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Abstract. Consider a superdiffusion X on Rd corresponding to the semi-linear operator A(u) = Lu + βu − ku2, where L is a
second order elliptic operator, β(·) is in the Kato class, and k(·) ≥ 0 is bounded on compact subsets of Rd and is positive on a set
of positive Lebesgue measure.

The main purpose of this paper is to complement the results obtained in (Ann. Probab. 32 (2004) 78–99), in the following sense.
Let λ∞ be the L∞-growth bound of the semigroup corresponding to the Schrödinger-type operator L + β. If λ∞ �= 0, then we
prove that, in some sense, the exponential growth/decay rate of ‖Xt‖, the total mass of Xt , is λ∞. We also describe the limiting
behavior of exp(−λ∞t)‖Xt‖, as t → ∞. This should be compared to the result in (Ann. Probab. 32 (2004) 78–99), which says
that the generalized principal eigenvalue λ2 of the operator gives the rate of local growth when it is positive, and implies local
extinction otherwise. It is easy to show that λ∞ ≥ λ2, and we discuss cases when λ∞ > λ2 and when λ∞ = λ2.

When λ∞ = 0, and under some conditions on β, we give a necessary and sufficient condition for the superdiffusion X to exhibit
weak extinction. We show that the branching intensity k affects weak extinction; this should be compared to the known result
that k does not affect weak local extinction. (The latter depends on the sign of λ2 only, and it turns out to be equivalent to local
extinction.)

Résumé. Soit une superdiffusion X sur Rd correspondant à l’opérateur semi-linéaire A(u) = Lu + βu − ku2, où L est lui-même
un opérateur éliptique du second ordre, β(·) est dans la classe de Kato, et k(·) ≥ 0 est borné sur les compacts de Rd et est positif
sur un ensemble de mesure de Lebesgue positive.

L’objectif principal de cet article est de compléter les résultats obtenus dans (Ann. Probab. 32 (2004) 78–99), dans le sens
suivant. Soit λ∞ la borne L∞ de croissance du semigroupe correspondant à l’opérateur L + β de type Schrödinger. Si λ∞ �= 0,
nous prouvons alors que – dans un certain sens – le taux exponentiel de croissance/décroissance de la masse totale ‖Xt‖, est λ∞.
Nous décrivons également le comportement limite de exp(−λ∞t)‖Xt‖, quand t → ∞, sous cette même hypothèse. Ces résultats
sont à comparer avec ceux obtenus dans (Ann. Probab. 32 (2004) 78–99), où il est démontré que la valeur propre principale
généralisée λ2 de l’opérateur donne le taux de croissance locale quand elle est positive et qu’il y a extinction locale quand ce n’est
pas le cas. Il est aisé de montrer que λ∞ ≥ λ2, et nous discutons les cas λ∞ > λ2 et λ∞ = λ2.

Quand λ∞ = 0, et sous certaines conditions portant sur β, nous obtenons une condition nécessaire et suffisante pour que la
superdiffusion X s’éteigne faiblement. Nous montrons que l’intensité de branchement k affecte l’extinction faible; alors qu’il est
connu que k n’affecte pas l’extinction faible locale. (Celle-ci dépendant uniquement du signe de λ2 et est équivalente à l’extinction
locale.)
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Program of Higher Education. Corresponding author.
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1. Introduction

1.1. Model

For any positive integer i and η ∈ (0,1], let Ci,η(Rd) denote the space of i times continuously differentiable functions
with all their ith order derivatives belonging to Cη(Rd). (Here Cη(Rd) denotes the usual Hölder space.) For any
x ∈ Rd , we will use {ξt ,Πx, t ≥ 0} to denote the L-diffusion with Πx(ξ0 = x) = 1, where

L := 1

2
∇ · a∇ + b · ∇ on Rd,

and a, b satisfy the following

(1) the symmetric matrix a = {ai,j } satisfies

A1|v|2 ≤
d∑

i,j=1

ai,j (x)vivj ≤ A2|v|2, for all v ∈ Rd and x ∈ Rd,

with some A1,A2 > 0, and ai,j ∈ C1,η , i, j = 1, . . . , d , for some η in (0,1];
(2) the coefficients bi , i = 1, . . . , d , are measurable functions satisfying

d∑
i=1

∣∣bi(x)
∣∣≤ C

(
1 + |x|), for all x ∈ Rd,

with some C > 0;
(3) there exists a differentiable function Q : Rd →R such that b = a∇Q.

Remark 1.1. Under (1)–(3) above, the diffusion process ξ is conservative on Rd . That is,

Πx

(
ξt ∈ Rd,∀t > 0

)= 1,

for all x ∈ Rd ; equivalently, the semigroup corresponding to ξ leaves the function f ≡ 1 invariant. For a proof, see, for
instance, [32], Theorem 10.2.2. It is well known that ξ has a transition density p(t, x, y) with respect to the Lebesgue
measure.

Define

m(x) = e2Q(x), x ∈Rd . (1.1)

Then ξ is an m-symmetric Markov process, that is, the semigroup of ξ in L2(Rd,m(x)dx) is symmetric in the sense
that for any t > 0 and f,g ∈ L2(Rd,m(x)dx),∫

Rd

f (x)Πxg(ξt )m(x)dx =
∫
Rd

g(x)Πxf (ξt )m(x)dx.

If C∞
c (Rd) denotes the space of infinitely differentiable functions with compact support, then the Dirichlet form

(E,D(E)) of ξ in L2(Rd ,m(x)dx) is the closure of the form given by

E(u, v) = 1

2

∫
Rd

(∇ua∇v) exp(2Q)dx, u, v ∈ C∞
c

(
Rd

)
.
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For any measurable space (E,B), we denote by M(E) the set of all finite measures on B, equipped with the weak
topology. We denote by M the Borel σ -field on M(E), and so M is generated by all the functions fB(μ) = μ(B)

with B ∈ B. The space of finite measures with compact support will be denoted by Mc(E). The expression 〈f,μ〉
stands for the integral of f with respect to μ.

With β belonging to a certain Kato class (see Definition 1.2) and k being locally bounded from above and nonnega-
tive, we will define the fundamental quantity λ2 in (1.4) and show that λ2 < ∞. We will use ({Xt }t≥0;Pμ,μ ∈ M(Rd))

to denote the superprocess (a measure-valued Markov process) with Pμ(X0 = μ) = 1, corresponding to the semi-
linear elliptic operator A(u) := Lu+βu− ku2 on Rd . For the precise definition, see Definition 1.3 below. As we will
see in Theorem 1.3, the superprocess is well defined.

1.2. Motivation

The main purpose of this paper is to complement the results obtained in [11]. In particular, we study the growth/decay
rate of the total mass of X and weak extinction3 of X. Whereas in [11], the local behavior of the mass has been
shown to be intimately related to the generalized principal eigenvalue λ2 corresponding to the semigroup, here we
will show that the global behavior of the mass is linked to another important quantity λ∞, the L∞-growth bound for
the semigroup.

1.3. Known results

We first recall some definitions from Engländer and Kyprianou [11].

Definition 1.1. Fix a nonzero μ ∈ M(Rd) with compact support.

(i) We say that X exhibits local extinction under Pμ if for every bounded Borel set B ⊂ Rd , there exists a random
time τB such that

Pμ(τB < ∞) = 1 and Pμ

(
Xt(B) = 0 for all t ≥ τB

)= 1.

(ii) We say that X exhibits weak local extinction under Pμ if for every bounded Borel set B ⊂ Rd ,
Pμ(limt→∞ Xt(B) = 0) = 1.

(iii) We say that X exhibits extinction under Pμ if there exists a stopping time τ such that

Pμ(τ < ∞) = 1 and Pμ

(
Xt

(
Rd

)= 0 for all t ≥ τ
)= 1.

(iv) We say that X exhibits weak extinction under Pμ if Pμ(limt→∞ Xt(R
d) = 0) = 1.

Let λ2 be the growth bound of the semigroup in L2(Rd ,m) corresponding to the operator L + β (see (1.4) and
(1.5)). In [27], Pinsky gave a criterion for the local extinction of X under the assumption that β is Hölder continuous,
namely, he proved that X exhibits local extinction if and only if λ2 ≤ 0. In particular, local extinction does not
depend on the starting measure μ or the branching intensity k, but it does depend on L and β . (Note that, in regions
where β > 0, β can be considered as mass creation, whereas in regions where β < 0, β can be considered as mass
annihilation.) Since local extinction depends on the sign of λ2, therefore, heuristically, it depends on the competition
between the outward speed of particles and the mass creation. The main tools of [27] are PDE techniques.

In [11], Engländer and Kyprianou presented probabilistic (martingale and spine) arguments for the fact that λ2 ≤ 0
implies weak local extinction under Pμ for any μ ∈ M(Rd) with compact support, while λ2 > 0 implies that, for any
λ < λ2 and any nonempty relatively compact open set B ,

Pμ

(
lim sup
t→∞

e−λtXt (B) = ∞
)

> 0

holds for any nonzero initial measure μ.

3Some authors prefer to say that X ‘extinguishes.’
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Putting things together, one concludes that in this case local extinction is in fact equivalent to weak local extinction
and there is a dichotomy in the sense that the process either exhibits local extinction (when λ2 ≤ 0), or there is local
exponential growth with positive probability (when λ2 > 0).

We will see that, on the other hand, extinction and weak extinction are different in general. The intuition behind
this is that the total mass ‖Xt‖ may stay positive but decay to zero, while drifting out (local extinction) and on its way
obeying changing branching laws. (For a concrete example see Example 2.3.) This could not be achieved in a fixed
compact region with fixed branching coefficients.

Hence, weak extinction without extinction contrasts with the case without spatial motion (continuous state branch-
ing process), where such a phenomenon requires a branching mechanism which does not satisfy the ‘Grey prop-
erty’ [18].

In [11] branching diffusions were studied besides superdiffusions, by using spine and martingale methods. (Note
that for branching diffusions, weak (local) extinction and (local) extinction are obviously the same, because the lo-
cal/total mass is an integer.) The main results concerned local extinction and local growth, and it was already noted
that the growth rate of the total mass may exceed λ2 (see [11], Remark 4).

1.4. Our main results

It is important to point out that weak extinction, unlike local extinction, depends on the branching intensity k as well
(see the λ∞ = 0 case below). We will prove that the exponential growth rate of the total mass is λ∞, defined by (1.8).
More precisely, there are three cases:

1. If mass creation is large enough so that λ∞ > 0, then the total mass of X tends to infinity exponentially with rate
λ∞ > 0, with positive probability. (Note that extinction always has a positive probability.)

2. If annihilation is strong enough so that λ∞ < 0, then the total mass of X tends to zero exponentially with rate
λ∞ < 0, a.s., even under survival. (See Example 2.3 for a super-Brownian motion, where λ∞ < 0, but the process
survives with positive probability. Interestingly, as we will see in that example, having a small k term makes
extinction avoidable, while it cannot prevent weak extinction.)

3. If λ∞ = 0, then weak extinction depends on k.

Concerning the third case, under some further conditions on β , we will give a necessary and sufficient condition for
X to exhibit weak extinction (see Remark 1.13).

Applying our findings to the super-Brownian (L = 1
2Δ) case will yield some interesting results; see Section 2.3.

In all the work mentioned above, β is assumed to be Hölder continuous. In this paper, we relax this condition by
using results of [2,4,16,17,34] on Schrödinger operators. The results of this paper are new even under the assumption
that β is Hölder-continuous. Furthermore, even under the Hölder-continuity assumption, the arguments of this paper
can not be simplified by much.

Before we give the main results of this paper, let us introduce some definitions and notation.

Definition 1.2 (Kato class). A measurable function q on Rd is said to be in the Kato class K(ξ) if

lim
t↓0

sup
x∈Rd

Πx

(∫ t

0

∣∣q(ξs)
∣∣ds

)
= 0.

It is easy to see that any bounded function is in the Kato class K(ξ). For any q ∈ K(ξ), denote

eq(t) := exp

(∫ t

0
q(ξu)du

)
, (1.2)

and define

eq(∞) := exp

(∫ ∞

0
q(ξs)ds

)
, (1.3)

whenever the integral on the righthand side makes sense.
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Assumption 1.1. In the remainder of this article, we will always assume that β ∈ K(ξ).

One may define a semigroup {P β
t }t≥0 on Lp(Rd ,m), for any p ∈ [1,∞], by

P
β
t f (x) := Πx

[
eβ(t)f (ξt )

]
.

For any p ∈ [1,∞], ‖ · ‖p stands for the norm in Lp(Rd,m), while ‖ · ‖p,p stands for the operator norm from

Lp(Rd ,m) to Lp(Rd ,m). It follows from [5], Theorem 3.10, that, for any t > 0 and p ∈ [1,∞), ‖P β
t ‖p,p ≤

‖P β
t ‖∞,∞ ≤ ec1t+c2 for some constants c1, c2, and that {P β

t }t≥0 is a strongly continuous semigroup in Lp(Rd ,m)

for any 1 ≤ p < ∞. We define

λ2(β) := lim
t→∞

1

t
log

∥∥P β
t

∥∥
2,2. (1.4)

Remark 1.2 (Probabilistic representation). In fact, the following probabilistic characterization holds (see Ap-
pendix B):

λ2(β) = sup
A⊂⊂Rd

lim
t→∞

1

t
log sup

x∈A

Πx

(
eβ(t); τA > t

)
. (1.5)

(Here A ⊂⊂ Rd means that A is a bounded set in Rd .) In particular, λ2(0) is the ‘rate of escape from compacts’ for
the diffusion ξ . In general, when β is Hölder-continuous, λ2(β) coincides with the so-called generalized principal
eigenvalue of L + β defined in [26]. In our symmetric setting however, for such a β , the situation is even simpler:
λ2(β) is the supremum of the L2-spectrum for the self-adjoint realization of the symmetric operator L + β on Rd ,
obtained via the Friedrichs extension theorem. (See [26], Chapter 4, especially Proposition 4.10.1 there, for more
explanation.)

Now we recall the definition of an (L,β, k)-superprocess. For background material on superprocesses, see [6,8–10,
22].

Definition 1.3 ((L,β, k)-superprocess). An (L,β, k)-superprocess is a measure-valued Markov process ({Xt }t≥0;
Pμ,μ ∈ M(Rd)) such that Pμ(X0 = μ) = 1, and for any bounded Borel f ≥ 0 on Rd , one has

Pμ exp〈−f,Xt 〉 = exp
〈−u(t, ·),μ〉, (1.6)

where u is the minimal nonnegative solution to

u(t, x) + Πx

∫ t

0
k(ξs)

(
u(t − s, ξs)

)2 ds − Πx

∫ t

0
β(ξs)u(t − s, ξs)ds = Πxf (ξt ). (1.7)

We will also say that ({Xt }t≥0;Pμ,μ ∈ M(Rd)) is the superprocess ‘corresponding to the semi-linear elliptic
operator A(u) := Lu + βu − ku2 on Rd .’

Theorem 1.3 (Existence). Suppose that β ∈ K(ξ) and k ≥ 0 is locally bounded. Then the (L,β, k)-superprocess
exists.

Remark 1.4 (Minimality and uniqueness). Under our general condition on k, we do not claim the uniqueness of the
solution to the cumulant equation (1.7). In the Appendix A, we will construct a minimal solution instead. If, however,
k ∈ K(ξ) holds as well, then the solution is unique, see Remark A.1.

Right after the construction of the superprocess, one of course would like to know what regularity properties of the
paths one can assume.
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Theorem 1.5 (Path regularity). Assume that β ∈ K(ξ) and is bounded from above, and k ≥ 0 is locally bounded.
Then the superprocess constructed in Theorem 1.3 has a version which possesses càdlàg paths (that is, right continu-
ous paths with left limits, in the weak topology of measures).

The proofs of Theorems 1.3 and 1.5 are relegated to Appendix A.
Throughout this paper, the following assumption will be in force:

Assumption 1.2 (Regularity assumption). The superprocess X has càdlàg paths.

Remark 1.6. Note that, by Theorem 1.5, the condition that β is bounded from above is a sufficient condition for the
existence of a regular version of X. What we need in the rest of this paper is the existence of a regular version of X.
With Assumption 1.2 in force, we do not need to assume that β is bounded from above in the rest of this paper.

Returning now to the analytic tools needed, another very important quantity besides λ2, is given in the following
definition.

Definition 1.4 (L∞-growth bound). Define

λ∞(β) := lim
t→∞

1

t
log

∥∥P β
t

∥∥∞,∞ = lim
t→∞

1

t
log sup

x∈Rd

Πxeβ(t). (1.8)

We call λ∞ = λ∞(β) the L∞-growth bound.

It follows from (1.5) and (1.8) that λ∞(β) ≥ λ2(β). In fact, λ∞(β) = λ2(β) and λ∞(β) > λ2(β) are both possible.
For conditions under which λ∞(β) = λ2(β), we refer to Chen [3], Section 4, and the references therein. We will give
some examples of λ∞(β) > λ2(β) in Section 2.

For simplicity, we will write λ2(β) as λ2, and λ∞(β) as λ∞ when the potential β is fixed.
The following notion is of fundamental importance.

Definition 1.5 (Gauge function). For any β ∈ K(ξ), we define

gβ(x) := Πx

(
eβ(∞)

)
, x ∈ Rd, (1.9)

when the right hand side is well defined. The function gβ , called the gauge function, is very useful in studying the
potential theory of the Schrödinger-type operator L + β .

We are now ready to state the main results of this paper, the first of which treats the ‘over-scaling’ and ‘under-
scaling’ of the total mass ‖Xt‖ := 〈1,Xt 〉.

Theorem 1.7 (Over- and under-scaling). Let μ ∈ M(Rd) be nonzero.

(1) For any λ > λ∞,

Pμ

(
lim

t→∞ e−λt‖Xt‖ = 0
)

= 1. (1.10)

In particular, if λ∞ < 0, then X suffers weak extinction.
(2) Assume that k is bounded. If λ∞ > 0 and

lim inf
t→∞

Πxeβ(t)

supy∈Rd Πyeβ(t)
> 0 for all x ∈Rd (1.11)

holds, then for any λ < λ∞,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ = ∞
)

> 0. (1.12)
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Condition (1.11) is rather restrictive. It is certainly satisfied when β is a constant. Using Lemma 2.4 below, one can
come up with many examples of nonconstant functions satisfying this condition.

The next two theorems give some insight as to what happens when the scaling of the total mass is exactly at λ∞.
Obviously, the conditions in the next two theorems are not optimal. We plan to establish more general versions of
these two theorems in an upcoming paper.

Theorem 1.8 (Scaling at λ∞). Let μ ∈ M(Rd) be nonzero.

(1) Assume that λ∞ > 0 and that (1.11) holds. If

lim
t→∞Πxeβ−λ∞(t) = ∞ for all x ∈Rd , (1.13)

then

Pμ

(
lim sup
t→∞

e−λ∞t‖Xt‖ = ∞
)

> 0. (1.14)

(2) If gβ−λ∞(x) ≡ 0 in Rd and

sup
x∈Rd

Πx

(
sup
t≥0

eβ−λ∞(t)
)

< ∞, (1.15)

then

Pμ

(
lim inf
t→∞ e−λ∞t‖Xt‖ = 0

)
= 1. (1.16)

If, in addition, β ≤ 0 on Rd , then the superprocess suffers weak extinction.

Remark 1.9. Assuming gβ−λ∞ ≡ ∞ would automatically imply (1.13).

Unlike in the previous two results, the next two involve the coefficient k as well.
The result below relates scaling and positive solutions (in the sense of distributions) of (L + β − λ∞)h = 0. Recall

that a function h is a solution to (L + β)h = 0 in the sense of distributions if the generalized derivative ∇h is locally
L2-integrable with respect to m(x)dx and for any ϕ ∈ C∞

c (Rd),

1

2

∫
Rd

(∇ha∇ϕ) exp(2Q)dx −
∫
Rd

h(x)ϕ(x)β(x)dx = 0.

Theorem 1.10. Assume that there is a bounded solution h > 0 of (L + β − λ∞)h = 0 in Rd in the sense of distribu-
tions. If there exists an x0 ∈Rd such that

Πx0

∫ ∞

0
eβ−2λ∞(s)k(ξs)ds < ∞, (1.17)

then limt→∞ e−λ∞t 〈h,Xt 〉 exists Pμ-a.s. and in L2(Pμ), and Pμ(‖Xt‖ > 0,∀t > 0) > 0 for all nonzero measures
μ ∈ Mc(R

d). If, in addition, h satisfies that

inf
x∈Rd

h(x) > 0, (1.18)

then the scaling at λ∞ is the correct one in the sense that for every nonzero μ ∈ Mc(R
d),

Pμ

(
lim sup
t→∞

e−λ∞t‖Xt‖ < ∞
)

= 1 (1.19)

and

Pμ

(
lim inf
t→∞ e−λ∞t‖Xt‖ > 0

)
> 0. (1.20)
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Remark 1.11 (On condition (1.17)). Assume that the coefficients are smooth and h > 0 is a strong solution in Theo-
rem 1.10. From the fact that the operator (L + β − λ∞)h defined by

(L + β − λ∞)hu(x) = 1

h(x)
(L + β − λ∞)(uh)(x)

has no potential (zeroth order) part, it follows that

Πx0eβ(s)h(ξs) ≤ eλ∞sh(x0).

Thus, if k ≤ Ch, then

Πx0

∫ ∞

0
eβ−2λ∞(s)k(ξs)ds ≤ C1

∫ ∞

0
e−λ∞s ds.

Consequently if λ∞ > 0 and k/h is bounded from above (in particular, if k ∈ Cc(R
d)), then condition (1.17) is

automatically satisfied.
Similarly, if f > 0 solves (L − λ2(0))f = 0 (such a positive harmonic function always exists if L has smooth

coefficients), then

Πx0f (ξs) ≤ eλ2(0)sf (x0).

Suppose now that β ≡ B , where B is an arbitrary constant. Since ξ is conservative, λ∞ = B . So, if k ≤ Cf (in
particular, if k ∈ Cc(R

d)), then

Πx0

∫ ∞

0
eβ−2λ∞(s)k(ξs)ds ≤ C1

∫ ∞

0
e(−B+λ2(0))s ds. (1.21)

If B > 0, then the integral on the righthand side of (1.21) is always finite (since λ2(0) ≤ 0), and so condition (1.17) is
automatically satisfied.

If B ≤ 0, it is still satisfied as long as |B| < |λ2(0)|, that is, when the motion is sufficiently transient. To give a
concrete example, consider an ‘outward’ Ornstein–Uhlenbeck process, with parameter γ > 0, corresponding to the
operator

L = 1

2
Δ + γ x · ∇ on Rd .

Since λ2 = −γ d , what we need is 0 < B + γ d .

We now present a partial converse to Theorem 1.10. To state this result, we need to introduce another function
class. We note that the Kato class K introduced in Definition 1.2 was defined by a local condition, while the class K∞
introduced below is defined by a global condition.

Definition 1.6 (The class K∞(ξ)). Assume that ξ is transient. A function q ∈ K(ξ) is said to be in the class K∞(ξ) if
for any ε > 0 there exist a compact set K and a constant δ > 0 such that for any subset A of K with m(A) < δ,

sup
x∈Rd

∫
(Rd\K)∪A

G̃(x, y)
∣∣q(y)

∣∣m(y)dy < ε, (1.22)

where m is the function defined in (1.1) and G̃(x, y) is the Green function corresponding to ξ with respect to m(x)dx

in Rd .

The class K∞(ξ) was first introduced in [2,4]. When ξ is transient and β ∈ K∞(ξ), we have λ∞ ≥ 0. In fact, it
follows from [4], Proposition 2.1, that Πx(

∫∞
0 |β|(ξs)ds) is bounded in Rd . Let M be the upper bound. By Jensen’s

inequality, we have

Πxeβ(t) ≥ exp

(
−Πx

∫ ∞

0
|β|(ξs)ds

)
≥ e−M, (1.23)
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which implies that

1

t
log sup

x∈Rd

Πxeβ(t) ≥ −M/t.

Thus by definition,

λ∞ = lim
t→∞ sup

x∈Rd

1

t
logΠxeβ(t) ≥ 0.

Note that (1.23) implies that gβ ≥ e−M . It follows from the gauge theorem (see [4], Theorem 2.2, or [2], Theorem 2.6)
that, if ξ is transient and β ∈ K∞(ξ), then gβ is either bounded or identically infinite. It follows from [2], Corollary 2.9,
that the boundedness of gβ implies that supx∈Rd Πx(supt≥0 eβ(t)) < ∞ for every x ∈Rd , and hence λ∞(β) = 0.

Recall that a function f on Rd is said to be radial if there exists some function f̃ on [0,∞) such that f (x) = f̃ (|x|)
for all x ∈ Rd .

Theorem 1.12 (Weak extinction in the radial case). Assume that k and β are radial functions, and L is radial (i.e.,
ai,j , i, j = 1,2, . . . , d , and Q are radial functions). Assume that ξ is transient, β ∈ K∞(ξ), and that gβ(x) is not
identically infinite (which implies that gβ is bounded and hence λ∞ = 0). If

Πx

[∫ ∞

0
eβ(s)k(ξs)ds

]
= ∞ for all x ∈Rd, (1.24)

then for every μ ∈ M(Rd),

Pμ

(
lim

t→∞‖Xt‖ = 0
)

= 1. (1.25)

Remark 1.13. In particular, if ξ is transient, β ∈ K∞(ξ) and gβ is not identically infinite, then gβ is a solution of
(L+β)u = 0 in the distribution sense, and is bounded between two positive numbers (see the paragraphs after (1.23)).
In this case, Theorem 1.10 and Theorem 1.12 imply that condition (1.24) is a necessary and sufficient condition for X

to exhibit weak extinction.

In Section 2 we will give some examples for which the conditions of our theorems are satisfied. The assumption
that k,β,L are radial in Theorem 1.12 is rather restrictive. We expect that an appropriate version of Theorem 1.12
will be valid in the nonradial case too; we plan to address this problem in an upcoming project.

1.5. Outline

The rest of the paper is organized as follows. In the next section we illustrate our results with examples. In the two
sections following the examples, we provide the proofs. Those proofs utilize some known results from Gauge Theory,
as well as probabilistic techniques. We presume that the probabilistic audience likely to read this article would prefer to
see the (largely probabilistic) proofs of the results without first being halted by a lengthy read about the technicalities
of Gauge Theory. Therefore, in order to make the material presented easier to digest, we relegate those technical
lemmas into Appendix B. In the same vein, to make the paper less overwhelmed by technical details at the beginning,
we defer the proof of path regularity to Appendix A. The reader may consider, of course, to read the appendices right
after reading the main results.

2. Examples

2.1. Some superdiffusions with λ∞ > λ2

We start with an example in one dimension and with constant mass creation.
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Example 2.1. Consider the elliptic operator

L = 1

2

d2

dx2
− b0

d

dx

on R, where b0 > 0 is a constant. Then the diffusion corresponding to L is conservative and transient. It is easy to
see that the corresponding generalized principal eigenvalue is λ2(0) = −b2

0/2. Let the potential β be a nonnegative
constant. We have λ2(β) = β − b2

0/2 and λ∞(β) = β . The Green function of ξ is G(x,y) = 2π
b0

exp(−2b0(x − y)+).
Note that L − β + λ∞(β) = L.

For the large time behavior of X the following hold.
(i) According to [27], Theorem 7 and Example 1, X exhibits local extinction if and only if β ∈ [0, b2

0/2]. Fur-
thermore, when β ∈ (b2

0/2,∞), X does not exhibit local extinction, and the exponential expected growth rate of the
local mass is (β − b2

0/2). More precisely, for any continuous function g on R with compact support and any nonzero
μ ∈ Mc(R), one has

lim
t→∞ eρtPμ〈g,Xt 〉 =

{
0, � ≤ −(β − b2

0/2),

+∞, � > −(β − b2
0/2).

In fact, by [11], the local mass grows exponentially with positive probability, that is, not just in expectation.
(ii) If β > 0, since Πxeβ(t) = eβt for all x ∈ R and t ≥ 0, (1.11) is satisfied. Thus by Theorem 1.7, we have that,

for any λ > β ,

Pμ

(
lim inf
t→∞ e−λt‖Xt‖ = 0

)
= 1,

and that if k is bounded, then, for any λ < β ,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ = ∞
)

> 0.

(iii) Since u ≡ 1 solves Lu = 0, by Theorem 1.10, if there exists an x0 ∈ R such that

Πx0

∫ ∞

0
e−βsk(ξs)ds < ∞, (2.1)

then for any nonzero μ ∈ Mc(R
d), the limit limt→∞ exp(−βt)‖Xt‖ exists Pμ-a.s. and in L2(Pμ), and

0 < Pμ

([
lim

t→∞ exp(−βt)‖Xt‖
]2)

< ∞.

Hence,

Pμ

(
lim

t→∞ exp(−βt)‖Xt‖ = 0
)

< 1,

and

Pμ

(
lim

t→∞ exp(−βt)‖Xt‖ = ∞
)

= 0.

(iv) Since L is radial, by Theorem 1.12 we have that in the case of critical branching (β = 0), if∫ x

−∞
exp

(−b0(x − y)
)
k(y)dy +

∫ ∞

x

k(y)dy = ∞, x ∈R, (2.2)

then

Pμ

(
lim

t→∞‖Xt‖ = 0
)

= 1.

In summary,
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(a) If β > 0, the exponential growth rate of the total mass is β .
(b) If β = 0, weak extinction depends on the branching rate function k: the superprocess exhibits weak extinction if

and only if (2.2) holds.

In the next example the motion component is a multidimensional ‘outward Ornstein–Uhlenbeck’ process.

Example 2.2. Consider the elliptic operator

L = 1

2
Δ + γ x · ∇ on Rd,

where d ≥ 1 and γ > 0. Then the diffusion corresponding to L is conservative and transient, and λ2(0) = −γ d . Let
the potential β be a positive constant. Then λ2(β) = β − γ d , and λ∞(β) = β .

(i) X exhibits local extinction if and only if β ∈ [0, γ d]. If β ∈ (γ d,∞), then X does not exhibit local extinction,
and the exponential growth rate of the local mass is β −γ d . More precisely, for any continuous function g on Rd with
compact support,

lim
t→∞ e(β−γ d)t 〈g,Xt 〉 = Nμ

∫
Rd

g(x) exp
(−γ |x|2/2

)
dx, in Pμ-probability

for some random variable Nμ with mean
∫
Rd exp(−γ |x|2/2)μ(dx), whenever there exists a K > 0 such that

k(x) ≤ K exp
(
γ |x|2/2

)
, for all x ∈Rd ,

and the starting measure μ = X0 satisfies∫
Rd

exp
(−γ |x|2/2

)
μ(dx) < ∞.

See [14], Theorem 1, and [13], Example 23.
(ii) By Theorem 1.7, we have that, for any λ > β ,

Pμ

(
lim inf
t→∞ e−λt‖Xt‖ = 0

)
= 1,

and that if k is bounded in Rd , then, for any λ < β ,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ = ∞
)

> 0.

(iii) Obviously, u ≡ 1 is a bounded solution to Lu = 0, and by Theorem 1.10 and its proof, we have that if the
branching rate k satisfies

Πx

∫ ∞

0
e−βsk(ξs)ds < ∞, x ∈Rd ,

then for any nonzero μ ∈ Mc(R
d), there exists limt→∞ exp(−βt)‖Xt‖ Pμ-a.s., and

Pμ

[
lim

t→∞ exp(−βt)‖Xt‖
]2 ∈ (0,∞).

Hence,

Pμ

(
lim

t→∞ exp(−βt)‖Xt‖ = 0
)

< 1,

and

Pμ

(
lim

t→∞ exp(−βt)‖Xt‖ = ∞
)

= 0.
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2.2. Extinction and weak extinction

Next is an example illustrating the difference between extinction and weak extinction. The superprocess X below
exhibits local extinction and also weak extinction, nevertheless, it survives with positive probability.

Example 2.3 (Weak and also local extinction, but survival). Let B,ε > 0 and consider the super-Brownian motion
in R with β(x) ≡ −B and k(x) = exp[∓√

2(B + ε)x], that is, let X correspond to the semi-linear elliptic operator
A, where

A(u) := 1

2

d2u

dx2
− Bu − exp

[∓√
2(B + ε)x

]
u2.

By Theorem 1.7, X suffers weak extinction: for any δ > 0,

lim
t→0

e(B−δ)t‖Xt‖ = 0.

Also, clearly, λ2 = −B , yielding that X also exhibits local extinction.
Now we are going to show that, despite the above, the process X survives with positive probability, that is

Pμ

(‖Xt‖ > 0,∀t > 0
)
> 0,

for any nonzero μ ∈ M(Rd). In order to do this, we will use the definition and basic properties of h-transforms and
weighted superprocesses. These can be found in Section 2 of [12].

The function h(x) := e±√
2(B+ε)x transforms the operator A into Ah, where

Ah(u) := 1

h
A(hu) = 1

2

d2u

dx2
±√

2(B + ε)
du

dx
+ εu − u2.

(Note that h′′/2 − (B + ε)h = 0.) The superprocess Xh corresponding to Ah is in fact the same as the original
process X, weighted by the function h, and consequently, survival (with positive probability) is invariant under h-
transforms. But Xh has a conservative motion component and constant branching mechanism, which is supercritical,
and therefore Xh survives with positive probability; the same is then true for X.

2.3. The super-Brownian motion case

In this subsection we focus on the special case when the underlying motion process is a Brownian motion, that is,
when L = Δ/2; in the remainder of this section we will always assume that this is the case. In this case β ∈ K(ξ) if
and only if

lim
r→0

sup
x∈Rd

∫
|y−x|<r

u(x − y)
∣∣β(y)

∣∣dy = 0,

where u is the function defined by

u(x) :=
⎧⎨⎩ |x|2−d , d ≥ 3,

log |x|−1, d = 2,
|x|, d = 1.

(2.3)

When d ≥ 3, K∞(ξ) coincides with the class K∞
d defined in [34]. We recall the definition of the class K∞

d defined in
[16,17] in the case d ≤ 2.
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Definition 2.1 (The classes K∞
1 (ξ) and K∞

2 (ξ)). Let L = Δ/2.

(1) If d = 1, a function q ∈ K(ξ) is said to be in the class K∞
1 (ξ) if∫

|y|≥1

∣∣yq(y)
∣∣dy < ∞.

(2) If d = 2, a function q ∈ K(ξ) is said to be in the class K∞
2 (ξ) if∫

|y|≥1
log

(|y|)∣∣q(y)
∣∣dy < ∞.

2.3.1. The d ≥ 3 case
Recall that we have proved, in the paragraph below Definition 1.6, that for any β ∈ K∞(ξ) we have λ∞(β) ≥ 0. The
following definition is from [29].

Definition 2.2 (Criticality in terms of λ∞). Let L = Δ/2 and β ∈ K∞(ξ). Then β is said to be

(a) supercritical iff λ∞(β) > 0,
(b) critical iff λ∞(β) = 0 and for any nontrivial nonnegative continuous function q of compact support, λ∞(β +

q) > 0.
(c) subcritical iff it neither supercritical nor critical.

Note. The reader should not confuse the above properties of the function β with the (local) criticality (or sub- or
supercriticality) of the branching, which simply refer to the sign of β (in certain regions).

The following result relates the above definition to the solutions of

(L + β)u = 0, (2.4)

and is due to [34].

Lemma 2.1. Let L = Δ/2, β ∈ K∞(ξ) and d ≥ 3. Then the following conditions are equivalent:

(a) β is subcritical.
(b) gβ(x) ≡ Πxeβ(∞) is bounded in Rd .
(c) There exists a solution u to (2.4) with infx∈Rd u(x) > 0.
(d) There exists a solution u to (2.4) with 0 < infx∈Rd u(x) ≤ supx∈Rd u(x) < ∞.

Moreover, if β is subcritical, then (2.4) has a unique (up to constant multiples) positive bounded solution and the
solution must be of the form cgβ(x) for some c > 0.

However, if β is critical, then there is no positive solution to (2.4) which is bounded away from zero. Pinchover
[25] proved the following result (see [25], Lemma 2.7).

Lemma 2.2. Let L = Δ/2, β ∈ K∞(ξ) and d ≥ 3. If β is critical, then there is an h > 0 satisfying (2.4) on Rd and
such that

h ∼ cd |x|2−d , as |x| → ∞, (2.5)

where cd is a positive constant depending only on d .

It is easy to check that, for any p > d/2, β ∈ L1(Rd) ∩ Lp(Rd) implies that β ∈ K∞(ξ). In this special case, the
following result shows that h can be obtained as a large time asymptotic limit of the Schrödinger semigroup (see [29],
Theorem 3.1).
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Lemma 2.3. Let L = Δ/2, β ∈ L1(Rd) ∩ Lp(Rd) and d ≥ 3. If β is critical, then

lim
t→∞f (t)−1 sup

x∈Rd

Πx

[
eβ(t)

]= C, (2.6)

and

lim
t→∞f (t)−1Πx

[
eβ(t)

]= h(x), ∀x ∈ Rd, (2.7)

where C is a positive constant, h > 0 is bounded and solves (2.4) (general theory implies, in the critical case, the
existence of such a solution) and

f (t) =
⎧⎨⎩

t, d ≥ 5,

t/(log t), d = 4,

t1/2 d = 3.

(2.8)

Lemma 2.4. Let L = Δ/2 and d ≥ 3. If λ∞(β) > 0 and β − λ∞ ∈ L1(Rd) ∩ Lp(Rd), then conditions (1.11) and
(1.13) are satisfied.

Proof. Note that

gβ(t) = sup
x∈Rd

Πxeβ(t) = eλ∞t sup
x∈Rd

Πxeβ−λ∞(t).

By Lemma 2.3 we have

gβ(t) ∼ Ceλ∞t f (t), as t → ∞
with f (t) defined by (2.8), and

lim
t→∞g−1

β (t)Πxeβ(t) = 1

C
lim

t→∞f −1(t)Πxeβ−λ∞(t) > 0,

which means that conditions (1.11) and (1.13) are satisfied. �

This subsection shows that there are many examples of β satisfying the conditions of Theorems 1.7–1.8(1).

2.3.2. The d ≤ 2 case
The purpose of this subsection is to show that the assumptions of Theorem 1.8(2) are satisfied for some super-
Brownian motions in Rd with d ≤ 2.

The following lemma is due to [16,17].

Lemma 2.5. Let d ≤ 2, L = Δ/2 and β ∈ K∞
d (ξ). The following conditions are equivalent.

(a) β is critical.
(b) There exists a positive bounded solution to (2.4).

Moreover, if β is critical, then the positive bounded solution h to (2.4) is unique (up to constant multiples), and h

possesses the following representation:

h(x) =
{

h(0) limr↓0 Πxeβ(TB(0,r)), d = 2,

h(0)Πxeβ(T0), d = 1,

where for every open set B , TB = inf{t > 0; ξt ∈ B} denotes the first hitting time of B , and T0 = T{0} denotes the first
hitting time of ξ at the point 0. Moreover, h is bounded away from zero.
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It follows from the previous lemma that, in the case d ≤ 2, if λ∞(β) > 0, β − λ∞(β) ∈ K∞
d and β − λ∞(β) is

critical, then the assumption (1.18) of Theorem 1.10 is satisfied.

Remark 2.6. Let d ≤ 2 and L = Δ/2. Murata proved the following result (see [24], Theorem 4.1): If β ∼ |x|−ρ

(ρ > 4) as |x| → ∞ (obviously β ∈ K∞
d ) and β is subcritical, then there exists a positive solution h to (2.4) such that

h(x) =
{

(2π)−1 log |x|
2 +O(1), for d = 2,

(2π1/4)−1|x| +O(1), for d = 1,

as |x| → ∞.

Thus if d ≤ 2, L = Δ/2, β − λ ∈ K∞
d and β − λ is subcritical, then there is no positive bounded solution to (L +

β − λ)h = 0. In order to deal with the subcritical case, we need to develop some results on Schrödinger semigroups.
We believe that these results are also of independent interest.

Lemma 2.7. Let d ≤ 2, L = Δ/2 and β ∈ K∞
d . If λ∞(β) = 0, then

sup
t≥0

sup
x∈Rd

Πxeβ(t) < ∞. (2.9)

Proof. Since λ∞(β) = 0, β is either critical or subcritical. For the subcritical case we will prove a stronger result later,
see Lemma 2.9 below. Thus, we now assume that β is critical. Then Lemma 2.5 asserts that there exists a bounded
solution ψ to (2.4) such that ψ > 0 and supx∈Rd ψ−1(x) < ∞. We then have

Πxeβ(t) = Πx

(
eβ(t)

(
ψ−1ψ

)
(ξt )

)
≤
(

sup
x∈Rd

ψ−1(x)
)
Πx

(
eβ(t)ψ(ξt )

)
=
(

sup
x∈Rd

ψ−1(x)
)
ψ(x)

≤ sup
x∈Rd

ψ(x)
/

inf
x∈Rd

ψ(x) < ∞.

This proves (2.9). �

Remark 2.8. Murata (see [24], Corollary 1.6) proved the above result for d = 2 under the condition that β ∼ |x|−ρ

(ρ > 4) as |x| → ∞, which implies that β ∈ K∞
2 . Our proof above goes along the line given in the proof of [24],

Corollary 1.6(ii).

If β is subcritical, we have the following stronger result.

Lemma 2.9. Let d ≤ 2, L = Δ/2 and β ∈ K∞
d . If β is subcritical, then

sup
x∈Rd

Πx sup
0≤t≤∞

eβ(t) < ∞. (2.10)

Proof. We first prove the result for dimension d = 2. For r > 0 we denote the open ball of radius r with center at the
origin and its open exterior by

Br = {
x ∈Rd, |x| < r

}; B∗
r = {

x ∈Rd, |x| > r
}
.

According to [17], Proposition 2.2, there exists an r0 > 0 such that for all r ≥ r0 and x ∈ B∗
r ,

Πxeβ+(τB∗
r
) ≤ 2, e−1/2 ≤ Πxeβ(τB∗

r
) ≤ 2. (2.11)
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Choose r0 large enough such that supp(μ) ⊂ Br0 . We fix two real numbers r and R with R > r ≥ r0. Since β is
subcritical, by [16], Theorem 2.1,

Πxeβ(τBR
) < ∞, ∀x ∈ BR.

We define

S = τBR
+ τB∗

r
◦ θτBR

.

Put

S0 = 0; Sn = Sn−1 + S ◦ θSn−1 , n ≥ 1.

In particular, S1 = S. For any f ∈ C(∂Br), we define

(ASf )(x) = Πx

(
eβ(S)f (ξS)

)
, x ∈ ∂Br .

Note that

An
Sf (x) = Πx

[
eβ(Sn)f (Sn)

]
, x ∈ ∂Br .

The spectral radius of AS is defined by

λ̃(β) := lim
n→∞

∥∥An
S

∥∥1/n
.

It follows from [17], Theorem 2.4, that λ̃(β) < 1. Thus there exists δ > 0 such that λ̃(β)+ δ < 1, and sufficiently large
n such that, ‖An

S‖ ≤ (̃λ(q) + δ)n. Therefore we have

∞∑
n=0

sup
x∈Rd

∣∣An
S1(x)

∣∣= ∞∑
n=0

sup
x∈Rd

Πxeβ(Sn) < ∞. (2.12)

By the strong Markov property applied at τBR
, along with the simple fact that

∫ t

0 eβ+(s)β+(s)ds = eβ+(t) − 1, and
finally by(2.11), we have

Πx

∫ S

0
eβ(t)β+(t)dt = Πx

∫ τBR

0
eβ(t)β+(t)dt + Πx

[
ΠξτBR

∫ τB∗
r

0
eβ(t)β+(t)dt

]
≤ Πx

∫ τBR

0
eβ(t)β+(t)dt + Πx

[
ΠξτBR

∫ τB∗
r

0
eβ+(t)β+(t)dt

]
= Πx

∫ τBR

0
eβ(t)β+(t)dt + Πx

[
ΠξτBR

eβ+(τB∗
r
)
]− 1

≤ Πx

∫ τBR

0
eβ(t)β+(t)dt + 1.

Let ξBR denote the Brownian motion killed upon exiting BR . Since β is subcritical, the function x → Πxeβ(τBR
)

is bounded on BR . It follows from [2], Theorem 2.8, that

sup
x∈BR

Πx

∫ τBR

0
eβ(t)β+(t)dt < ∞.

Thus

C := sup
x∈∂Br

Πx

∫ S

0
eβ(t)β+(t)dt < ∞. (2.13)
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By the strong Markov property, applied at Sn, and by (2.12), and (2.13), we have

sup
x∈Rd

Πx

∫ ∞

0
eβ(t)β+(t)dt ≤

∞∑
n=0

sup
x∈Rd

Πx

[∫ Sn+1

Sn

eβ(t)β+(t)dt

]

=
∞∑

n=0

sup
x∈Rd

Πx

[
eβ(Sn)ΠξSn

∫ S

0
eβ(t)β+(t)dt

]

≤ C

∞∑
n=0

sup
x∈Rd

Πxeβ(Sn) < ∞. (2.14)

Observe that

eβ(t) = 1 +
∫ t

0
eβ(s)β(s)ds ≤ 1 +

∫ t

0
eβ(s)β+(s)ds,

and so

sup
0≤t≤∞

eβ(t) ≤ 1 +
∫ ∞

0
eβ(s)β+(s)ds.

Using (2.14) we get (2.10) and we finish the proof for dimension d = 2.
Now let d = 1. Define

u(a, b) := Πxeβ(Tb), a, b ∈ R1,

where Tb is the first hitting time of ξ at the point b. By [16], Theorem 4.8, u(a, b)u(b, a) < 1 for any a, b ∈ R1. For
any x ∈ R1, define

Sx = Tx+1 + Tx ◦ θTx+1 .

Then

Πxeβ(Sx) = u(x, x + 1)u(x + 1, x) < 1.

Repeating the above proof for d = 2 with S replaced by Sx we can similarly obtain (2.10) for d = 1. We omit the
details. �

Lemma 2.10. Let d ≤ 2, L = Δ/2 and β ∈ K∞
d . If β is subcritical, then

lim
t→∞Πxeβ(t) = Πxeβ(∞) ≡ 0 in Rd . (2.15)

Proof. By (2.10) and by dominated convergence, it suffices to show

Πxeβ(∞) = 0, ∀x ∈ Rd . (2.16)

We continue to use the notations in the proof of Lemma 2.9. We first prove (2.16) for dimension d = 2. Using the
strong Markov property of ξ , applied at τBR

, and Fatou’s lemma, we get

Π0eβ(∞) = Π0
[
eβ(ξτBr

)ΠξτBr
eβ(∞)

]
≤ Π0

[
eβ(τBr ) lim

n→∞
∣∣(An

S

)
1(ξτBr

)
∣∣]

≤ [
Π0eβ(τBr )

]
lim

n→∞
∥∥An

S

∥∥
≤ [

Π0eβ(τBr )
]

lim
n→∞

(̃
λ(β) + δ

)n = 0.

Thus by Lemma B.7 in the Appendix B, Πxeβ(∞) ≡ 0 in R2.
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Now let d = 1. For any x ∈R, let Sx be defined as in the proof of Lemma 2.9. By the strong Markov property of ξ

applied at Sx , we have, for any x ∈R,

Πxeβ(∞) = Πxeβ(Sx)Πxeβ(∞).

Since Πxeβ(Sx) = u(x, x + 1)u(x + 1, x) < 1, the above equality yields Πxeβ(∞) = 0 for every x ∈ R. �

It follows from the two results above that, if d ≤ 2, L = Δ/2, λ∞(β) > 0, β − λ∞(β) ∈ K∞
d and β − λ∞(β) is

subcritical, then the assumptions of Theorem 1.8(2) are satisfied.

2.4. Compactly supported mass annihilation

We conclude with two simple examples which satisfy the assumptions of Theorem 1.8(2). In both cases we consider
compactly supported mass annihilation terms.

We start with a two-dimensional example.

Example 2.4 (d = 2; constant annihilation in a compact set). Let ξ be planar Brownian motion, and β(x) :=
−α1K(x) with α > 0 being a constant and K ⊂R2 a compact set with nonempty interior.

Proposition 2.11. In this case weak extinction holds, whatever k is.

Remark 2.12. The point is that our result is true for any k. Indeed, it is easy to show that extinction holds when k is
bounded from below (even with β ≡ 0).

Proof of Proposition 2.11. It is well known that β is subcritical (see, e.g., [24], Theorem 1.4). By [1], Corollary 2,
as t → ∞,

Πx

[
exp

(∫ t

0
β(ξs)ds

)]
∼ c(log t)−1,

where 0 < c = c(x,K,α). Therefore, for any x ∈ R2, λ∞(β) ≥ limt→∞ 1
t

logΠxeβ(t) = 0. It is obvious that
λ∞(β) ≤ 0. Then λ∞ = 0 and gβ−λ∞(x) ≡ 0. Clearly, (1.15) holds since β ≤ 0. Using again that β ≤ 0, we are
done by part (2) of Theorem 1.8. �

Finally, we discuss an example in one-dimension.

Example 2.5 (d = 1; compactly supported mass annihilation). Let ξ be a Brownian motion in R, and β ≤ 0 a
continuous function on R with compact support.

Proposition 2.13. Again, weak extinction holds, whatever k is.

Proof. It is well known that β is subcritical (see [28]). By [33],

lim
t→∞ t−1/2

∫ t

0
β(ξs)ds = η

∫ ∞

−∞
β(x)dx, (2.17)

in distribution, where η is a random variable with η < 0 a.s. This, along with Jensen’s inequality, implies that, abbre-
viating a := ∫∞

−∞ β(x)dx,

lim inf
t→∞

[
Πx exp

(∫ t

0
β(ξs)ds

)]t−1/2

≥ lim
t→∞Πx exp

(
t−1/2

∫ t

0
β(ξs)ds

)
= Πx exp(aη).

Hence,

lim inf
t→∞ t−1/2 log

[
Πx exp

(∫ t

0
β(ξs)ds

)]
≥ logΠx exp(aη).
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Thus, for f (t) := t−1 logΠx exp(
∫ t

0 β(ξs)ds), we have lim inft→∞ f (t) ≥ 0. But β ≤ 0 implies that
lim supt→∞ f (t) ≤ 0, and so λ∞ = limt→∞ f (t) = 0. By (2.17) (or, by the recurrence of ξ ), gβ−λ∞(x) =
Πx exp(

∫∞
0 β(ξs)ds) ≡ 0. Again, β ≤ 0 implies (1.15), and we finish as in the proof of Proposition 2.11. �

3. Proofs of Theorems 1.7 and 1.8

For any nonzero μ ∈ M(Rd), define

Πμ =
∫

D

Πxμ(dx). (3.1)

The following result is [8], Lemma 1.5.

Lemma 3.1. The equation (1.7) is equivalent to

u(t, x) + Πx

∫ t

0
eβ(s)k(ξs)

(
u(t − s, ξs)

)2 ds = Πx

(
eβ(t)f (ξt )

)
. (3.2)

Moreover, u is the minimal nonnegative solution to (1.7) if and only if u is the minimal nonnegative solution to (3.2).

Combining (1.6) and (3.2), we get the following expectation and variance formulae: for any bounded nonnegative
function f on Rd and any nonzero μ ∈ M(Rd),

Pμ〈f,Xt 〉 = Πμ

(
f (ξt )eβ(t)

)
(3.3)

and

Varμ〈f,Xt 〉 = Πμ

(∫ t

0
eβ(s)k(ξs)2

[
Πξs eβ(t − s)f (ξt−s)

]2 ds

)
, (3.4)

where Varμ stands for variance under Pμ.

Lemma 3.2. If λ∞ > 0, then

lim inf
t→∞

∥∥P β
t 1

∥∥−1
∞

∫ t

0

∥∥P β
s 1

∥∥∞ ds < ∞. (3.5)

Proof. For convenience, we denote ‖P β
t 1‖∞ by h(t) in this proof. Suppose that the statement is false. Then

lim
t→∞

∫ t

0 h(s)ds

h(t)
= ∞,

and so for any K > 0, there exists TK > 0 such that for t > TK ,∫ t

0 h(s)ds

h(t)
> K,

i.e.,

h(t) <
1

K

∫ t

0
h(s)ds = α + 1

K

∫ t

TK

h(s)ds,

where α = 1
K

∫ TK

0 h(s)ds. By Gronwall’s lemma, we get

h(t) ≤ α
(
e(t−T2)/K − 1

)
.
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However, if 1
K

< λ∞
2 (K > 2

λ∞ ), then this contradicts the following easy consequence of the definition (1.8) of λ∞:

lim
t→∞

logh(t)

t
≥ λ∞

2
.

This contradiction proves the lemma. �

3.1. Proof of Theorem 1.7

For the proof of the theorem, we will need the following slight generalization of Doob’s maximal inequality for
submartingales.

Lemma 3.3. Assume that T ∈ (0,∞), and that the nonnegative, right continuous, adapted process ({Mt }0≤t≤T ,

{Ft }0≤t≤T ,P) satisfies that there exists an a > 0 such that

P(Mt |Fs) ≥ aMs, 0 ≤ s < t ≤ T .

Then, for every α ∈ (0,∞) and 0 ≤ S ≤ T ,

P
(

sup
t∈[0,S]

Mt ≥ α
)

≤ (aα)−1P(MS).

Proof. Looking at the proof of Doob’s inequality (see [31], Theorems 5.2.1 and 7.1.9, and their proofs), one can see
that, when the submartingale property is replaced by our assumption, the whole proof goes through, except that now
one has to include a factor a−1 on the right hand side. �

Proof of Theorem 1.7. (1) By a standard Borel–Cantelli argument, it suffices to prove that with an appropriate choice
of T > 0, it is true that for any given ε > 0,∑

n

Pμ

(
sup

s∈[0,T ]
e−λ(nT +s)‖XnT +s‖ > ε

)
< ∞. (3.6)

Pick

γ ≥ −λ. (3.7)

Then

Pμ

(
sup

s∈[0,T ]
e−λ(nT +s)‖XnT +s‖ > ε

)
≤ Pμ

(
sup

s∈[0,T ]
eγ (nT +s)‖XnT +s‖ > ε · e(λ+γ )nT

)
. (3.8)

Let M
(n)
t := eγ (nT +t)‖XnT +t‖ for t ∈ [0, T ]. Pick a number 0 < a < 1 and fix it. Let F (n)

s := σ(XnT +r : r ∈ [0, s]). If
we show that for a sufficiently small T > 0 and all n ≥ 1, the process {M(n)

t }0≤t≤T satisfies that for all 0 < s < t < T ,

Pμ

(
M

(n)
t | F (n)

s

)≥ aM(n)
s , (3.9)

then, by using Lemma 3.3, we can continue (3.8) with

Pμ

(
sup

s∈[0,T ]
e−λ(nT +s)‖XnT +s‖ > ε

)
≤ 1

aε
e−(λ+γ )nT Pμ

[
eγ (n+1)T ‖X(n+1)T ‖]

= 1

aε
e(λ+γ )T e−λ(n+1)T Pμ‖X(n+1)T ‖

≤ ‖μ‖
aε

e(λ+γ )T e−λ(n+1)T
∥∥P β

(n+1)T 1
∥∥∞.

Since λ > λ∞ and ‖P β

(n+1)T
1‖∞ = exp(λ∞(n + 1)T + o(n)) as n → ∞, therefore (3.6) holds.
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It remains to check (3.9). Let 0 < s < t < T . Using the Markov and branching properties at time nT + s,

Pμ

[
M

(n)
t | F (n)

s

] = PXnT +s
eγ (nT +t)‖Xt−s‖ = 〈

Pδx eγ (nT +t)‖Xt−s‖,XnT +s(dx)
〉

= 〈
Pδx eγ (t−s)‖Xt−s‖, eγ (nT +s)XnT +s(dx)

〉
. (3.10)

At this point we are going to determine T as follows. According to the assumption β ∈ K(ξ),

lim
t↓0

sup
x∈Rd

Πx

∫ t

0
|β|(ξs)ds = 0.

Pick T > 0 such that

γ t + Πx

∫ t

0
β(ξs)ds ≥ loga,

for all 0 < t < T and all x ∈ Rd . By Jensen’s inequality,

γ t + logΠx exp

(∫ t

0
β(ξs)ds

)
≥ loga,

and thus

Pδx eγ t‖Xt‖ = eγ tΠx exp

(∫ t

0
β(ξs)ds

)
≥ a

holds too, for all 0 < t < T and all x ∈ Rd . Returning to (3.10), for 0 < s < t < T ,

Pμ

[
M

(n)
t | F (n)

s

]≥ a
〈
1, eγ (nT +s)XnT +s

〉= aM(n)
s , a.s.,

yielding (3.9).
(2) First note that to prove (1.12) it suffices to prove that there exists c0 > 0 such that for all K > 0,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ ≥ K
)

≥ c0. (3.11)

Since {
lim sup
t→∞

e−λt‖Xt‖ ≥ K
}

⊇ lim sup
t→∞

{
e−λt‖Xt‖ ≥ K

}
,

we have by the reverse Fatou lemma,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ ≥ K
)

≥ lim sup
t→∞

Pμ

(
e−λt‖Xt‖ ≥ K

)
= lim sup

t→∞
Pμ

(
e−λt‖Xt‖ − K ≥ 0

)
. (3.12)

The assumption λ < λ∞ implies that

lim
t→∞Pμ

(
e−λt‖Xt‖

)= lim
t→∞ e−λtΠμeβ(t) = ∞. (3.13)

Thus Pμe−λt‖Xt‖ > K for large t . It follows easily from the Cauchy–Schwarz inequality (see, for instance, [7],
Chapter 1, Ex. 3.8) that for any nonnegative random variable Y with finite second moment, on a probability space
(Ω,G,P ), and for any a > 0,

P(Y − a ≥ 0) ≥ (PY − a)2

P(Y 2)
.
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Applying the above inequality (‘Paley–Zygmund inequality’) with Y = e−λt‖Xt‖ and a = K , we get

Pμ

(
e−λt‖Xt‖ − K ≥ 0

)≥ (Pμe−λt‖Xt‖ − K)2

Pμ(e−λt‖Xt‖)2
. (3.14)

By (3.3) and (3.4), (3.12) and (3.14) yield

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ ≥ K
)

≥ lim sup
t→∞

(Πμe−λt eβ(t) − K)2

(Πμe−λt eβ(t))2 + 2e−2λtΠμ

∫ t

0 eβ(s)k(ξs)[Πξs eβ(t − s)]2 ds

= lim sup
t→∞

(
1 − K

eλt

Πμeβ(t)

)2(
1 + 2

Πμ(eβ(t)
∫ t

0 k(ξs)Πξs eβ(t − s)ds)

(Πμeβ(t))2

)−1

= lim sup
t→∞

(
1 + 2

Πμ(eβ(t)
∫ t

0 k(ξs)Πξs eβ(t − s)ds)

(Πμeβ(t))2

)−1

. (3.15)

Note that

Πξs eβ(t − s) ≤ ∥∥P β

(t−s)1
∥∥∞.

Thus we have

Πμ

(
eβ(t)

∫ t

0
k(ξs)Πξs eβ(t − s)ds

)
≤ ‖k‖∞Πμeβ(t)

[∫ t

0

∥∥P β
t−s1

∥∥∞ ds

]
= ‖k‖∞Πμeβ(t)

[∫ t

0

∥∥P β
s 1

∥∥∞ ds

]
.

So, we have for every K > 0,

Pμ

(
lim sup
t→∞

e−λt‖Xt‖ ≥ K
)

≥
(

1 + 2 lim inf
t→∞

‖k‖∞‖P β
t 1‖−1∞

∫ t

0 ‖P β
s 1‖∞ ds

‖P β
t 1‖−1∞ Πμeβ(t)

)−1

. (3.16)

We now consider the numerator and denominator of the right-hand side of (3.16) separately.

lim inf
t→∞

∥∥P β
t 1

∥∥−1
∞

∫ t

0

∥∥P β
s 1

∥∥∞ ds < ∞.

By Fatou’s lemma and (1.11),

lim inf
t→∞

∥∥P β
t 1

∥∥−1
∞ Πμeβ(t) ≥

〈
μ, lim inf

t→∞
∥∥P β

t 1
∥∥−1

∞ Π·eβ(t)
〉
> 0.

Now combining (3.16) and Lemma 3.2, we arrive at (3.11). �

3.2. Proof of Theorem 1.8

(1) Using Fatou’s lemma and (1.13), we get

lim inf
t→∞ e−λ∞tΠμeβ(t) = lim inf

t→∞ Πμeβ−λ∞(t) ≥
〈
lim inf
t→∞ Π·eβ−λ∞(t),μ

〉
= ∞,

which means that (3.13) holds with λ replaced by λ∞. So the proof of Theorem 1.7(2) works with λ replaced by λ∞.
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(2) By (3.3), we have

Pμ

[
exp(−λ∞t)‖Xt‖

]= Πμeβ−λ∞(t). (3.17)

Letting t → ∞ and using Fatou’s lemma, we get

Pμ

(
lim inf
t→∞ exp(−λ∞t)‖Xt‖

)
≤ lim inf

t→∞ Πμeβ−λ∞(t). (3.18)

Note that Πμeβ−λ∞(t) = 〈Π·eβ−λ∞(t),μ〉. Using (1.15) and the assumption that gβ−λ∞ ≡ 0 in Rd , we get

lim
t→∞Πμeβ−λ∞(t) =

〈
lim

t→∞Π·eβ−λ∞(t),μ
〉
= 〈gβ−λ∞ ,μ〉 = 0,

where in the first equality we used the fact Π·eβ−λ∞(t) ≤ supx∈Rd Πx(supt≥0 eβ−λ∞(t)) < ∞, which follows from
(1.15), and the fact that μ is finite measure, and in the second equality we used the fact eβ−λ∞(t) ≤ supt≥0 eβ−λ∞(t) <

∞ Πx -a.s. for any x ∈Rd . Hence by (3.18) we get

Pμ

(
lim inf
t→∞ exp(−λ∞t)‖Xt‖ = 0

)
= 1,

which implies (1.16).
Finally, when β ≤ 0, trivially λ∞ ≤ 0; hence Pμ(lim inft→∞ ‖Xt‖ = 0) = 1. On the other hand, ‖X‖ is a super-

martingale by the expectation formula and the branching Markov property, and thus, limt→∞ ‖Xt‖ exists Pμ-a.s.
Hence, we can improve the liminf to a limit.

4. Proofs of Theorems 1.10 and 1.12

4.1. Proof of Theorem 1.10

We start with a lemma.

Lemma 4.1. Assume that β ∈ K(ξ) and that h > 0 is a bounded solution to

(L + β − λ∞)h = 0 in Rd

in the sense of distributions. Let μ ∈ M(Rd) be nonzero and Ft := σ {Xr, r ≤ t}. Then the process ({e−λ∞(t)〈h,

Xt 〉}t≥0, {Ft }t≥0,Pμ) is a positive martingale.

Proof. Recall that Dn = B(0, n) and τn is the first exit time of ξ from Dn. Since h is harmonic with respect to the
operator L + β − λ∞, we have

h(x) = Πx

[
eβ−λ∞(t ∧ τn)h(ξt∧τn)

]
, for every n ≥ 1 and t ≥ 0, (4.1)

see the proof of [30], Lemma 2.1. Since h is bounded, bounded convergence yields

h(x) = Πx

[
eβ−λ∞(t)h(ξt )

]
, for every t ≥ 0. (4.2)

By the branching and Markov properties, for 0 ≤ s < t , we have

Pμ

(
e−λ∞(t)〈h,Xt 〉|Fs

)
= e−λ∞(t)PXs 〈h,Xt−s〉
= e−λ∞(t)

〈
Π·
(
eβ(t − s)h(ξt−s)

)
,Xs

〉
= e−λ∞(t)

〈
Π·
(
eβ(t − s)h(ξt−s)

)
,Xs

〉
= e−λ∞(s)〈h,Xs〉, (4.3)

proving the assertion. �
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Proof of Theorem 1.10. Suppose μ ∈ Mc(R
d). Since Mh defined by

Mh
t := exp(−λ∞t)〈h,Xt 〉

is a nonnegative Pμ-martingale, limt→∞ Mh
t exists and is also finite Pμ-a.s. By the martingale property, we have

PμMh
t = exp(−λ∞t)Πμ

[
eβ(t)h(ξt )

]= 〈h,μ〉.
It follows from (1.17) and Lemma B.8 in Appendix B that

Πμ

[∫ ∞

0
eβ−2λ∞(s)k(ξs)h

2(ξs)ds

]
≤ C2Πμ

[∫ ∞

0
eβ−2λ∞(s)k(ξs)ds

]
< ∞,

where C is a positive constant such that h(x) ≤ C for all x ∈ Rd . Thus by the variance formula (3.4) and by (4.1), we
have

Pμ

[
Mh

t

]2 = 〈h,μ〉2 + exp(−2λ∞t)Πμ

[∫ t

0
eβ(s)k(ξs)

[
Πξs

(
eβ(t − s)h(ξt−s)

)]2 ds

]
= 〈h,μ〉2 + Πμ

[∫ t

0
eβ(s) exp(−2λ∞s)k(ξs)

[
Πξs

(
eβ−λ∞(t − s)h(ξt−s)

)]2 ds

]
= 〈h,μ〉2 + Πμ

[∫ t

0
eβ−2λ∞(s)k(ξs)h

2(ξs)ds

]
.

By the L2-convergence theorem, Mh
t converges to some η in L2(Pμ). In particular,

0 < Pμη2 = 〈h,μ〉2 + Πμ

∫ ∞

0
eβ−2λ∞(s)k(ξs)h

2(ξs)ds < ∞,

and therefore,

Pμ(η < ∞) = 1, and Pμ(η = 0) < 1. (4.4)

It is obvious that Pμ(η = 0) < 1 implies that Pμ(‖Xt‖ > 0,∀t > 0) > 0.
If h satisfies (1.18), then (4.4) implies (1.19) and (1.20). �

Remark 4.2. Theorem 1.10 says that, under condition (1.17), not only the Kesten–Stigum Theorem holds (i.e., the
martingale Mh

t = e−λ∞t 〈h,Xt 〉 converges in L1(Pμ) as t → ∞), but it can be upgraded to convergence in L2(Pμ).
We plan to find a necessary and sufficient condition in an upcoming paper.

Using the ‘spine’ method developed in Engländer and Kyprianou [11], we can give an alternative proof of Theo-
rem 1.10, but with the weaker conclusion that the martingale Mh

t = e−λ∞t 〈h,Xt 〉 converges in L1(Pμ) as t → ∞.

4.2. Preparation for the proof of Theorem 1.12

In the remainder of this section, we suppose λ∞ = 0 and that h > 0 is a bounded solution to (L + β)u = 0 in Rd in
the sense of distributions. For c > 0, put

uch(t, x) := − logPδx exp
(−c〈h,Xt 〉

)
, (4.5)

then uch(t, x) is a solution of the following integral equation:

uch(t, x) + Πx

∫ t

0

[
k(ξr )

(
uch(t − r, ξr )

)2 − β(ξr)uch(t − r, ξr )
]

dr = cΠxh(ξt ). (4.6)
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By Lemma 3.1, the above integral equation is equivalent to

uch(t, x) + Πx

∫ t

0
eβ(r)k(ξr )

[
uch(t − r, ξr )

]2 dr = cΠx

[
eβ(t)h(ξt )

]
. (4.7)

Since h is a bounded positive solution to (L + β)u = 0, we have

Πx

[
eβ(t)h(ξt )

]= h(x).

Thus (4.7) can be rewritten as

uch(t, x) + Πx

[∫ t

0
eβ(r)k(ξr )

[
uch(t − r, ξr )

]2 dr

]
= ch(x). (4.8)

In particular,

uch(t, x) ≤ ch(x). (4.9)

Put

uch(x) := − logPδx exp
(
−c lim

t→∞〈h,Xt 〉
)
. (4.10)

By Lemma 4.1, under Pμ, exp(−c〈h,Xt 〉), t ≥ 0 is a bounded submartingale. Thus uch(t, x) is nonincreasing in t .
Hence, by the dominated convergence theorem, for every x ∈ Rd ,

uch(t, x) ↓ uch(x) as t ↑ ∞.

Note that if k and β are radial functions, and if L is radial, then uch(·) is a radial function, i.e.,

uch(x) = uch

(‖x‖).
Lemma 4.3.

(1) For any x ∈Rd and r > 0,

uch(x) ≤ Πx

(
uch(ξτB(x,r)

)eβ(τB(x,r))
)
.

(2) If L, k and β are radial, then

uch(x) = uch

(‖x‖)≤ uch(R)Πx

(
eβ(τB(0,R))

)
, ‖x‖ < R. (4.11)

Proof. (1) By the special Markov property, for every fixed x ∈Rd , one has

exp
(−uch(x)

) = Pδx exp
(
−c lim

t→∞〈h,Xt 〉
)

= Pδx

(
PXτB(x,r)

exp
(
−c lim

t→∞〈h,Xt 〉
))

= Pδx exp〈−uch,XτB(x,r)
〉.

By Jensen’s inequality,

exp
(−uch(x)

)≥ exp
(−Pδx 〈uch,XτB(x,r)

〉)= exp
[−Πx

(
uch(ξτB(x,r)

)eβ(τB(x,r))
)]

,

which implies uch(x) ≤ Πx(uch(ξτB(x,r)
)eβ(τB(x,r))).

(2) Similarly we have, for x ∈ B(0,R), that

uch(x) ≤ uch(R)Πx

(
eβ(τB(0,R))

)
. �
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Note that uch(x) is increasing in c. Let

uch(x) ↑ u∞(x) = − logPδx

(
lim

t→∞〈h,Xt 〉 = 0
)
. (4.12)

Lemma 4.4. Either u∞(x) ≡ 0 or u∞ ∈ (0,∞] in Rd . That is, if

Eh :=
{

lim
t→∞〈h,Xt 〉 = 0

}
,

then either Pδx (Eh) = 1,∀x ∈Rd , or Pδx (Eh) < 1,∀x ∈Rd .

Proof. We first prove that if there exists a measurable set A ⊂ Rd with positive Lebesgue measure such that u∞ > 0
on A, then u∞(x) > 0 for every x ∈Rd . Indeed, for every x ∈Rd ,

Pδx

(
lim

t→∞〈h,Xt 〉 = 0
)

= Pδx

(
PX(1)

(
lim

t→∞〈h,Xt 〉 = 0
))

= Pδx exp
〈−u∞,X(1)

〉
. (4.13)

Note that

Pδx

〈
u∞,X(1)

〉= Πx

(
u∞(ξ1)eβ(1)

)
> 0. (4.14)

(4.13) implies that Pδx (limt→∞〈h,Xt 〉 = 0) < 1. Thus we have u∞(x) > 0.
Now we prove that if u∞ = 0 almost everywhere, then u∞ ≡ 0. By (4.14), we know that Pδx 〈u∞,X(1)〉 = 0, and

thus 〈u∞,X(1)〉 = 0, Pδx -a.s. By (4.13),

Pδx

(
lim

t→∞〈h,Xt 〉 = 0
)

= 1.

Hence u∞(x) = 0 for every x ∈Rd . �

4.3. Proof of Theorem 1.12

Since β ∈ K∞(ξ), by the Gauge Theorem (see [4], Theorem 2.2, or [2], Theorem 2.6), the assumption that gβ is not
identically infinite implies that gβ is bounded between two positive numbers. By [2], Corollary 2.16, we have

Πx

[
sup

0≤t≤∞
eβ(t)

]
< ∞, ∀x ∈ Rd .

By dominated convergence,

gβ(x) = lim
R→∞Πx

(
eβ(τB(0,R))

)
, x ∈ Rd .

Take h = gβ . We know that h is a bounded solution of (L + β)u = 0 and satisfies (1.18); by Lemma 4.4 we only need
to prove that if for every x ∈ Rd , Pδx (limt→∞ ‖Xt‖ = 0) < 1, then

Πx

∫ ∞

0
eβ(s)k(ξs)ds < ∞, x ∈ Rd . (4.15)

First note that the assumption that Pδx (limt→∞ ‖Xt‖ = 0) < 1, x ∈ Rd implies that

uch(x) = − logPδx exp
(
−c lim

t→∞〈h,Xt 〉
)

> 0 for every x ∈Rd .
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Since uch(s, x) ≥ uch(x) for every s ∈ [0, t] and x ∈Rd , by (4.8), we have

Πx

∫ t

0
eβ(s)k(ξs)u

2
ch(ξs)ds ≤ ch(x), x ∈ Rd .

Letting t → ∞, we get

Πx

∫ ∞

0
eβ(s)k(ξs)u

2
ch(ξs)ds ≤ ch(x), x ∈ Rd,

which can be rewritten as∫
Rd

Gβ(x, y)k(y)u2
ch(y)m(dy) ≤ ch(x), x ∈ Rd . (4.16)

Letting R → ∞ in (4.11), one gets

uch(x) ≤ h(x) lim inf
R→∞ uch(R).

Since uch(x) > 0 and 0 < h(x) < ∞, we have lim infR→∞ uch(R) > 0. Then (4.16) implies (4.15).

Appendix A: Construction and path regularity

Proof of Theorem 1.3. Let Dn,n ≥ 1, be a sequence of smooth bounded domains such that Dn ↑ Rd . According to
Dynkin [8], for each n, the (L|Dn − β−, β+ ∧ n, k)-superdiffusion (Xn

t , t ≥ 0) exists, where L|Dn is the generator of
the process ξ killed upon leaving Dn, and β+ and β− are the positive and negative parts of β , respectively. Also note
that (Xn

t , t ≥ 0) can be regarded as an (L|Dn,β ∧ n, k)-superdiffusion.
Let f be a positive bounded measurable function on Rd . According to Dynkin [8], for each n, there exists a unique

bounded solution un to the following integral equation:

un(t, x) + Πx

∫ t∧τn

0

[−(
β(ξs) ∧ n

)
un(t − s, ξs) + k(ξs)u

2(t − s, ξs)
]

ds = Πx

[
f (ξt ), t < τn

]
,

where τn is the first exit time of the diffusion ξ from Dn. We rewrite the above equation in the following form
(according to a result similar to our Lemma 3.1):

un(t, x) + Πx

∫ t∧τn

0
eβ+∧n(s)

[
β−(ξs)un(ξs, t − s) + k(ξs)u

2(ξs, t − s)
]

ds

= Πx

[
eβ+∧n(t)f (ξt ), t < τn

]
. (A.1)

By the (weak) parabolic maximum principle (see [23], p. 128, for example), un is increasing. Let un(t, x) ↑ u(t, x) as
n ↑ ∞. Letting n → ∞ in the above integral equation, we get

u(t, x) + Πx

∫ t

0
eβ+(s)

[
β−(ξs)u(t − s, ξs) + k(ξs)u

2(t − s, ξs)
]

ds = Πx

[
eβ+(t)f (ξt )

]
. (A.2)

The assumption that β is in the Kato class implies that u(t, x) ≤ Πx[eβ+(t)f (ξt )] ≤ ec1+c2t for some positive con-
stants.

To see the minimality of u, let v be an arbitrary nonnegative measurable solution to (A.2). By the (weak) parabolic
maximum principle, v|Dn ≥ un for all n ≥ 1, and thus v ≥ u on Rd .

Equation (A.2) can be rewritten as

u(t, x) + Πx

∫ t

0

[−β(ξs)u(t − s, ξs) + k(ξs)u
2(t − s, ξs)

]
ds = Πx

[
f (ξt )

]
. (A.3)

Then following the arguments in Appendix A of Engländer and Pinsky [9], we can get the existence of our superdif-
fusion. �
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Remark A.1. If k ∈ K(ξ) as well, then using Gronwall’s lemma, u is the unique solution (bounded on any finite
interval) of the integral equation (A.3).

Before turning to the proof Theorem 1.5, we remark that [22], Appendix A, explains some important concepts
(e.g. Ray cone, Ray topology) we will be working with, and that [22], Chapter 5, discusses regularity properties of
superdiffusions, using similar methods, albeit under different assumptions on the nonlinear operator.

For the proof we first need a lemma. The function f is called4 α-supermedian relative to P 0
t for α > 0, if

e−αtP 0
t f ≤ f for t ≥ 0.

Lemma A.2. Assume that β ∈ K(ξ) satisfies β ≤ B for some constant B > 0, and f is α-supermedian relative to P 0
t

for some α > 0. Then for every μ ∈ M(Rd),

(i) Mt := e−(B+α)t 〈f,Xt 〉 is a Pμ-supermartingale.
(ii) Pμ(sup0≤r≤t,r∈Q〈1,Xt 〉 < ∞ for all t > 0) = 1.

Proof. (i) It is easy to see that it suffices to check

Pν(Mt) ≤ M0 = 〈f, ν〉, t > 0,∀ν ∈ M
(
Rd

)
. (A.4)

This is because for 0 ≤ s < t , by the Markov property at time s,

Pμ

(
e−Bt 〈f,Xt 〉 | Fs

)= PXs Mt−se−(B+α)s ≤ 〈f,Xs〉e−(B+α)s = Ms,

where in the last inequality above we used (A.4) with ν = Xs . Using the assumption that f is α-supermedian, we
obtain

Pδx Mt = e−(B+α)t
(
P

β
t f

)
(x) ≤ e−αtP 0

t f (x) ≤ f (x).

Therefore (A.4) holds.
(ii) By the proof of Theorem 1.7, there are a, γ > 0 and a sufficiently small T > 0 such that Mr := eγ t 〈1,Xr 〉

satisfies

Pμ[Mr |Fs] ≥ aMs, 0 ≤ s ≤ r ≤ T with r, s ∈ Q.

Then by Doob’s inequality (Lemma 3.3 in discrete time),

Pμ

(
sup

0≤r≤T , r∈Q
〈1,Xr 〉 > K

)
≤ (aK)−1PμMt ≤ (aK)−1e(γ+B)T .

Letting K ↑ 0, we see that for any fixed t > 0, Pμ(sup0≤r≤T ,r∈Q〈1,Xr 〉 = ∞) = 0. Since we can split [0,∞) to
intervals of length T , the result of (ii) holds. �

Proof of Theorem 1.5. Let (R
d
,B(Rd)) be the Ray–Knight compactification of (Rd ,B(Rd)) associated with the

semigroup {P 0
t : t ≥ 0} and a suitably chosen countable Ray cone (see the last paragraph on [15], p. 342), and let

Mr(R
d
) be the space of finite measures on R

d
with the weak Ray topology. Suppose W is the space of right contin-

uous paths from [0,∞) to Mr(R
d) with left limits in Mr(R

d
), where Mr(R

d) carries the relative topology inherited

from Mr(R
d
). We write X̃ = (X̃t , t ≥ 0) for the coordinate process on W and put G = σ {X̃t ; t ≥ 0). Using the above

lemma, the argument in the proof of [15], Theorem 2.11, is applicable to our setup, so for any given μ ∈ M(Rd) there
exists a unique probability measure Pμ on (W,G) such that Pμ(X̃0 = μ) = 1 and (X̃t , t ≥ 0) under Pμ has the same
law as the superprocess X under Pμ.

As before, let M(Rd) denote the space of finite measures on Rd with the weak topology, induced by the mappings
〈f, X̃t 〉 as f runs through the bounded continuous functions on Rd . (The Borel σ -algebras on Mr(R

d) and on M(Rd)

both coincide with M.) Since the diffusion process ξ is continuous, using the arguments of [15], Section 3, we have

4In [22] a slightly different terminology is followed.
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that if f is a bounded continuous function on Rd , then 〈f, X̃·〉 is right continuous on [0,∞) almost surely; and if
f (ξ·) has left limits on [0,∞) almost surely, then so does 〈f, X̃·〉. That is to say, X̃ is a càdlàg process on the state
space M(Rd). �

Appendix B: Review on Feynman–Kac semigroups and Gauge Theory

Recall that β is in the Kato class K(ξ). In this appendix we present some background material on the Feynman–Kac
semigroup. Recall from Section 1 that

P
β
t f (x) := Πx

[
eβ(t)f (ξt )

]
,

and that {P β
t , t ≥ 0} is a strongly continuous semigroup on Lp(Rd ,m) for 1 ≤ p < ∞.

For any domain D ⊂Rd and x ∈ D, we will use δD(x) to denote the distance from x to Dc: δD(x) := inf{|x − y|:
y ∈ Dc}. Let ξD be the subprocess of ξ killed upon exiting D. It is well known that ξD has a transition density
pD(t, x, y) with respect to the Lebesgue measure. We will use {P β,D

t , t ≥ 0} to denote the semigroup of ξD :

P
β,D
t f (x) := Πx

[
eβ(t)f (ξt ), t < τD

]
,

where

τD = inf{t > 0: ξt /∈ D}.
When Dc is nonpolar, that is, when Πx(τD < ∞) is not identically zero, ξD is transient. In this case, the function

GD(x, y) := ∫∞
0 pD(t, x, y)dt is well defined and is called the Green’s function of ξD with respect to the Lebesgue

measure. Then G̃D(x, y) := GD(x, y)/m(y) is the Green’s function of ξD with respect to m(y)dy.
For any n ≥ 1, put Dn = B(0, n). We will use the shorthand ξ (n) to denote ξDn and Gn to denote GDn . It follows

from [19,21] that Gn is comparable to the Green’s function of the killed Brownian motion in Dn. Therefore we have
the following result.

Proposition B.1. There exists c1 = c1(n, d) > 1 such that when d ≥ 3,

c−1
1

(
1 ∧ δB(x)δB(y)

|x − y|2
)

≤ GB(x, y) ≤ c1
1

|x − y|d−2

(
1 ∧ δB(x)δB(y)

|x − y|2
)

, x, y ∈ B (B.1)

for any ball B ⊂ Dn; when d = 2

c−1
1 log

(
1 + δB(x)δB(y)

|x − y|2
)

≤ GB(x, y) ≤ c1 log

(
1 + δB(x)δB(y)

|x − y|2
)

, x, y ∈ B (B.2)

for any ball B ⊂ Dn; and when d = 1

c−1
1

(
δB(x) ∧ δB(y)

)≤ GB(x, y) ≤ c1
(
δB(x) ∧ δB(y)

)
, x, y ∈ B (B.3)

for any ball B ⊂ Dn.

B.1. The 3G inequalities and the Martin kernel

Recall that u is defined by (2.3). Using (B.1)–(B.3), we can easily get the following.

Proposition B.2 (The 3G inequalities). There exists c = c(d,n) such that, when d ≥ 3,

GB(x, y)GB(y, z)

GB(x, z)
≤ c

(
u(x − y) + u(y − z)

)
, x, y, z ∈ B (B.4)



477

for any ball B ⊂ Dn; when d = 2,

GB(x, y)GB(y, z)

GB(x, z)
≤ c

[(
1 ∨ u(x − y)

)+ (
1 ∨ u(y − z)

)]
, x, y, z ∈ B (B.5)

for any ball B ⊂ Dn; and when d = 1,

GB(x, y)GB(y, z)

GB(x, z)
≤ c, x, y, z ∈ B (B.6)

for any ball B ⊂ Dn.

Proof. The d ≥ 3 case follows from [5], Theorem 6.5, the d = 2 case follows from [5], Theorem 6.15, while d = 1
follows from direct calculation. �

The three inequalities in Proposition B.2 are called 3G inequalities. For any ball B and x0 ∈ B , the Martin kernel
MB(x, z), (x, z) ∈ B × ∂B , based at x0 is defined by

MB(x, z) := lim
B�y→z∈∂B

GB(x, y)

GB(x0, y)
.

The base x0 plays no essential role here. One then can easily deduce the following result from the 3G inequalities
above.

Proposition B.3. There exists c = c(d,n) > 0 such that, when d ≥ 3,

GB(x, y)MB(y, z)

MB(x, z)
≤ c

(
u(x − y) + u(y − z)

)
, x, y ∈ B,z ∈ ∂B (B.7)

for every ball B ⊂ Dn; when d = 2,

GB(x, y)MB(y, z)

MB(x, z)
≤ c

[(
1 ∨ u(x − y)

)+ (
1 ∨ u(y − z)

)]
, x, y ∈ B,z ∈ ∂B (B.8)

for every ball B ⊂ Dn; when d = 1,

GB(x, y)MB(y, z)

MB(x, z)
≤ c, x, y ∈ B,z ∈ ∂B (B.9)

for every ball B ⊂ Dn.

The following result is proved in [20,21].

Proposition B.4. For any n ≥ 1, there exist ci = ci(n) > 1, i = 1,2, such that the transition density p
(n)
t of ξ (n) with

respect to the Lebesgue measure satisfies

c−1
1 t−d/2

(
1 ∧ δn(x)√

t

)(
1 ∧ δn(x)√

t

)
e−c2|x−y|2/t ≤ p

(n)
t (x, y)

≤ c1t
−d/2

(
1 ∧ δn(x)√

t

)(
1 ∧ δn(x)√

t

)
e−|x−y|2/c2t (B.10)

for all (t, x, y) ∈ (0,1] × Dn × Dn.

We then have the following result.
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Proposition B.5. If β ∈ K(ξ), then for any n ≥ 1,

lim
r→0

sup
x∈Dn

∫
|y−x|<r

u(x − y)
∣∣β(y)

∣∣dy = 0.

Proof. It follows from (B.10) that there exist constants c1, c2 > 1 such that for any (t, x, y) ∈ (0,1] × Dn × Dn,

p
(n+1)
t (x, y) ≥ c−1

1 exp

{
−c2|x − y|2

t

}
.

Since ∫ t

0
Πx

[∣∣β(ξs)
∣∣]ds ≥

∫ t

0

∫
Dn

p(n+1)
s (x, y)

∣∣β(y)
∣∣dy ds,

we can apply the arguments in the proof of [5], Lemma 3.5, and the first part of the proof of [5], Theorem 3.6, to get
the conclusion of our proposition. �

B.2. Probabilistic representation of λ2

The following result is a generalization of [26], Theorem 4.4.4, and it implies that (1.5) is valid when β ∈ K(ξ).

Proposition B.6 (Probabilistic representation of λ2). Let {Dn}n≥1 be an increasing sequence of bounded domains
with Dn ↑Rd as n → ∞. If τn := inft≥0{t : ξt /∈ Dn}, n ≥ 1, then

λ2(β) = sup
n

lim
t→∞

1

t
log sup

x∈Dn

Πx

(
eβ(t); t < τn

)
.

Proof. Let P
β,n
t stand for P

β,Dn
t and let

λn
2 := lim

t→∞
1

t
log

∥∥P β,n
t

∥∥
2,2,

where ‖P β,n
t ‖2,2 stands for the operator norm of P

β,n
t from L2(Dn,m) to L2(Dn,m). It is well known (see, for

instance, [3]) that

−λ2(β) = inf

{
1

2

∫
Rd

(∇f a∇f )e2Q dx −
∫
Rd

f 2βe2Q dx: f ∈ C∞
c

(
Rd

)
,‖f ‖2 = 1

}
(B.11)

and

−λn
2(β) = inf

{
1

2

∫
Rd

(∇f a∇f )e2Q dx −
∫
Rd

f 2βe2Q dx: f ∈ C∞
c (Dn),‖f ‖2 = 1

}
. (B.12)

For any n ≥ 1, by using (B.1)–(B.3) and Proposition B.5 we can easily see that β ∈ K∞(ξ (n)). (The definition of
the Kato class K∞(ξ (n)) is similar to Definition 1.6; see [4] for details.) Thus it follows from [3], Theorem 2.3, that
for any n ≥ 1,

−λn
2(β) = lim

t→∞
1

t
log sup

x∈Dn

P
β,n
t 1(x).

Since λn
2(β) → λ2(β), combining the above with (B.11)–(B.12) yields the conclusion of our proposition. �
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B.3. Properties of the gauge function

Recall that the gauge function gβ is defined in Definition 1.5. For any open set D ⊂ Rd and nonnegative measurable
function f on ∂D, we define

gD
β,f (x) := Πx

[
eβ(τD)f (ξτD

)1{τD<∞}
]
, x ∈ D.

The Harnack-type inequalities in the following result will be used later.

Lemma B.7.

(1) For any open set D ⊂Rd and nonnegative measurable function f on ∂D, if the function gD
β,f is not identically in-

finite on D, then for any compact set K , gD
β,f is bounded on K and there exists A = A(D,K,β) > 1, independent

of f , such that

sup
x∈K

gD
β,f (x) ≤ A inf

x∈K
gD

β,f (x). (B.13)

Furthermore, gD
β,f is a continuous solution of (L + β)h = 0 in D in the sense of distributions.

(2) If gβ is not identically infinite in Rd , then for any compact set K ⊂ Rd , gβ(x) is bounded on K and there exists
an A = A(K,β) > 1 such that

sup
x∈K

gβ(x) ≤ A inf
x∈K

gβ(x). (B.14)

Furthermore, gβ is a continuous solution of (L + β)h = 0 in Rd in the sense of distributions.
(3) If gβ is not identically zero in Rd , then gβ(x) > 0 for all x ∈ Rd .

Proof. (1) The proof follows the same line of arguments as that of [5], Theorem 5.18. Without loss of generality, we
may and do assume that K ⊂ B(0, n) and that there exists x1 ∈ K such that gD

β,f (x1) < ∞. Then, by the definition of

gD
β,f and the strong Markov property, for any ball B = B(x1, r) ⊂ B(x1, r) ⊂ D, we have

gD
β,f (x1) = Πx1

[
eβ(τB)gD

β,f (ξτB
)
]
.

By (B.7)–(B.9) and Proposition B.5, for any ε > 0, we can choose r0 = r0(n,β) ∈ (0,1] such that for any r ∈ (0, r0)

and any (x, z) ∈ B × ∂B:

Πz
x

∫ τB

0
e|β|(t)dt ≤ 1

2
,

where Πz
x stands for the law of the MB(·, z)-conditioned diffusion, i.e., the process such that for all bounded Borel

function on B and t > 0,

Πz
x

[
f (ξt )

]= 1

MB(x, z)
Πx

[
f (ξt )MB(ξt , z); t < τB

]
.

Repeating the argument of [5], Theorem 5.17, we get that

1

2
≤ Πz

xeβ(τB) ≤ 2.

Put v(x, z) := Πz
xeβ(τB), then by [5], Proposition 5.12 (which is also valid for ξ by the same arguments contained in

[5], Section 5.2) we have

gD
β,f (x1) =

∫
∂B

v(x1, z)KB(x1, z)g
D
β,f (z)σ (dz),
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where σ stands for the surface measure on ∂B and KB is the Poisson kernel of B with respect to ξ . It follows from
the Harnack inequality (applied to the harmonic functions of ξ ) that there exists some c > 1 such that

sup
x∈B(x1,r/2)

KB(x, z) ≤ c inf
x∈B(x1,r/2)

KB(x, z), ∀z ∈ ∂B.

Since, for x ∈ B ,

gD
β,f (x) =

∫
∂B

v(x, z)KB(x, z)gD
β,f (z)σ (dz),

therefore we have

sup
x∈B(x1,r/2)

gD
β,f (x) ≤ c inf

x∈B(x1,r/2)
gD

β,f (x). (B.15)

Now (B.13) follows from a standard chain argument. In fact, for any compact subset K of D, there exist r ∈ (0,1] and
an integer N > 1 such that, for any x, x′ ∈ K , there exists a subset {yi : i = 1, . . . , l}, 1 ≤ l ≤ N , with B(yi, r) ⊂ D,
i = 1, . . . , l, and

|x − y1| < r

2
, |yi − yi+1| < r

2
, i = 1, . . . , l − 1,

∣∣x′ − yl

∣∣< r

2
.

Applying (B.15) repeatedly, we arrive at (B.13). The last assertion of (1) can be proved by repeating the argument of
the Corollary to [5], Theorem 5.18, and we omit the details.

(2) The proof of (2) is similar to that of (1).
(3) The proof of this part is similar to that of [5], Proposition 8.10, and we omit the details. �

B.4. The operator Gβ

For any f ≥ 0 on Rd , set

Gβf (x) := Πx

∫ ∞

0
eβ(s)f (ξs)ds. (B.16)

G0f will be denoted as Gf . The following result will be needed later.

Lemma B.8. Suppose that f ≥ 0 is locally bounded on Rd . If there exists an x1 ∈ Rd such that Gβf (x1) < ∞, then
Gβf is locally bounded on Rd .

Proof. The proof is similar to that of the first part of Lemma B.7. For convenience, we put f̃ := Gβf in this proof.
Without the loss of generality, we may and do assume that the compact set K satisfies K ⊂ B(0, n), and furthermore,
that there exists an x1 ∈ K such that f̃ (x1) < ∞. Let v(x, z) := Πz

xeβ(τB). By the strong Markov property, for any
B = B(x1, r), we have

f̃ (x1) = Πx1

∫ τB

0
eβ(s)f (ξs)ds + Πx1

[
eβ(τB)ΠξτB

∫ ∞

0
eβ(s)f (ξs)ds

]
= Πx1

∫ τB

0
eβ(s)f (ξs)ds +

∫
∂B

v(x1, z)KB(x1, z)f̃ (z)σ (dz). (B.17)

By (B.7)–(B.9), Proposition B.5 and the argument of [5], Theorem 5.17, for any ε > 0, we can choose r0 = r0(n,β) ∈
(0,1] such that for any r ∈ (0, r0) and any (x, z) ∈ B × ∂B:

1

2
≤ Πz

x

[
eβ(τB)

]≤ Πz
x

[
e|β|(τB)

]≤ 2; Πxτ
2
B ≤ 2; Πx

[
e2|β|(τB)

]≤ 2.
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We then have

f̃ (x1) ≥ 1

2

∫
∂B

KB(x1, z)f̃ (z)σ (dz)

and

f̃ (x) = Πx

∫ τB

0
eβ(s)f (ξs)ds +

∫
∂B

v(x, z)KB(x, z)f̃ (z)σ (dz)

≤ CΠx

(
τBe|β|(τB)

)+
∫

∂B

v(x, z)KB(x, z)f̃ (z)σ (dz)

≤ C
[
Πxτ

2
B

]1/2[
Πx

[
e2|β|(τB)

]]1/2 +
∫

∂B

v(x, z)KB(x, z)f̃ (z)σ (dz),

where C is the upper bound of f on B . It follows from the Harnack inequality (for harmonic functions of ξ ) that there
exists some c > 1 such that

sup
x∈B(x1,r/2)

KB(x, z)) ≤ c inf
x∈B(x1,r/2)

KB(x, z).

Thus

sup
x∈B(x1,r/2)

f̃ (x) ≤ 2C + 4cf̃ (x1).

Now the assertion of the lemma follows from a standard chain argument, as was done in the proof of Lemma B.7(1).
�
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