
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2016, Vol. 52, No. 2, 726–734
DOI: 10.1214/14-AIHP649
© Association des Publications de l’Institut Henri Poincaré, 2016

A three-series theorem on Lie groups

Ming Liao

Department of Mathematics, Auburn University, Auburn, AL 36849, USA. E-mail: liaomin@auburn.edu

Received 10 June 2013; revised 20 September 2014; accepted 30 September 2014

Abstract. We obtain a necessary and sufficient condition for the convergence of independent products on Lie groups, as a natural
extension of Kolmogorov’s three-series theorem. Application to independent random matrices is discussed.

Résumé. Nous obtenons une condition nécessaire et suffisante pour la convergence de produits indépendants sur des groupes de
Lie, comme extension naturelle du théorème des trois séries de Kolmogorov. Une application à des matrices aléatoires indépen-
dantes est discutée.
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1. Introduction and main results

Let xn be a sequence of independent real-valued random variables. Fix any constant r > 0. Kolmogorov’s three-series
theorem (see for example [1, Theorem 22.8]) states that the series

∑∞
n=1 xn converges almost surely if and only if the

following three conditions hold.

(K1)
∑∞

n=1 P(|xn| > r) < ∞;
(K2)

∑∞
n=1 E(xn1[|xn|≤r]) converges, where 1A is the indicator of a set A; and

(K3)
∑∞

n=1 E[(xn1[|xn|≤r] − bn)
2] < ∞, where bn = E(xn1[|xn|≤r]).

Extensions of the three-series theorem to more general spaces have been explored in literature. In particular, Mak-
simov [6] obtained a one-sided extension of the three-series theorem to Lie groups, providing a set of sufficient
conditions for the convergence of products of independent random variables in a Lie group, with some partial result
toward the more difficult necessity part.

The purpose of this paper is to present a complete extension of the three-series theorem to a general Lie group. Our
result is a simpler form of a conjecture proposed in [6], and is in more close analogy with the classical result. We not
only establish the more difficult necessity part, the proof of sufficiency is also much shorter than [6]. The result will
be applied to study the convergence of products of independent random matrices.

Let G be a Lie group of dimension d with identity element e. There are a relatively compact neighborhood U of e

and a smooth function φ = (φ1, φ2, . . . , φd) :U → R
d which maps U diffeomorphically onto a convex neighborhood

φ(U) of the origin 0 in R
d , with φ(e) = 0. The U is not assumed to be open and φ is assumed extendable to be a

smooth function on an open set containing the closure U of U . In the rest of the paper, U and φ are fixed, but they
may be chosen arbitrarily as long as the above properties are satisfied.

Let x be a random variable in G. Its U -truncated mean b is defined by

φ(b) = E
[
φ(x)1[x∈U ]

]
. (1)
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Note that because φ(U) is convex, E[φ(x)1[x∈U ]] ∈ φ(U) and b = φ−1{E[φ(x)1[x∈U ]]}.

Theorem 1. Let xn be a sequence of independent G-valued random variables with U -truncated means bn. Then
x̂n = x1x2 · · ·xn converges almost surely in G as n → ∞ if and only if the following three conditions hold.

(G1)
∑∞

n=1 P(xn ∈ Uc) < ∞, where Uc is the complement of U in G;
(G2) b̂n = b1b2 · · ·bn converges in G as n → ∞; and
(G3)

∑∞
n=1 E[‖φ(xn)1[xn∈U ] − φ(bn)‖2] < ∞, where ‖ · ‖ is the Euclidean norm on R

d .

Note that under (G1), (G3) is equivalent to
∑∞

n=1 E[‖φ(xn) − φ(bn)‖21[xn∈U ]] < ∞.
The proof of Theorem 1 will begin in the next section. Note that by Kolmogorov’s 0–1 law, the independent product

x̂n either converges almost surely or diverges almost surely.
When G = R

d as an additive group, one may take φ to be the identity map on R
d and U to be the ball of radius

r > 0 centered at 0, then Theorem 1 becomes precisely Kolmogorov’s three-series theorem on R
d .

We briefly comment on the relation between the almost sure convergence and the convergence in distribution.
On Euclidean spaces, it is well known that the two convergences are equivalent for a series of independent random
variables. This is not true for an independent product on a Lie group G. Because if G has a compact subgroup
H �= {e}, then for any sequence of independent random variables xn, each is distributed according to the normalized
Haar measure on H , the product x1x2 · · ·xn converge in distribution to x1, but it is clearly not convergent almost surely.
By Theorem 2.2.16(ii) in Heyer [4], if the only compact subgroup of G is {e}, then the convergence in distribution
and the almost sure convergence are equivalent for an infinite product of independent random variables in G.

For k ≥ 1, let Mk be the space of k × k real matrices, which may be identified with R
d , where d = k2. The

Euclidean norm of x = {xij } ∈ Mk is ‖x‖ =
√∑

i,j x2
ij , and it satisfies ‖xy‖ ≤ ‖x‖‖y‖ for x, y ∈Mk .

Let G be the group of k × k real matrices of nonzero determinants under matrix product. Its identity element e

is the identity matrix I . Its Lie algebra is Mk with the Lie group exponential map exp(x) being the usual matrix
exponential ex = I + ∑∞

n=1 xn/n!.

Theorem 2. Let G be the matrix group as above, and let xn be a sequence of independent random variables in G. Fix
r ∈ (0,1). Then x̂n = x1x2 · · ·xn converges almost surely to a random matrix in G if and only if the following three
conditions hold.

(M1)
∑∞

n=1 P(‖xn − I‖ > r) < ∞;
(M2) b1b2 · · ·bn converges in G as n → ∞, where bn = I + E[(xn − I )1[‖xn−I‖≤r]]; and
(M3)

∑∞
n=1 E(‖xn − bn‖21[‖xn−I‖≤r]) < ∞.

Proof. For x ∈ G, let U = {x ∈ G; ‖x − I‖ ≤ r} and φ(x) = x − I ∈ Mk . If ‖y‖ < 1, then I + y is invertible with
(I + y)−1 = I +∑∞

p=1(−1)pyp . It follows that φ maps U diffeomorphically onto the ball of radius r centered at 0 in

Mk ≡ R
d , and hence φ and U satisfy the required properties. Theorem 1 may be applied with bn in (M2) being the

U -truncated mean of xn. (G1) and (G2) are just (M1) and (M2), and (G3) is
∑

n E[‖(xn − I )1Hn − (bn − I )‖2] < ∞,
where Hn = [‖xn − I‖ ≤ r]. Because E[‖(xn − I )1Hn − (bn − I )‖2] = E[‖xn − bn‖21Hn] + ‖bn − I‖2P(Hc

n), by
(M1), (G3) is equivalent to (M3). �

Example 1. Let yn be a sequence of independent random variables in Mk ≡ R
d , d = k2. Assume xn = I + yn is

almost surely invertible. Note that this holds if yn has a continuous distribution. Also assume that for some r ∈ (0,1),
E(yn1[‖yn‖≤r]) = 0 for all n. Then x̂n = x1x2 · · ·xn converges to an invertible random matrix x∞ almost surely if

∞∑
n=1

E
(‖yn‖2) < ∞. (2)

To prove this claim, note that bn in (M2) is I and (M2) holds trivially. Now (M1) is
∑∞

n=1 P(‖yn‖ > r) < ∞ and
(M3) is

∑∞
n=1 E[‖yn‖21[‖yn‖≤r]] < ∞. Because P(‖yn‖ > r) ≤ E(‖yn‖2)/r2, so (M1) and (M3) are implied by (2).

By Theorem 2, x̂n converges almost surely in the matrix group G.
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Example 2. Let yn be independent random variables in Mk ≡ R
d , d = k2. Assume yn is normal of mean 0. Then

x̂n = (I + y1) · · · (I + yn) converges almost surely in the matrix group G if and only if (2) holds. To prove this, note
that by the symmetry of a normal distribution, E(yn1[‖yn‖≤r]) = 0 for all r > 0. By Example 1, (2) is a sufficient
condition for the almost sure convergence of x̂n in G. To see it is also necessary, it suffices to show that (2) is implied
by

∑
n E[‖yn‖21[‖yn‖≤r]] < ∞ and

∑
n P (‖yn‖ > r) < ∞. This can be done by an elementary computation of the

normal distribution.

Example 3. Let yn be a sequence of independent random variables in Mk ≡R
d , d = k2. Assume there is r > 0, which

may be chosen arbitrarily small, such that E(yn1[‖yn‖≤r]) = 0 for all n. Then exp(y1) exp(y2) · · · exp(yn) converges
in the matrix group G almost surely if (2) holds. To prove this, apply Theorem 1 to xn = exp(yn) with φ = exp−1

on U , where U is the diffeomorphic image of a small ball in Mk ≡ R
d under exp. The conditions may be verified as

in Example 1.

2. Sufficiency

For any sequence of independent random variables xn in G, by the Borel–Cantelli lemma, if (G1) holds, then almost
surely, xn ∈ U except for finitely many n. On the other hand, if x̂n = x1x2 · · ·xn converges almost surely, then because
xn = x̂−1

n−1x̂n → e, (G1) follows from the Borel–Cantelli lemma. Set x′
n = xn on [xn ∈ U ] and x′

n = e on [xn ∈ Uc].
Then the almost sure convergence of x1x2 · · ·xn is equivalent to that of x′

1x
′
2 · · ·x′

n and (G1). Note that φ(xn)1[xn∈U ] =
φ(x′

n) = φ(x′
n)1[x′

n∈U ], and all quantities in (G2) and (G3) (including bn) only depend on the restriction of xn on U .
Therefore, (G2) and (G3) hold for xn if and only if they hold for x′

n. Thus, as noted in [6], to prove Theorem 1, we
may, and will, assume all xn ∈ U , and prove that x̂n converges almost surely in G if and only if (G2) and (G3) hold.

We will prove the sufficiency part of Theorem 1 in this section, and so assume (G2) and (G3). Let μn be the
distribution of xn. Because xn ∈ U , the U -truncated mean bn of xn is defined by φ(bn) = μn(φ), where μn(φ) =∫

φ dμn = E[φ(xn)]. Set x̂0 = b̂0 = e. For n ≥ 1, let zn = b̂n−1xnb
−1
n b̂−1

n−1 and ẑn = z1z2 · · · zn, and set ẑ0 = e. It is
easy to show by a simple induction on n that for all n ≥ 0,

x̂n = ẑnb̂n. (3)

By (G2), it suffices to show that ẑn converges in G almost surely.
Note that for G = R

d , zn is just the centered term xn − bn, and ẑn = x̂n − b̂n is the sum of the centered terms. To
have x̂n = ẑnb̂n on a noncommutative multiplicative Lie group G, zn has to be defined in the above rather complicated
form.

By the lemma below, the almost sure convergence of ẑn is equivalent to zmzm+1 · · · zn → e almost surely as m → ∞
with m < n.

Lemma 3. Let un be independent random variables in G. Then u1u2 · · ·un converges almost surely as n → ∞ if and
only if umum+1 · · ·un → e almost surely as m → ∞ with m < n.

Proof. This is an easy consequence of the existence of a complete metric on G that is invariant under left translations
and is compatible with the topology on G. The metric can be any left invariant Riemannian metric on G. �

For any f ∈ C∞
c (G), the space of smooth functions on G with compact supports, let M0f = f (e) and for n ≥ 1,

let

Mnf = f (ẑn) −
n∑

p=1

∫ [
f

(
ẑp−1b̂p−1xb−1

p b̂−1
p−1

) − f (ẑp−1)
]
μp(dx). (4)

Lemma 4. Let Fn be the σ -algebra generated by x1, x2, . . . , xn. Then E[Mnf | Fm] = Mmf for m < n, that is, Mnf

is a martingale under the filtration {Fn}.
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Proof. Because xn are independent, for m < p,

E

[∫
f

(
ẑp−1b̂p−1xb−1

p b̂−1
p−1

)
μp(dx)

∣∣∣Fm

]

= E

[∫
f

(
ẑmzm+1 · · · zp−1b̂p−1xb−1

p b̂−1
p−1

)
μp(dx)

∣∣∣ Fm

]

= E
[
f (ẑzm+1 · · · zp−1zp)

]∣∣
ẑ=ẑm

= E
[
f (ẑp) |Fm

]
.

Then E[Mnf | Fm] = Mmf . �

Fix an integer m > 0 and a neighborhood V of e. Let f ∈ C∞
c (G) be such that 0 ≤ f ≤ 1, f (e) = 1 and f (x) = 0

for x ∈ V c . For g ∈ G, let lg be the left translation x �→ gx on G, and let fm = f ◦ l
ẑ−1
m

. Let Λ(m,V ) be the event
that there is n > m such that zm+1zm+2 · · · zn ∈ V c. To estimate P [Λ(m,V )], let τ be the first time n > m such that
zm+1zm+2 · · · zn ∈ V c and set τ = ∞ if zm+1zm+2 · · · zn ∈ V for all n > m. Then

P
[
Λ(m,V )

] = E
{[

fm(ẑm) − fm(ẑτ )
]
1Λ(m,V )

} = lim
n→∞E

{[
fm(ẑm) − fm(ẑτ∧n)

]
1Λ(m,V )

}
, (5)

where τ ∧ n = min(τ, n). Because E{[fm(ẑm) − fm(ẑτ∧n)]1Λ(m,V )} ≤ E[1 − fm(ẑτ∧n)] = E[fm(ẑm) − fm(ẑτ∧n)]
and E[Mτ∧nfm] = E{E[Mτ∧nfm |Fm]} = E[Mmfm],

E
{[

fm(ẑm) − fm(ẑτ∧n)
]
1Λ(m,V )

}
≤ −E

{
τ∧n∑

p=m+1

∫ [
f

(
ẑp−1b̂p−1xb−1

p b̂−1
p−1

) − f (ẑp−1)
]
μp(dx)

}

≤
∞∑

p=m

E

{∣∣∣∣
∫ [

f
(
ẑp−1b̂p−1xb−1

p b̂−1
p−1

) − f (ẑp−1)
]
μp(dx)

∣∣∣∣
}
. (6)

We will write ẑ, b̂, b,μ for ẑp−1, b̂p−1, bp,μp for simplicity. For x ∈ U , by the Taylor expansion of f (ẑb̂xb−1 ×
b̂−1) = f (ẑb̂φ−1(φ(x))b−1b̂−1) at x = b, noting μ(Uc) = 0,

∫ [
f

(
ẑb̂xb−1b̂−1) − f (ẑ)

]
μ(dx) =

∫ {∑
i

fi(ẑ, b̂, b)
[
φi(x) − φi(b)

]}
μ(dx) + r, (7)

where

fi(ẑ, b̂, b) = ∂

∂φi

f
(
ẑb̂φ−1(φ(x)

)
b−1b̂−1)∣∣

x=b
(8)

and the remainder r satisfies |r| ≤ cμ(‖φ − φ(b)‖2) for some constant c > 0. Because μ(φi) = φi(b),
∫ [φi(x) −

φi(b)]μ(dx) = 0, and then by (7),∣∣∣∣
∫ [

f
(
ẑb̂xb−1b̂−1) − f (ẑ)

]
μ(dx)

∣∣∣∣ = |r| ≤ cμ
(∥∥φ − φ(b)

∥∥2)
. (9)

It now follows from (5) and (6) that P [Λ(m,V )] ≤ c
∑∞

n=m μn(‖φ − φ(bn)‖2). Let ε ∈ (0,1) and let Vk be a
sequence of neighborhoods of e with Vk ↓ {e} as k ↑ ∞. By (G3), for each k ≥ 1, there is an integer mk such
that P [Λ(mk,Vk)] < εk . Then

∑∞
k=1 P [Λ(mk,Vk)] ≤ ∑∞

k=1 εk = ε/(1 − ε). By Lemma 3, P(ẑn converges) ≥
P [⋂∞

k=1 Λ(mk,Vk)
c] ≥ 1 − ∑∞

k=1 P [Λ(mk,Vk)] ≥ 1 − ε/(1 − ε) → 1 as ε → 0. This proves ẑn converges almost
surely.
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3. Necessity, part 1

We will now prove (G2) and (G3) under the assumption that x̂n converges almost surely and all xn ∈ U . This proof is
more complicated and will require another section.

Because xn = x̂−1
n−1x̂n → e almost surely, by the Borel–Cantelli lemma,

∀ neighborhood V of e,

∞∑
n=1

P
(
xn ∈ V c

)
< ∞. (10)

We also have

bn → e and μn

(∥∥φ − φ(bn)
∥∥2) → 0 as n → ∞. (11)

For m < n, let x̂m,n = xm+1xm+2 · · ·xn and b̂m,n = bm+1bm+2 · · ·bn. If either (G2) or (G3) does not hold, then
there are a neighborhood V of e, ε > 0 and two sequences of integers mk and nk with V V ⊂ U , mk < nk and mk ↑ ∞
as k ↑ ∞ such that for each k ≥ 1,

either
nk∑

p=mk+1

μp

(∥∥φ − φ(bp)
∥∥2) ≥ ε or b̂mk,nk

∈ V c.

Because of (11), by choosing m1 large enough, we have bn ∈ V and μn(‖φ − φ(bn)‖2) ≤ ε for n > m1. Thus, by
suitably reducing nk , we obtain that for each k ≥ 1, either

(i) ε ≤ ∑nk

p=mk+1 μp(‖φ − φ(bp)‖2) ≤ 2ε, and b̂mk,p ∈ U for mk < p ≤ nk ; or

(ii)
∑nk

p=mk+1 μp(‖φ − φ(bp)‖2) ≤ 2ε, b̂mk,nk
∈ V c , and b̂mk,p ∈ U for mk < p ≤ nk .

We will derive a contradiction from either (i) or (ii) above. We will embed the partial products xmk,p and bmk,p ,
for mk < p ≤ nk , into a process x̃k

t and a function b̃k
t on [0,1] respectively. The main idea is to obtain a martingale

property for the process z̃k
t , defined by x̃k

t = z̃k
t b̃

k
t , similar to the martingale property for ẑn in the last section, to show

the limit z̃t of z̃k
t satisfies an integral equation, and then to derive a contradiction. This is similar to the approaches in

[3,5] for processes in Lie groups with independent increments.
Let γk be a strictly increasing function from {mk,mk + 1, . . . , nk} into [0,1] with γk(mk) = 0 and γk(nk) = 1. Let

tk,p = γk(p) for mk ≤ p ≤ nk . Then tk,mk
= 0 and tk,nk

= 1. Let x̃k
t = b̃k

t = e for 0 ≤ t < tk,mk+1. For mk < p < nk

and tk,p ≤ t < tk,p+1, let

x̃k
t = x̂mk,p and b̃k

t = b̂mk,p. (12)

Set x̃k
t = x̂mk,nk

and b̃k
t = b̂mk,nk

for t ≥ 1. Then x̃k
t and b̃k

t are respectively a step process and a step function, which
are right continuous with jumps xp and bp at t = tk,p .

Note that by Lemma 3, almost surely, x̃k
t → e as k → ∞ uniformly in t .

A continuous function A(t) = {Aij (t)} from R+ = [0,∞) to the space of d × d symmetric real matrices is called
a covariance matrix function if A(0) = 0 and for s < t , A(t) − A(s) ≥ 0 (nonnegative definite). Let

Ak
ij (t) =

∑
0<tk,p≤t

∫
G

[
φi(x) − φi(bp)

][
φj (x) − φj (bp)

]
μp(dx). (13)

Then Ak(t) = {Ak
ij (t)} is almost a covariance matrix function except that it is not continuous, but Ak(t) = Ak(1) for

t ≥ 1. Let Qk(t) be the trace of Ak(t). Then

Qk(t) =
∑

0<tk,p≤t

μp

(∥∥φ − φ(bp)
∥∥2)

, (14)
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and for s < t ,∣∣Ak
ij (t) − Ak

ij (s)
∣∣ ≤ Qk(t) − Qk(s). (15)

Note that Qk(t) is a nondecreasing step function in t with a jump μp(‖φ − φ(bp)‖2) at t = tk,p , Qk(t) = 0 for
0 ≤ t < tmk,mk+1 and Qk(t) = Qk(1) = ∑

mk<p≤nk
μp(‖φ − φ(bp)‖2) for t ≥ 1. By either (i) or (ii), Qk(t) ≤ 2ε, and

by (11), the jumps of Qk(t) converge to 0 uniformly in t as k → ∞. It follows that the function γk may be chosen
properly such that

Qk(t) − Qk(s) ≤ 2ε(t − s) + εk, 0 ≤ s < t ≤ 1, (16)

where εk → 0 as k → ∞. Roughly speaking, this means the functions Qk(t) are equi-continuous for large k. Because
of (11), by either (i) or (ii), nk − mk → ∞ as k → ∞, and hence γk may be chosen to satisfy, besides (16),

max
p>mk+1

(tk,p − tk,p−1) → 0 as k → ∞. (17)

Lemma 5. There is a covariance matrix function A(t) with A(t) = A(1) for t ≥ 1 such that along a subsequence of
k → ∞, Ak(t) → A(t) for any t ≥ 0.

Proof. Let Λ be a countable dense subset of [0,1]. Under either (i) or (ii), Qk(t) is bounded. By (15), along a
subsequence of k → ∞, Ak(t) converges for any t ∈ Λ. By (16), the convergence holds for all t ≥ 0, and A(t) is
continuous in t . �

Let Y be a smooth manifold equipped with a compatible metric ρ and let y : [0,1] → Y be a continuous function.
For each k, let yk : [0,1] → Y be a step function that is constant on [tk,p−1, tk,p) for each p = mk +1, . . . , nk . Assume
for any t > 0, ρ(yk(tk,p), y(tk,p)) → 0 as k → ∞ uniformly for tk,p ≤ t . Let F(y,g) = {Fij (y, g)} be a bounded
continuous matrix-valued function on Y × G.

Lemma 6. Assume the above and let A(t) be the covariance matrix function in Lemma 5. Then for any t > 0, along
the subsequence of k → ∞ in Lemma 5,

∑
0<tk,p≤t

d∑
i,j=1

∫
G

Fij

(
yk(tk,p−1), bp

)[
φi(x) − φi(bp)

][
φj (x) − φj (bp)

]
μp(dx)

→
d∑

i,j=1

∫ t

0
Fij

(
y(s), e

)
dAij (s). (18)

Proof. By the uniform convergence ρ(yk(tk,p), y(tk,p)) → 0, F(yk(tk,p), b) − F(y(tk,p), b) → 0 as k → ∞ uni-
formly for tk,p ≤ t and for b in a compact set. Because when k → ∞, bp → e uniformly for p > mk , we may replace
yk and bp by y and e in the proof.

Let r > 0 be an integer. For any two expressions A and B depending on (k, r), we will write A ≈ B if |A−B| → 0
as r → ∞ uniformly in k. Then

∑
0<tk,p≤t

d∑
i,j=1

∫
G

Fij

(
y(tk,p−1), e

)[
φi(x) − φi(bp)

][
φj (x) − φj (bp)

]
μp(dx)

≈
d∑

i,j=1

r−1∑
q=0

∑
qt/r<tk,p≤(q+1)t/r

∫
G

Fij

(
y

(
qt

r

)
, e

)[
φi(x) − φi(bp)

][
φj (x) − φj (bp)

]
μp(dx)

(
where

∑
qt/r<tk,p≤(q+1)t/r

(· · ·) = 0 if

(
qt

r
,
(q + 1)t

r

]
contains no tk,p

)
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→
d∑

i,j=1

r−1∑
q=0

Fij

(
y

(
qt

r

)
, e

)[
Aij

(
(q + 1)t

r

)
− Aij

(
qt

r

)]
(as k → ∞, by Lemma 5)

≈
d∑

i,j=1

∫ t

0
Fij

(
y(s), e

)
dAij (s).

�

We now define a new process z̃k
t , similar in the way as the sequence zn is defined from xn and bn in Section 2, by

setting z̃k
t = e for 0 ≤ t < tk,mk+1, and inductively

z̃k
t = z̃k

tk,p−1
b̃k
tk,p−1

xpb−1
p

(
b̃k
tk,p−1

)−1 (19)

for tk,p ≤ t < tk,p+1, p = mk + 1, . . . , nk , setting tk,nk+1 = ∞ here. Then z̃t = z̃1 for t > 1, and a simple induction on
p shows that x̃k

t = z̃k
t b̃

k
t for all t ≥ 0.

For f ∈ C∞
c (G), let M̃k

t f = f (z̃k
t ) = f (e) for 0 ≤ t < tk,mk+1, and let

M̃k
t f = f

(
z̃k
t

) −
∑

0<tk,p≤t

∫
G

[
f

(
z̃k
tk,p−1

b̃k
tk,p−1

xb−1
p

(
b̃k
tk,p−1

)−1) − f (z̃tk,p−1)
]
μp(dx), (20)

for t ≥ tk,mk+1.

Lemma 7. M̃k
t f is a martingale under the natural filtration of process z̃k

t .

Proof. This is proved in the same way as in Lemma 4 for Mnf to be a martingale. �

Because x̃k
t = z̃k

t b̃
k
t and x̃k

t → e uniformly in t as k → ∞ almost surely, if b̃k
t converges to some continuous path

b̃t in G uniformly in t as k → ∞, then z̃k
t → z̃t = b̃−1

t uniformly in t almost surely. This will be assumed in the rest
of this section.

By a computation using Taylor expansion similar to the one in the last section, but up to the second order, noting
the integrals of the first order terms vanish as before,

M̃k
t f = f

(
z̃k
t

) −
∑

0<tk,p≤t

∑
i,j

∫
G

fij

(
z̃k
tk,p−1

, b̃k
tk,p−1

, bp

)[
φi(x) − φi(bp)

][
φj (x) − φj (bp)

]
μp(dx) + rk,

where

fij (z̃, b̃, b) = ∂2

∂φi ∂φj

f
(
z̃b̃φ−1(φ(x)

)
b−1b̃−1)∣∣

x=b
,

and the reminder rk may be divided into an integral over a small neighborhood V of e and an integral over V c .
The former is controlled by cV Qk(t) ≤ cV (2ε), where the constant cV → 0 as V ↓ {e}, and the latter is controlled
by

∑
mk<p≤nk

μp(V c) which converges to 0 as k → ∞ by (10). Therefore, rk → 0 as k → ∞. By Lemma 6 with

Y = G × G and yk(t) = (z̃k
t , b̃

k
t ) → y(t) = (z̃t , b̃t ), it follows that M̃k

t f converges to the martingale

M̃tf = f (z̃t ) −
∑
i,j

∫ t

0
fij (z̃s , b̃s , e)dAij (s)

as k → ∞. Because z̃t = b̃−1
t is nonrandom, the martingale M̃tf must be f (e), and then for any f ∈ C∞

c (G) with
f (e) = 0,

f (z̃t ) =
∑
i,j

∫ t

0

[
∂2

∂φi ∂φj

f
(
φ−1(φ(x)

)
z̃s

)∣∣
x=e

]
dAij (s). (21)
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Let t0 be the largest nonnegative real number ≤ 1 such that z̃s = e and A(s) = 0 for s ≤ t0. We will show t0 = 1.
Suppose t0 < 1. Then (21) holds for t ≥ t0 with

∫ t

0 replaced by
∫ t

t0
. Without loss of generality, we will assume t0 = 0.

Substitute f = φ2
β in (21), then the integrand is 2δiβδjβ + εs , where εs denotes any function satisfying εs → 0 as

s → 0. It follows that φβ(z̃t )
2 = 2Aββ(t) + εtTt , where Tt = Tr[A(t)]. Then ‖φ(z̃t )‖2 = 2Tt + εtTt . Now let f = φβ

and then (21) yields φβ(z̃t ) = εtTt . This implies |φβ(z̃t )| ≤ c‖φ(z̃t )‖2 for some constant c > 0, which is clearly
impossible. This shows that t0 = 1, and hence z̃t = e and A(t) = 0 for all t ≥ 0.

If (i) holds, then Tr[A(1)] = limk Qk(1) = limk

∑nk

p=mk+1 μp(‖φ − φ(bp)‖2) ≥ ε, which contradicts to A(t) = 0.

Thus (i) cannot hold. If (ii) holds, then b̃1 = limk b̃k
1 = limk b̂mk,nk

belongs to the closure of V c , which contradicts to
b̃t = z̃−1

t = e. We have proved that neither (i) nor (ii) holds, and hence (G2) and (G3) must hold, under the assumption
that b̃k

t → b̃t as k → ∞ uniformly in t for some continuous path b̃t in G.

4. Necessity, part 2

It remains to show that b̃k
t → b̃t as k → ∞ uniformly in t for some continuous path b̃t in G. A rcll path is a right

continuous path with left limits, and a process with rcll paths will be called a rcll process. Let D(G) be the space of
rcll paths in G. Equipped with the Skorohod metric, D(G) is a complete separable metric space (see [2], Chapter 3).
A sequence of rcll processes yk

t in G are said to converge weakly to a rcll process yt if yk· → y· in distribution as
D(G)-valued random variables. The sequence yk

t are called relatively weak compact in D(G) if any subsequence has
a further subsequence that converge weakly.

We will show that z̃k
t are relatively weak compact. Let V be a neighborhood of e. The amount of time it takes for a

rcll process yt to make V c-displacement from a stopping time σ (under the natural filtration of process yt ) is denoted
as τσ

V , that is,

τσ
V = inf

{
t > 0;y−1

σ yσ+t ∈ V c
}

(inf of an empty set is ∞). (22)

For a sequence of processes yk
t in G, let τ

σ,k
V be the V c-displacement time for yk

t from σ .
The following lemma is Lemma 16 in [5] and provides a criterion for the relative compactness. It is a slightly

improved version of a lemma in [3].

Lemma 8. A sequence of rcll processes yk
t in G are relatively weak compact in D(G) if for any constant T > 0 and

any neighborhood V of e,

lim
k→∞ sup

σ≤T

P
(
τ

σ,k
V < δ

) → 0 as δ → 0, (23)

and

lim
k→∞ sup

σ≤T

P
[(

yk
σ−

)−1
yk
σ ∈ Kc

] → 0 as compact K ↑ G, (24)

where supσ≤T is taken over all stopping times σ ≤ T .

We will apply Lemma 8 to yk
t = z̃k

t . Because z̃k
t = z̃k

1 for t > 1, we may take T = 1 in Lemma 8. Let f ∈ C∞
c (G)

be such that 0 ≤ f ≤ 1 on G, f (e) = 1 and f = 0 on V c. For any stopping time σ ≤ 1, write τ for τ
σ,k
V and let

fσ = f ◦ lz with z = (z̃k
σ )−1. Then

P(τ < δ) = E
[
fσ

(
z̃k
σ

) − fσ

(
z̃k
σ+τ

); τ < δ
] ≤ E

[
fσ

(
z̃k
σ

) − fσ

(
z̃k
σ+τ∧δ

)]
, (25)

noting fσ (zk
σ ) = 1, fσ (zk

σ+τ ) = 0 and τ = τ ∧ δ on [τ < δ]. Because M̃k
t f given by (20) is a martingale for any

f ∈ C∞
c (G), and σ and σ + τ ∧ δ are stopping times,

E
[
M̃k

σ fσ − M̃k
σ+τ∧δfσ

] = E
{
E

[
M̃k

σ fσ − M̃k
σ+τ∧δfσ | Fσ

]} = 0.
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Writing z̃, b̃, b,μ for z̃k
tk,p−1

, b̃k
tk,p−1

, bp,μp , by (20) and (25), we obtain

P(τ < δ) ≤ −E

{ ∑
σ<tk,p≤σ+τ∧δ

∫
G

[
fσ

(
z̃b̃xb−1b̃−1) − fσ (z̃)

]
μ(dx)

}

≤ E

{ ∑
σ<tk,p≤σ+δ

∣∣∣∣
∫

G

[
fσ

(
z̃b̃xb−1b̃−1) − fσ (z̃)

]
μ(dx)

∣∣∣∣
}
. (26)

Performing the same computation leading to (9) shows that for some constant c > 0,

P(τ < δ) ≤ cE
[
Qk(σ + δ) − Qk(σ)

]
.

By (16), E[Qk(σ + δ) − Qk(σ)] ≤ 2εδ + εk . It follows that limk→∞ supσ≤1 P(τ < δ) ≤ 2cεδ. This shows that the
condition (23) is satisfied for yk

t = z̃k
t .

To verify (24), note that because x̃k
t = z̃k

t b̃
k
t ,

P
[(

z̃k
σ−

)−1
z̃k
σ ∈ Kc

] = P
[(

x̃k
σ−

)−1
x̃k
σ ∈ (

b̃k
σ−

)−1
Kcb̃k

σ

]
.

By either (i) or (ii), b̃k
t are bounded in k, when K is large, (b̃k

σ−)−1Kb̃k
σ contains a fixed neighborhood H of e. Because

(b̃k
σ−)−1Kcb̃k

σ = ((b̃k
σ−)−1Kb̃k

σ )c , it follows that

P
[(

z̃k
σ−

)−1
z̃k
σ ∈ Kc

] ≤ P
[(

x̃k
σ−

)−1
x̃k
σ ∈ Hc

] ≤
∑

p>mk

μp

(
Hc

) → 0

as k → ∞. This verifies (24) even before taking K ↑ G.
By Lemma 8, z̃k

t are relatively weak compact, and hence along a subsequence of k → ∞, z̃k
t converge weakly to

a rcll process z̃t in G. As D(G)-valued random variables, z̃k· converge in distribution to z̃·. It is well known (see for
example Theorem 1.8 in [2], Chapter 3) that there are D(G)-valued random variables z̃′k· and z̃′·, possibly on a different
probability space, such that z̃′· is equal to z̃· in distribution, z̃′k· is equal to z̃k· in distribution for each k, and z̃′k· → z̃′·
almost surely. Because x̃k· = z̃k· b̃k· → e almost surely, where e is regarded as a constant path in G, x̃′k· = z̃′k· b̃k· → e

in distribution. As the limit e is nonrandom, x̃′k· → e in probability. Then along a further subsequence of k → ∞,
x̃′k· → e almost surely, and hence b̃k· = (z̃′k· )−1x̃′k· → (z̃′·)−1.

The convergence b̃k
t → b̃t = (z̃′

t )
−1 under the Skorohod metric means (see Proposition 5.3(c) in [2, Chapter 3])

that there are continuous strictly increasing functions λk :R+ → R+ such that as k → ∞, λk(t) − t → 0 and
r(b̃k

t , b̃λk(t)) → 0 uniformly for 0 ≤ t ≤ 1, where r is a compatible metric on G. If b̃t has a jump of size r(b̃s−, b̃s) > 0
at time s, then b̃k

t would have a jump of size close to r(b̃
γ
s−, b̃s) at time t = λ−1

k (s), which is impossible because the
jumps of b̃k

t are uniformly small when k is large. It follows that b̃t is continuous in t and hence b̃k
t → b̃t uniformly in

t as k → ∞.
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