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Abstract. We consider the ABC model on a ring in a strongly asymmetric regime. The main result asserts that the particles
almost always form three pure domains (one of each species) and that this segregated shape evolves, in a proper time scale, as a
Brownian motion on the circle, which may have a drift. This is, to our knowledge, the first proof of a zero-temperature limit for a
non-reversible dynamics whose invariant measure is not explicitly known.

Résumé. Nous considérons le modèle ABC sur un anneau dans un régime fortement asymétrique. Le résultat principal affirme
que les particules forment presque toujours trois domaines purs (un pour chaque espèce) et que cette forme ségréguée évolue, dans
une échelle temporelle appropriée, comme un mouvement brownien sur le cercle, avec éventuellement une dérive. Il s’agit, à notre
connaissance, de la première preuve d’une limite à température nulle pour une dynamique non-réversible dont la mesure invariante
n’est pas explicitement connue.
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1. Introduction

The ABC model, introduced by Evans et al. [5,6], is a stochastic conservative dynamics consisting of three species
of particles, labeled A, B , C, on a discrete ring {−N, . . . ,N} (one particle per site). The system evolves by nearest
neighbor transpositions: AB → BA, BC → CB, CA → AC with rate q and BA → AB, CB → BC, AC → CA with
rate 1.

The asymptotic behavior of the process (and of its variations) has been widely studied in the weakly asymmetric
regime q = e−β/N , introduced by Clincy et al. [3], when the system size N goes to infinity and β is a fixed control
parameter which plays the role of the inverse temperature. In this regime, an interesting phase transition phenomenon
arises as β is tuned.

We investigate here a strongly asymmetric regime, the zero-temperature limit, where q = e−β , β ↑ ∞. We consider
two types of asymptotics: In Theorem 2.5 we examine the behavior of the process in the case where the number of
particles of each species, NA, NB and NC , is fixed and β ↑ ∞; in Theorem 2.2, NA, NB and NC increase with β .

We show in Lemma 2.1 that the particles almost always form three pure domains, one of each species, located
clockwise in the cyclic-order ABC. For fixed volume, we show that, in the time scale emin{NA,NB,NC }β , as β ↑ ∞, the
process converges to a Markov chain that evolves among these 2N + 1 segregated configurations, jumping from any
configuration to any other at positive rates. These jump rates can be expressed in terms of some absorption probabilities
of a much simpler dynamics.

When N grows with β , with some restrictions on the speed of this growth, we prove in Theorem 2.2 that, in the
time scale N2emin{NA,NB,NC }β , the center of mass of the particles of type A (for example) moves as a Brownian motion
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on the circle. Without assuming positive proportion of each type of particle, we identify an interesting degenerated
case in which the limit Brownian motion has a drift.

Our method for proving Theorem 2.2 involves the analysis of the trace process in the set of the segregated config-
urations, the process which neglects the time spent in other configurations.

Results of the same nature (the description of the dynamics among the ground states in finite volume and the
convergence to a Brownian motion on a large torus) were obtained for the Kawasaki dynamics for the Ising lattice gas
at low temperature in two dimensions by Beltrán, Gois and Landim [2,7]. Many techniques used in our analysis of the
ABC model come from these papers. We emphasize that, in comparison with the Kawasaki dynamics, a significant
difference is that, with the exception of the case NA = NB = NC , the ABC process is non-reversible and its invariant
measure is not explicitly known.

In this strongly asymmetric regime we are dealing, the model fits the assumptions considered by Olivieri and
Scoppola in [9]. In principle, the general procedure proposed by them, consisting in the analysis of successive time-
scales, eβ , e2β, . . . , could be applied here, especially if we were interested in understanding the mechanism of nu-
cleation of the process starting from an arbitrary configuration. However, the analysis based on this iterative scheme
would become quite complicated in the ABC model due to the combinatorial complexity of the evolution among the
metastable configurations which would appear in each scale. Our analysis, which relies on a precise understanding of
the microscopic dynamics when the process is close to one of the segregated configurations, leads to a very accurate
understanding of the limiting process in the time-scale required for transitions among the most stable configurations.

2. Notations and results

2.1. The ABC process

Given an integer N , let ΛN = {−N, . . . ,N} be the one-dimensional discrete ring of size 2N + 1. A configuration in
Ω̃N := {A,B,C}ΛN is denoted by ω = {ω(k): k ∈ ΛN }, where ω(k) = α if site k is occupied by a particle of type
α ∈ {A,B,C}. We make the convention that α + 1, α + 2, . . . denote the particle types that are successors to α in the
cyclic-order ABC.

For i, j ∈ ΛN and ω ∈ Ω̃N we denote by σ i,jω the configuration obtained from ω by exchanging the particles at
the sites i and j :

(
σ i,jω

)
(k) =

{
ω(k) if k /∈ {i, j},
ω(j) if k = i,
ω(i) if k = j .

We consider the continuous-time Markov chain {ηβ(t): t ≥ 0} on the state space Ω̃N whose generator Lβ acts on
functions f : Ω̃N → R as

(Lβf )(ω) =
∑

k∈ΛN

c
β
k (ω)

[
f
(
σk,k+1ω

)− f (ω)
]
,

where, for β ≥ 0, the jump rates c
β
k are given by

c
β
k (ω) =

{
e−β if (ω(k),ω(k + 1)) ∈ {(A,B), (B,C), (C,A)},
1 otherwise.

Almost always we omit the index β and denote ηβ(t) just by η(t).
As the system evolves by nearest neighbor transpositions, the number of particles of each species is conserved.

Therefore, given three integers Nα , α ∈ {A,B,C}, such that NA +NB +NC = 2N +1, we have a well defined process
on the component ΩNA,NB,NC = {ω ∈ Ω̃N :

∑
k∈ΛN

1{ω(k) = α} = Nα,α ∈ {A,B,C}}, which is clearly irreducible
and then admits a unique invariant measure. To shorten notation, let us suppose that we have fixed NA, NB , and NC

as functions of N and then we write simply ΩN instead of ΩNA,NB,NC .
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The invariant measure μβ = μβ,N is in general not explicit known. However, in the special case of equal densities
NA = NB = NC , as shown in [5,6], the process is reversible with respect to the Gibbs measure μβ , given by

μβ(ω) = 1

Zβ

e−βH(ω),

where Zβ is the normalizing partition function and H is a non-local Hamiltonian, which may be written as

H(ω) = 1

2N + 1

∑
k∈ΛN

2N∑
i=1

i1
{(

ω(k),ω(k + i)
) ∈ {(A,B), (B,C), (C,A)

}}
. (2.1)

A simple computation relying on the equal densities constraint shows that nearest neighbor transpositions of type
(α,α + 1) → (α + 1, α) increase the energy H by 1 unit, while the opposite kind of transposition decreases H by 1
unit. The reversibility of the process in this special case follows from this observation.

The configurations in which the particles form three pure regions, one of each species, located clockwise in the
cyclic-order ABC deserve a special notation. Define ωN

0 ∈ ΩN as

ωN
0 (j) =

{
A if 0 ≤ j ≤ NA − 1,
B if NA ≤ j ≤ NA + NB − 1,
C otherwise,

and, for each k ∈ ΛN , define ωN
k = ΘkωN

0 , where Θk :ΩN → ΩN stands for the shift operator (Θkω)(i) = ω(i − k).
By convention we omit the index N in the notation, and we write simply ωk instead of ωN

k . Denote by ΩN
0 the set of

these configurations:

ΩN
0 = {ωk: k ∈ ΛN }.

We remark that, in the equal densities case, ΩN
0 corresponds to the set of ground states of the energy H.

For each ω ∈ ΩN denote by Pβ
ω the probability measure induced by the Markov process {η(t): t ≥ 0} starting from

ω on the Skorohod space D([0,∞),ΩN) of càdlàg paths. Expectation with respect to Pβ
ω is represented by Eβ

ω .

2.2. Main results

We analyze in this article the asymptotic evolution, as β ↑ ∞, of the Markov process {η(t): t ≥ 0}, where also the
number of particles may depend on β . For simplicity, we omit this dependence in the notation.

From now on, we use the notation

M = min{NA,NB,NC}.
If the process starts from some ωk ∈ ΩN

0 , at least M jumps of rate e−β are needed in order to visit another configuration
in ΩN

0 . This suggests that, for fixed N , the interesting time scale to consider is eMβ . In Section 9 we show that, in the
time scale N2eMβ , if N does not increase too fast with β , the process spends a negligible time outside ΩN

0 :

Lemma 2.1. Let M∗ = max{NA,NB,NC}. Assume that

lim
β→∞N34M∗

e−β = 0. (2.2)

Then, for every k ∈ ΛN , t ≥ 0

lim
β→∞ Eβ

ωk

[∫ t

0
1
{
η
(
sN2eMβ

)
/∈ ΩN

0

}
ds

]
= 0. (2.3)
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Our main result, Theorem 2.2, characterizes the motion of this segregated shape in the time-scale N2eMβ when
the system size grows with β . We express the result in terms of the convergence of the evolution of a macroscopic
variable associated to the configurations: the center of mass of the particles of type A. In order to define this center of
mass we need to introduce some other notations. For any configurations ξ, ζ ∈ ΩN , by a path from ξ to ζ we mean
a sequence of configurations γ = (ξ = ξ0, ξ1, . . . , ξn = ζ ) such that ξk can be obtained from ξk−1 by a simple nearest
neighbor transposition. We define dist(ξ, ζ ) as the smallest n such that there exists a path from ξ to ζ of length n. For
any n, and k ∈ ΛN , define

Δn
k = {

ω ∈ ΩN : dist(ω,ωk) = n
}
. (2.4)

Due to the periodic boundary conditions, for many configurations the centers of mass of the particles of type α,
α ∈ {A,B,C}, are not well defined. However, the proof of Lemma 2.1 in fact shows that, under (2.2), for any t ≥ 0

lim
β→∞ Pβ

ω0

[
η(s) /∈ ΞN for some 0 ≤ s ≤ tN2eMβ

]= 0, (2.5)

where ΞN is a subset of configurations such that ΞN ⊆ Γ N :=⋃
k∈ΛN

Γ N
k , where

Γ N
k =

(
M⋃

n=0

Δn
k

)
∪

⋃
i1,i2,i3,i4∈ΛN

{
σ i1,i2σ i3,i4ωk

}
.

Note that the configurations in Γ N
k that are not at distance M or less from ωk differ from ωk by at most two trans-

positions, not necessarily nearest-neighbor. In Γ N , the center of mass can be defined unambiguously. Suppose, for
example, that NA = M . For ω ∈ Γ N

0 , define the center of mass (of the particles of type A) of the configuration ω,
denoted by C(ω), as

C(ω) = 1

N

∑
k∈ΛN

k1{ω(k) = A}
NA

.

Then, for a configuration ξ ∈ Γ N
k , k ∈ ΛN , take ω ∈ Γ N

0 such that ξ = Θkω, and define C(ξ) = C(ω) +
k/N mod[−1,1]. Just for completeness, for ξ /∈ Γ N define C(ξ) = 0. Actually, by (2.5) this latter definition is not
relevant.

Let

d := ∣∣{α ∈ {A,B,C} : Nα = M
}∣∣. (2.6)

Note that d may vary with β , but we omit this dependence to simplify the notation. Define

θβ := 1

2d
eMβN2. (2.7)

Our main result is the following theorem.

Theorem 2.2. Assume that η(0) = ω0 and that N ↑ ∞ as β ↑ ∞ in such a way that NA < NB ≤ NC , with NA ↑ ∞,
NA/N → rA ≥ 0,

lim
β→∞

(
1

3

)NB

NC = b ∈ [0,∞) (2.8)

and

lim
β→∞

(
N54NA + N34NC

)
e−β = 0. (2.9)
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Then, as β ↑ ∞, the process {C(η(tθβ)): t ≥ 0} converges in the uniform topology to the diffusion{
(1/2)rA − (3/2)bt + Bt : t ≥ 0

}
(2.10)

on the circle [−1,1], where {Bt : t ≥ 0} is a Brownian motion with infinitesimal variance equal to 1. If b = 0 in (2.8),
we may replace the assumption NA < NB by NA ≤ NB .

Remark 2.3. In Theorem 2.2, if NB increases not so slowly, in the sense that b = 0 in (2.8), then the limit is a Brownian
motion without drift. This is the case when we have positive proportion of each type of particle:

lim
β→∞

Nα

N
> 0, α ∈ {A,B,C}. (2.11)

On the other hand, if NB increases even more slowly, in the sense that b = ∞ in (2.8), then we have to look at the
process in another time scale. Suppose, for example, that we can find some u ∈ (1,2) such that

lim
β→∞

(
1

3

)NB

Nu−1
C = c ∈ (0,∞). (2.12)

In this case, replacing (2.8) by (2.12), we can prove that, as β ↑ ∞, the process {C(η(tNueNAβ)): t ≥ 0} converges to
a deterministic linear function {μt : t ≥ 0} on the circle [−1,1], where μ is a constant which depends on c. This will
become clear with the proofs given in Section 8.

Remark 2.4. In Lemma 2.1, the restriction (2.2) is not optimal. It comes from our crude estimation of μβ(ΞN) in the
general densities case, where the invariant measure is not explicitly known. By repeating the steps that lead to (9.16),
we see that assertion (2.3) also hods if

lim
β→∞μβ

(
ΩN \ ΩN

0

)= 0. (2.13)

In the special case of equal densities, where the invariant measure is explicitly known, we can verify (2.13) without
any assumption that controls the growth of N . Details are given in Section 9.

2.3. Results for the trace process in ΩN
0

Now we present some results that are preliminary steps in our method to prove Theorem 2.2, but which are interesting
by themselves.

Denote by {η0(t): t ≥ 0} the trace of the process {η(t): t ≥ 0} on the set ΩN
0 , that is, the Markov chain obtained

from {η(t): t ≥ 0} by neglecting the time spent outside ΩN
0 . More precisely, we define {η0(t): t ≥ 0} by

Tt =
∫ t

0
1
{
η(s) ∈ ΩN

0

}
ds; St = sup{s ≥ 0: Ts ≤ t}; η0(t) = η(St ). (2.14)

We refer to [1] for important elementary properties of the trace process.
To prove Theorem 2.2 we first analyze the trace process {η0(t): t ≥ 0}. For finite volume we obtain the following

result which reveals an interesting non-local asymptotic behavior.

Theorem 2.5. For NA, NB and NC constant greater than or equal to 3, as β ↑ ∞ the speeded up process
{η0(eMβt): t ≥ 0} converges to a Markov process on ΩN

0 which jumps from ωi to ωj at a strictly positive rate
r(i, j).

The proof of this theorem, as well as the expression for r(i, j), is given in Section 6. This theorem is complemented
with Lemma 2.1, which says that we are not losing much just looking at the trace process in ΩN

0 . The rates r(i, j),
which depend also on NA, NB and NC , can be expressed in terms of some absorption probabilities of a simple Markov
dynamics, the one described by Figure 1 in the next section.
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Remark 2.6. It is possible to reformulate Theorem 2.5, without referring to the trace process, by asserting the con-
vergence of the (time re-scaled) original process {η(eMβt): t ≥ 0} in a topology introduced in [8], weaker than the
Skorohod one.

Denote by R
β

0 (ωi,ωj ) the jump rates of the trace process {η0(t): t ≥ 0}. By translation invariance, it is clear that

R
β

0 (ωi,ωj ) = R
β

0 (ω0,ωj−i ) =: rβ(j − i). (2.15)

Let X(ωk) = k, k ∈ ΛN , so that if X(t) = X(η0(t)) then {X(t): t ≥ 0} is a random walk on ΛN which jumps from i

to j at rate rβ(j − i).
The next result refers to the case where N goes to infinity as a function of β . We start considering the degenerated

case where NA and NB are constants and only NC goes to infinity. We have a ballistic behavior in this situation.

Theorem 2.7. Assume that 3 ≤ NA < NB are constants and that NC ↑ ∞ as β ↑ ∞ in such a way that

lim
β→∞N5

Cβe−β = 0. (2.16)

If η(0) = ω0, then, as β ↑ ∞, the process {X(tNeNAβ)/N : t ≥ 0} converges in the uniform topology to a linear
function {v(NA,NB)t : t ≥ 0} on the circle [−1,1].

The condition NA < NB is crucial for the ballistic behavior. If NA and NB are constant but NA = NB , then the
process {X(t): t ≥ 0} is symmetric. In this case, scaling time by N2eMβ we can prove the convergence to a Brownian
motion if N6

Cβe−β ↓ 0. In the case NA �= NB , the velocity v(NA,NB), which is an antisymmetric function of NA

and NB , is negative when NA < NB . It can be expressed in terms of some absorption probabilities for a random
walk in a simple graph, which can be explicitly computed in terms of NA and NB . The analysis of the asymptotic
dependence of v(NA,NB) on NA and NB , which is presented in Lemma 7.4 helps us to find the specific scenario,
(2.8), for the convergence to a Brownian motion with drift.

The proof of Theorem 2.7 is given in Section 8, where we also state and prove the version of Theorem 2.2 referring
to the trace process (Theorem 8.1).

3. Sketch of the proofs

Our main result, Theorem 2.2, is a consequence of the corresponding Theorem 8.1 and the fact, to be proved in
Section 10, that (assuming η(0) = ω0) the process {C(η(tθβ)): t ≥ 0} is close to the trace process {X(tθβ)/N +
rA/2: t ≥ 0} in the Skorohod space D([0,∞), [−1,1]).

The main idea to analyze the trace of the process {η(t): t ≥ 0} on ΩN
0 is to consider first the trace on a larger

set ΩN
1 . Now we will see why such a set ΩN

1 comes naturally.
To fix ideas, suppose that 3 ≤ NA ≤ NB ≤ NC are constants. Suppose that the process starts from the configuration

ωk ∈ ΩN
0 . Note that, in order to visit any other configuration in ΩN

0 , at least NA jumps of rate e−β are needed. The
most simple trajectory that we can imagine between ωk and another configuration in ΩN

0 occurs when the whole block
of particles of type A is crossed, for example, by a particle of type C walking clockwise (and for this, NA jumps of
rate e−β are needed) and then this detached particle of type C can continue moving in clockwise direction inside the
domain of particles of type B (now performing rate 1 jumps) until, after crossing all the particles of type B , it meets
the other particles of type C. This way, we arrive at the configuration ωk−1. In an analogous way, we find a path from
ωk to ωk+1. This reveals that the correct time scale to analyze the trace process on ΩN

0 is eNAβ .
At first glance, it appears that these trajectories we described are the only ones possible in the time scale eNAβ

and that the asymptotic dynamics will be restricted to jumps from ωk to ωk+1 or ωk−1. So, Theorem 2.5 is somewhat
surprising. The truth is that, for any j , there exists a trajectory from ωk , which is possible in the time scale eNAβ , such
that the next visited configuration in ΩN

0 is ωj . The explanation is the following. Starting from ωk , in a time of order
eNAβ it is possible that we have a meeting of a particle of type C and a particle of type B inside the domain of particles
of type A. Once these two particles meet, they can interchange their positions performing a rate 1 jump. This way, we
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fall in a metastable configuration from which all possible jumps have rate e−β . This configuration is very similar to
ωk except for the pair BC inside the block of A’s. For this configuration, transposition of nearest neighbor particles
that are far from this pair BC, which may occur at the frontiers between two different domains, are reverted with high
probability in the next jump of the chain. So, let us focus in what can happen with this pair BC.

After a time of order eβ , this pair can disappear if BC turns to CB and then, with rate 1 jumps, the particles C and
B return to their original positions in the configuration ωk . But also, in a time of order eβ , the pair BC can move inside
the domain of particles of type A. For example, with a rate e−β jump, the particle C can move to the right, in such a
way that ABCAA becomes ABACA. Now, with a rate 1 jump, the particle B moves to the right and we obtain AABCA.
Clearly, the pair BC can also move to the left. This way, we can move the pair BC until, for example, near to the right
end of the block of particles of type A, and we arrive at a configuration that is almost ωk except for the appearance of
a block AABCABB in the frontier of the regions of particles A and B . From this configuration, the pair CA can turn to
AC and after NB jumps of rate 1 we arrive at ωk−1. But also, by the same reason as before, instead of becomes AC,
in times of order eβ the pair CA can move inside the domain of particles of type B until eventually the process may
arrive at a configuration that is almost ωk−1 except for a block BBCABCC in the frontier of regions of particles of
types B and C. At this point, after a time of order eβ , the pair AB can turn to BA and then, after NC jumps of rate 1,
the process can arrive at ωk−2. This shows how, in time scale eMβ , it is possible to find a path starting from ωk such
that the next visited configuration in ΩN

0 is ωk−2. Clearly, we could continue moving a pair of particles in order to
arrive at any configuration in ΩN

0 .
The class of the metastable configurations which appears in the above described paths will be called ΩN

1 , and it will
be precisely defined in Section 4. As the above discussion indicates, starting from a configuration in ΩN

0 , after a time
of order eNAβ , we can visit a configuration ω ∈ ΩN

1 where we will stay for a time of order eβ . Starting from ω ∈ ΩN
1 ,

in time scale eβ , essentially, what we see is a Markov chain {η̂1(eβt): t ≥ 0} in ΩN
1 for which the configurations in

ΩN
0 are absorbing states. The structure of this dynamics reveals to be pretty simple, as shown in Figure 1.

Fig. 1. Graph structure of the ideal dynamics {η̂1(t): t ≥ 0} related to the process. The picture illustrates the case NA = 5, NB = 7 and NC = 9.
The inner vertices represent the configurations in ΩN

0 , absorbing states for this dynamics. The outer vertices represent the metastable configurations

in Ω1
N

\Ω0
N

, which will be precisely defined in the next section. The arrows on the right completely describe the corresponding discrete-time jump
chain.
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The dynamics described in Figure 1 indicates that the trace on ΩN
0 is not a symmetric process and that this asym-

metry can be balanced depending on the relative quantities of each type of particle. This behavior is at the origin of
the drift which appears in Theorem 2.2.

We have, therefore, a strategy to analyze the trace of {η(t): t ≥ 0} on ΩN
0 . At first, we consider the trace on ΩN

1 .
This will be the subject of Section 5. Essentially, we have to answer the following question: starting from a config-
uration ω in ΩN

1 , what is the distribution of the next visited configuration in ΩN
1 ? We split this question into two,

depending if ω belongs to ΩN
0 or not. In the first case, we will see an interesting “uniformity” for this distribution, in

a sense to be clarified at Proposition 5.5. At this point the error terms in our estimates increase exponentially in N ,
and here is where some constraints referring to the growth of N arise. In the second case, we observe that the process
is well approximated by the asymptotic Markov chain {η̂1(t): t ≥ 0}.

To pass from the trace on ΩN
1 to the trace on ΩN

0 , we have to look at the absorptions probabilities on ΩN
0 for

the chain {η̂1(t): t ≥ 0} starting from ΩN
1 \ ΩN

0 . In Section 6, we present (approximations of) the jump rates rβ(k),
k ∈ ΛN , defined on (2.15), as functions of these absorption probabilities, which are estimated in Section 7 allowing
us to prove, in Section 8, the results for the trace process on ΩN

0 in the case where N ↑ ∞ with β .
All the above discussion also suggests what are the typical configurations that may appear between two consecutive

visits to the set ΩN
0 . In Section 9 we will estimate the measure μβ of these configurations and this will allow us to

prove that the process spends a negligible time outside ΩN
0 .

4. The subset of configurations ΩN
1

In this section we define the set of configurations ΩN
1 establishing notation that identifies each one of its elements.

Throughout the text, even when not explicitly mentioned, we are assuming that M ≥ 3.

4.1. The configurations ζ k
α,i

For k ∈ ΛN , α ∈ {A,B,C} and 0 ≤ i ≤ Nα , denote by ζ k
α,i the configuration at distance Nα from ωk , obtained from

ωk ∈ ΩN
0 by a meeting of two distinct particles of types different from α in the block of particles of type α. The index

i indicates the position of this meeting. More precisely, let fα be the position of the first particle of type α in the
configuration ω0, that is,

fα = NA1
{
α ∈ {B,C}}+ NB1{α = C}.

Then,

ζ k
α,i = Θkσf(α+1),fα+iσ fα−1,fα−1+iω0.

Note that the extreme case i = 0 (respectively i = Nα) indicates that a particle of type α + 1 (respectively α − 1)
has crossed the whole block of particles of type α until meeting a particle of type α − 1 (respectively α + 1). As
illustrated in Figure 2, with this notation, ζ k

α,Nα
= ζ k−1

α+1,0, and these are the only configurations of this type with
double representation.

For k ∈ ΛN and α ∈ {A,B,C}, we denote by FN,k
α the corresponding set of such configurations:

FN,k
α = {

ζ k
α,i : 0 ≤ i ≤ Nα

}
. (4.1)

We will see in Section 5 that, if the process starts from ωk , as β ↑ ∞, the configurations in the set
⋃

α: Nα=M FN,k
α

are those that can be reached in a time of order eMβ that allow the process to escape from the basin of attraction of the
configuration ωk .

4.2. The configurations ξk
α,i

For k ∈ ΛN , α ∈ {A,B,C} and 1 ≤ i ≤ Nα −1 we denote by ξk
α,i the configuration obtained from ζ k

α,i by interchanging
the positions of the two distinct particles that have met in the block of particles of type α. More precisely:

ξk
α,i = Θkσfα+i−1,fα+iζ 0

α,i .
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Fig. 2. The configurations ζ 2
B,2 and ζ 2

B,0 = ζ 3
A,8 for NA = 8,NB = 5,NC = 12. The white, gray and black circles represent respectively particles

of type A, B and C.

Fig. 3. The configurations ξ2
B,2 and ξ2

B,1 = ξ3
A,7 for NA = 8, NB = 5, NC = 12. The white, gray and black circles represent respectively particles

of type A, B and C.

Note that the jump leading ζ k
α,i to ξk

α,i has rate 1.
Again, as illustrated in Figure 3, it happens that some of these configurations have double representations, namely

ξk
α,Nα−1 = ξk−1

α+1,1.

We denote by GN the space of such configurations:

GN,k
α = {

ξk
α,i : 1 ≤ i ≤ Nα − 1

}
, GN =

⋃
k∈ΛN

⋃
α∈{A,B,C}

GN,k
α . (4.2)

From a configuration in GN , each possible jump has rate e−β . In the particular case of equal densities these configu-
rations are local minima of the energy H defined in (2.1). In the next section we analyze the trace of the ABC model
on the set

ΩN
1 := ΩN

0 ∪ GN.

5. Trace of {η(t): t ≥ 0} on ΩN
1

For a configuration ωk ∈ ΩN
0 , denote by V (ωk) the set of configurations that can be obtained from ωk after a sequence

of nearest neighbor transpositions of type (α,α + 1) → (α + 1, α), that is, rate e−β jumps. In other words, V (ωk) is
the set of configurations from which we can arrive at ωk just performing rate 1 jumps. Recall the definition of Δn

k

in (2.4) and note that
⋃M

n=0 Δn
k ⊂ V (ωk). For ω ∈ ΩN , denote by R(ω) and B(ω) the sets of configurations that can

be obtained from ω by a simple nearest neighbor transposition of types (α,α + 1) → (α + 1, α) and (α + 1, α) →
(α,α + 1), respectively. Note that, if ω ∈ Δn

k , for 1 ≤ n ≤ M − 1, then

R(ω) ⊆ Δn+1
k , B(ω) ⊆ Δn−1

k . (5.1)
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Now, define B∗
k (ω) = B(ω) ∩ V (ωk) and D∗

k (ω) = B(ω) \ V (ωk). In words, for a configuration ω ∈ V (ωk), the set
D∗

k (ω) is formed by the configurations that are not in V (ωk) which can be reached from ω after a rate 1 jump. The

configurations ω ∈ ⋃
α:Nα=M FN,k

α are those in
⋃M

n=0 Δn
k for which D∗

k (ω) �= ∅. We can see in Figure 2 that, for
example, |R(ζ 2

B,2)| = 3, |B∗
k (ζ 2

B,2)| = 2 and D∗
k (ζ 2

B,2) = {ξ2
B,2}.

In the graph representation of a configuration, call an edge blue, red, or black if, respectively, the particles it links
exchange their positions at rate 1, e−β or are of the same type. With this convention, |R(ω)| and |B(ω)| are the
numbers of red and blue edges of the configuration ω and V (ωk) is the set of configurations obtained from ωk by a
sequence of transpositions performed only in red edges. A configuration ω ∈ V (ωk) can have two kinds of blue edges
(call them blue1 and blue2), whose transposition leads to configurations in B∗

k (ω) and D∗
k (ω) respectively.

Lemma 5.1. Let k ∈ ΛN and ω ∈ V (ωk) then∣∣R(ω)
∣∣≤ ∣∣B∗

k (ω)
∣∣+ 3. (5.2)

Proof. For ω = ωk , equality holds in (5.2), because the configuration ωk has three red edges and no blue edges.
Therefore, to conclude the proof by induction, we just have to check that if (5.2) holds for a configuration ω ∈ V (ωk),
then it remains true after a transposition in a red edge (l, l + 1) of ω.

Observe that the transposition in the edge (l, l + 1) only changes the color of the three adjacent edges (l − 1, l),
(l, l + 1) and (l + 1, l + 2). After this transposition, the initially red edge (l, l + 1) becomes a blue1 edge. For the
other two edges, it is easy to check that black becomes red, blue becomes black, and red becomes blue. And then, by
checking all the possible cases we see that∣∣R(σ l,l+1ω

)∣∣− ∣∣B∗
k

(
σ l,l+1ω

)∣∣≤ ∣∣R(ω)
∣∣− ∣∣B∗

k (ω)
∣∣,

which completes the prove. �

For any subset Π ⊂ ΩN , denote by HΠ and H+
Π , respectively, the hitting time and the first return to Π :

HΠ = inf
{
t > 0: η(t) ∈ Π

}
,

H+
Π = inf

{
t > 0: η(t) ∈ Π,η(s) �= η(0) for some 0 < s < t

}
.

Corollary 5.2. For any β > log 4, and k ∈ ΛN

Pβ
ωk

[
HΔM

k
< H+

ωk

]≤ (
4e−β

)M−1
, (5.3)

and, for each ω ∈ ΔM−1
k

Pβ
ω[HΔM

k
< Hωk

] ≤ 4e−β. (5.4)

Proof. By the observation (5.1), if the current state of the process is a configuration ω ∈ Δn
k , 1 ≤ n ≤ M − 1, the next

visited configuration belongs to Δn+1
k with probability

pβ(ω) = |R(ω)|e−β

|B(ω)| + |R(ω)|e−β
, (5.5)

and to Δn−1
k with probability 1 − pβ(ω). By Lemma 5.1,

pβ(ω) ≤ 4e−β

1 + 4e−β
=: pβ. (5.6)
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Consider the random walk on {0,1, . . . ,M} that jumps from n ∈ {1, . . . ,M − 1} to n + 1 with probability pβ and to
n − 1 with probability 1 − pβ . We know that, starting from n, this walk reaches M before 0 with probability

pβ(n,M) = (eβ/4)n − 1

(eβ/4)M − 1
.

A simple coupling argument allows us to dominate the probabilities appearing in (5.3) and (5.4) respectively by
pβ(1,M) and pβ(M − 1,M), from which we get the corresponding bounds. �

Recall the definition of the set FN,k
α given in (4.1). For each ω ∈ ΔM

k , k ∈ ΛN , consider the probability measure
ΦN(ω, ·) defined on ΩN

1 in the following way:
If ω /∈⋃α: Nα=M FN,k

α ,

ΦN
(
ω, {ωk}

)= 1;

If α is such that Nα = M ,

ΦN
(
ζ k
α,0, {ωk}

) = ΦN
(
ζ k
α,0, {ωk+1}

)= ΦN
(
ζ k
α,M, {ωk}

)
= ΦN

(
ζ k
α,M, {ωk−1}

)= 1

2
;

and, for 1 ≤ i ≤ M − 1,

ΦN
(
ζ k
α,i ,Π

)=
{

1
3 if Π = {ξk

α,i},
2
3 if Π = {ωk}.

Throughout the paper we adopt the convention that C0 < ∞ is a constant independent of NA, NB , NC and β whose
value may change from line to line.

Lemma 5.3. There exists a constant C0 such that, for all β > 0, k ∈ ΛN , and ω ∈ ΔM
k ,∣∣Pβ

ω

[
η(HΩN

1
) ∈ Π

]− ΦN(ω,Π)
∣∣≤ C0Ne−β, Π ⊂ ΩN

1 .

Proof. We examine each case separately. Suppose the process starts from a configuration ω ∈ ΔM
k \⋃α: Nα=M FN,k

α .

In this case D∗
k (ω) = ∅ and B(ω) ⊆ ΔM−1

k , and then, as in the previous proof, starting from ω, the next visited
configuration belongs to ΔM−1

k with high probability 1 − pβ(ω) ≥ 1 − pβ , for pβ(ω) and pβ given in (5.5) and (5.6).
Now observe that from ΔM−1

k to reach a configuration in ΩN
1 \ {ωk} the process has to cross ΔM

k . So, conditioning in

the first jump and using the second part of Corollary 5.2 we get that Pβ
ω[HΩN

1
�= Hωk

] ≤ C0e−β .

Now suppose the process starts from ζ k
α,i for 1 ≤ i ≤ Nα − 1, Nα = M . As illustrated in Figure 2, from ζ k

α,i there

are three possible rate e−β jumps and three possible rate 1 jumps, one of these leading to ξk
α,i and the others two

leading to ΔM−1
k . So, as before, we obtain the corresponding hitting probability conditioning in the first jump and

using the second part of Corollary 5.2.
Finally, suppose the process starts from ζ k

α,0. As illustrated in Figure 2, from this configuration there are two

possible rate e−β jumps and two possible rate 1 jumps, one of these leading to B∗
k (ζ k

α,0) ⊂ ΔM−1
k and the other

leading to D∗
k (ζ k

α,0) ⊂ V (ωk+1), from which we can reach ωk+1 (before any other configuration in ΩN
1 ) performing

N(α−1) − 1 < 2N jumps that have high probability 1/(1 + 4e−β). This is done by movements of the detached particle
of type α+1 in counterclockwise direction inside the domain of particles of type α−1 until it meets the other particles
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of type α + 1. Therefore

Pβ

ζ k
α,0

[
η(HΩN

1
) = ωk±1

]≥ 1

2 + 2e−β

(
1

1 + 4e−β

)2N

= 1

2
+O

(
Ne−β

)
.

The argument for the case in which the process starts from ζ k
α,M is analogous. �

Actually, for many configurations ω ∈ ΔM
k we could have obtained a better estimation of the hitting distribution

in ΩN
1 , considering from ω how many rate e−β jumps are necessary in order to avoid that the first visited configuration

in ΩN
1 will be ωk . However, to take advantage of such more precise information a much more complex analysis would

be needed in the proof of Proposition 5.5 below.
Denote by {η1(t): t ≥ 0} the trace of the process {η(t): t ≥ 0} on ΩN

1 . It is defined as in (2.14) with ΩN
0 changed

by ΩN
1 . Surprisingly, as we will see in Proposition 5.5, for this process the jump rates from ωk to any configuration in⋃

α: Nα=M GN,k
α are, asymptotically, the same. This is due to the remarkable fact (somewhat hidden in the next proof)

that, as β ↑ ∞, the position i of the meeting of the two different detached particles is asymptotically distributed in
{0,1, . . . ,M} as ( 1

2M
, 1

M
, . . . , 1

M
, 1

2M
).

The proof of the next lemma is based on a combinatorial identity that was first obtained by computing, in two
different ways, some hitting probabilities for a simplified dynamics related the ABC model (two biased random
walks). However, in the Appendix a completely elementary proof for this identity is presented.

Later we will assume stronger restrictions in the way that N ↑ ∞ as β ↑ ∞, but for now, inspired in the estimate
obtained in Lemma 5.3, it is already natural to assume that

lim
β→∞Ne−β = 0. (5.7)

Lemma 5.4. Assume (5.7). There exist constants C0 and β0 such that for all β > β0, k ∈ ΛN , and α ∈ {A,B,C} such
that Nα = M ,∣∣Pβ

ωk

[
HΔM

k
= Hζk

α,i
< H+

ωk

]− qie
−(M−1)β

∣∣≤ C0M
(
4e−β

)M
, (5.8)

where

qi =
{

2
3 if 1 ≤ i ≤ M − 1,
1
3 if i = 0 or M .

Proof. Let us decompose the event [HΔM
k

= Hζk
α,i

< H+
ωk

] in the number of jumps to go from ωk to ζ k
α,i . Denote by τl

the instant of the lth jump of the chain {η(t): t ≥ 0}. By the observation (5.1), in each step of a path corresponding to
this event, the distance to ωk either increases or decreases by 1 unit. So

Pβ
ωk

[
HΔM

k
= Hζk

α,i
< H+

ωk

]=
∞∑
l=0

Pβ
ωk

[
τM+2l = HΔM

k
= Hζk

α,i
< H+

ωk

]
. (5.9)

A path from ωk to ΔM
k of size M + 2l should increase the distance to ωk in M + l steps and decrease in l steps. As

already observed in the proof of Corollary 5.2, from any configuration ω ∈⋃M−1
n=1 Δn

k , the probability that the distance
to ωk increases in the next jump of the chain is bounded by 4e−β . Now, observe that the number of possible evolutions

of the distance to ωk along a path from ωk to ΔM
k of size M + 2l is bounded by

(
M+2l

l

)
. Decomposing the event

[τM+2l = HΔM
k

< H+
ωk

] in these possible profiles and then applying inductively the strong Markov property for each
term, we obtain

Pβ
ωk

[
τM+2l = HΔM

k
< H+

ωk

]≤
(

M + 2l

l

)[
4e−β

]M+l−1
.
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Using, for 1 ≤ l ≤ M , the bound
(

M+2l
l

)
≤ (M +2l)l ≤ (3M)l , and, for l > M , the universal bound

(
M+2l

l

)
≤ 2M+2l ,

we obtain that

∞∑
l=1

Pβ
ωk

[
τM+2l = HΔM

k
= Hζk

α,i
< H+

ωk

]

≤ C0
[
4e−β

]M(
M

M∑
l=1

[
12Me−β

]l−1 + 2M

∞∑
l=M

[
16e−β

]l−1

)
≤ C0M

(
4e−β

)M
, (5.10)

for β large enough, in view of (5.7).
Let us focus now in the term corresponding to l = 0, which computes the probability of the trajectories from ωk

to ζ k
α,i with exactly M jumps. Consider first the case 1 ≤ i ≤ M − 1. Without loss of generality, let us suppose that

α = B . The configuration ζ k
B,i is obtained from ωk when a particle of type A meets a particle of type C in the region

of particles of type B , in such a way that the particle A has done i jumps, and the particle C has done M − i jumps.
For j ∈ {1, . . . , i} denote by Aj the event in which the first j jumps are made by the particle A and the (j + 1)th jump
is made by the particle C. For r ∈ {1, . . . ,M − i}, define Cr in a analogous way. Then

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk

] =
i∑

j=1

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk
,Aj

]

+
M−i∑
r=1

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk
,Cr

]
.

Now note that there are
(

M−j−1
i−j

)
possible paths of size M corresponding to the event [τM = HΔM

k
= Hζk

α,i
<

H+
ωk

,Aj ]. In each of these paths, the first jump has probability 1/3, the next j jumps have probability e−β/(1+4e−β)

and the next M − j − 1 jumps have probability e−β/(2 + 5e−β). Figure 4 illustrates this situation in a particular

Fig. 4. One of the two paths from ω2 to ξ2
B,3 that correspond to the event A2. In this example, NA = 8, NB = 5, NC = 12. The white, gray and

black circles represent respectively particles of type A, B and C.
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example. Doing the same analysis for the trajectories corresponding to the events Cr , we conclude that

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk

]
=

i∑
j=1

(
M − j − 1

i − j

)
1

3

(
e−β

1 + 4e−β

)j( e−β

2 + 5e−β

)M−j−1

+
M−i∑
r=1

(
M − r − 1
M − i − r

)
1

3

(
e−β

1 + 4e−β

)r( e−β

2 + 5e−β

)M−r−1

.

This can be rewritten as

1

3
e−(M−1)β

(
1 +O

(
Me−β

))
×
[

i∑
j=1

(
M − j − 1

i − j

)(
1

2

)M−j−1

+
M−i∑
r=1

(
M − r − 1
M − i − r

)(
1

2

)M−r−1
]
.

And then, by Lemma A.1, for i ∈ {1, . . . ,M − 1}

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk

]= 2

3
e−(M−1)β +O

(
Me−Mβ

)
. (5.11)

In the cases i = 0 or i = M , there is a unique path of size M from ωk to ζ k
α,i , which has probability equal to

1

3

(
e−β

1 + 4e−β

)M−1

.

Therefore, for i = 0 or i = M

Pβ
ωk

[
τM = HΔM

k
= Hζk

α,i
< H+

ωk

]= 1

3
e−(M−1)β +O

(
Me−Mβ

)
. (5.12)

Using (5.9), (5.10), (5.11) and (5.12) we obtain (5.8). �

Recall the definitions of d in (2.6) and of GN,k
α in (4.2) and let R

β

1 (·, ·) denote the jump rates of {η1(t): t ≥ 0}, the
trace process on ΩN

1 .

Proposition 5.5. Assume (5.7). There exist finite constants C0 and β0 such that for all β > β0, k ∈ ΛN and ξ ∈ ΩN
1 ,∣∣Rβ

1 (ωk, ξ) − R1(ωk, ξ)e−Mβ
∣∣≤ C0N4Me−(M+1)β, (5.13)

where

R1(ωk, ξ) =

⎧⎪⎨⎪⎩
d
2 if ξ ∈ {ωk−1,ωk+1},
2
3 if ξ ∈⋃α: Nα=M GN,k

α ,
0 if ξ /∈⋃α: Nα=M GN,k

α ∪ {ωk−1,ωk+1}.

Proof. By [1, Proposition 6.1], for every ω, ξ ∈ ΩN
1 ,

R
β

1 (ω, ξ) = λβ(ω)Pβ
ω

[
H+

ΩN
1

= Hξ

]
, (5.14)
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where λβ(ω) is the total jump rate from ω for the original chain {η(t): t ≥ 0}. A crucial observation is that, starting
from ωk , to reach any other configuration in ΩN

1 the process has to cross ΔM
k . Thus, for every ξ ∈ ΩN

1 , ξ �= ωk , on
the event {H+

ΩN
1

= Hξ } we have that HΔM
k

< H+
ΩN

1
, and then by the strong Markov property,

Pβ
ωk

[
H+

ΩN
1

= Hξ

]=
∑

ω∈ΔM
k

Pβ
ωk

[
HΔM

k
= Hω < H+

ωk

]
Pβ

ω[HΩN
1

= Hξ ]. (5.15)

If ξ /∈⋃α: Nα=M GN,k
α ∪ {ωk−1,ωk+1} then, by Lemma 5.3,

Pβ
ω[HΩN

1
= Hξ ] ≤ C0Ne−β,

for every ω ∈ ΔM
k . So

Pβ
ωk

[
H+

ΩN
1

= Hξ

] ≤ C0Ne−β
∑

ω∈ΔM
k

Pβ
ωk

[
HΔM

k
= Hω < H+

ωk

]
= C0Ne−βPβ

ωk

[
HΔM

k
< H+

ωk

]≤ C0N
(
4e−β

)M
by the first part of Corollary 5.2. So, by (5.14) and the fact that λβ(ωk) = 3e−β we get (5.13) for ξ /∈⋃α: Nα=M GN,k

α ∪
{ωk−1,ωk+1}.

Now let us consider the case ξ = ξk
α,i for Nα = M , 1 ≤ i ≤ M − 1. By Lemma 5.3, for every ω ∈ ΔM

k

Pβ
ω[HΩN

1
= Hξk

α,i
] = 1

3
1
{
ω = ζ k

α,i

}+O
(
Ne−β

)
.

Therefore, by (5.14), (5.15), and the first part of Corollary 5.2,

R
β

1

(
ωk, ξ

k
α,i

)= e−βPβ
ωk

[
HΔM

k
= Hζk

α,i
< H+

ωk

]+O
(
N
(
4e−β

)M+1)
.

And then, by Lemma 5.4,

R
β

1

(
ωk, ξ

k
α,i

)= 2

3
e−Mβ +O

(
N
(
4e−β

)M+1)
.

Let us make the same argument for the case ξ = ωk+1. By Lemma 5.3, for every ω ∈ ΔM
k

Pβ
ω[HΩN

1
= Hωk+1] = 1

2
1
{
ω ∈ {ζ k

α,0: Nα = M
}}+O

(
Ne−β

)
.

Again, using (5.14), (5.15), and the first part of Corollary 5.2, we obtain that

R
β

1 (ωk,ωk+1) = 3e−β

2

∑
α: Nα=M

Pβ
ωk

[
HΔM

k
= Hζk

α,0
< H+

ωk

]+O
(
N
(
4e−β

)M+1)
.

And therefore, by Lemma 5.4,

R
β

1 (ωk,ωk+1) = d

2
e−Mβ +O

(
N
(
4e−β

)M+1)
.

The case ξ = ωk−1 is analogous. �

The proposition we just proved estimates the jump rates of the trace process {η1(t): t ≥ 0} from the configurations
in ΩN

0 . Now we want to estimate the jump rates from the configurations in GN . Arguing as in this last proof, for each
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configuration in GN as initial distribution, we will need to compute the distribution of the process in the first return
to ΩN

1 . If we allow errors of order Ne−β , these hitting probabilities are easily obtained.
From any configuration ξk

α,i ∈ GN , as illustrated in Figure 3, there are six possibilities for the first jump. Each of

these six configurations is associated to one of the six red edges of the configuration ξk
α,i . This association provides a

way to label these configurations. We will denote these configurations by ξ
k,j
α,i , for j = 1, . . . ,6. We do this in such a

way that, if we enumerate the red edges of ξk
α,i as r1, . . . , r6 clockwise, then ξ

k,j
α,i is the configuration obtained from

ξk
α,i after a transposition in rj . To fix a initial point for the enumeration of the red edges, we impose that this is done in

such a way that ξ
k,2
α,i = ζ k

α,i . Note that, with this convention we have that ξ
k,j

α,Nα−1 = ξ
k−1,j+1
α+1,1 and, for 1 ≤ i ≤ Nα − 2,

ξ
k,3
α,i = ξ

k,1
α,i+1. See Figures 5 and 6 for an example.

For each ω ∈ R(ξk
α,i), k ∈ ΛN , α ∈ {A,B,C}, 1 ≤ i ≤ Nα − 1, consider the probability measure ΦN(ω, ·) defined

on ΩN
1 in the following way:

Fig. 5. The configurations ξ2
C,4 and ξ2

C,1 with the corresponding labels of the red edges. In this example NA = 8, NB = 5, NC = 12. The white,
gray and black circles represents respectively particles of types A, B and C.

Fig. 6. The six configurations that can be reached after one jump from the configuration ξ2
C,4, which is illustrated in Figure 5.
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(i) If 2 ≤ i ≤ Nα − 2,

ΦN
(
ξ

k,j
α,i ,

{
ξk
α,i

})= 1, for j = 4,5,6;

ΦN
(
ξ

k,j
α,i ,Π

)=
{

1
2 if Π = {ξk

α,i},
1
2 if Π = {ξk

α,i−2+j },
for j = 1,3;

and

ΦN
(
ξ

k,2
α,i ,Π

)=
{

1
3 if Π = {ξk

α,i},
2
3 if Π = {ωk}.

(ii) And if i = 1,

ΦN
(
ξ

k,j

α,1 ,Π
)=

{
1
3 if Π = {ξk

α,1},
2
3 if Π = {ωk+2−j }, for j = 1,2;

ΦN
(
ξ

k,3
α,1 ,Π

)=
{

1
2 if Π = {ξk

α,1},
1
2 if Π = {ξk

α,2},
ΦN

(
ξ

k,6
α,1 ,Π

)=
{

1
2 if Π = {ξk

α,1},
1
2 if Π = {ξk+1

α−1,Nα−1−2}

and

ΦN
(
ξ

k,j

α,1 ,
{
ξk
α,i

})= 1, for j = 4,5.

Lemma 5.6. There exists a constant C0, such that, for any β > 0, k ∈ ΛN , α ∈ {A,B,C}, 1 ≤ i ≤ Nα − 1 and
ω ∈ R(ξk

α,i)∣∣Pβ
ω

[
η(HΩN

1
) ∈ Π

]− ΦN(ω,Π)
∣∣≤ C0Ne−β. (5.16)

Proof. We present the proof for the case 2 ≤ i ≤ Nα − 2, the extreme case i = 1 is similar and the verification is left
to the reader.

As observed in the proof of Lemma 5.1, a transposition in one of the red edges of ξk
α,i only changes the color of

this edge, which always becomes a blue edge, and of the two that are adjacent to it, for which black becomes red, and
red becomes blue.

In the configuration ξk
α,i , for 2 ≤ i ≤ Nα − 2, as illustrated in Figure 5, the edges adjacent to r4, r5 and r6 are

all black. Then, by the above observation, as illustrated in Figure 6, for j = 4,5,6, we have that |R(ξ
k,j
α,i )| = 7 and

B(ξ
k,j
α,i ) = {ξk

α,i}. Therefore, if τ1 is the instant of the first jump of the chain, for j = 4,5,6,

Pβ

ξ
k,j
α,i

[HΩN
1

= Hξk
α,i

] ≥ Pβ

ξ
k,j
α,i

[
η(τ1) = ξk

α,i

]= 1

1 + 7e−β
= 1 +O

(
e−β

)
.

This proves (5.16) for ω = ξ
k,j
α,i , j = 4,5,6.

Doing the same kind of analysis for the edge r1 of the configuration ξk
α,i , we note that |R(ξ

k,1
α,i )| = 5 and

|B(ξ
k,1
α,i )| = 2. In fact, we can see that

B
(
ξ

k,1
α,i

)= {
ξk
α,i , ξ

k
α,i−1

}
.

Therefore, for l = i − 1, i

Pβ

ξ
k,1
α,i

[HΩN
1

= Hξk
α,l

] ≥ Pβ

ξ
k,1
α,i

[
η(τ1) = ξk

α,l

]= 1

2 + 5e−β
= 1

2
+O

(
e−β

)
.
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This proves (5.16) for ω = ξ
k,1
α,i , and the proof for ω = ξ

k,3
α,i is analogous.

Now let us consider the case ω = ξ
k,2
α,i = ζ k

α,i ∈ V (ωk) ∩ Δ
Nα

k . The case Nα = M was already considered in

Lemma 5.3. In that proof a better approximation (error of order e−β instead of Ne−β ) was given using the sec-
ond part of Corollary 5.2. In the general case we need to argue differently. We have that |B(ζ k

α,i)| = |R(ζ k
α,i)| = 3.

One of the three configurations in B(ζ k
α,i) is ξk

α,i . So

Pβ

ζ k
α,i

[HΩN
1

= Hξk
α,i

] ≥ Pβ

ζ k
α,i

[
η(τ1) = ξk

α,i

]= 1

3 + 3e−β
= 1

3
+O

(
e−β

)
. (5.17)

From the other two configurations in B(ζ k
αi

), the configuration ωk is the only one in ΩN
1 that can be reached after a

sequence of rate 1 jumps. Moreover, starting from some of the two configurations in B(ζ k
α,i) \ {ξk

α,i} = B∗
k (ζ k

α,i), if
the next Nα − 1 jumps of the chain correspond to transpositions in blue edges of the configurations, then, after these
jumps, the process will ultimately fall in ωk . This gives

Pβ

ζ k
α,i

[HΩN
1

= Hωk
] ≥ 1

3 + 3e−β

∑
ω∈B∗

k (ζ k
α,i )

Pβ
ω

[
Nα−1⋂
l=1

{
η(τl) ∈ B

(
η(τl−1)

)}]
. (5.18)

In this situation, transpositions in blue edges corresponds to movements of the detached particle of type α + 1 in
clockwise direction inside the domain of particles of type α or movements of the detached particle of type α − 1
in counterclockwise direction. Therefore, any configuration ω that can be reached from B∗

k (ζ k
α,i) after a sequence

of transposition in blue edges belongs to V (ωk). In fact, to arrive in ωk , we just need to keep moving the detached
particles in the correct direction until they meet the corresponding region of particles of their type. So the inequality
of Lemma 5.1 holds for these configurations. And then, applying inductively the strong Markov property in (5.18) we
see that

Pβ

ζ k
α,i

[HΩN
1

= Hωk
] ≥ 2

3 + 3e−β

(
1

1 + 4e−β

)Nα−1

= 2

3
+O

(
Ne−β

)
. (5.19)

Inequalities (5.17) and (5.19) prove (5.16) for the case ω = ξ
k,2
α,i . This concludes the proof of the lemma. �

Proposition 5.7. There exists a finite constant C0 such that for any β > 0, k ∈ ΛN , α ∈ {A,B,C} and ω ∈ ΩN
1 ,∣∣Rβ

1

(
ξk
α,i ,ω

)− R1
(
ξk
α,i ,ω

)
e−β

∣∣≤ C0Ne−2β,

where, for 2 ≤ i ≤ Nα − 2

R1
(
ξk
α,i ,ω

)=

⎧⎪⎨⎪⎩
1
2 if ω ∈ {ξk

α,i−1, ξ
k
α,i+1},

2
3 if ω = ωk ,
0 if ω /∈ {ξk

α,i−1, ξ
k
α,i+1,ωk}

and for i = 1 (recall that ξk
α,1 = ξk+1

α−1,N(α−1)−1),

R1
(
ξk
α,1,ω

)=

⎧⎪⎨⎪⎩
1
2 if ω ∈ {ξk

α,2, ξ
k+1
α−1,N(α−1)−2},

2
3 if ω ∈ {ωk,ωk+1},
0 if ω /∈ {ξk

α,2, ξ
k+1
α−1,N(α−1)−2,ωk,ωk+1}.

Proof. By (5.14),

R
β

1

(
ξk
α,i ,ω

)= λβ

(
ξk
α,i

)
Pβ

ξk
α,i

[
H+

ΩN
1

= Hω

]= 6e−βPβ

ξk
α,i

[
H+

ΩN
1

= Hω

]
.
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Now, conditioning in the first jump, and using Lemma 5.6 we get

R
β

1

(
ξk
α,i ,ω

) = e−β

6∑
j=1

Pβ

ξ
k,j
α,i

[
H+

ΩN
1

= Hω

]
= R1

(
ξk
α,i ,ω

)
e−β +O

(
Ne−2β

)
,

as desired. �

6. Trace of {η(t): t ≥ 0} on ΩN
0

Knowing the jump rates for the trace process {η1(t): t ≥ 0} on the set ΩN
1 , we can obtain the jump rates for the trace

process on the set ΩN
0 computing, for each configuration ω ∈ GN , the distribution of the first visited configuration in

ΩN
0 for the process {η1(t): t ≥ 0} starting from ω. We start replacing the original process {η1(t): t ≥ 0} by an ideal

process {η̂1(t): t ≥ 0} for which these absorption probabilities are more easily obtained.
For α such that Nα = M , define

GN
α = {

ξk
γ,j : j = 1, . . . ,Nγ − 1;γ + k = α

}
.

To understand why we defined GN
α this way note that, starting from some ξ0

α,i , the configurations ξk
γ,j in GN which

may be visited by the process after times of order eβ are those such that γ + k = α. On the set ΩN
0 ∪ GN

α consider the
continuous-time Markov chain {η̂1(t): t ≥ 0} with absorbing states ΩN

0 that jumps from ξk
γ,i to ω with the ideal rates

R̂
β

1

(
ξk
γ,i ,ω

) := R1
(
ξk
γ,i ,ω

)
e−β

given in Proposition 5.7. Note that the corresponding discrete-time jump chain depends only on NA, NB and NC , and
not directly on β . Figure 1 presents the graph structure of this simple dynamics.

For α such that Nα = M , 1 ≤ i ≤ M −1 and k ∈ ΛN , denote by pN
α (i, k) the probability for the chain {η̂1(t): t ≥ 0}

of, starting from ξ0
α,i being absorbed in ωk .

Lemma 6.1. There exists a constant C0 such that, for any β > 0, k ∈ ΛN , α such that Nα = M , and 1 ≤ i ≤ M − 1∣∣Pβ

ξ0
α,i

[HΩN
0

= Hωk
] − pN

α (i, k)
∣∣≤ C0N

3βe−β. (6.1)

Proof. By Proposition 5.7, there exists a constant C0 such that

max
ξ∈GN

α ∪ΩN
0

∑
ω∈GN

α ∪ΩN
0

∣∣Rβ

1 (ξ,ω) − R̂
β

1 (ξ,ω)
∣∣≤ C0N

3e−2β.

Therefore, for all 1 ≤ i ≤ M , there exists a coupling P
β

of the two processes such that η1(0) = η̂1(0) = ξ0
α,i , P

β
-a.s.,

and such that for all t > 0,

P
β [Tcp ≤ t] ≤ P

[
E
(
C0N

3e−2β
)≤ t

]
, (6.2)

where Tcp = inf{t > 0: η1(t) �= η̂1(t)} and E(C0N
3e−2β) is a mean (C0N

3e−2β)−1 exponential random variable. To
prove (6.1) it is sufficient to prove that

P
β[

η1
(
H

η1

ΩN
0

) �= η̂1
(
H

η̂1

ΩN
0

)]≤ C̃N3βe−β,
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for some universal constant C̃, where H
η1

ΩN
0

and H
η̂1

ΩN
0

are the hitting times of ΩN
0 for this two processes. Let

Tβ = 3
2βeβ .

P
β[

η1
(
H

η1

ΩN
0

) �= η̂1
(
H

η̂1

ΩN
0

)] = P
β[

η1
(
H

η1

ΩN
0

) �= η̂1
(
H

η̂1

ΩN
0

)
,H

η̂1

ΩN
0

≤ Tβ

]
+ P

β[
η1
(
H

η1

ΩN
0

) �= η̂1
(
H

η̂1

ΩN
0

)
,H

η̂1

ΩN
0

> Tβ

]
≤ P

β [Tcp ≤ Tβ ] + P
β[

H
η̂1

ΩN
0

> Tβ

]
. (6.3)

By the definition of the process {η̂1(t): t ≥ 0}, the absorption time H
η̂1

ΩN
0

is stochastically dominated by a mean

( 2
3 e−β)−1 exponential random variable. Using this fact and (6.2) in (6.3), we obtain that

P
β[

η1
(
H

η1

ΩN
0

) �= η̂1
(
H

η̂1

ΩN
0

)] ≤ P
[
E
(
C0N

3e−2β
)≤ Tβ

]+ P

[
E
(

2

3
e−β

)
> Tβ

]
= 1 − exp

{−C0N
3e−2βTβ

}+ exp

{
−2

3
e−βTβ

}
≤ C0N

3e−2βTβ + exp

{
−2

3
e−βTβ

}
≤ C̃N3βe−β,

by the definition of Tβ . �

For α such that Nα = M , and k �= 0 define

gN
α (k) =

M−1∑
i=1

pN
α (i, k).

Recall that we have defined rβ(k) as the jump rate from ω0 to ωk for the trace process {η0(t): t ≥ 0} on ΩN
0 . Next

theorem expresses rβ(k) in terms of gN
α (k) with an error term ψ(β), such that, as β ↑ ∞, eMβψ(β) vanishes, if we

impose proper restrictions in the way that N grows with β .

Proposition 6.2. Assume (5.7). There exist constants C0 and β0 such that for any β > β0 and k ∈ ΛN , k �= 0,∣∣rβ(k) − r(NA,NB,NC, k)e−Mβ
∣∣≤ ψ(β), (6.4)

where

r(NA,NB,NC, k) = d

2
1
{|k| = 1

}+ 2

3

∑
α: Nα=M

gN
α (k) (6.5)

and ψ is some function such that, for any β > 0,

ψ(β) ≤ C0
(
N24M + N3Mβ + N64Mβe−β

)
e−(M+1)β . (6.6)

Proof. Noting that {η0(t): t ≥ 0} is also the trace of the process {η1(t): t ≥ 0}, by [1, Corollary 6.2]

rβ(k) = R
β

1 (ω0,ωk) +
∑

α: Nα=M

M−1∑
i=1

R
β

1

(
ω0, ξ

0
α,i

)
Pβ

ξ0
α,i

[HΩN
0

= Hωk
]
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+
∑

ω∈GN\⋃α: Nα=M GN,0
α

R
β

1 (ω0,ω)Pβ
ω[HΩN

0
= Hωk

]. (6.7)

By Proposition 5.5 the first of the three terms above is equal to

d

2
1
{|k| = 1

}
e−Mβ +O

(
N4M

)
e−(M+1)β . (6.8)

A simple analysis, such as the one made to obtain (7.1) below, indicates that pN
α (i, k) ≤ (3/5)min{i−1,M−i−1} for every

k �= 0, and then gN
α (k) ≤ C0, where C0 is a constant independent of M . Using this observation, Proposition 5.5 and

Lemma 6.1, we obtain that the second term in (6.7) is equal to

2

3

∑
α: Nα=M

gN
α (k)e−Mβ +O

(
N4M + N3Mβ + N4M4Mβe−β

)
e−(M+1)β . (6.9)

Now let us look at the third term in (6.7). For ω ∈ GN \ ⋃α: Nα=M GN,0
α , by Proposition 5.5, R

β

1 (ω0,ω) ≤
C0N4Me−(M+1)β . Now observe that for ω ∈ GN,j

α with |j − k| ≥ 4, α ∈ {A,B,C},
Pβ

ω[HΩN
0

= Hωk
] ≤ C0

(
(3/5)N + N3βe−β

)
.

To see this we first approximate by the ideal process, as in Lemma 6.1, and then we make a simple analysis as in (7.1)
below. Then, the third term in (6.7) is

O
(
N24M + N64Mβe−β

)
e−(M+1)β . (6.10)

The result follows summing (6.8), (6.9) and (6.10). �

We obtain Theorem 2.5 as an immediate corollary of Proposition 6.2.

Proof of Theorem 2.5. The rates of the speeded up process {η0(eMβt): t ≥ 0} are simply the rates for the process
{η0(t): t ≥ 0} multiplied by eMβ . In the case where NA, NB and NC are constants, we obtain, multiplying (6.4) by
eMβ and sending β ↑ ∞, that the process {η0(eMβt): t ≥ 0} converges to a Markov chain in ΩN

0 , which jumps from
ωi to ωj with rate r(NA,NB,NC, j − i) given in (6.5). �

7. Understanding gN
α (k)

To understand the scaling limits of the system when N ↑ ∞ with β , we need to estimate gN
α (k). Consider the ideal

random walk {η̂1(t): t ≥ 0} starting from ξ0
α,i , 1 ≤ i ≤ Nα − 1. For its jump chain, in each step, the probability of no

absorption in ΩN
0 is less than or equal to 3/5. To arrive at ωk , k �= 0, it is necessary to survive at least (|k|−1)(M −2)

steps without absorption in ΩN
0 . Therefore, for every k �= 0 and 1 ≤ i ≤ M − 1,

pN
α (i, k) ≤

(
3

5

)(M−2)(|k|−1)

. (7.1)

This simple analysis indicates the fast decaying of gN
α (k), both in M and in k, but it does not give information about

gN
α (1) or gN

α (−1) which are not negligible. So, we need to go further into the calculations. The next lemma reduces
the analysis of gN

α (k) to the analysis of the terms pN
α (1, k) and pN

α (M − 1, k).

Lemma 7.1. Let α be such that Nα = M . For every k ∈ ΛN , k �= 0, we have that

gN
α (k) =

(
3

2
+ 2

3M−2 + 1

)(
pN

α (1, k) + pN
α (M − 1, k)

)
. (7.2)
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Proof. Let us fix NA, NB , NC and k �= 0. By the standard conditioning argument we have that, for 2 ≤ i ≤ M − 2,

pN
α (i, k) = 3

10
pN

α (i − 1, k) + 3

10
pN

α (i + 1, k). (7.3)

This recurrence relation has characteristic equation (3/10)λ2 −λ+ (3/10) = 0, whose roots are λ1 = 3 and λ2 = 1/3.
So that, we find the closed form

pN
α (i, k) = h1

N,k3i + h2
N,k

(
1

3

)i

, i = 1, . . . ,M − 1, (7.4)

where h1
N,k and h2

N,k are constants independent of i, which may be computed in terms of pN
α (1, k) and pN

α (M − 1, k)

using the relation (7.4) for i = 1 and i = M − 1. Now

gN
α (k) =

M−1∑
i=1

pN
α (i, k) = h1

N,k

M−1∑
i=1

3i + h2
N,k

M−1∑
i=1

(
1

3

)i

,

and we get (7.2) after elementary calculations. �

This lemma has an easy and useful corollary that would be sufficient to prove the particular case of Theorem 8.1
under the assumption (2.11).

Corollary 7.2. There exists an universal constant C0 such that for all N and k ∈ ΛN , k �= 0,∣∣∣∣gN
α (k) − 3

4
1
{|k| = 1

}∣∣∣∣≤ C0

(
3

5

)M

.

Proof. For |k| > 1, the result follows from the previous lemma and observation (7.1). Let us consider the case k = 1
(the case k = −1 is analogous). By the same argument that leads to (7.1) we get that pN

α (M − 1,1) ≤ (3/5)M−2. So,
using the previous lemma, we just need to care about pN

α (1,1). If M is large, we expect that pN
α (1,1) is near to 1/2.

A way of formalizing this without much effort involving computations is to couple the jump chain of {η̂1(t): t ≥ 0}
with another process for which we can use symmetry. The idea is very simple but requires some notations. Let (Xn)n≥0
be the discrete-time jump chain associated to the process {η̂1(t): t ≥ 0} starting from ξ0

α,1 (its jump probabilities are

given in Figure 1). Define the hitting time HX ,

HX = HX

{ξ−1
(α+1),1,ξ

1
(α−1),1,ω0,ω1},

as the first time the chain (Xn)n≥0 visits any of the configurations ξ−1
(α+1),1, ξ1

(α−1),1, ω0, ω1. We can conclude that

pN
α (1,1) = 1/2 + O((3/5)M) if we show that both the event HX = HX

ω1
and the event HX = HX

ω0
have probability

1/2 +O((3/5)M).
To achieve this, consider an auxiliary discrete-time chain (X̂n)n≥0 defined on the infinite set Z∪ {u−, u+} starting

from 0. To define the jump probabilities of this chain, consider Ŝ : Z \ {0} → {u−, u+} defined as

Ŝ(i) =
{

u− if i < 0,
u+ if i > 0.

We define the chain (X̂n)n≥0 imposing that, from i ∈ Z \ {0}, it jumps to i ± 1 with probability 3/10 and to Ŝ(i)

with probability 2/5. From 0, it jumps to ±1 with probability 3/14 and to u− and u+ with probability 2/7. We
define u− and u+ as absorbing states. By symmetry, this chain is absorbed in u−, with probability 1/2, or in u+, with
probability 1/2. There is an obvious correspondence between the states of the chain (X̂n)n≥0 near to 0 and the states
of the chain (Xn)n≥0 near to ξ0

α,1. We can couple these two chains in such a way that, with this correspondence, they
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walk together until the time HX . Let P X,X̂ denote such a coupling. As already done before, observe that P X,X̂[HX ≥
M − 2] ≤ (3/5)M−3. Therefore,

P X,X̂
[
HX = HX

ω1

] = P X,Y
[
HX = HX

ω1
,HX < M − 2

]+O
((

3

5

)M)

= P X,X̂
[
HX̂ = HX̂

u+ ,HX < M − 2
]+O

((
3

5

)M)

= 1

2
+O

((
3

5

)M)
,

and the same holds changing ω1 by ω0 and u+ by u−. With this, we conclude that pN
α (1,1) = 1/2 +O((3/5)M), and

then the result follows from Lemma 7.1. �

Now, for l,m ≥ 3 we will define a quantity v(l,m) in terms of some absorbtion probabilities of a simple discrete-
time Markov chain (Y

l,m
n )n≥0 that depends on l and m. We will see later that this quantity will represent the velocity

of the ballistic process that appears in the statement of Theorem 2.7.
Let us define the chain (Y

l,m
n )n≥0. Its state space is the set Z ∪ {u1, u0, u−1, u−2}. To define its jump probabilities

consider the function S :Z \ {−(m − 2),0, l − 2} → {u1, u0, u−1, u−2} defined as

S(i) =

⎧⎪⎨⎪⎩
u−2 if i < −(m − 2),
u−1 if −(m − 2) < i < 0,
u0 if 0 < i < l − 2,
u1 if i > l − 2.

We define the chain (Y
l,m
n )n≥0 imposing that, from i ∈ Z \ {−(m − 2),0, l − 2)}, it jumps to i ± 1 with probability

3/10 and to S(i) with probability 2/5. From i ∈ {−(m − 2),0, l − 2)} it jumps to i ± 1 with probability 3/14 and to
S(i ± 1) with probability 2/7. The states u1, u0, u−1 and u−2 are defined as absorbing states. Figure 7 illustrates the
structure of this simple chain. Roughly speaking, after an identification of the states, (Y

l,m
n )n≥0 is the jump chain of

the process {η̂1(t): t ≥ 0}, illustrated in Figure 1, with NA = l, NB = m and NC = ∞.
For 0 ≤ i ≤ l − 2 and k ∈ {1,0,−1,−2} denote by pl,m(i, uk) the probability for the chain (Y

l,m
n )n≥0 starting from

i being absorbed in uk . We define v(l,m) as

v(l,m) := 2

3

1∑
k=−2

k

(
l−2∑
i=0

pl,m(i, uk)

)
.

Repeating the proof of Lemma 7.1, with an obvious identification of the states, we get that

v(l,m) = 2

3

(
3

2
+ 2

3l−2 + 1

) ∑
k∈{−2,−1,1}

∑
i∈{0,l−2}

kpl,m(i, uk). (7.5)

Fig. 7. The graph structure of the chain (Y
l,m
n )n≥0.
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Lemma 7.3. There exists a constant C0 such that for any 3 ≤ NA < NB < NC ,∣∣∣∣23 ∑
k∈ΛN

kgN
A (k) − v(NA,NB)

∣∣∣∣≤ C0N
2
C

(
3

5

)NC

.

Proof. If k /∈ {−2,−1,0,1} we note that for i = 1,NA − 1, starting from ξ0
A,i , the chain {η̂1(t): t ≥ 0} must make at

least NC jumps to arrive at ωk . So, using Lemma 7.1 we get that

gN
A (k) ≤ C0(3/5)NC , k /∈ {−2,−1,0,1}. (7.6)

For k ∈ {−2,−1,0,1} we use the same coupling argument used in the last corollary, now coupling the jump chain of
{η̂1(t): t ≥ 0} with the chain (Y

NA,NB
n )n≥0. If we do not survive at least NC steps without absorption, we do not feel

the difference of these two chains. So, in (7.2) we may change pN
A (i + 1, k) by pNA,NB (i, uk), i = 0,NA − 2, causing

errors of order O((3/5)NC ). �

The key to obtain the specific scenario in which the process will converge to a Brownian motion with drift is to
understand the dependence of v(NA,NB) on NA and NB . The next lemma is sufficient for this purpose.

Lemma 7.4. Suppose that 3 ≤ NA < NB , then

v(NA,NB) =
[
−3 +O

((
1

3

)NA
)](

1

3

)NB

+O
((

1

3

)2NB
)

. (7.7)

Proof. By (7.5), in order to explicitly compute v(l,m) we just need to compute the six absorption probabilities

pl,m(i, uk), i = 0, l − 2, k = 1,−1,−2. (7.8)

Solving a recurrence as in (7.3), we can compute the distribution of the first visited state in the set {0, l − 2, u0} if the
chain (Y

l,m
n )n≥0 starts from 1. We find that, the process will first visit l − 2, 0 or u0 with probabilities pl , ql and rl ,

respectively, where

pl = 3 − (1/3)

3l−2 − (1/3)l−2
, ql = 3l−3 − (1/3)l−3

3l−2 − (1/3)l−2
, rl = 1 − pl − ql. (7.9)

This provides a simplification of the chain (Y
l,m
n )n≥0, which is best explained with Figure 8.

With this, we can easily compute the distribution of the first visited configuration in {−(m − 2), u−1, u0, l − 2}
if the process starts from 0. We obtain that the process will first visit l − 2, u0, −(m − 2), u−1 with, respectively,
probabilities pl,m, ql,m, pm,l and qm,l , where

pl,m = (3/14)pl

1 − (3/14)(ql + qm)
, ql,m = 2/7 + (3/14)rl

1 − (3/14)(ql + qm)
. (7.10)

Fig. 8. A first simplification in the dynamics of (Y
l,m
n )n≥0.
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Fig. 9. A further simplification in the dynamics of (Y
l,m
n )n≥0.

Now, if we define

pl,∞ := lim
j→∞pl,j , ql,∞ := lim

j→∞ql,j , q∞,m := lim
j→∞qj,m,

this means that, in order to compute the probabilities in (7.8), we can consider the simple seven-state chain whose
jump probabilities are given in Figure 9.

From this point, it is easy to find that

pl,m(0, u1) = pl,mq∞,l

1 − (pl,mpl,∞ + pm,lpm,∞)
, pl,m(l − 2, u1) = q∞,l + pl,∞pl,m(0, u1),

pl,m(0, u−1) = qm,l + pm,lqm,∞
1 − (pl,mpl,∞ + pm,lpm,∞)

, pl,m(l − 2, u−1) = pl,∞pl,m(0, u−1),

pl,m(0, u−2) = pm,lq∞,m

1 − (pl,mpl,∞ + pm,lpm,∞)
, pl,m(l − 2, u−2) = pl,∞pl,m(0, u−2).

To simplify the notations, in the next equations x and y will represent respectively (1/3)l and (1/3)m. After many but
elementary calculations we see from the last equations and the explicit expressions (7.9) and (7.10) that

pl,m(0, u1) = 3x
1 − 9x2

+O
(
y2),

pl,m(0, u−1) = 1 − 27x2

2 − 18x2
− (

3 +O(x)
)
y +O

(
y2),

pl,m(0, u−2) = (
3 +O(x)

)
y +O

(
y2),

and

pl,m(l − 2, u1) = 1 − 27x2

2 − 18x2
+O

(
y2),

pl,m(l − 2, u−1) = 3x
1 − 9x2

+O(x)y +O
(
y2),

pl,m(l − 2, u−2) =O(x)y +O
(
y2).

From now, many cancellations take place and we see from (7.5) that v(l,m) = [−3+O(x)]y+O(y2), as desired. �

8. Scaling limits for the trace process when N ↑ ∞

Recall the definition of the random walk {X(t): t ≥ 0} presented just before Theorem 2.7.



694 R. Misturini

Theorem 8.1. Let θβ be as in (2.7). Assume that η(0) = ω0, 3 ≤ NA < NB ≤ NC and that N ↑ ∞ as β ↑ ∞ in such
a way that (2.8) holds and that

lim
β→∞

(
N5

C4NA + N6
CNAβ

)
e−β = 0. (8.1)

Then, as β ↑ ∞, the process {X(tθβ)/N : t ≥ 0} converges in the uniform topology to a Brownian motion with drift
{μt + σBt : t ≥ 0} on the circle [−1,1]. If b = 0 in (2.8), we may replace the assumption NA < NB by NA ≤ NB .

In Theorem 8.1 the number of particles of type A can go to infinity or be constant. The parameters μ and σ can
be explicitly computed. In the case where NA ↑ ∞ we have that μ = −3b/2 and σ = 1. If NA is constant, then there
is a multiplicative correction (1 + O((1/3)NA)) in these values. The restriction (8.1), which imposes that N cannot
increase too fast, is not optimal. It comes from our not very accurate estimate of rβ(k) in Proposition 6.2. A more
careful analysis would need to take into account a much larger combinatorial complexity.

In this section we will prove Theorems 2.7 and 8.1. The general strategy is the same for the two proofs, and so we
start considering a general context.

For θ̃β , a function of β , define the process {Yβ(t): t ≥ 0} by

Yβ(t) = X(θ̃βt)

N
.

By [4, Theorem 8.7.1], in order to prove that, as β → ∞, the Markov chain {Yβ(t): t ≥ 0} converges to a diffusion
{μt + σBt : t ≥ 0}, it is enough to verify the convergence of the corresponding infinitesimal mean and covariance and
a condition that rules out jumps in the limit. More precisely, we have to show that

lim
β→∞

∑
k∈ΛN

(
k

N

)2

rβ(k)θ̃β = σ 2, lim
β→∞

∑
k∈ΛN

k

N
rβ(k)θ̃β = μ, (8.2)

and that, for every δ > 0

lim
β→∞

∑
|k|>Nδ

rβ(k)θ̃β = 0. (8.3)

By Proposition 6.2, if for ψ(β) satisfying (6.6), we can prove that

lim
β→∞Nθ̃βψ(β) = 0, (8.4)

then we may replace conditions (8.2) and (8.3) by the following:

lim
β→∞

∑
α: Nα=M

(
1 + 2

3

∑
k∈ΛN

k2gN
α (k)

)
e−Mβθ̃βN−2 = σ 2, (8.5)

lim
β→∞

2

3

( ∑
α: Nα=M

∑
k∈ΛN

kgN
α (k)

)
e−Mβθ̃βN−1 = μ, (8.6)

and, for every δ > 0

lim
β→∞

∑
α: Nα=M

∑
|k|>Nδ

gN
α (k)e−Mβθ̃β = 0. (8.7)

For the sake of clarity, from now on we look at each case separately. In fact, all the work has already been done.

Proof of Theorem 2.7. In this case θ̃β = NeNAβ . Since NA < NB are constants, we get (8.4) from assumption (2.16).
Just observing (7.6) we obtain (8.7) and (8.5) with σ 2 = 0. To conclude, observe that Lemma 7.3 gives (8.6) with
μ = v(NA,NB). �
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Proof of Theorem 8.1. In this case θ̃β = θβ . Consider first the case b > 0. In this setting, since NA < NB ≤ NC , (8.4)
follows from assumption (8.1). As before, (8.7) follows from (7.6). For simplicity, let’s suppose that we are in the case
where NA ↑ ∞. By Lemma 7.3 the limit in (8.6) is equal to limβ→∞(1/2)v(NA,NB)N and then, from Lemma 7.4
and assumption (2.8) we get (8.6) with μ = −3b/2. To conclude, it remains to verify (8.5). By (7.6), the limit in (8.5)
is equal to

1

2

(
1 + lim

β→∞
2

3

1∑
k=−2

k2gN
A (k)

)
. (8.8)

Now, (8.5) with σ 2 = 1 follows easily from Corollary 7.2. If NA is constant, we could, for example, analyze the limit
(8.8) in the same way that we have estimated

∑
k∈ΛN

kgN
α (k) in Lemmas 7.3 and 7.4, obtaining this way, after many

(but elementary) calculations, that (8.5) holds with σ 2 = 1 + O((1/3)NA). Now, noting that, by symmetry, (8.6) is
equal to 0 if NA = NB and recalling the definition of d , we see that the convergences still work for NA ≤ NB in the
case b = 0. �

9. Proof of Lemma 2.1

9.1. Some estimates for the invariant measure

Recall the notations introduced in the beginning of Section 5. Let μβ be the invariant measure of the ABC process
{η(t): t ≥ 0}. In our context the invariance of the measure μβ is characterized by the fact that, for every ω ∈ ΩN ,

e−β
∑

ξ∈B(ω)

μβ(ξ) +
∑

ξ∈R(ω)

μβ(ξ) = ∣∣B(ω)
∣∣μβ(ω) + e−β

∣∣R(ω)
∣∣μβ(ω). (9.1)

Lemma 9.1. For any β > 0, k ∈ ΛN and 1 ≤ n ≤ M ,∑
ω∈Δn

k

∣∣B∗
k (ω)

∣∣μβ(ω) = e−β
∑

ξ∈Δn−1
k

∣∣R(ξ)
∣∣μβ(ξ). (9.2)

Proof. Fix k ∈ ΛN . We prove the result by induction in n. The case n = 1 is just the relation (9.1) for ω = ωk . Now
suppose that (9.2) holds for some n ≤ M − 1. Summing the relation (9.1) over all ω ∈ Δn

k we obtain

e−β
∑

ω∈Δn
k

∑
ξ∈B(ω)

μβ(ξ) +
∑

ω∈Δn
k

∑
ξ∈R(ω)

μβ(ξ)

=
∑

ω∈Δn
k

∣∣B(ω)
∣∣μβ(ω) + e−β

∑
ω∈Δn

k

∣∣R(ω)
∣∣μβ(ω). (9.3)

By (5.1), we note that in the first member on the left-hand side of (9.3), we are measuring configurations on Δn−1
k .

Moreover, note that each configuration ξ ∈ Δn−1
k is counted repeatedly |R(ξ)| times. This is due to the simple fact

that there are exactly |R(ξ)| configurations ω ∈ Δn
k such that ξ ∈ B(ω). So, we may rewrite the first member on the

left-hand side of (9.3) as e−β
∑

ξ∈Δn−1
k

|R(ξ)|μβ(ξ) and then, by the induction hypothesis it cancels with the first

member on the right-hand side of the equality. Now note that in the second member of the left-hand side, we are
measuring configurations in Δn+1

k and each configuration ξ ∈ Δn+1
k is counted repeatedly |B∗

k (ξ)| times. Thus we get
the relation (9.2) with n replaced by n + 1, which concludes the proof. �

Corollary 9.2. For any β > 0, k ∈ ΛN and 1 ≤ n ≤ M∑
ω∈Δn

k

∣∣B∗
k (ω)

∣∣μβ(ω) ≤ (
4e−β

)n
μβ(ωk),
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and then, for β large enough,

M∑
n=1

∑
ω∈Δn

k

∣∣B∗
k (ω)

∣∣μβ(ω) ≤ 5e−βμβ(ωk). (9.4)

Proof. The proof consists in iterations of (9.2) using the inequality |R(ξ)| ≤ 4|B∗
k (ξ)|, which, by Lemma 5.1, holds

for every ξ ∈ V (ωk). �

For any set of configurations H ⊆ ΩN , define inductively

B0(H) =H, Bn(H) =
⋃

ω∈Bn−1(H)

B(ω), n = 1,2, . . . , (9.5)

and then define B∞(H) =⋃∞
n=0 Bn(H). In the same way, just changing B by R in (9.5), define Rn(H), n ≥ 1. When

H = {ωk} we write simply Rn
k instead of Rn({ωk}). We omit the index n when n = 1.

Lemma 9.3. For any β > 0, k ∈ ΛN and n ≥ 1,

∑
ω∈RM+n

k

∣∣B∗
k (ω)

∣∣μβ(ω) + e−β
n−1∑
i=0

∑
ω∈RM+i

k

∑
ζ∈D∗

k (ω)

μβ(ζ )

= e−β
∑

ξ∈RM+n−1
k

∣∣R(ξ)
∣∣μβ(ξ) +

n−1∑
i=0

∑
ξ∈RM+i

k

∣∣D∗
k (ξ)

∣∣μβ(ξ). (9.6)

Proof. Fix k ∈ ΛN . The proof by induction is very similar to the proof of Lemma 9.1. To pass from the case n to the
case n + 1, sum the relation (9.1) over all ω ∈ RM+n

k decomposing B(ω) = B∗
k (ω) ∪ D∗

k (ω). The inductive argument
is completed observing that∑

ω∈RM+n
k

∑
ξ∈B∗

k (ω)

μβ(ξ) =
∑

ξ∈RM+n−1
k

∣∣R(ξ)
∣∣μβ(ξ),

and ∑
ω∈RM+n

k

∑
ξ∈R(ω)

μβ(ξ) =
∑

ξ∈RM+n+1
k

∣∣B∗
k (ξ)

∣∣μβ(ξ).

In the same way, we obtain the base case n = 1 from the case n = M of Lemma 9.1. �

Remind that we have defined M∗ = max{NA,NB,NC}.

Corollary 9.4. There exists a constant C0 such that, for any β > 0,

μβ

( ⋃
k∈ΛN

M∗⋃
n=M

Rn
k

)
≤ C04M∗

e−Mβμβ

(
ΩN

0

)
, (9.7)

μβ

(
GN

)≤ C04M∗
e−(M−1)βμβ

(
ΩN

0

)
, (9.8)

μβ

(
R
(
GN

))≤ C04M∗
e−Mβμβ

(
ΩN

0

)
. (9.9)
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Proof. Fix k ∈ ΛN . Let Zk(0) =∑
ω∈ΔM

k
|B∗

k (ω)|μβ(ω) and, for n ≥ 1, let Zk(n) be the expression in (9.6). Obvi-

ously, for any ω ∈ V (ωk)\ {ωk} we have |B∗
k (ω)| ≥ 1. Let us label the particles of the system in such a way that for the

configuration ωk , the labels A1,A2, . . . ,ANA
,B1,B2, . . . are placed clockwise and the particle A1 is the particle of

type A that is adjacent to a particle of type C, which is CNC
. With these labels we note that, when they exist, the blue

edges of a configuration ω ∈ V (ωk) of the type whose transposition leads to configurations in D∗
k (ω) connect the adja-

cent particles (α − 1)N(α−1)
and (α + 1)1, for some α ∈ {A,B,C}, see Figure 2. So, for configurations in V (ωk) there

are at most three of such blue edges, that is |D∗
k (ω)| ≤ 3. Moreover, from ωk to achieve a configuration ω ∈ V (ωk)

with |D∗
k (ω)| = 3, at least NA + NB + NC − 3 > M∗ jumps are necessary. So, for configurations ω ∈⋃M∗

n=M Rn
k , we

have |D∗
k (ω)| ≤ 2. These inequalities and the one of Lemma 5.1 applied to equality (9.6) allow us to conclude that,

for 1 ≤ n ≤ M∗ − M + 1

Zk(n) ≤ (
4e−β

)
Zk(n − 1) + 2

n−1∑
i=0

Zk(i).

Thus, just using that 4e−β < 1 and Corollary 9.2, we get

Zk(n) ≤ 4nZk(0) ≤ 4n4Me−βμβ(ωk). (9.10)

Now note that

GN ⊆
⋃

k∈ΛN

⋃
m∈{NA,NB,NC }

⋃
ω∈Rm

k

D∗
k (ω).

So, by the definition of Zk(n) and (9.10),

μβ

( ⋃
k∈ΛN

M∗⋃
n=M

Rn
k

)
+ e−βμβ

(
GN

)≤
∑

k∈ΛN

M∗−M+1∑
n=0

Zk(n) ≤ C04M∗e−Mβμβ

(
ΩN

0

)
,

which proves (9.7) and (9.8). To obtain the inequality (9.9), just note that for each ω ∈ GN , the invariance of μβ says
that

∑
v∈R(ω) μβ(v) = 6e−βμβ(ω), and so μβ(R(GN)) ≤ 6e−βμβ(GN). �

9.2. The set that the process never leaves

The proof of Lemma 2.1 consists in finding a set of configurations ΞN that the process never leaves in the time
scale eMβ . The set ΞN needs to be sufficiently small so that μβ(ΞN \ ΩN

0 )/μβ(ΩN
0 ) vanishes as β ↑ ∞, which will

allow us to conclude that, in fact, the process stays almost always in ΩN
0 . The analysis of the excursions between two

consecutive visits to the set ΩN
0 , which we have made in Section 5, suggests a natural candidate. We define ΞN as

ΞN = B∞
( ⋃

k∈ΛN

M⋃
n=0

Rn
k

)
∪ B∞(R(GN

))
. (9.11)

This choice is optimal in the sense that, starting from ΩN
0 , any configuration in ΞN can, in fact, be visited after a time

of order eMβ . It is interesting to note that the configurations in ΞN that are not in
⋃

k∈ΛN

⋃M
n=0 Δn

k are very similar to

the configurations in ΩN
0 , differing by at most two particles that are detached from their corresponding blocks. This

observation, which will be crucial for Section 10, justifies the inclusion ΞN ⊆ Γ N stated in Section 2.2.
Let ∂ΞN denote the boundary of ΞN , that is

∂ΞN = {
ω ∈ ΞN : there exists ξ ∈ ΩN \ ΞN and i ∈ ΛN such that ξ = σ i,i+1ω

}
.

Note that ΞN was defined in such a way that

B(ξ) ⊆ ΞN, if ξ ∈ ∂ΞN. (9.12)
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Lemma 9.5. There exists a constant C0 such that, for any β > 0,

μβ

(
ΞN \ ΩN

0

)≤ C04M∗
e−βμβ

(
ΩN

0

)
(9.13)

and

μβ

(
∂ΞN

)≤ C04M∗
e−Mβμβ

(
ΩN

0

)
. (9.14)

Proof. Note that

ΞN \ ΩN
0 ⊆

( ⋃
k∈ΛN

M∗⋃
n=1

Rn
k

)
∪ GN ∪ R

(
GN

)
and

∂ΞN ⊆
( ⋃

k∈ΛN

M∗⋃
n=M

Rn
k

)
∪ R

(
GN

)
.

Now use Corollaries 9.2 and 9.4. �

Proof of Lemma 2.1. We follow the strategy presented in [7]. Fix k ∈ ΛN and t ≥ 0. We first claim that

lim
β→∞ Eβ

ωk

[∫ t

0
1
{
η
(
sN2eMβ

)
/∈ ΞN

}
ds

]
= 0. (9.15)

For each ω ∈ ∂ΞN , denote by J (ω, t) the number of jumps from ω to configurations in ΩN \ ΞN in the time interval
[0, t] and let Rβ(ω,ΩN \ΞN) be the total jump rate from ω to ΩN \ΞN . Note that the process {(η(t), J (ω, t)): t ≥ 0}
is a Markov chain. If L̃β stands for the generator of this chain and f (ξ,n) = n, it is easy to see that L̃βf (ξ, n) =
1{ξ = ω}Rβ(ω,ΩN

0 \ ΞN), so that{
J (ω, t) −

∫ t

0
Rβ

(
ω,ΩN

0 \ ΞN
)
1
{
η(s) = ω

}
ds: t ≥ 0

}
is a martingale, and thus

Eβ
ωk

[
J (ω, t)

]= Eβ
ωk

[∫ t

0
Rβ

(
ω,ΩN

0 \ ΞN
)
1
{
η(s) = ω

}
ds

]
.

Therefore, if we define J (t) =∑
ω∈∂ΞN J (ω, t), by observation (9.12) we get that

Pβ
ωk

[
J (t) ≥ 1

]≤ Eβ
ωk

[
J (t)

]≤ C0Ne−βEβ
ωk

[∫ t

0
1
{
η(s) ∈ ∂ΞN

}
ds

]
.

By symmetry,

Eβ
ωk

[∫ t

0
1
{
η(s) ∈ ∂ΞN

}
ds

]
= 1

|ΩN
0 |

∑
j∈ΛN

Eβ
ωj

[∫ t

0
1
{
η(s) ∈ ∂ΞN

}
ds

]

= 1

|ΩN
0 |μβ(ω0)

∑
j∈ΛN

μβ(ωj )Eβ
ωj

[∫ t

0
1
{
η(s) ∈ ∂ΞN

}
ds

]
. (9.16)

The sum is bounded above by

Eβ
μβ

[∫ t

0
1
{
η(s) ∈ ∂ΞN

}
ds

]
= tμβ

(
∂ΞN

)
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and the denominator is equal to μβ(ΩN
0 ), and so

Pβ
ωk

[
J
(
tN2eMβ

)≥ 1
]≤ C0tN

3e−βeMβμβ(∂ΞN)

μβ(ΩN
0 )

.

By (9.14) the above expression is less than or equal to C0tN
34M∗

e−β , which vanishes as β ↑ ∞, in view of assump-
tion (2.2). Therefore, we have proved (2.5), that is, for any t ≥ 0, starting from ωk , with probability converging to 1,
the process {η(s): s ≥ 0} does not leave the set ΞN in the time interval [0, tN2eMβ ], which is a result stronger than
(9.15). To conclude the proof of the lemma it remains to show that

lim
β→∞ Eβ

ωk

[∫ t

0
1
{
η
(
sN2eMβ

) ∈ ΞN \ ΩN
0

}
ds

]
= 0.

By repeating the arguments used in (9.16) we obtain that the previous expectation is bounded by tμβ(ΞN \
ΩN

0 )/μβ(ΩN
0 ). By (9.13) this is bounded by C0t4M∗

e−β , which, in view of assumption (2.2), vanishes as
β ↑ ∞. �

About Remark 2.4. Now we prove that, for the equal densities case NA = NB = NC , (2.13) holds without assump-
tions controlling the growth of N . In fact, this can be derived from the estimates of the partition function Zβ presented
in [5,6]. However, for completeness we present a proof here. Subtracting a function of M in the Hamiltonian (2.1) (in
fact, this function is M2 but this not relevant) and incorporating this correction in the partition function Zβ , we may
suppose that the ground states ωk , k ∈ ΛN , have energy zero. For each n, the number of configurations with energy n

is bounded by 33M , since this is a bound for the total number of configurations. So,

μβ

({
ω: H(ω) > M/2

})≤
∑

n>M/2 33Me−nβ

Zβ

≤ C0
(
27e−β/2)M,

and this goes to zero when β ↑ ∞ (for this term is even better if M grows fast). For configurations with energy at
most M/2 (which are configurations at distance at most M/2 from some ground state) we can use the estimate (9.4).
So, in the limit β ↑ ∞, in the equal densities case, the invariant measure is concentrated in ΩN

0 , no matter how fast
N ↑ ∞. �

10. Convergence of the center of mass

In this section we assume the hypothesis of Theorem 2.2, under which we will show that, when β ↑ ∞, the
process {C(η(tN2eMβ): t ≥ 0)} is close to the process {X(tN2eMβ)/N + rA/2: t ≥ 0} in the Skorohod space
D([0,∞), [−1,1]).

In the previous section we showed that under (2.2) we have (2.5), where ΞN is the set defined in (9.11). Later it
will be useful to note that ΞN can also be expressed as the union ΞN =⋃

k∈ΛN
ΞN

k where

ΞN
k =

M⋃
n=0

Δn
k ∪

⋃
α∈{A,B,C}

B∞(R(GN,k
α

))
.

In order to compare the process {C(η(tN2eMβ): t ≥ 0)} with the trace process {X(tN2eMβ)/N + rA/2: t ≥ 0} we
will use the process, derived from {η(t): t ≥ 0}, that records the last visit to the set ΩN

0 . Define

X̂(t) :=
{

X(η(t)) if η(t) ∈ ΩN
0 ,

X(η(σ (t)−)) if η(t) /∈ ΩN
0 ,

where σ(t) = sup{s ≤ t : η(s) ∈ ΩN
0 }. As we have done for {X(t): t ≥ 0}, we are omitting the dependence on β . The

last visit process {X̂(t): t ≥ 0} has the advantage with respect to the trace process that it does not translate in time the
original trajectory.
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With the same proof of [1, Proposition 4.4], with obvious small modifications for our case, under (2.3) we have
that

lim
β→∞ Eβ

ω0

[
ρ
(
X∗, X̂∗)]= 0, (10.1)

where X∗ and X̂∗ denote the speeded up processes {X(tN2eMβ)/N : t ≥ 0} and {X̂(tN2eMβ)/N : t ≥ 0}, respectively,
and ρ is a distance that generates the Skorohod topology in D([0,∞), [−1,1]).

Now we prove that the last visit process is close to the center of mass in the uniform metric.

Proposition 10.1. Assume the hypothesis of Theorem 2.2. For any ε > 0 and t > 0,

lim
β→∞ Pβ

ω0

[
sup

0≤s≤tN2eMβ

∣∣X̂(s)/N + rA/2 − C
(
η(s)

)∣∣> ε
]

= 0.

Proof. Let N̂(t) be the number of jumps of the process {X̂(s): s ≥ 0} during the time interval [0, tN2eMβ ]. We claim
that there exists a constant L, depending on t , such that

lim
β→∞ Pβ

ω0

[
N2

L
< N̂(t) < LN2

]
= 1. (10.2)

In fact, let N(t) be the number of jumps of {X(s): s ≥ 0} during the time interval [0, tN2eMβ ]. Observing that

N(t) = N̂

(
t +

∫ t

0
1
{
η
(
sN2eMβ

)
/∈ ΩN

0

}
ds

)
,

the claim will be proved if we prove (10.2) for N̂(t) changed by N(t). Now note that

Pβ
ω0

[
N(t) ≥ LN2]= P

[
T

β

1 + T
β

2 + · · · + T
β

LN2 < tN2eMβ
]
, (10.3)

where, T
β
i , i = 1,2, . . . are independent mean 1/λβ exponential random variables, with λβ = ∑

k∈ΛN
rβ(k). By

Proposition 6.2, because of (2.9), there exist constants 1 < c0 < C0 < ∞ such that eMβλβ ∈ (c0,C0), for all
β > 0. Hence, the expression in (10.3) goes to zero as β ↑ ∞, if t/L < 1/C0. In the same way, we show that
limβ↑∞ Pβ

ω0[N(t) ≤ N2] = 0, and the claim is proved.
Let τ = HΩN

0 \{ω0}. Using (2.5), (10.2), the strong Markov property and translation invariance we see that the
proposition will be proved if we prove that

lim
β→∞N2Pβ

ω0

[
sup

0≤s≤τ

∣∣C(η(s)
)− C(ω0)

∣∣> ε,η
([0, τ ])⊆ ΞN

]
= 0. (10.4)

Observe that if ω ∈ ΞN
k then |C(ω) − C(ωk)| < 1/NA < ε/2, for β large enough. So, if ν denotes the hitting time of⋃

|k|>Nε/2 ΞN
k , (10.4) will be proved if we prove that

lim
β→∞N2Pβ

ω0

[
ν ≤ τ, η

([0, τ ])⊆ ΞN
]= 0. (10.5)

For k ∈ ΛN , let Bk = {ω ∈ V (ωk) ∩ ΞN : D∗
k (ω) =∅}. Note that

M⋃
n=0

Δn
k

∖ ⋃
α∈{A,B,C}

FN,k
α ⊆ Bk ⊆ ΞN

k

and the first inclusion is an equality in the special case of equal densities. The set Bk is formed by the configurations
in ΞN from which the process is attracted to ωk . In the same way we proved Lemma 5.6, we see that

Pβ
ω[HBc

k
< Hωk

] ≤ C0Ne−β, if ω ∈ Bk. (10.6)
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Let ν̃ denote the hitting time of
⋃

0<|k|<Nε/2 Bk . Using the strong Markov property and (10.6), we see that Pβ
ω0[ν̃ ≤

ν ≤ τ ] ≤ C0Ne−β and then, decomposing the event appearing in (10.5) in the partition {ν̃ ≤ ν} ∪ {ν < ν̃}, we see that
the proof will be completed once we show that

lim
β→∞N2Pβ

ω0

[
ν < ν̃, η

([0, ν])⊆ ΞN
]= 0. (10.7)

Observing that, for each k ∈ ΛN

ΞN
k

∖ k+1⋃
j=k−1

Bj =
⋃

α∈{A,B,C}

(
GN,k

α ∪ R
(
GN,k

α

)∪ {
ξk+1
α,2 , ξ k−1

Nα−2

})∪
⋃

α: Nα=M

{
ζ k
α,0, ζ

k
α,Nα

}
,

we note that the only possible paths from ω0 to
⋃

|k|>Nε/2 ΞN
k contained in ΞN that avoid the set

⋃
0<|k|<Nε/2 Bk

are those passing through the intermediate metastates in GN . Now we will use that, starting from GN the trace of
{η(t): t ≥ 0} in ΩN

1 is well approximated by the ideal process {η̂1(t): t ≥ 0} whose jump probabilities are given in
Figure 1. A small modification of Lemma 6.1 is needed to justify this approximation. To arrive in

⋃
|k|>Nε/2 ΞN

k

we have to pass first at some configuration in
⋃

|k|=�Nε/4� ΞN
k . From this point we make the same coupling as in

Lemma 6.1. Observe now that from
⋃

|k|=�Nε/4� ΞN
k the ideal process must make at least δN2ε jumps without ab-

sorption in ΩN
0 , for some constant δ. This gives the bound

Pβ
ω0

[
ν < ν̃, η

([0, ν])⊆ ΞN
]≤

(
3

5

)δN2ε

+ C0N
3βe−β.

So, (10.7) follows by (2.9) which imposes that N increases slowly with β . This completes the proof of the proposi-
tion. �

Now, Theorem 2.2 follows from (10.1), Proposition 10.1 and Theorem 8.1.

Appendix

Lemma A.1. For any integers M and 1 ≤ i ≤ M − 1,

i∑
j=1

(
M − j − 1

i − j

)(
1

2

)M−j

+
M−i∑
r=1

(
M − r − 1
M − i − r

)(
1

2

)M−r

= 1. (A.1)

Proof. Fix M . For any i ∈ {1, . . . ,M − 1} define

φ(i) =
i∑

j=1

(
M − j − 1

i − j

)
2j−1.

Multiplying (A.1) by 2M−1, the equality to be proved becomes

φ(i) + φ(M − i) = 2M−1.

We claim that, for any 1 ≤ i ≤ M −1, φ(i) counts the number of subsets of {1, . . . ,M −1} with at most i −1 elements,
which implies the above equality. The proof of this claim relies on a suitable way of classifying the elements of( [M − 1]

≤ i − 1

)
:= {

E ⊆ {1, . . . ,M − 1}: |E| ≤ i − 1
}
.
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We first observe that for any E ∈
( [M−1]

≤i−1

)
there exists 1 ≤ k0 ≤ i such that∣∣E ∩ {k0, . . . ,M − 1}∣∣= i − k0.

To see this, note that if we define h on {1, . . . , i} as h(k) = i − k − |E ∩ {k, . . . ,M − 1}|, then h(k + 1) ∈ {h(k),

h(k) − 1}, h(1) ≥ 0, h(i) ≤ 0. So, there must exist some k0 ∈ {1, . . . , i} such that h(k0) = 0. Therefore, we may
decompose( [M − 1]

≤ i − 1

)
=

i⋃
j=1

Di
j (A.2)

into a disjoint union, where

Di
j :=

{
E ∈

( [M − 1]
≤ i − 1

)
: j = max

{
1 ≤ k ≤ i:

∣∣E ∩ {k, . . . ,M − 1}∣∣= i − k
}}

.

Now note that if E ∈ Di
j then j /∈ E. Another simple argument, using again the function h defined above, shows that,

in fact,

Di
j = {

E ⊆ {1, . . . ,M − 1}: j /∈ E,
∣∣E ∩ {j + 1, . . . ,M − 1}∣∣= i − j

}
,

and so, |Di
j | =

(
M−j−1

i−j

)
2j−1. As the union in (A.2) is disjoint, summing in j , from 1 to i, we get that φ(i) is the

cardinality of
( [M−1]

≤i−1

)
, as claimed. �
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