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Parameter estimation in multidimensional diffusion models with only
one coordinate observed is highly relevant in many biological applications,
but a statistically difficult problem. In neuroscience, the membrane potential
evolution in single neurons can be measured at high frequency, but biophys-
ical realistic models have to include the unobserved dynamics of ion chan-
nels. One such model is the stochastic Morris–Lecar model, defined by a
nonlinear two-dimensional stochastic differential equation. The coordinates
are coupled, that is, the unobserved coordinate is nonautonomous, the model
exhibits oscillations to mimic the spiking behavior, which means it is not
of gradient-type, and the measurement noise from intracellular recordings is
typically negligible. Therefore, the hidden Markov model framework is de-
generate, and available methods break down. The main contributions of this
paper are an approach to estimate in this ill-posed situation and nonasymp-
totic convergence results for the method. Specifically, we propose a sequen-
tial Monte Carlo particle filter algorithm to impute the unobserved coordi-
nate, and then estimate parameters maximizing a pseudo-likelihood through
a stochastic version of the Expectation–Maximization algorithm. It turns out
that even the rate scaling parameter governing the opening and closing of ion
channels of the unobserved coordinate can be reasonably estimated. An ex-
perimental data set of intracellular recordings of the membrane potential of a
spinal motoneuron of a red-eared turtle is analyzed, and the performance is
further evaluated in a simulation study.

1. Introduction. In neuroscience, it is of major interest to understand the
principles of information processing in the nervous system, and a basic step is to
understand signal processing and transmission in single neurons. Therefore, there
is a growing demand for robust methods to estimate biophysical relevant param-
eters from partially observed detailed models. Statistical inference from experi-
mental data in biophysically detailed models of single neurons is difficult. Often
these models are compared to experimental data by hand-tuning to reproduce the
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qualitative behaviors observed in experimental data, but without any formal sta-
tistical analysis. It is of particular interest to estimate conductances, which reflect
the synaptic input from the surrounding network. These can be estimated from in-
tracellular recordings, where the neuronal membrane potential is recorded at high
frequency, and are typically done using only subthreshold fluctuations, ignoring
the dynamics during action potentials [Berg, Alaburda and Hounsgaard (2007),
Berg and Ditlevsen (2013), Borg-Graham, Monier and Frégnac (1998), Monier,
Fournier and Frégnac (2008), Pospischil et al. (2009), Rudolph et al. (2004)]. The
aim of this article is to estimate such biophysical parameters during the dynamics
of spiking from intracellular data.

The Morris–Lecar model [Morris and Lecar (1981)] is a simple biophysical
model and a prototype for a wide variety of neurons. It is a conductance-based
model [Gerstner and Kistler (2002)], introduced to explain the dynamics of the
barnacle muscle fiber. It is given by two coupled first order differential equations,
the first modeling the membrane potential evolution and the second the activation
of potassium current. If both current and conductance noise should be taken into
account, the stochastic Morris–Lecar model arises, where diffusion terms have
been added on both coordinates. If one of these noise sources are zero, a hypoel-
liptic diffusion arises leading to singular transition densities and particular statisti-
cal challenges [Pokern, Stuart and Wiberg (2009), Samson and Thieullen (2012)].
Typically, the membrane potential will be measured discretely at high frequency,
whereas the second variable cannot be observed. Our goal is to estimate model pa-
rameters from discrete observations of the first coordinate in the nonsingular case
of nonnegligible noise on both coordinates. This includes estimation of a central
rate parameter characterizing the channel kinetics of the unobserved component,
which we believe has not been done before.

Estimation in these conductance-based models is not straightforward. Because
of the coupling between the coordinates of the stochastic differential equation
(SDE), the unobserved coordinate is nonautonomous, and the model does not fit
into the (nondegenerate) Hidden Markov Model (HMM) framework, as explained
in Section 2.3. Furthermore, the diffusion is not time reversible and the likelihood
is generally not tractable. Thus, the problem of inference is complex. The litera-
ture contains various methodologies when all the coordinates are observed [Aït-
Sahalia (2002), Beskos et al. (2006), Durham and Gallant (2002), Jensen et al.
(2012), Pedersen (1995), Sørensen (2004, 2012)] or the hidden state is Markovian
[Ionides et al. (2011)]. They strongly rely on the Markov property and are hard to
generalize to the non-Markovian case we are studying. In the non-Markovian case,
methods are mainly based on data augmentation. The idea is that the likelihood can
be approximated given the entire path or a sufficient partition of it. Therefore, the
unobserved coordinates are treated as missing data and are imputed. Most meth-
ods propose to approximate the transition density by the Euler–Maruyama scheme
and consider a Bayesian point of view to estimate the posterior distribution of
the parameters [Elerian, Chib and Shephard (2001), Eraker (2001), Golightly and
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Wilkinson (2006, 2008)]. Golightly and Wilkinson (2006) study a model similar to
us but with low frequency data. So they need to impute data between observations,
which is computationally costly. Furthermore, there exists a strong dependence
between the imputed sample paths and the diffusion coefficient, and it is not possi-
ble to estimate the diffusion parameter with this kind of approach. An alternative is
reparametrization of the diffusion, but it is limited to scalar diffusions [Roberts and
Stramer (2001)] or an autonomous hidden coordinate [Kalogeropoulos (2007)].

In this paper, we propose to estimate the parameters with a maximum likeli-
hood approach. We approximate the SDE through an Euler–Maruyama scheme to
obtain a tractable pseudo-likelihood. Then we consider the statistical model as an
incomplete data model and maximize the pseudo-likelihood through a stochastic
Expectation–Maximization (EM) algorithm, where the unobserved data are im-
puted at each iteration of the algorithm. We are in the setting of high frequency
data so we do not need to impute data between observations, but our approach
could be extended to that type of data as well. A similar but different method has
been proposed by Huys, Ahrens and Paninski (2006), where up to 104 parameters
are estimated in a detailed multicompartmental single neuron model. However,
only parameters entering linearly in the loss function are considered, and channel
kinetics are assumed known. It is a quadratic optimization problem solved by least
squares and shown to work well for low noise and high frequency sampling. When
either the discretization step or the noise increase, a bias is introduced. In Huys and
Paninski (2009) they extend the estimation to allow for measurement noise, first
smoothing the data by a particle filter and then maximizing the likelihood through
a Monte Carlo EM algorithm. Because of the measurement noise, the model fits
into the HMM framework and they can use a standard particle filter. But again,
only parameters entering linearly in the pseudo-likelihood are considered. In par-
ticular, all parameters of the hidden coordinate are assumed known.

Here, we also want to estimate parameters from the hidden coordinate and
we do not consider measurement noise. We propose to impute the hidden non-
Markovian path in the stochastic EM algorithm with a Sequential Monte Carlo
(SMC) algorithm. Monte Carlo methods for nonlinear filtering are widely spread,
with, among other algorithms, sequential importance sampling, sequential impor-
tance sampling with resampling (SISR), auxiliary SISR and stratified resampling
[see Cappé, Moulines and Rydén (2005) for a general presentation]. All SISR
algorithms are now called SMC. Most of them are designed for HMM. In the
specific setting of multidimensional SDEs, Del Moral, Jacod and Protter (2001)
propose a particle filter for a two-dimensional SDE, where the second equation is
autonomous. Although the first coordinate is observed at discrete times, they pro-
pose to simulate it at each iteration of the filter. Fearnhead, Papaspiliopoulos and
Roberts (2008) generalize this particle filter to a nonautonomous hidden path but
with drift of gradient type. In the ergodic case this corresponds to a time-reversible
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diffusion. In particular, models exhibiting oscillations are not covered, which is the
case of any realistic neuronal model.

These algorithms cannot be directly applied because we are studying a mul-
tidimensional coupled SDE that is not of gradient type. Thus, we consider the
SMC algorithm proposed by Doucet, de Freitas and Gordon (2001) for more gen-
eral dynamic models than HMM. As we combine this SMC with the Stochastic
Approximation Expectation–Maximization (SAEM) algorithm which maximizes
the pseudo-likelihood based on an Euler–Maruyama approximation of the SDE
defining the model, we need nonasymptotic convergence results for the SMC to
obtain the convergence of the SAEM–SMC. Nonasymptotic results for SMC, such
as deviation inequalities, have been proposed in the literature only in the HMM
framework [Del Moral and Miclo (2000), Del Moral, Jacod and Protter (2001),
Douc et al. (2011), Künsch (2005)], and the Markovian structure of the hidden
path is a key element in the proofs. A major contribution here is that we are able to
extend this result to a SMC for a non-Markovian hidden path. Then we prove that
the estimator obtained from this combined SAEM–SMC algorithm converges with
probability one to a local maximum of the pseudo-likelihood. We also prove that
the pseudo-likelihood converges to the true likelihood as the time step between
observations go to zero.

The paper is organized as follows: In Section 2 the model is presented, the
noise structure is motivated, and the pseudo-likelihood arising from the Euler–
Maruyama approximation is found. In Section 3 the filtering problem is presented,
as well as the SMC algorithm and deviation inequalities. In Section 4 we present
the estimation procedure and the assumptions needed for the convergence results to
hold. In Section 5 we apply the method on an experimental data set of intracellular
recordings of the membrane potential of a motoneuron of a turtle, and in Section 6
we conduct a simulation study to document the performance of the method. Proofs
and technical results can be found in the Appendix.

2. Stochastic Morris–Lecar model.

2.1. Exact diffusion model. The stochastic Morris–Lecar model including
both current and channel noise is defined as the solution to{

dVt = f (Vt ,Ut ) dt + γ dB̃t ,

dUt = b(Vt ,Ut ) dt + σ(Vt ,Ut ) dBt ,
(1)

where

f (Vt ,Ut ) = 1

C

(−gCam∞(Vt )(Vt − VCa) − gKUt(Vt − VK) − gL(Vt − VL) + I
)
,

b(Vt ,Ut ) = (
α(Vt )(1 − Ut) − β(Vt )Ut

)
,

m∞(v) = 1

2

(
1 + tanh

(
v − V1

V2

))
,
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α(v) = 1

2
φ cosh

(
v − V3

2V4

)(
1 + tanh

(
v − V3

V4

))
,

β(v) = 1

2
φ cosh

(
v − V3

2V4

)(
1 − tanh

(
v − V3

V4

))
,

and the initial condition (V0,U0) is random with density p(V0,U0). Processes
(B̃t )t≥t0 and (Bt )t≥t0 are independent Brownian motions. The variable Vt repre-
sents the membrane potential of the neuron at time t , and Ut represents the nor-
malized conductance of the K+ current. It varies between 0 and 1, and can be
interpreted as the probability that a K+ ion channel is open at time t . The equation
for f (·) describing the dynamics of Vt contains four terms, corresponding to Ca2+
current, K+ current, a general leak current and the input current I . The functions
α(·) and β(·) model the rates of opening and closing of the K+ ion channels. The
function m∞(·) represents the equilibrium value of the normalized Ca2+ conduc-
tance for a given value of the membrane potential. The parameters V1,V2,V3 and
V4 are scaling parameters; gCa, gK and gL are conductances associated with Ca2+,
K+ and leak currents; VCa,VK and VL are reversal potentials for Ca2+, K+ and
leak currents; C is the membrane capacitance; φ is a rate scaling parameter for the
opening and closing of the K+ ion channels; and I is the input current.

Various noise sources are present in single neurons, and they act on many dif-
ferent spatial and temporal scales [Gerstner and Kistler (2002), Longtin (2013)].
A main component arises from the synaptic bombardment from other neurons
in the network, and in the diffusion limit appears as an additive noise on the
current equation. Parameter γ scales this current noise. Conductance fluctua-
tions caused by random opening and closing of ion channels leads to multiplica-
tive noise on the conductance equation. Function σ(Vt ,Ut ) models this channel
or conductance noise. We consider the following function that ensures that Ut

stays bounded in the unit interval if σ ≤ 1 [Ditlevsen and Greenwood (2013)]:

σ(Vt ,Ut ) = σ
√

2 α(Vt )β(Vt )
α(Vt )+β(Vt )

Ut (1 − Ut). A trajectory of the model is simulated in
Figure 1. The peaks of (Vt ) correspond to spikes of the neuron.

2.2. Observations and approximate model. Data are discrete measurements of
(Vt ), while (Ut ) is not measured. We denote t0 ≤ t1 ≤ · · · ≤ tn the discrete observa-
tion times. We denote Vi = Vti the observation at time ti and V0:n = (Vt0, . . . , Vtn)

the vector of all the observed data. Let θ ∈ � ⊆ R
p be the vector of parame-

ters to be estimated. We consider estimation of all identifiable parameters of the
observed coordinate and the rate parameter of the unobserved channel dynamics
θ = (gCa, gK, gL,VCa,VK, I, γ,φ). Note that C is a proportionality factor of the
conductance parameters and thus unidentifiable, as well as the constant level in
f (·) is given by gLVL + I and, thus, VL (or I ) is unidentifiable. We conjecture that
the information about σ in the observed coordinate is close to zero and, thus, in
practice, also σ is unidentifiable from observations of V0:n only, at least for any
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FIG. 1. Simulated trajectory of the stochastic Morris–Lecar model: (Vt ) as a function of time (left,
top), (Ut ) as a function of time (left, bottom), and (Ut ) against (Vt ) (right). Parameters are given
in Section 6. Time is measured in ms, voltage in mV, and the conductance is normalized between 0
and 1.

finite sample size. This happens because σ is mainly shaping the dynamics of Ut

between spikes, while the dynamics during spikes resemble deterministic behav-
ior, and the influence of Ut on Vt is only strong during spikes. This is confirmed
in Sections 5 and 6 where misspecification of σ is shown not to deteriorate the
estimation of θ . Finally, we assume the scaling parameters V1–V4 known because
otherwise the model does not belong to an exponential family, as required by as-
sumption (M1) below. This could be solved by introducing an extra optimization
step in the EM algorithm at the cost of precision and computer time. It is not pur-
sued further in this work.

The aim is to estimate θ by maximum likelihood. However, this likelihood is
intractable, as the transition density of model (1) is not explicit. Let 	 denote
the step size between two observation times, which for simplicity we assume do
not depend on i. The extension to unequally spaced observation times is straight-
forward. The Euler–Maruyama approximation of model (1) leads to a discretized
model defined as follows:

Vi+1 = Vi + 	f (Vi,Ui) + √
	γ η̃i,

(2)
Ui+1 = Ui + 	b(Vi,Ui) + √

	σ(Vi,Ui)ηi,

where (η̃i) and (ηi) are independent centered Gaussian variables. To ease read-
ability, the same notation (Vi,Ui) is used for the original and the approximated
processes. This should not lead to confusion, as long as the transition densities are
distinguished, as done below.

2.3. Property of the observation model. The observation model is a degener-
ate HMM. Let us recall the definition proposed by Cappé, Moulines and Rydén
(2005). A HMM with not countable state space is defined as a bivariate Markov
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chain (Xi, Yi) with only partial observations Yi , whose transition kernel has a spe-
cial structure: both the joint process (Xi, Yi) and the marginal hidden chain (Xi)

are Markovian.
In our model, (Ui) is not Markovian, only (Vi,Ui) is Markovian. So set Xi =

(Vi,Ui), with Markov kernel R(Xi−1, dXi) = p	(dVi, dUi |Vi−1,Ui−1), the tran-
sition density of model (2), and Yi = X

(1)
i , the first coordinate of Xi with transition

kernel F(X,dY ) = 1{Y=X(1)}. Here, 1x is the Dirac measure in x. Thus, the kernel
F is zero almost everywhere and the HMM is degenerate. This leads to an intrinsic
degeneracy of the particle filter used in the standard HMM toolbox, as explained
below.

Therefore, we consider the observation model as a bivariate Markov chain
(Vi,Ui) with only partial observations Vi whose hidden coordinate Ui is not
Markovian. It is not a HMM but a general dynamic model as considered by
Andrieu, Doucet and Punskaya (2001). The hidden process Ui is distributed as

U0 ∼ μ(dU0), Ui |(U0:i−1,V0:i−1) ∼ K(dUi |U0:i−1,V0:i−1)

for some conditional distribution function K and the observed process Vi is dis-
tributed as

Vi |(U0:i , V0:i−1) ∼ G(dVi |U0:i , V0:i−1)

for some distribution function G. Given the Markovian structure of the pair
(Vi,Ui), we have K(dUi |U0:i−1,V0:i−1) = K(dUi |Ui−1,Vi−1) and G(dVi |U0:i ,
V0:i−1) = G(dVi |Ui−1:i , Vi−1). To simplify, we use the same notation for ran-
dom variables and their realizations and assume that G(dVi |U0:i , V0:i−1) =
G(Vi |U0:i , V0:i−1) dVi .

2.4. Likelihood function. We want to estimate the parameter θ by maximum
likelihood of the approximate model, with likelihood

p	(V0:n; θ) =
∫

p(V0,U0; θ)

n∏
i=1

p	(Vi,Ui |Vi−1,Ui−1; θ) dU0:n.(3)

It corresponds to a pseudo-likelihood for the exact diffusion. The multiple integrals
of equation (3) are difficult to handle and it is not possible to maximize the pseudo-
likelihood directly.

A solution is to consider the statistical model as an incomplete data model.
The observable vector V0:n is then part of a so-called complete vector (V0:n,U0:n),
where U0:n has to be imputed. To maximize the likelihood of the complete data
vector (V0:n,U0:n), we propose to use a stochastic version of the EM algorithm,
namely, the SAEM algorithm [Delyon, Lavielle and Moulines (1999)]. Simulation
under the smoothing distribution p	(U0:n|V0:n; θ) is likely to be difficult, and di-
rect simulation of the nonobserved data (U0:n) is not possible. A SMC algorithm,
also known as Particle Filtering, provides a way to approximate this distribution
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[Doucet, de Freitas and Gordon (2001)]. We have adapted this algorithm to han-
dle a coupled two-dimensional SDE, that is, the unobserved coordinate is nonau-
tonomous and non-Markovian. Then, we combine the SAEM algorithm with the
SMC algorithm, where the unobserved data are filtered at each iteration step, to es-
timate the parameters of model (2). Details on the filtering are given in Section 3,
and the SAEM algorithm is presented in Section 4.1. To prove the convergence of
this new SAEM–SMC algorithm, a nonasymptotic deviation inequality is required
for the SMC algorithm. Then we derive the convergence of the SAEM–SMC al-
gorithm to a maximum of the likelihood.

3. Filtering.

3.1. The filtering problem and the SMC algorithm. For any bounded Borel
function f :R 
→ R, we denote πn,θf = E	(f (Un)|V0:n; θ), the conditional ex-
pectation under the exact smoothing distribution p	(U0:n|V0:n; θ) of the approx-
imate model. The aim is to approximate this distribution for a fixed value of θ .
When included in the stochastic EM algorithm, this value will be the current value
θ̂m at the given iteration. For notational simplicity, θ is omitted in the rest of this
section.

We now argue why the HMM point of view is ill-posed for the filter-
ing problem. Considering the model as a HMM, Xi = (Vi,Ui) is the hidden
Markov chain and Yi = X

(1)
i . But then the filtering problem πnf is the ra-

tio of
∫

μ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn)f (Xn) and∫
μ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn). Since F(Xn−1;

Yn) = 1{Yn=X
(1)
n−1} and the state space is continuous, the denominator is zero almost

surely and the filtering problem is ill-posed.
Now consider the model in a more general framework with the hidden state Ui

not Markovian, and introduce for i = 1, . . . , n the kernels Hi from R into itself by

Hif (u) =
∫

K(dz|u,Vi−1)G(Vi |u,Vi−1, z)f (z)

(4)
=

∫
p	(Vi, z|Vi−1, u)f (z) dz.

Then πn can be expressed recursively by

πnf = πn−1Hnf

πn−1Hn1
=

∫
μ(U0)

∏n
i=1 p	(Vi,Ui |Vi−1,Ui−1)f (Un)dU0:n∫

μ(U0)
∏n

i=1 p	(Vi,Ui |Vi−1,Ui−1) dU0:n
.(5)

Note that the denominator of (5) is μH1 · · ·Hn1 = p	(V0:n), which is different
from 0 since its support is the real line. Thus, the filtering problem is well-posed.

The kernels Hi are extensions of the kernels considered by Del Moral, Ja-
cod and Protter (2001) in the context of two-dimensional SDEs with hidden co-
ordinate Ut autonomous (and thus Markovian). We do not extend their particle
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filter since it is based on simulation of both Vi and Ui with transition kernel
p	(Vi,Ui |Vi−1,Ui−1). They avoid the degeneracy of the weights by introduc-
ing an instrumental function ψ and the weights are computed as ψ(V

(k)
i − Vi).

The choice of this instrumental function may influence the numerical properties of
the filter. Therefore, we adopt the general filter proposed by Andrieu, Doucet and
Punskaya (2001) for a more general dynamic system, that we recall here.

The SMC algorithm provides a set of K particles (U
(k)
0:n)k=1,...,K and weights

(W
(k)
0:n)k=1,...,K approximating the conditional smoothing distribution p	(U0:n|

V0:n) [see Doucet, de Freitas and Gordon (2001)]. The SMC method relies on
proposal distributions q(Ui |Vi,Vi−1,Ui−1) to sample what we call particles from
these distributions. We write V0:i = (V0, . . . , Vi) and likewise for U0:i .

ALGORITHM 1 (SMC algorithm).

• At time i = 0: ∀k = 1, . . . ,K :

1. sample U
(k)
0 from p(U0|V0),

2. compute and normalize the weights:

w0
(
U

(k)
0

) = p
(
V0,U

(k)
0

)
, W0

(
U

(k)
0

) = w0(U
(k)
0 )∑K

k=1 w0(U
(k)
0 )

.

• At time i = 1, . . . , n: ∀k = 1, . . . ,K :

1. sample indices A
(k)
i−1 ∼ r(·|Wi−1(U

(1)
0:i−1), . . . ,Wi−1(U

(K)
0:i−1)). Set U

′(k)
0:i−1 =

U
(A

(k)
i−1)

0:i−1 ,

2. sample U
(k)
i ∼ q(·|Vi−1:i ,U ′(k)

i−1) and set U
(k)
0:i = (U

′(k)
0:i−1,U

(k)
i ),

3. compute and normalize the weights

Wi

(
U

(k)
0:i

) = wi(U
(k)
0:i )∑K

k=1 wi(U
(k)
0:i )

with

wi

(
U

(k)
0:i

) = p	(V0:i ,U(k)
0:i )

p	(V0:i−1,U
′(k)
0:i−1)q(U

(k)
i |Vi−1:i ,U ′(k)

0:i−1).

The SMC algorithm provides an empirical measure K
n = ∑K

k=1 Wn(U
(k)
0:n)1

U
(k)
0:n

which is an approximation to the smoothing distribution p	(U0:n|V0:n). A draw
from this distribution can be obtained by sampling an index k from a multinomial
distribution with probabilities Wn(U

(1)
0:n), . . . ,Wn(U

(K)
0:n ) and setting the draw U0:n

equal to U0:n = U
(k)
0:n .

The variable A
(k)
i−1 plays an important role to discard the samples with small

weights and multiply those with large weights [Gordon, Salmond and Smith
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(1993)]. It generates a number of offspring N
(�)
i−1, � = 1, . . . ,K , such that∑K

�=1 N
(�)
i−1 = K and E(N

(�)
i−1) = KWi−1(U

(l)
0:i−1). Many schemes for r have been

presented in the literature, including multinomial sampling [Gordon, Salmond and
Smith (1993)], residual sampling [Liu and Chen (1998)] or stratified resampling
[Doucet, Godsill and Andrieu (2000)]. They differ in terms of var(N(�)

i−1) [see
Doucet, Godsill and Andrieu (2000)]. The key property that we need in order to
prove the deviation inequality is that E(1{A(k)

i−1=�}) = Wi−1(U
(l)
0:i−1).

Since our model is not a HMM, the weights wi(U
(k)
0:i ) cannot be written in

terms of a Markov transition kernel of the hidden path as is usually done. It fol-
lows that the proposal q , which is crucial to ensure good convergence proper-
ties, has to depend on Vi . The first classical choice of q is q(Ui |Vi−1:i ,Ui−1) =
p	(Ui |Vi−1,Ui−1), that is, the transition density. In this case, the weight re-
duces to wi(U

(k)
0:i ) = p	(Vi |Vi−1,U

(k)
0:i ). A second choice for the proposal is

q(Ui |Vi−1:i ,Ui−1) = p	(Ui |Vi−1:i ,Ui−1), that is, the conditional distribution. In
this case, the weight reduces to wi(U

(k)
0:i ) = p	(Vi |Vi−1,U

(k)
0:i−1). Transition densi-

ties and conditional distributions are detailed in Appendix A. When the two Brow-
nian motions are independent, as we assume, the two choices are equivalent.

This SMC algorithm is plugged into the EM algorithm to estimate the param-
eters. We thus need nonasymptotic convergence results on the SMC algorithm to
ensure the convergence of the EM algorithm. This is discussed in the next section.

3.2. Deviation inequality. In the literature, deviation inequalities for SMC al-
gorithms only appear for HMM. To our knowledge, this is the first nonasymptotic
result proposed for a SMC applied to a non-Markovian hidden path. The only re-
sult of this type with SDEs has been obtained by Del Moral, Jacod and Protter
(2001), with autonomous second coordinate. Here, we generalize their deviation
inequality to a nonautonomous hidden path.

For a bounded Borel function f , denote K
n f = ∑K

k=1 f (U
(k)
n )Wn,θ (U

(k)
0:n), the

conditional expectation of f under the empirical measure K
n,θ obtained by the

SMC algorithm for a given value of θ . We have the following:

PROPOSITION 1. Under assumption (SMC3), for any ε > 0, and for any
bounded Borel function f on R, there exist constants C1 and C2, independent
of θ , such that

P
(∣∣K

n,θf − πn,θf
∣∣ ≥ ε

) ≤ C1 exp
(
−K

ε2

C2‖f ‖2

)
,(6)

where ‖f ‖ is the sup-norm of f .

The proof is provided in Appendix D. A similar result can be obtained with
respect to the exact smoothing distribution of the exact diffusion model, under as-
sumptions on the number of particles and the step size of the Euler approximation.
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4. Estimation method.

4.1. SAEM algorithm. The EM algorithm [Dempster, Laird and Rubin (1977)]
is useful in situations where the direct maximization of the marginal likelihood
θ → p	(V0:n; θ) is more difficult than the maximization of the conditional ex-
pectation of the complete likelihood Q(θ |θ ′) = E	[logp	(V0:n,U0:n; θ)|V0:n; θ ′],
where p	(V0:n,U0:n; θ) is the likelihood of the complete data (V0:n,U0:n) of the
approximate model (2) and the expectation is under the conditional distribution
of U0:n given V0:n with density p	(U0:n|V0:n; θ ′). The EM algorithm is an itera-
tive procedure: at the mth iteration, given the current value θ̂m−1, the E-step is the
evaluation of Qm(θ) = Q(θ |θ̂m−1), while the M-step updates θ̂m−1 by maximizing
Qm(θ). To fulfill convergence conditions of the algorithm, we consider the partic-
ular case of a distribution from an exponential family. More precisely, we assume
the following:

(M1) The parameter space � is an open subset of R
p . The complete likeli-

hood p	(V0:n,U0:n; θ) belongs to a curved exponential family, that is,
logp	(V0:n,U0:n; θ) = −ψ(θ) + 〈S(V0:n,U0:n), ν(θ)〉, where ψ and ν are
two functions of θ , S(V0:n,U0:n) is known as the minimal sufficient statistic
of the complete model, taking its value in a subset S of Rd , and 〈·, ·〉 is the
scalar product on R

d .

The approximate Morris–Lecar model (2) satisfies this assumption when the scal-
ing parameters V1,V2,V3 and V4 are known. Details of the sufficient statistic S are
given in Appendix B.

Under assumption (M1), the E-step reduces to the computation of E	[S(V0:n,
U0:n)|V0:n; θ̂m−1]. When this expectation has no closed form, Delyon, Lavielle and
Moulines (1999) propose the Stochastic Approximation EM algorithm (SAEM),
replacing the E-step by a stochastic approximation of Qm(θ). The E-step is
then divided into a simulation step (S-step) of the nonobserved data (U

(m)
0:n ) with

the conditional density p	(U0:n|V0:n; θ̂m−1) and a stochastic approximation step
(SA-step) of E	[S(V0:n,U0:n)|V0:n; θ̂m−1] with a sequence of positive numbers
(am)m∈N decreasing to zero. We write sm for the approximation of this expecta-
tion. At the S-step, the simulation under the smoothing distribution is done by
SMC, as explained in Section 3. We call this algorithm the SAEM–SMC algo-
rithm. Iterations of the SAEM–SMC algorithm are written as follows:

ALGORITHM 2 (SAEM–SMC algorithm).

• Iteration 0: initialization of θ̂0 and set s0 = 0.
• Iteration m ≥ 1:

S-step: simulation of the nonobserved data (U
(m)
0:n ) with SMC targeting the

distribution p	(U0:n|V0:n; θ̂m−1).



ESTIMATION IN NEURONAL MODELS 685

SA-step: update sm−1 using the stochastic approximation:

sm = sm−1 + am−1
[
S
(
V0:n,U(m)

0:n
) − sm−1

]
.(7)

M-step: update of θ̂m by θ̂m = arg maxθ∈�(−ψ(θ) + 〈sm, ν(θ)〉).

Standard errors of the estimators can be evaluated through the Fisher informa-
tion matrix. Details are given in Appendix C. An advantage of the SAEM algo-
rithm is the low-level dependence on the initialization θ̂0, due to the stochastic ap-
proximation of the E-step. The other advantage over a Monte Carlo EM algorithm
is the computational time. Indeed, only one simulation of the hidden variables U0:n
is needed in the simulation step, while an increasing number of simulated hidden
variables is required in a Monte Carlo EM algorithm.

4.2. Convergence of the SAEM–SMC algorithm. The SAEM algorithm we
propose in this paper is based on an approximate simulation step performed with
an SMC algorithm. We prove that even if this simulation is not exact, the SAEM
algorithm still converges toward the maximum of the likelihood of the approxi-
mated diffusion (2). This is true because the SMC algorithm has good convergence
properties.

Let us be more precise. We introduce a set of convergence assumptions which
are the classic ones for the SAEM algorithm [Delyon, Lavielle and Moulines
(1999)]:

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable
on �.

(M3) The function s̄ :� −→ S defined by s̄(θ) = ∫
S(v,u)p	(u|v; θ) dv du

is continuously differentiable on �.
(M4) The function �	(θ) = logp	(v,u, θ) is continuously differentiable on

� and ∂θ

∫
p	(v,u; θ) dv du = ∫

∂θp	(v,u; θ) dv du.
(M5) Define L :S × � → R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a

function θ̂ :S → � such that ∀θ ∈ �,∀s ∈ S,L(s, θ̂(s)) ≥ L(s, θ).
(SAEM1) The positive decreasing sequence of the stochastic approximation

(am)m≥1 is such that
∑

m am = ∞ and
∑

m a2
m < ∞.

(SAEM2) �	 :� → R and θ̂ :S → � are d times differentiable, where d is the
dimension of S(v,u).

(SAEM3) For all θ ∈ �,
∫ ‖S(v,u)‖2p	(u|v; θ) du < ∞ and the function

�(θ) = Covθ (S(·,U0:n)) is continuous, where the covariance is under
the conditional distribution p	(U0:n|V0:n; θ).

(SAEM4) Let {Fm} be the increasing family of σ -algebras generated by the ran-
dom variables s0,U

(1)
0:n , U

(2)
0:n, . . . ,U

(m)
0:n . For any positive Borel function

f , E	(f (U
(m+1)
0:n )|Fm) = ∫

f (u)p	(u|v, θ̂m) du.
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Assumptions (M1)–(M5) ensure the convergence of the EM algorithm when the
E-step is exact [Delyon, Lavielle and Moulines (1999)]. Assumptions (M1)–(M5)
and (SAEM1)–(SAEM4) together with the additional assumption that (sm)m≥0
takes its values in a compact subset of S ensure the convergence of the SAEM
estimates to a stationary point of the observed likelihood p	(V0:n; θ) when the
simulation step is exact [Delyon, Lavielle and Moulines (1999)].

Here the simulation step is not exact and we have three additional assumptions
on the SMC algorithm to bound the error induced by this algorithm and prove the
convergence of the SAEM–SMC algorithm:

(SMC1) The number of particles K used at each iteration of the SAEM algorithm
varies along the iteration: there exists a function g(m) → ∞ when m →
∞ such that K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.
(SMC3) The functions p	(Vi |Ui,Vi−1,Ui−1; θ) are bounded uniformly in θ .

THEOREM 1. Assume that (M1)–(M5), (SAEM1)–(SAEM3) and (SMC1)–
(SMC3) hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0, where L = {θ ∈
�,∂θ�	(θ) = 0} is the set of stationary points of the log-likelihood �	(θ) =
logp	(V0:n; θ).

Theorem 1 is proved in Appendix D. Note that assumption (SAEM4) is not
needed thanks to the conditional independence of the particles generated by the
SMC algorithm, as detailed in the proof. Similarly, the additional assumption that
(sm)m≥0 takes its values in a compact subset of S is not needed, as it is directly
satisfied under assumption (SMC2).

We deduce that the SAEM algorithm converges to a (local) maximum of the
likelihood under standard additional assumptions (LOC1)–(LOC3) proposed by
Delyon, Lavielle and Moulines (1999) on the regularity of the log-likelihood
�	(V0:n; θ) that we do not recall here.

COROLLARY 1. Under the assumptions of Theorem 1 and additional assump-
tions (LOC1)–(LOC3), the sequence θ̂m converges with probability 1 to a (local)
maximum of the likelihood p	(V0:n; θ).

The classical assumptions (M1)–(M5) are usually satisfied. Assumption
(SAEM1) is easily satisfied by choosing properly the sequence (am). Assump-
tions (SAEM2) and (SAEM3) depend on the regularity of the model. They are
satisfied for the approximate Morris–Lecar model.

In practice, the SAEM algorithm is implemented with an increasing number
equal to the iteration number, which satisfies Assumption (SMC1). Assumption
(SMC2) is satisfied for the approximate Morris–Lecar model because the variables
U are bounded between 0 and 1 and the variables V are fixed at their observed
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values. This would not have been the case with the filter of Del Moral, Jacod and
Protter (2001), which resimulates the variables V at each iteration. Assumption
(SMC3) is satisfied if we require that γ is strictly bounded away from zero; γ ≥
ε > 0.

4.3. Properties of the approximate diffusion. The SAEM–SMC algorithm
provides a sequence which converges to the set of stationary points of the log-
likelihood �	(θ) = logp	(V0:n; θ). The following result aims at comparing this
likelihood, which corresponds to the Euler approximate model (2), with the true
likelihood p(V0:n; θ). The result is based on the bound of the Euler approxima-
tion proved by Gobet and Labart (2008). Their result holds under the following
assumption:

(H1) Functions f , b, σ are 2 times differentiable with bounded derivatives with
respect to u and v of all orders up to 2.

Let us assume we apply the SAEM algorithm on an approximate model obtained
with an Euler scheme of step size δ = 	/L. Then we have the following:

THEOREM 2. Under assumption (H1), there exists a constant C, independent
of θ , such that for any θ ∈ � and any vector V0:n,∣∣p(V0:n; θ) − pδ(V0:n; θ)

∣∣ ≤ C
1

L
n	.

Proof is given in Appendix D. Assumption (H1) is a strong assumption, which
is sufficient and not necessary. It does not hold for the Morris–Lecar model. Dif-
ferent sets of weaker assumptions have been proposed to prove the convergence of
the Euler scheme in the strong sense (expectation of the absolute error between the
exact and approximated process). The proofs are mainly based on localization ar-
guments; see Kloeden and Neuenkirch (2012) for a review paper. The convergence
of the densities has been less studied, and it is beyond the scope of this paper.

5. Intracellular recordings from a turtle motoneuron. The membrane po-
tential from a spinal motoneuron in segment D10 of an adult red-eared turtle (Tra-
chemys scripta elegans) was recorded while a periodic mechanical stimulus was
applied to selected regions of the carapace with a sampling step of 0.1 ms [for
details see Berg, Alaburda and Hounsgaard (2007), Berg, Ditlevsen and Houn-
sgaard (2008)]. The turtle responds to the stimulus with a reflex movement of a
limb known as the scratch reflex, causing an intense synaptic input to the recorded
neuron. Due to the time-varying stimulus, a model for the complete data set needs
to incorporate the time inhomogeneity, as done in Jahn et al. (2011). However, in
Jahn et al. (2011), only one-dimensional diffusions are considered, and spikes are
modeled as single points in time by adding a jump term with state-dependent in-
tensity function to the SDE, ignoring the detailed dynamics during spikes. In this
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FIG. 2. Observations of the membrane potential in a spinal motoneuron of an adult red-eared
turtle during 600 ms (upper panel) and the filtered hidden process of the normalized conductance
associated with K+ current (lower panel) for the estimated parameters with the scaling parameters
fixed at V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV and V4 = 60 mV.

paper we aim at estimating parameters during spiking activity by explicit modeling
of time-varying conductances. Therefore, we only analyze four traces during on-
cycles [following Jahn et al. (2011)] where spikes occur. Furthermore, in these time
windows, the input is approximately constant, which is required for the Morris–
Lecar model with constant parameters. An example of the analyzed data is plotted
in Figure 2, together with a filtered trace of the unobserved coordinate.

First the model was fitted with the values of the scaling parameters V1–V4 given
in Rinzel and Ermentrout (1989) and used in Section 6 below; see Table 1 for
one of the traces. Most of the estimates are reasonable and in agreement with the
expected order of magnitudes for the parameter values, except for the VCa rever-
sal potential, which in the literature is reported to be around 100–150 mV (esti-

TABLE 1
Parameter estimates obtained from observations of the membrane potential of a spinal motoneuron

of an adult red-eared turtle during 600 ms for two different sets of scaling parameters. With
σ = 0.05 fixed. First trace

Parameter

gL gCa gK γ VK φ VCa I

With V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30 mV
Estimate −0.296 11.274 6.553 2.801 −124.481 1.989 35.769 −5.024
SE 0.001 0.028 0.049 0.001 14.563 0.000 0.122 0.052

With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV, V4 = 60 mV
Estimate 1.046 12.906 20.878 2.466 −67.097 2.153 98.698 −65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204
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TABLE 2
Parameter estimates obtained from observations of the membrane potential of a spinal motoneuron

of an adult red-eared turtle during 600 ms for three different values of σ . With V1 = −2.4 mV,
V2 = 36 mV, V3 = 4 mV, V4 = 60 mV fixed. First trace

Parameter

gL gCa gK γ VK φ VCa I

σ fixed to 0.02
Estimate 1.302 12.460 16.550 2.280 −74.301 2.881 99.398 −52.742
SE 0.003 0.028 0.131 0.000 0.703 0.001 2.384 2.727

σ fixed to 0.05
Estimate 1.046 12.906 20.878 2.466 −67.097 2.153 98.698 −65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204

σ fixed to 0.15
Estimate 1.308 12.442 16.419 2.301 −74.576 2.911 99.417 −52.341
SE 0.002 0.007 0.120 0.000 0.021 0.000 4.529 1.558

mated to 44.7 mV), and the leak conductance, which is estimated to be negative.
Conductances are always nonnegative. This is probably due to wrong choices of
the scaling constants V1–V4. For the parameters given in Rinzel and Ermentrout
(1989), the average of the membrane potential Vt between spikes is around −26
mV, whereas the average of the experimental trace between spikes is around −56
mV, a factor two larger. We therefore rerun the estimation procedure fixing V1–V4
to twice the value from before, which provides approximately the same values of
the normalized Ca2+ conductance, m∞(·), and the rates of opening and closing of
K+ ion channels, α(·) and β(·), as in the theoretical model when Vt is at its equi-
librium value. In this case all parameters are reasonable and in agreement with the
expected order of magnitudes.

To check the robustness to misspecifications in the diffusion parameter σ of
the unobserved coordinate, we fitted the model for three different values of σ ; see
Table 2. Results are stable and suggest that σ is primarily affecting the subthresh-
old fluctuations of the channel dynamics, and mainly the spiking dynamics of the
unobserved coordinate influences the first coordinate.

Final results for all four traces are presented in Table 3. It is reassuring that the
parameter estimates seem so reproducible over different traces; the largest varia-
tion was below 10%. This is not due to starting values, for example, the starting
value for gL was 0.1, and all four estimates ended up between 1.3 and 1.4, and the
starting value for VK was −55, and all four estimates ended up between −75.4 and
−74.4.

6. Simulation study. Parameter values of the Morris–Lecar model used in
the simulations are the same as those of Rinzel and Ermentrout (1989), Tateno



690 S. DITLEVSEN AND A. SAMSON

TABLE 3
Parameter estimates obtained from four different traces of the membrane potential of a spinal

motoneuron of an adult red-eared turtle. Each trace has 6000 observations points with a sampling
step of 0.1 ms. With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV, V4 = 60 mV and σ = 0.05 fixed

Parameter

gL gCa gK γ VK φ VCa I

First trace
Estimate 1.046 12.906 20.878 2.466 −67.097 2.153 98.698 −65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204

Second trace
Estimate 1.430 11.705 15.791 2.253 −73.029 3.138 103.709 −53.183
SE 0.003 0.008 0.029 0.000 0.641 0.001 1.269 0.651

Third trace
Estimate 1.371 11.878 15.379 2.210 −75.024 3.004 99.887 −49.499
SE 0.002 0.013 0.017 0.000 0.195 0.000 0.464 0.614

Fourth trace
Estimate 1.197 11.452 12.521 2.012 −85.982 3.776 99.615 −37.017
SE 0.002 0.055 0.017 0.000 0.089 0.000 1.466 0.861

and Pakdaman (2004) for a class II membrane, except that we set the mem-
brane capacitance constant to C = 1 μF/cm2, which is the standard value re-
ported in the literature. Conductances and input current were correspondingly
changed and, thus, the two models are the same. The values are as follows:
VK = −84 mV, VL = −60 mV, VCa = 120 mV, C = 1 μF/cm2, gL = 0.1 μS/cm2,
gCa = 0.22 μS/cm2, gK = 0.4 μS/cm2, V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV,
V4 = 30 mV, φ = 0.04 ms−1. Input is chosen to be I = 4.5 μA/cm2. Initial con-
ditions of the Morris–Lecar model are Vt0 = −26 mV, Ut0 = 0.2. The volatility
parameters are γ = 1 mV ms−1/2, σ = 0.03 ms−1/2. Trajectories are simulated
with time step δ = 0.01 ms and n = 2000 points are subsampled with observations
time step 	 = 10δ. Then θ is estimated on each simulated trajectory. A hundred
repetitions are used to evaluate the performance of the estimators. An example of
a simulated trajectory (for n = 10,000) is given in Figure 1.

6.1. Filtering results. The Particle filter aims at filtering the hidden process
(Ut ) from the observed process (Vt ). We illustrate its performance on a simulated
trajectory, with θ fixed at its true value. The SMC Particle filter algorithm is imple-
mented with K = 100 particles and the transition density as proposal; see Figure 3.
The true hidden process, the mean filtered signal and its 95% confidence interval
are plotted. The filtered process appears satisfactory. The confidence interval in-
cludes the true hidden process (Ut ).



ESTIMATION IN NEURONAL MODELS 691

FIG. 3. Filtering of (Ut ) with the particle filter algorithm (100 particles): hidden simulated tra-
jectory of the Morris–Lecar model (Ut ) (black), mean filtered signal (grey full drawn line), 95%
confidence interval of filtered signal (grey dashed lines).

6.2. Estimation results. The performance of the SAEM–SMC algorithm is il-
lustrated on 100 simulated trajectories. The SAEM algorithm is implemented with
m = 200 iterations and a sequence (am) equal to 1 during the 100 first iterations
and equal to am = 1/(m − 100)0.8 for m > 100. The SMC algorithm is imple-
mented with K(m) = min(m,100) particles at each iteration of the SAEM algo-
rithm. The SAEM algorithm is initialized by a random draw of θ̂0 not centered
around the true value: θ̂0 = θtrue + 0.1 + θtrue/3N (0,1).

An example of the convergence of the SAEM algorithm for one of the iterations
is presented in Figure 4. It is seen that the algorithm converges for most of the
parameters in a few iterations to a neighborhood of the true value, even if the initial
values are far from the true ones. Only for φ more iterations are needed, which is
expected since this parameter appears in the second, nonobserved coordinate.

The SAEM estimator is compared with the pseudo maximum likelihood esti-
mator obtained if both Vt and Ut were observed. Results are given in Table 4. The
parameters are well estimated in this ideal case. The estimation of φ, which is the
only parameter in the drift of the hidden coordinate Ut , is good and does not dete-
riorate the estimation of the other parameters. In Figure 4 we show boxplots of the
estimates of the eight parameters for the three estimation settings; both coordinates
observed or only one observed with σ fixed at either the true or a wrong value. All
parameters appear well estimated. As expected, the variance of the estimator of φ

hugely increases when only one coordinate is observed, but interestingly, the vari-
ance of the parameters of the observed coordinate do not seem much affected by
this loss of information.

The SAEM–SMC algorithm provides estimates of the standard errors (SE) of
the estimators (see Appendix C). These should be close to the RMSE obtained
from the 100 simulated data sets. As an example, the SE for one data set estimated
by SAEM are reported in the last line of Table 4. The estimated SE are satisfactory
for most of the parameters, but tend to underestimate.
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FIG. 4. Estimation results for simulated data. Left panels: Boxplots of 100 estimates from simulated
data sets for the 8 parameters. True values used in the simulations are given by the gray lines. A: Both
Vt and Ut are observed. B: Only Vt is observed, σ is fixed at the true value 0.03. C: Only Vt is
observed, σ is fixed at a wrong value 0.04. Right panels: Convergence of the SAEM algorithm for the
8 estimated parameters on a simulated data set. True values used in the simulation are given by the
gray lines.

7. Discussion. The main contributions of this paper are an algorithm to han-
dle a more general model than a HMM and to show nonasymptotic convergence
results for the method. It turns out that some of the common problems encountered
with particle filters are not present in our case, namely, the filter does not degen-
erate, and we run the algorithm on large data sets of 6000 observations points in
reasonable time (35 minutes on a standard portable computer for one of the simu-
lated data sets).

To the authors’ knowledge, this is the first time the rate parameter of the un-
observed coordinate, φ, is estimated from experimental data. It is comforting to
observe that the estimated value does not seem to be very sensitive to the choice
of scaling parameters. Other parameters, like the conductances and the reversal
potentials, are more sensitive to this choice, and should be interpreted with care.

The estimation procedure builds on the pseudo likelihood, which approximates
the true likelihood by an Euler scheme. This approximation is only valid for a
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TABLE 4
Simulation results obtained from 100 simulated Morris–Lecar trajectories (n = 2000, 	 = 0.1 ms).
Two estimators are compared: The pseudo maximum likelihood estimator in the ideal case where
both Vt and Ut are observed, and the SAEM estimator when only Vt is observed with the SAEM

initialization at a random value not centered around the true value θ . An example of standard errors
(SE) estimated with the SAEM–SMC algorithm on one single simulated data set is also given

Parameter

Estimator gL gCa gK γ VK φ VCa I

True values: 0.100 0.220 0.400 1.00 −84.00 0.040 120.00 4.400

With both Vt and Ut observed (pseudo maximum likelihood estimator)
Mean 0.101 0.219 0.411 0.996 −83.20 0.040 121.97 4.539
RMSE 0.017 0.019 0.041 0.019 7.61 0.001 8.50 0.560

With only Vt observed (SAEM estimator)
Mean 0.090 0.225 0.464 1.003 −78.622 0.041 119.677 4.060
RMSE 0.021 0.024 0.144 0.017 9.459 0.013 10.218 1.028

Estimated SE 0.016 0.019 0.042 0.016 4.96 0.001 7.31 0.561

small sampling step, that is, for high frequency data, which is the case for the type
of neuronal data considered here. If data were sampled less often, a possibility
could be to simulate diffusion bridges between the observed points and apply the
estimation procedure to an augmented data set consisting of the observed data and
the imputed values.

There are several issues that deserve further study. First, it is important to un-
derstand the influence of the scaling parameters V1–V4 and how to estimate them
for a given data set. The model is not exponential in these parameters [assumption
(M1)] and new estimation procedures have to be considered. Second, one should
be aware of the possible misspecification of the model. More detailed models in-
corporating further types of ion channels could be explored, but increasing the
model complexity might deteriorate the estimates, since the information contained
in only observing the membrane potential is limited. Furthermore, the sensitivity
on the choice of tuning parameters of the algorithm, like the decreasing sequence
of the stochastic approximation, (am), and the number of SAEM iterations, needs
further investigation. Finally, an automated procedure to find starting values for
the procedure is warranted.

APPENDIX A: DISTRIBUTIONS OF APPROXIMATE MODEL

Consider the general approximate model [see (2)](
Vi+1
Ui+1

)
=

(
Vi

Ui

)
+ 	

(
f (Vi,Ui)

b(Vi,Ui)

)
+ √

	

(
γ ρ

ρ σ(Vi,Ui)

)(
η̃i

ηi

)
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with ρ the correlation coefficient between the two Brownian motions or perturba-
tions. The distribution of (Vi+1,Ui+1) conditionally on (Vi,Ui) is(

Vi+1
Ui+1

) ∣∣∣( Vi

Ui

)
∼ N

([
Vi + 	f (Vi,Ui)

Ui + 	b(Vi,Ui)

]
,	

[ (
γ 2 + ρ2)

ρ
(
γ + σ(Vi,Ui)

)
ρ

(
γ + σ(Vi,Ui)

) (
σ 2(Vi,Ui) + ρ2) ])

.

The marginal distributions of Vi+1 conditionally on (Vi,Ui) and Ui+1 condi-
tionally on (Vi,Ui) are

Vi+1|Vi,Ui ∼ N
(
Vi + 	f (Vi,Ui),	

(
γ 2 + ρ2))

,
(8)

Ui+1|Vi,Ui ∼ N
(
Ui + 	b(Vi,Ui),	

(
σ 2(Vi,Ui) + ρ2))

.

The conditional distributions of Vi+1 conditionally on (Ui+1,Vi,Ui) and Ui+1
conditionally on (Vi+1,Vi,Ui) are

Vi+1|Ui+1,Vi,Ui ∼ N (mV ,VarV ),
(9)

Ui+1|Vi+1,Vi,Ui ∼ N (mU,VarU),

where

mV = Vi + 	f (Vi,Ui) + ρ(γ + σ(Vi,Ui))

σ 2(Vi,Ui) + ρ2

(
Ui+1 − Ui − 	b(Vi,Ui)

)
,

VarV = 	
(
γ 2 + ρ2) − 	ρ2(γ + σ(Vi,Ui))

2

σ 2(Vi,Ui) + ρ2 ,

mU = Ui + 	b(Vi,Ui) + ρ(γ + σ(Vi,Ui))

γ 2 + ρ2

(
Vi+1 − Vi − 	f (Vi,Ui)

)
,

VarU = 	
(
σ 2(Vi,Ui) + ρ2) − 	ρ2(γ + σ(Vi,Ui))

2

γ 2 + ρ2 .

The distributions in (8) and (9) are equal when the Brownian motions are indepen-
dent, that is, when ρ = 0.

APPENDIX B: SUFFICIENT STATISTICS

We here provide the sufficient statistics of the approximate model (2). Consider
the n × 6-matrix

X = (−V0:(n−1),−m∞(V0:(n−1))V0:(n−1),

− U0:(n−1)V0:(n−1),U0:(n−1),1,m∞(V0:(n−1))
)
,

where 1 is the vector of 1’s of size n. Then the vector

S1(V0:(n−1),U0:(n−1)) = (
X′X

)−1
X′(V1:n − V0:(n−1))
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is the sufficient statistic vector corresponding to the parameters ν1(θ) = (gL, gCa,

gK, gKVK, gLVL + I, gCaVCa), where ′ denotes transposition.
The sufficient statistics corresponding to ν2(θ) = 1/γ 2 are

n∑
i=1

(Vi − Vi−1)Ui−1,

n∑
i=1

U2
i−1,

n∑
i=1

(Vi − Vi−1)Vi−1m∞(Vi−1),

n∑
i=1

(Vi − Vi−1)Ui−1Vi−1,

n∑
i=1

U2
i−1V

2
i−1.

The sufficient statistics corresponding to φ are also explicit but more complex
and not detailed here.

APPENDIX C: FISHER INFORMATION MATRIX

The standard errors (SE) of the parameter estimators can be evaluated from
the diagonal elements of the inverse of the Fisher information matrix estimate. Its
evaluation is difficult because it has no analytic form. We adapt the estimation of
the Fisher information matrix, proposed by Delyon, Lavielle and Moulines (1999)
and based on the Louis’ missing information principle.

The Hessian of the log-likelihood �	(θ) can be expressed as

∂2
θ �	(θ) = E

[
∂2
θ L

(
S(V0:n,U0:n), θ

)|V0:n, θ
]

+E
[
∂θL

(
S(V0:n,U0:n), θ

)(
∂θL

(
S(V0:n,U0:n), θ

))′|V0:n, θ
]

−E
[
∂θL

(
S(V0:n,U0:n), θ

)|V0:n, θ
]
E

[
∂θL

(
S(V0:n,U0:n), θ

)|V0:n, θ
]′
.

The derivatives ∂θL(S(V0:n,U0:n), θ) and ∂2
θ L(S(V0:n,U0:n), θ) are explicit for

the Euler approximation of the Morris–Lecar model. Therefore, we implement
their estimation using the stochastic approximation procedure of the SAEM al-
gorithm. At the mth iteration of the algorithm, we evaluate the three following
quantities:

Gm+1 = Gm + am

[
∂θL

(
S
(
V0:n,U(m)

0:n
)
, θ

) − Gm

]
,

Hm+1 = Hm + am

[
∂2
θ L

(
S
(
V0:n,U(m)

0:n
)
, θ

)
+ ∂θL

(
S
(
V0:n,U(m)

0:n
)
, θ

)(
∂θL

(
S
(
V0:n,U(m)

0:n
)
, θ

))′ − Hm

]
,

Fm+1 = Hm+1 − Gm+1(Gm+1)
′.

As the sequence (θ̂m)m converges to the maximum of the likelihood, the sequence
(Fm)m converges to the Fisher information matrix.
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APPENDIX D: PROOF OF THE CONVERGENCE RESULTS

D.1. Convergence results of Proposition 1. We omit θ in the proof for clar-
ity. The conditional expectation πnf is given by (5) and the kernels Hi from R

into itself are defined by (4). We write νn = μH1 · · ·Hn1 for the constant con-
ditioned on the observed values V0:n. Also, (4) is bounded, that is, Hi1(u) ≤ C

for all u ∈ R and i = 1, . . . , n, for some constant C. It directly follows that
μH1 · · ·Hi−11 ≤ Ci−1. Furthermore, we obtain the bound

μH1 · · ·Hi1 ≥ μH1 · · ·Hi+11

C
≥ · · · ≥ νn

Cn−i
.

Using the above bounds and that πi−1 is a transition measure, we obtain
νn

Cn−1 ≤ πi−1Hi1 ≤ C.(10)

Define the two empirical measures obtained at time i:  ′K
i = 1

K

∑K
k=1 1

U
′(k)
0:i

and

K
i = ∑K

k=1 Wi(U
(k)
0:i )1

U
(k)
0:i

. We also decompose the weights and write ϒK
i f =

1
K

∑K
k=1 f (U

(k)
i )wi(U

(k)
0:i ). Then Wi(U

(k)
0:i ) = wi(U

(k)
0:i )/(KϒK

i 1) and K
i f =

ϒK
i f/ϒK

i 1.
Recall the following general result [Del Moral, Jacod and Protter (2001)] for

ξ1, . . . , ξK random variables, which conditioned on a σ -field G are independent,
centered and bounded |ξk| ≤ a. Then for any ε > 0 we have

P

(∣∣∣∣∣ 1

K

K∑
k=1

ξk

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−K

ε2

2a2

)
.(11)

Let f be a bounded function on R. Then under assumption (SMC3)

 ′K
i f − K

i f = 1

K

K∑
k=1

(
f

(
U

′(k)
i

) − K
i f

) = 1

K

K∑
k=1

ξk

fulfills the conditions for (11) to hold with a = 2‖f ‖, since E(f (U
′(k)
i )|G) =

K
i f , where G is the σ -algebra generated by U

(k)
0:i . Thus, for any ε > 0,

P
(∣∣ ′K

i f − K
i f

∣∣ ≥ ε
) ≤ 2 exp

(
−K

ε2

8‖f ‖2

)
.(12)

Define Qi(f )(u) = ∫
q(u′|Vi,Vi−1, u)f (u′) du′. By definition of the unnormal-

ized weights in step 3 of the SMC algorithm, wi(u,u′) = p	(Vi,Vi−1, u,u′)/
p	(Vi−1, u)q(u′|Vi,Vi−1, u), so that Qi(f wi)(u) = ∫

p	(Vi, u
′|Vi−1, u) ×

f (u′) du′ = Hif (u). We therefore have

ϒK
i f −  ′K

i−1Hif = 1

K

K∑
k=1

(
f

(
U

(k)
i

)
wi

(
U

(k)
0:i

) − Qi(f wi)
(
U

′(k)
i−1

)) = 1

K

K∑
k=1

ξk,
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which fulfills the conditions for (11) to hold, now with a = 2C‖f ‖ and G is the σ -
algebra generated by U

′(k)
0:i−1, since U

(k)
i is drawn from q(·|Vi−1:i ,U ′(k)

i−1); see step 2
of the SMC algorithm. Hence, for any ε > 0 we obtain

P
(∣∣ϒK

i f −  ′K
i−1Hif

∣∣ ≥ ε
) ≤ 2 exp

(
−K

ε2

8C2‖f ‖2

)
.(13)

We want to show the following two bounds:

P
(∣∣K

i f − πif
∣∣ ≥ ε

) ≤ 2Ii exp
(
−K

ε2

8Ji‖f ‖2

)
, i = 1, . . . , n,(14)

P
(∣∣ ′K

i f − πif
∣∣ ≥ ε

) ≤ 2I ′
i exp

(
−K

ε2

8J ′
i ‖f ‖2

)
, i = 0,1, . . . , n,(15)

by induction on i, for some constants Ii, I
′
i , Ji, J

′
i increasing with i to be computed

later. Note first that since π0 = μ and U
′(k)
0 are i.i.d. with law μ, then (11) with

ξk = f (U
′(k)
0 )−μ(f ) yields (15) for i = 0 with I ′

i = J ′
i = 1. Let i ≥ 1 and assume

(15) holds for i − 1. We can write

K
i f − πif = 1

πi−1Hi1

(
ϒK

i f

ϒK
i 1

(
πi−1H11 − ϒK

i 1
) + (

ϒK
i f − πi−1Hif

))
.

Note that ϒK
i 1 > 0 because the weights wi are strictly positive. Define Lif =

ϒK
i f − πi−1Hif and use that |ϒK

i f | ≤ ‖f ‖ϒK
i 1 (because f is bounded) and

(10) to see that

∣∣K
i f − πif

∣∣ ≤ Cn−1

νn

(‖f ‖|Li1| + |Lif |)
and

|Lif | ≤ ∣∣ϒK
i f −  ′K

i−1Hif
∣∣ + ∣∣ ′K

i−1Hif − πi−1Hif
∣∣.

Assuming that (15) holds for i − 1 and using (13) and that ‖Hif ‖ ≤ C‖f ‖ yield

P
(|Lif | ≥ ε

) ≤ 2 exp
(
−K

ε2

32C2‖f ‖2

)
+ 2I ′

i−1 exp
(
−K

ε2

32J ′
i−1C

2‖f ‖2

)
.

We obtain

P
(∣∣K

i f − πif
∣∣ ≥ ε

)
≤ P

(
|Li1| ≥ ενn

2Cn−1‖f ‖
)

+ P

(
|Lif | ≥ ενn

2Cn−1

)

≤ 4 exp
(
−K

ε2ν2
n

128C2n‖f ‖2

)
+ 4I ′

i−1 exp
(
−K

ε2ν2
n

128J ′
i−1C

2n‖f ‖2

)
.
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Hence, (14) holds with Ii ≥ 2(1 + I ′
i−1) and Ji ≥ 16C2nJ ′

i−1/ν
2
n ≥ 16J ′

i−1 since
νn ≤ Cn. By (12) and (14) we then conclude that (15) also holds for i if I ′

i = 1+ Ii

and J ′
i = 4Ji . These conditions are fulfilled by choosing Ii = 3i+1 − 3 and Ji =

16i . Thus, (6) holds with C1 = 6(3n − 1) and C2 = 8 · 16n. This concludes the
proof.

D.2. Proof of Theorem 1. To prove the convergence of the SAEM–SMC al-
gorithm, we study the stochastic approximation scheme used during the SA step.
The scheme (7) can be decomposed into

sm+1 = sm + amh(sm) + amem + amrm

with

h(sm) = π
n,θ̂(sm)

S − sm,

em = S
(
V0:n,U(m)

0:n
) − 

K(m)

n,θ̂(sm)
S,

rm = 
K(m)

n,θ̂(sm)
S − π

n,θ̂(sm)
S,

where we denote by πn,θS = E	(S(V0:n,U0:n)|V0:n; θ) the expectation of the suf-
ficient statistic S under the exact distribution p	(U0:n|V0:n; θ), and by 

K(m)

n,θ̂(sm)
S

the expectation of the sufficient statistic S under the empirical measure obtained
with the SMC algorithm with K(m) particles and current value of parameters
θ̂ (sm) at iteration m of the SAEM–SMC algorithm.

Following Theorem 2 of Delyon, Lavielle and Moulines (1999) on the conver-
gence of the Robbins–Monro scheme, the convergence of the SAEM–SMC algo-
rithm is ensured if we prove the following assertions:

1. The sequence (sm)m≥0 takes its values in a compact set.
2. The function V (s) = −�	(θ̂(s)) is such that for all s ∈ S , F(s) = 〈∂sV (s),

h(s)〉 ≤ 0 and such that the set V ({s,F (s) = 0}) is of zero measure.
3. limm→∞

∑m
�=1 a�e� exists and is finite with probability 1.

4. limm→∞ rm = 0 with probability 1.

Assertion 1 follows from assumption (SMC2) and by construction of sm in for-
mula (7). Assertion 2 is proved by Lemma 2 of Delyon, Lavielle and Moulines
(1999) under assumptions (M1)–(M5) and (SAEM2). Assertion 3 is proved sim-
ilarly as Theorem 5 of Delyon, Lavielle and Moulines (1999). By construction
of the SMC algorithm, the equivalent of assumption (SAEM3) is checked for
the expectation taken under the approximate empirical measure 

K(m)

n;θ̂m
. Indeed,

the assumption of independence of the nonobserved variables U
(1)
0:n, . . . ,U

(m)
0:n

given θ̂0, . . . , θ̂m is verified. As a consequence, for any positive Borel function
f , EK(m)

	 (f (U
(m+1)
0:n )|Fm) = 

K(m)

n;θ̂m
f . Then

∑m
�=1 a�e� is a martingale, bounded

in L2 under assumptions (M5) and (SAEM1)–(SAEM2).
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To verify assertion 4, we use Proposition 1. Under assumptions (SMC2)–
(SMC3) and assertion 1, Proposition 1 yields that for any ε > 0, there exist two
constants C1, C2, independent of θ , such that

M∑
m=1

P
(|rm| > ε

) =
M∑

m=1

P
(∣∣K(m)

n,θ̂(sm)
S − π

n,θ̂(sm)
S
∣∣ ≥ ε

)

≤ C1

M∑
m=1

exp
(
−K(m)

ε2

C2‖S‖2

)
.

Finally, assumptions (SMC1)–(SMC2) imply that there exists a constant C3, inde-
pendent of θ , such that

M∑
m=1

P
(|rm| > ε

) ≤ C1

M∑
m=1

1

mC3g(m)ε2 ,

which is finite when M → ∞, proving the a.s. convergence of rm to 0.

D.3. Proof of Theorem 2. The Markov property yields∣∣p(V0:n; θ) − pδ(V0:n; θ)
∣∣

≤
∫ ∣∣p(V0:n,U0:n; θ) − pδ(V0:n,U0:n; θ)

∣∣dU0:n

≤
∫ ∣∣∣∣∣

n∏
i=1

p(Vi,Ui |Vi−1,Ui−1; θ) −
n∏

i=1

pδ(Vi,Ui |Vi−1,Ui−1; θ)

∣∣∣∣∣dU0:n

≤
∫ n∑

i=1

∣∣p(Vi,Ui |Vi−1,Ui−1; θ) − pδ(Vi,Ui |Vi−1,Ui−1; θ)
∣∣

×
i−1∏
j=1

p(Vj ,Uj |Vj−1,Uj−1; θ)

×
n∏

j=i+1

pδ(Vj ,Uj |Vj−1,Uj−1; θ) dU0:n.

Gobet and Labart (2008) provide that under assumption (H1), there exist constants
C1 > 0, C2 > 0, C3 > 0, C4 > 0 independent of θ such that∣∣pδ(Vi,Ui |Vi−1,Ui−1; θ) + p(Vi,Ui |Vi−1,Ui−1; θ)

∣∣
≤ C1e

−C2‖(Vi ,Ui)−(Vi−1,Ui−1)‖2
,∣∣pδ(Vi,Ui |Vi−1,Ui−1; θ) − p(Vi,Ui |Vi−1,Ui−1; θ)

∣∣
≤ δC3e

−C4‖(Vi ,Ui)−(Vi−1,Ui−1)‖2
.
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We deduce that for all i = 1, . . . , n, there exists a constant C > 0 independent of θ

such that ∫ ∣∣p(Vi,Ui |Vi−1,Ui−1; θ) − pδ(Vi,Ui |Vi−1,Ui−1; θ)
∣∣

×
i−1∏
j=1

p(Vj ,Uj |Vj−1,Uj−1; θ)

×
n∏

j=i+1

pδ(Vj ,Uj |Vj−1,Uj−1; θ) dU0:n ≤ Cδ.

Finally, we get |p(V0:n; θ) − pδ(V0:n; θ)| ≤ Cnδ = C 1
L
n	.
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