran and James (2001, 2002)
and Rodríguez, Dunson and Gelfand (2008) and it is omitted for reasons of space.
This result is particularly important since it justifies the use of computational algo-
rithms based on finite mixtures and allows us to choose adequate truncation levels.
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SUPPLEMENTARY MATERIAL

Supplement to “Functional clustering in nested designs: Modeling variabil-
ity in reproductive epidemiology studies” (DOI: 10.1214/14-AOAS751SUPP;
.pdf). The supplementary materials contain the details of the Markov chain Monte
Carlo algorithm used to fit the models introduced in the paper.

http://dx.doi.org/10.1214/14-AOAS751SUPP
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