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TIME-WARPED GROWTH PROCESSES, WITH APPLICATIONS TO
THE MODELING OF BOOM–BUST CYCLES IN HOUSE PRICES
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House price increases have been steady over much of the last 40 years,
but there have been occasional declines, most notably in the recent housing
bust that started around 2007, on the heels of the preceding housing bubble.
We introduce a novel growth model that is motivated by time-warping models
in functional data analysis and includes a nonmonotone time-warping com-
ponent that allows the inclusion and description of boom–bust cycles and
facilitates insights into the dynamics of asset bubbles. The underlying idea is
to model longitudinal growth trajectories for house prices and other phenom-
ena, where temporal setbacks and deflation may be encountered, by decom-
posing such trajectories into two components. A first component corresponds
to underlying steady growth driven by inflation that anchors the observed tra-
jectories on a simple first order linear differential equation, while a second
boom–bust component is implemented as time warping. Time warping is a
commonly encountered phenomenon and reflects random variation along the
time axis. Our approach to time warping is more general than previous ap-
proaches by admitting the inclusion of nonmonotone warping functions. The
anchoring of the trajectories on an underlying linear dynamic system also
makes the time-warping component identifiable and enables straightforward
estimation procedures for all model components. The application to the dy-
namics of housing prices as observed for 19 metropolitan areas in the U.S.
from December 1998 to July 2013 reveals that the time setbacks correspond-
ing to nonmonotone time warping vary substantially across markets and we
find indications that they are related to market-specific growth rates.

1. Introduction. House price increases have been steady over much of the
last 40 years, but there have been occasional declines, most notably in the recent
housing bust that started around 2007. If underlying inflation was acting without
any additional market forces, this would imply a steady rate of increase in house
prices such that log prices are linearly increasing with inflation. However, asset
prices typically do not follow a simple growth model with steady price increases,
but rather are subject to occasional wild oscillations, as exemplified by the recent
U.S. housing boom and bust cycle that led to a major worldwide financial crisis.
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Such asset price swings have been attributed to irrational and herd behavior of
investors by Shiller, who identified and described these forces [Shiller (2005, 2008,
2013)] which render housing markets inefficient [Case and Shiller (1989)]. Shiller
received a Nobel prize in economics in 2013 for this work.

It is therefore of substantial interest to determine asset price dynamics in time
windows around asset bubbles, which have been a historically recurring phe-
nomenon, in order to understand which features capture and describe the ex-
tent and dynamics of bubbles and busts, a topic that has found recurring interest
[Bondt and Thaler (1985), Case and Shiller (2003), Yan, Woodard and Sornette
(2012, 2014)]. The idea of an underlying smooth and stable growth trajectory in
asset prices motivates a model that includes an underlying first order linear differ-
ential equation with a market-specific growth rate, which by itself reflects steady
exponential growth. This component then needs to be complemented by a boom–
bust component, for which we employ nonparametric time warping. The idea is
that a price bust leads to a setback in time, while a boom leads to an acceleration
in the way time moves forward, as prices move faster into the future than the actual
flow of chronological time.

Colloquially, a setback in time when a bust occurs is reflected in statements
that house or other asset prices are currently at levels that correspond to those of
a past calendar year. Thus, we model longitudinal growth trajectories for house
prices and other phenomena where temporal setbacks may be encountered, such
as other asset prices or weight increases in growing organisms, by decomposing
the observed growth into an underlying steady growth component that anchors
the observed trajectories in a simple linear system, and time warping to reflect
price swings. The application of our approach for asset price modeling to housing
prices, as observed for 19 metropolitan areas in the U.S. from December 1998 to
July 2013, reveals that the amounts of time setbacks between the markets vary
substantially and are related to underlying growth features.

We view the price curves observed for various markets as a sample of functional
data. Such data have become commonplace in many fields, including chemomet-
rics, econometrics, etc. [Ferraty and Vieu (2006), Ramsay and Ramsey (2002)]. As
features not only vary in terms of amplitude, but also in time of occurrence, time
variability across curves is a common observation. For example, when considering
biological growth, humans achieve maximum growth velocity at a subject-specific
age, as subjects progress to and through puberty at different ages. Time warp-
ing (also known as registration or alignment) aims to address this variability by
transforming the time domain of each function, normally under the constraint of
monotonicity. Curve alignment is also motivated by the belief that for many sys-
tems, it is a (subject specific) intrinsic time, rather than clock time, that governs
the underlying dynamics. In such situations, the explicit inclusion of time warp-
ing in functional data models leads to reduced variability and better interpretation.
In Functional Data Analysis the presence of time warping is often considered a
nuisance. In contrast, for the case of asset prices, time warping corresponds to
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a component reflecting price swings and bubbles and therefore is a key part of
asset price modeling. In usual functional data settings, the presence of time warp-
ing routinely leads to identifiability problems, as time and amplitude variation are
generally not separable in functional data settings, where one aims at modeling
a sample of random functions [Kneip and Gasser (1992), Liu and Müller (2004),
Wang and Gasser (1999)].

A popular approach for curve alignment is the landmark method where one de-
fines a set of landmarks, which then are time transformed so as to occur at the same
transformed time points across curves [Kneip and Gasser (1988), Sakoe and Chiba
(1978)]. More recent work on curve alignment and registration includes James
(2007) (curve alignment by moments), Kneip and Ramsay (2008) (alignment and
functional principal components), Telesca and Inoue (2008) (Bayesian approaches
to time warping), Tang and Müller (2008) (inferring global registration from pair-
wise warping), Sangalli et al. (2010) (k-means alignment for curve clustering) and
Srivastava et al. (2011) (registration of functional data with the Fisher–Rao metric).

Our proposed approach to time warping is more general than previous ap-
proaches in two key respects: first, it allows for inclusion of nonmonotone
time-warping functions, an essential feature for modeling the busts that occur in
boom–bust cycles, since these correspond to a setback in time, with prices recur-
ring to those of a past period. Second, it overcomes the usual identifiability prob-
lems of the time-warping component by anchoring the trajectories to an underlying
linear dynamic system. This anchoring makes it possible to introduce straightfor-
ward estimation procedures for all model components. While the central interest
of this paper is the analysis of price oscillations in housing markets, our model
extends beyond housing prices to other systems for which an underlying growth
rate may be assumed, such as long-term behavior of the stock market or similar
markets, for which long-term appreciation rates are meaningful [Bondt and Thaler
(1985)].

As an illustration that growth may substantially deviate from an exponential
trajectory (e.g., during an economic bubble) or growth may even become negative
(e.g., during the burst of a bubble), Figure 1 shows seasonally adjusted S&P/Case–
Shiller Home Price Indices for 19 metropolitan areas in the United States from
1987 to 2013. As can be seen from this figure, the housing price trajectories do not
correspond to exponential curves, especially after year 2000. Indeed, many areas
enjoyed higher growth rates from 2000 to 2006, as compared to the 1990s. How-
ever, this accelerated growth was followed by a bust, a sharp decline of housing
prices after 2006/2007.

Even though the general trends are somewhat similar across the metropolitan
areas, the timing of the peak price, periods of fastest growth and rates of decline
after the peak, etc., turn out to be quite variable. Coupled with the underlying
linear dynamics, these variations can be accounted for by area-specific warping
effects. Figures 2 and 3 show the warping functions for the time period 1998 to
2013 derived from the model proposed in Section 2. It can be seen that housing
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FIG. 1. Housing price indices for 19 metropolitan areas in the U.S. from January 1987 to July
2013. These indices are three-month moving averages and are normalized to have a value of 100 in
January 2000 (for more details, see Section 3).

FIG. 2. Warping functions for 19 metropolitan areas in the U.S. from December 1998 to July 2013.
The broken grey line represents the identity function h(t) = t .
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FIG. 3. Time-warping functions for 19 metropolitan areas in the U.S. from December 1998 to July
2013 (drawn in individual panels), mapping chronological time (on the abscissa) to market time
(ordinate). Dashed grey lines represent the identity function h(t) = t . Vertical grey lines indicate the
timing of peak price, while horizontal grey lines indicate the level of peak price.

prices first warped forward in time. After the housing market collapsed around
2006/2007, the housing price warped backward in time and then started to move
forward again around 2012. But for all markets except for Portland, Oregon, the
warped time remains substantially below the calendar time until the present. Inter-
estingly, these time setbacks vary quite a bit between different housing markets.
The time setback of housing prices is consistent with the notion of an economic
time reset, which has been featured in many discussions since the onset of the
recent recession.

In addition to mapping asset price development on a market-specific timeline,
our analysis and methodology identifies boom and bust components in the time-
warping functions and positions the different housing markets on a boom–bust
plane that indicates to what extent specific markets reflect boom or bust to a larger
or lesser extent. We also explore relationships of booms and busts with underlying
steady growth rates. The basic model is introduced in the next section, and a study
of boom–bust cycles follows in Section 3. Our analysis is supported by simulation
results that are reported in Section 4 and theoretical considerations that are in the
Appendix. The paper ends with a discussion in Section 5.
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2. Time-warped growth model. Our approach is to model the observed con-
tinuous time asset price trajectories through an underlying linear dynamical sys-
tem, coupled with a random time-warping component. The ith trajectory Xi(·) that
corresponds to the housing price curve of a city, as quantified by the Case–Shiller
house price index, GDP per capita curve of a country or stock market index, is
assumed to result from time warping due to “irrational” market forces that act in
conjunction with an underlying “smooth growth” process Zi(·) that corresponds
to an underlying market-specific rate of appreciation. Scaling the observation time
to [0,1],

Xi(t) = Zi

(
hi(t)

)
, t ∈ [0,1], i = 1, . . . , n,(2.1)

where hi(t) is a market-specific warping function, a key component of our model.
Furthermore, the underlying “smooth” growth process Zi(·) that reflects market-
specific long-term growth is assumed to follow a first order linear ordinary differ-
ential equation, that is,

Z′
i(t) = αiZi(t), t ∈ [0,1], i = 1, . . . , n.(2.2)

Here αi > 0 is a market-specific random effect that captures the intrinsic growth
rate of the ith market.

From equations (2.1) and (2.2), we have

X′
i (t) = Z′

i

(
hi(t)

)
h′

i (t) = αiZi

(
hi(t)

)
h′

i (t) = αiXi(t)h
′
i (t),(2.3)

whence,

αih
′
i (t) = X′

i(t)

Xi(t)
= d

dt
log

(
Xi(t)

)
.

If we assume hi(0) = 0 (i = 1, . . . , n), then

hi(t) = 1

αi

log
Xi(t)

Xi(0)
, t ∈ [0,1], i = 1, . . . , n.(2.4)

As market prices Xi(·) generally tend to increase in the long term but are non-
monotonic in the shorter term (as demonstrated by the housing price trajectories
in Figure 1), the warping functions hi(·) will be nonmonotonic. Moreover, if for
some 0 ≤ t ≤ 1, Xi(t) < Xi(0), then hi(t) will be negative. We interpret decreas-
ing warping functions as time moving backward, while increasing warping func-
tions would signal time moving forward. When a warping function is negative or
greater than 1, it is interpreted as the system having warped back to the past or hav-
ing leapt forward to the future beyond the time interval where the sample curves
are being observed, respectively.

From equation (2.4), the warping function hi(·) is determined not only by the
observed process Xi(·), but also by the intrinsic growth rate αi . The model speci-
fied by equations (2.1) and (2.2) is therefore identifiable up to αihi(t). A plausible
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assumption that we will make to render the model fully identifiable is that the ob-
served trajectory Xi(·) follows a linear dynamical system on a small time interval,
say, [0, t0], where growth is smooth, without price oscillations, so that there is no
disturbance from the random warping and the warping function on this interval is
hi(t) = t, t ∈ [0, t0]. Then we may model Xi(·) as

X′
i(t) = αiXi(t), t ∈ [0, t0].(2.5)

For example, from Figure 1, we find that the housing prices followed nearly expo-
nential growth paths in the late 1990s/early 2000, and the growth rates αi can then
be recovered from this time interval.

Specifically, from (2.3), it is easy to see

αih
′
i (t) = αi, t ∈ [0, t0],

so that hi(0) = 0 implies

hi(t) = t, t ∈ [0, t0].(2.6)

Since on [0, t0], Xi(t) = C exp(αit), αi is determined by

αi = 1

t
log

Xi(t)

Xi(0)
, t ∈ (0, t0]

or, equivalently,

logXi(t) = logXi(0) + αit, t ∈ [0, t0].(2.7)

Under the model specified by (2.1), (2.2) and (2.5), αi is interpreted as the rate of
growth on the time period [0, t0] and the warping function hi(·) captures the (pos-
sible) deviation of the system on the time period [t0,1] from the linear dynamics
on the time period [0, t0].

From now on, we work within the framework of this model, as we are primarily
interested in identifying the patterns of the most recent housing market cycle. The
time period [0, t0] is chosen as a two-year period in the late 1990s/early 2000s;
more discussion on this choice follows below. Our goal is to study the patterns of
house price oscillations during the past 10 years, contrasting it to a smooth price
growth prior to this period.

In practical applications, data may not always follow the model exactly, so
that equation (2.7) only holds approximately. Then one may obtain an underly-
ing smooth growth rate αi by minimizing a sum of squares type criterion,

αi = arg min
αi>0

∫
[0,t0]

(
logXi(t) − logXi(0) − ait

)2
dt,(2.8)

where integrals are approximated in practice by appropriate Riemannian sums. We
adopted this approach for the analysis of the housing price index data in the next
section, where the interval [0, t0] is chosen so as to maximize the coefficient of
determination when fitting model (2.7) to the data. Another option to determine
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the rate αi would be to use external information, such as a historic market rate of
price appreciation, which may be tied in some way to the development of rents or
inflation under the belief that the “rational” increase in house prices would match
this underlying growth rate in the future [Shiller (2005)].

Note that the αi serve as nuisance parameters and are not of interest in them-
selves, in contrast to the warping functions hi , which capture the departures from
the “rational” growth rate in the presence of price swings. Once growth rates αi

are obtained, by (2.4) one arrives at the time-warping functions

hi(t) = 1

αi

(
logXi(t) − logXi(0)

)
, i = 1, . . . , n.(2.9)

We then determine the main modes of variation of the warping functions
through functional principal component analysis (FPCA). This method has
evolved into a powerful tool of functional data analysis to summarize functional
data and to capture their variation [Castro, Lawton and Sylvestre (1986), Peng
and Paul (2009), Ramsay and Silverman (2005), Rice and Silverman (1991), Yao,
Müller and Wang (2005)]. Starting with a sample of time-warping functions, this
method determines eigenfunctions φk, k ≥ 1, of the auto-covariance operator of
the underlying warping process, which forms an orthonormal basis of function
space, as well as the associated eigenvalues λk, k ≥ 1, which provide an indication
of the fraction of variance that is explained by a particular eigenfunction. Addi-
tionally, one obtains the functional principal components (FPCs) ξik , which are
random scores that correspond to the expansion coefficients in the eigenbasis, that
is, the basis formed by the eigenfunctions. The FPCs are obtained by projecting
centered time-warping functions on the kth eigenfunction, k ≥ 1. FPCA provides
a parsimonious representation of the data and achieves efficient dimension reduc-
tion. Further details about the methodology and consistency results can be found
in the Appendix.

A tool to visualize FPCA that we employ for the housing price data is the
modes of variation plot [Jones and Rice (1992)]. In these plots the direction
in function space, into which a given eigenfunction points, is visualized by
μ(t) + γ

√
λkφk(t), t ∈ [0,1], where one varies γ over a range of values, typically

γ ∈ [−2,2]. This plot provides a visual indication of the movement from the mean
function μ toward the positive and negative direction of the kth eigenfunction φk .

3. Boom and bust in U.S. housing markets. Here, we apply the method
described in Section 2 to study the housing price trends in 19 U.S. metropolitan
areas. The data were downloaded from http://www.standardandpoors.com/indices/
sp-case-shiller-home-price-indices/en/us/?indexId=spusa-cashpidff--p-us----. The
original data consist of seasonally adjusted Case–Shiller Home Price Indices [Case
and Shiller (1987)] for each month for 20 metropolitan areas and two composite
indices from January 1987 to July 2013. These indices are three-month moving av-
erages and are normalized to have a value of 100 in January 2000. For more details

http://www.standardandpoors.com/indices/sp-case-shiller-home-price-indices/en/us/?indexId=spusa-cashpidff--p-us----
http://www.standardandpoors.com/indices/sp-case-shiller-home-price-indices/en/us/?indexId=spusa-cashpidff--p-us----
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about how the housing indices are calculated, see “S&P/Case–Shiller Home Price
Indices Methodology” published by Standard & Poor’s. Since for Dallas, Texas,
housing price indices are only available after 2000, we drop it from our analysis
and thus focus on the remaining 19 metropolitan areas.

The housing price index trajectories for these 19 areas are depicted in Figure 1.
For some areas, there is a clear bubble in the housing market after year 2000, in
the sense that housing prices increased super-exponentially. This phenomenon is
clearly illustrated by the warping functions depicted in Figure 3. Also, the timing
of the “peak price” (indicated by the dashed colored lines in Figure 1) is mainly
clustered into two groups: a larger group of 13 areas (triangles) where peak price
occurred around late 2005 and early 2006, and a smaller group of 5 areas (squares)
where peak price occurred around the first two quarters of 2007. The only excep-
tion is Denver, Colorado (diamond), where the summer 2013 indices are slightly
higher than the pre-recession peak that occurred in Febuary/March, 2006.

We then fitted exponential curves to all 2-year, 3-year, 5-year time intervals
within 1991 to 2013 (we started from 1991 since there is no missing data after that)
and found that for the 2-year interval from December 1998 to November 2000 (the
period between the two dotted grey lines on Figure 1), the exponential fits result in
the largest overall coefficient of determination R2. As can be seen from Figure 4,

FIG. 4. Exponential fit (broken grey lines) of housing price indices (solid lines) between December
1998 and November 2000, where the αi are expressed as % per month.
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the exponential curve fits the housing price trajectory between December 1998 and
November 2000 very well. More specifically, on this interval, among the fits for
these 19 markets, the smallest R2 is 0.967 (Charlotte) and the largest R2 is 0.998
(Denver). Since our major interest is in investigating the boom–bust cycles of the
housing market in recent years, we choose December 1998 as our starting time.
Specifically, we treat December 1998 as time 0, and July 2013 as time 1 in the
normalized time scale. We also elect t0 to correspond to November 2000 and use
[0, t0] to estimate the growth rates αi by equation (2.8). The average growth rate
of these 19 metropolitan areas is 0.75% per month, with a standard deviation of
0.37% per month.

It can be seen that some markets, including San Diego, San Francisco, Denver,
Boston, Minneapolis and New York, already had a fast growth rate at the end of
the last century (with an αi around or above 1% per month). Figure 3 shows the
warping function for each area defined by equation (2.9), as well as the median
warping curve across these 19 markets (in the last panel). One finds that the mar-
kets already growing fast at the end of the last century mostly retained a similar
growth rate after 2000 until the housing market collapsed around 2006/2007. Some
markets, including Washington DC, Miami, Tampa, Las Vegas and Portland, went
through a much faster price growth period after 2000. The housing price trend of
Detroit is quite unique. This market had moderate growth at the end of last cen-
tury (αi = 0.65%), followed by declines toward 2000 and a sharp drop after 2006,
which places it in a separate category from the rest.

We then apply FPCA for the warping functions, as described in Section 2. The
first two principal components explain ∼ 96% of the total variation in the warping
functions. However, Las Vegas and Portland appear to be outliers. In order to avoid
the influence of these outliers on our analysis, we dropped Las Vegas and Portland
and redid the FPCA for the remaining 17 markets. Again, the first two principal
components explain nearly 96% of the total variation (1st PC: 82.8%, 2nd PC
13%). Figure 5 shows the first two eigenfunctions (multiplied by the square-root
of their respective eigenvalues), which display some remarkable features. First,
the first eigenfunction has a shape that is similar to that of the mean function. This
means a large fraction of the variance is explained by what amounts roughly to the
degree at which the average boom cycle is expressed. Second, the first eigenfunc-
tion primarily reflects the rise of the house price to a high peak (around December,
2006) in the boom cycle and the subsequent fall, but to a level that is still sub-
stantially higher than the 2000 price level. Thus, this component primarily reflects
the boom part of the cycle and is referred to as the “boom” component. Third, the
second eigenfunction features an earlier (around March, 2006), smaller but steeper
peak, and then a deep fall to a very low level. Thus, this component primarily
reflects the bust part of the cycle and we call it the “bust” component. It is also
interesting to note that the second eigenfunction went from positive to negative in
early 2008, which coincides with the onset of the economic recession.



TIME-WARPED GROWTH PROCESSES 1571

FIG. 5. First two eigenfunctions (multiplied by the square-root of their respective eigenvalues) of
the time-warping process.

Although the estimation of the growth rates αi may change when the fitting in-
terval, on which exponential growth is assumed, varies, we found that the FPCA
results do not depend much on the choice of the fitting interval. When we applied
the fitting procedure for the αi on a different two-year interval, namely, January
1998 to December 1999, the resulting eigenfunctions have almost identical shapes:
the two leading principal components explain the majority of the variation in the
data, and the first component represents a boom component and the second com-
ponent corresponds to a bust component. For more details, see the supplementary
material [Peng, Paul and Müller (2014)].

After extracting the first and second functional principal components (which are
the scalar random variables that are multiplied with the eigenfunctions in the rep-
resentation of the time-warping functions), we plot the “bust” component against
the “boom” component in Figure 6. The markets falling in the right lower quadrant
(e.g., Washington, DC) experienced a boom but relatively little bust, while those
in the right upper quadrant (e.g., Miami) experienced both boom and bust in sim-
ilar measure. The areas in the left upper quadrant have been subject to a bust with
little boom (e.g., Detroit), while those in the lower left quadrant had little boom
or bust (e.g., Denver). Even though Las Vegas and Portland have not been used to
derive these components, their projected first two PC scores are 1.65 and 5.57 for
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FIG. 6. First two principal component scores of 17 metropolitan areas in the U.S.

Las Vegas and 4.82 and −0.39 for Portland. This indicates that in the boom–bust
coordinates that emerged from the FPCA, Las Vegas experienced a big housing
boom, followed by an enormous bust, while Portland enjoyed a huge boom with
little bust.

Also of interest are relations between the time-warping functions, as character-
ized by their first two principal component scores, which serve as random effects
in the eigen-expansion (see the Appendix for more details) and the underlying
growth rate αi , which may be viewed as a market-specific characteristic. The cor-
responding scatterplots of first (resp., second) principal component score versus αi

with the superimposed least squares line in Figure 7 demonstrate that regions with
lower baseline growth rates experienced stronger boom–bust cycles. The relation-
ship seems particularly striking for the bust component.

4. Simulation results. In this section we report a simulation experiment that
was conducted to investigate the practical performance of the proposed procedure.
This simulation was designed to mimic the housing index data, and n warping
functions were generated as

hi(t) = μ(t) +
K∑

k=1

√
λkξikφk(t), t ∈ [T0, T1], i = 1, . . . , n.

The sample size was chosen as n = 20, the mean function μ(·) was chosen as the
estimated mean warping function of the housing data (solid curve in the upper-
right panel of Figure 5), K = 10 and {φk(·)}10

k=1 were chosen as the first 10 eigen-
functions estimated from the housing data (upper-left and lower-left panels of
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FIG. 7. Principal component scores versus growth rate αi .

Figure 5 show the first two eigenfunctions), furthermore, the eigenvalues {λk}10
k=1

were chosen to correspond to those in the housing price analysis, and the functional
principal component scores ξik were chosen as i.i.d. from N(0,1). The time inter-
val is set as T0 = 144 and T1 = 319, reflecting the monthly indices from December
1998 to July 2013, respectively (January 1987 is month 1).

We then generated the price trajectories according to equation (2.4), namely,

Xi(t) = Xi(T0) exp
{
αi

(
hi(t) − hi(T0)

)}
, t ∈ [T0, T1], i = 1, . . . , n,

where the initial values Xi(T0) were chosen as i.i.d. from Uniform(85,100), while
the growth rates αi were randomly generated from Uniform(0.003,0.018), where
only samples that satisfied the boundedness condition maxt∈[T0,T1] Xi(t) < 300
were retained. The interval (85,100) is set according to the range that was ob-
served for the housing indices in December 1998, while the interval (0.003,0.018)

matches the range of the estimated αi from the housing data. The trajectories are
capped at 300 since the maximum index in the housing data is 280.

Figure 8 shows 20 simulated warping functions (solid lines) and Figure 9 shows
the corresponding simulated price trajectories. The two vertical grey lines in these
figures indicate the end points of the fitting region for the growth rates used in the
real data, namely, December 1998 (month 144) and November 2000 (month 167).

We then applied the same procedures used for analyzing the housing price index
data. First, we fitted exponential curves on all 24-month, 36-month and 60-month
time intervals and calculated the coefficient of determination R2 for each mar-
ket on each of these intervals. We picked the interval corresponding to the largest
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FIG. 8. Simulated warping functions: true—solid lines, estimated—broken lines. The dashed grey
line represents the identity function h(t) = t . Vertical grey lines indicate the end points of the fitting
region for the growth rates used in the real data, namely, December 1998 (month 144) and November
2000 (month 167).

averaged R2 (across the 20 subjects). For the data in Figure 9, the best interval
coincides with the fitting region used in the real data. The corresponding aver-

FIG. 9. Simulated price trajectories. Vertical grey lines indicate the end points of the fitting region
for the growth rates used in the real data, namely, December 1998 (month 144) and November 2000
(month 167).
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aged R2 is 0.997 and the estimated αi have an averaged relative squared error

(ASE) 1
n

∑n
i=1

(α̂i−αi)
2

α2
i

of 9.51 × 10−5. The warping functions were estimated as

described in Section 2 [equation (2.9)], and these estimates are displayed as bro-
ken lines in Figure 8. FPCA is then applied to the estimated warping functions,
and one ends up with an estimate of the eigencomponents, which are the eigen-
functions and the functional principal components; see the Appendix for a more
detailed description.

We repeated the above process (including data generation and fitting) 100 times.
Across the 100 replicates, the ASE for estimating the αi had a mean of 0.011 and
a standard deviation of 0.041. The left end point of the α fitting region was found
to have a mean of 146.31 and a standard deviation of 7.58, while the right end
point had mean 169.43 with standard deviation 7.93. The mean relative-integrated-
squared-error for the warping function estimation was 0.032.

Figure 10 shows the pointwise mean estimated eigenfunctions (broken lines)
and the 95% and 5% pointwise bands (dotted lines). The mean-integrated-squared-
error (MISE), namely, the average of ‖φ̂ − φ‖2 across the 100 replicates, is 0.029
for the first eigenfunction and 0.053 for the second eigenfunction. The mean
relative-squared-error of the first two eigenvalues are 0.825 and 0.135, respec-
tively. The percentage of variation explained by the first two estimated eigenfunc-
tions ranges from 85.5% to 98.8% with a mean 96%.

These results show that the proposed procedure is able to select the right fitting
region for the growth rate α and that it is also effective in estimating both α and

FIG. 10. First two simulated eigenfunctions: true—solid line, pointwise mean—broken line, point-
wise 95% and 5% bands—dotted lines.
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the warping function h(·). Most importantly, as can be seen from Figure 10, there
is little bias in the estimation of the leading eigenfunctions. It is particularly note-
worthy that the estimators are able to preserve the shape of the eigenfunctions (as
reflected by the two bands).

5. Discussion. In this paper we introduce a new model for asset price model-
ing that is motivated by and illustrated with the recent price swings observed in the
U.S. real estate market. Introducing an interface between an underlying dynamic
“steady growth” model and time warping leads to interesting results and insights
about asset price dynamics. Our approach aims to model asset prices in terms of
a smooth component that corresponds to a market-specific steady rate of appreci-
ation and an oscillation component that reflects “irrational” swings in prices and
their extreme manifestation in the form of boom–bust cycles, as recently experi-
enced across the U.S. housing markets. Our analysis and modeling is not limited
to real estate price dynamics and will be of interest also for the modeling of other
asset prices that involve price swings and boom–bust cycles; this includes equity
and art markets.

Key findings from our analysis are that for the recently burst bubble in U.S.
house prices across several metropolitan area markets, one can clearly distinguish
a boom component and a bust component, which are characterized by the shapes of
the first (boom) and second (bust) eigenfunctions. The functional principal com-
ponents that correspond to the strength of boom and bust, respectively, are un-
correlated (Figure 6). Thus, the price swings observed over the last 15 years can
be classified into four distinct categories, markets that exhibited primarily a bust
component (Detroit) and that are contrasted with markets with primarily a boom
(Washington, DC) and, on the other hand, markets that experienced a combined
strong boom and bust cycle (Miami) and those with relatively weaker booms and
busts (Denver). The latter is likely due to these market’s strong underlying growth
rates. This means that a bust phase cannot be clearly predicted from the strength
of a preceding boom in our quantification, and therefore is hard to predict not only
in its timing but also in terms of whether it will happen or not. There are also a
few “middle of the road” markets where the observed time warping is close to the
overall mean time warping, which includes Chicago, San Diego and Minneapo-
lis.

Our analysis also provides some indication that the strengths of booms and busts
may be related to the underlying “rational” steady rate of growth, in the sense
that lower underlying growth rates are associated with larger bust components and
likely also with larger booms (Figure 7). Such relationships might reflect the pref-
erences of investors, who primarily may have invested in the slower-growing mar-
kets, where larger subsequent booms and thus profits seemed plausible. Such an
influx of investors would first drive prices up and then down when the investors
leave these markets.
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A central feature of our approach to analyze asset price dynamics is the new con-
cept of nonmonotone warping functions. All existing time-warping approaches are
based on monotonic warping functions, satisfying the constraint that time always
flows forward. A primary motivation of requiring monotonicity is to preserve the
order of events (such as landmarks). For our approach the emphasis, however, is
not to preserve the forward flow of time, but rather to allow for reversals of time
during periods of price deflation, implementing the notion that in such periods
prices retreat to those of an earlier time.

For the existing warping approaches, difficulties arise from the fact that the
warping function and the amplitude function usually are not jointly identifiable.
Traditionally, this problem has been addressed by imposing a variety of identifi-
ability constraints [Gervini and Gasser (2005), Kneip and Ramsay (2008)], none
of which is particularly well motivated. Such constraints are usually imposed for
technical reasons, are hard to verify and may lead to difficulties in interpreting
the results. In the proposed approach, we bypass the identifiability issue through
explicitly exploiting the dependency of the warping function on the observations.
This requires the presence of an undisturbed interval, on which market price can be
reasonably assumed to follow a simple smooth trajectory. Both the actual housing
data analysis and simulations show that the choice of such an interval is not critical.
The resulting warping functions are viewed here as a mechanism that gives rise to
complex features and oscillations in the asset price curves through phase variation
in the underlying dynamics (we assume a simple linear dynamical system).

Unlike most existing methods, the warping functions in our approach are not
constrained. Particularly, they are not required to be monotonic. When a warping
function is decreasing, we interpret this as a reverse time effect, that is, the corre-
sponding system is going backward in time, while periods with increasing warp-
ing functions correspond to phases where the system is going forward in time. We
emphasize that curve alignment is not our goal and, therefore, warping function
monotonicity is not an issue. Rather, the warping functions themselves are objects
of interest since they serve to quantify the deviations from smoothly increasing
asset prices.

The assumption of an underlying linear dynamical system seems reasonable for
asset price modeling. This assumption can be fairly easily replaced by another
form of underlying (nonlinear of known shape) dynamical system and the results
can be extended to such more general cases. The system (linear or more complex)
will be fitted on a relatively undisturbed interval, where one may reasonably as-
sume that price oscillations are absent or are minimal. We need to assume that such
a period of time exists, but a priori knowledge of its exact location is not required,
as the simulations clearly show.

While for the housing index data the simple linear dynamics has great appeal
and provides many insights into the dynamics, it can be occasionally of interest
for other applications such as demography or biological weight growth to consider
an extension of our assumption that the growth rates αi do not depend on time or
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age t . To check whether indeed this may be the case in such applications, one may
consider a second (or higher) order dynamic system. If, for example, as before,
X(t) = Z(h(t)) but now Z′(t)/Z(t) = α(t), then it is easy to see that

X′′(t)
X(t)

= h′(t)2[
α′(h(t)

) + α2(
h(t)

)] + h′′(t)α
(
h(t)

)
,

which can be alternatively expressed as

d

dt

X′(t)
X(t)

= h′′(t)α
(
h(t)

) + h′(t)2α′(h(t)
)
.

Such relationships can be used as a diagnostic, by first fitting the original model
and then checking whether indeed d

dt
X′(t)
X(t)

= h′′(t)α as being implied by the origi-
nal model.

Since the rate parameters αi of the underlying linear dynamic systems are
market-specific and thus differ across the observed curves, they provide a com-
plete description of the smooth price increases that are complemented by the time
warping. Here the baseline growth trajectories exp(αit) themselves correspond to
the “aligned curves,” which are thus characterized by one random growth rate.
The signal of interest that relates to the “irrational” price swings is in the time
warping functions and, accordingly, their functional principal component analysis
characterizes the main features of interest, the modes of variation, which are of
special interest for the recent boom–bust cycle of the housing markets, as we have
demonstrated with the housing price analysis. Another interesting application is
to combine time warping with clustering of (sub-)metropolitan areas. This may be
achieved through clustering of the PC scores of warping functions as estimated in
this paper. Moreover, specific features of time-warping functions hi can be more
generally used for clustering, for example, Claeskens, Hubert and Slaets (2010),
Liu and Yang (2009), Tang and Müller (2009). Such time clustering will be of
interest for the analysis of housing markets, either entire metropolitan markets or
sub-metropolitan areas within such markets, depending on data availability.

APPENDIX: DETAILS ON FUNCTIONAL PRINCIPAL
COMPONENT ANALYSIS

In the following the warping functions hi, i = 1, . . . , n, that are derived from
equation (2.9), are considered to be an i.i.d. sample of an underlying time-
warping process H , defined on the interval [0,1]. For the functional principal
component representation of the process H , the key components are the mean
function μ(t) = E(H(t)), t ∈ [0,1], and the auto-covariance function G(s, t) =
cov(H(s),H(t)), s, t ∈ [0,1].

We assume throughout that the time-warping process H has smooth and square
integrable trajectories, E

∫
[0,1] H 2(t) dt < ∞. Then the eigenfunctions φk, k ≥ 1,
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of the auto-covariance operator A(f )(t) = ∫
[0,1] f (s)G(s, t) ds, t ∈ [0,1], which

is a linear Hilbert–Schmidt operator that maps L2([0,1]) into itself, form the or-
thonormal eigenbasis. Processes H may then be represented in this basis by means
of the Karhunen–Loève expansion [Ash and Gardner (1975)]

H(t) = μ(t) + ∑
k≥1

ξk

√
λkφk(t), t ∈ [0,1],

where the ξk

√
λk are the functional principal components, which correspond

to projections ξk

√
λk = ∫

[0,1](H(t) − μ(t))φk(t) dt , and satisfy E(ξk) = 0 and
E(ξ2

k ) = 1, with λk denoting the kth eigenvalue. In the following, the L2 norm
of a function f will be denoted by ‖f ‖L2 = [∫[0,1] f 2(t) dt]1/2 or ‖f ‖L2 =
[∫[0,1]

∫
[0,1] f 2(s, t) ds dt]1/2.

The empirical estimates of the mean and auto-covariance functions of H are

μ̂(t) = 1

n

n∑
i=1

hi(t), t ∈ [0,1],(A.1)

Ĝ(s, t) = 1

n

n∑
i=1

hi(s)hi(t) − μ̂(s)μ̂(t), s, t ∈ [0,1].(A.2)

From the fact that E(μ̂) = μ and the square integrability, one immediately finds
E‖μ̂ − μ‖2

L2 = 1
n

∫
[0,1] var(H(t)) dt and, therefore, ‖μ̂ − μ‖L2 = Op(n−1/2). Us-

ing more intricate arguments, it can been shown that under the additional assump-
tion that E‖H 2‖2

L2 < ∞, it also holds that ‖Ĝ − G‖L2 = Op(n−1/2) [Dauxois,
Pousse and Romain (1982), Hall and Hosseini-Nasab (2006)]. Results of the above
type for μ̂ and Ĝ are then typically coupled with a perturbation result that relates
differences in eigenfunctions and eigenvalues to those of L2 distances of covari-
ances; an example is Lemma 4.3 in Bosq (2000), which is utilized to prove the
following more rigorous results about the convergence in sup norm of the eigen-
functions and eigenvalues of the time-warping process H .

Such results can be obtained by adopting an approach of Chen and Müller
(2012) that utilizes techniques developed in Li and Hsing (2010). Technical as-
sumptions needed are as follows: For arbitrary universal constants 0 < B < C <

∞, it holds that for all t that E|H(t)|� ≤ �!
2 C�−2B2, � = 2,3, . . . and for all s, t

that E|H(s)H(t)|� ≤ �!
2 C�−2B2, � = 2,3, . . . . In addition, all trajectories of H

are assumed to satisfy |H(s) − H(t)| ≤ C|s − t | and E(supt∈T |H(t)|) < ∞,
supt∈[0,1] |μ(t)| < ∞, sups,t |G(s, t)| < ∞, supt∈[0,1] |φk(t)| < ∞ for each k ≥ 1.

Under these assumptions, using similar arguments, such as those provided in
Lemma 1 and Theorem 1 of Chen and Müller (2012), leads to the following con-
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sistency results:

sup
t∈T

∣∣μ̂(t) − μ(t)
∣∣ = O

(
(logn/n)1/2)

a.s.,

sup
s,t∈T

∣∣Ĝ(s, t) − G(s, t)
∣∣ = O

(
(logn/n)1/2)

a.s.,

sup
t∈T

∣∣φ̂k(t) − φk(t)
∣∣ = O

(
(logn/n)1/2)

a.s.,

|λ̂k − λk| = O
(
(logn/n)1/2)

a.s.

Here φ̂k and λ̂k are the eigenfunction/eigenvalue estimates that one obtains from
a spectral decomposition of the empirical covariance function Ĝ in (A.2). This is
numerically implemented through suitable discretization and using matrix eige-
nanalysis. We note that the consistency of the estimates ξik

√
λk = ∫

[0,1](hi(t) −
μ̂(t))φ̂k(t)) dt of the kth principal components ξik

√
λk, i = 1, . . . , n, k ≥ 1, fol-

lows immediately from these results.
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SUPPLEMENTARY MATERIAL

Supplementary material: Time-warped growth processes with applications
to the modeling of boom–bust cycles: Additional analysis (DOI: 10.1214/14-
AOAS740SUPP; .pdf). We provide some additional analysis of the housing index
data.
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