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Abstract. We study voter models defined on large finite sets. Through a perspective emphasizing the martingale property of voter
density processes, we prove that in general, their convergence to the Wright–Fisher diffusion only involves certain averages of the
voter models over a small number of spatial locations. This enables us to identify suitable mixing conditions on the underlying
voting kernels, one of which may just depend on their eigenvalues in some contexts, to obtain the convergence of density processes.
We show by examples that these conditions are satisfied by a large class of voter models on growing finite graphs.

Résumé. Nous étudions le modèle du votant sur des ensembles contenant un nombre grand mais fini de sites. En nous servant des
propriétés de martingales des densités du modèle du votant nous prouvons qu’ il y a convergence vers une diffusion Wright–Fisher.
De plus cette preuve de convergence n’utilise que certaines moyennes sur un petit nombre de sites. Ceci nous permet d’identifier
des conditions de mélange concernant le noyau du votant sous-jacent. Dans certains cas une de ces conditions nous permet de
démontrer la convergence des densités en n’utilisant que les valeurs propres des noyaux. Nous donnons des exemples montrant que
ces conditions de mélange sont satisfaites pour une grande classe de modèles du votant sur des ensembles croissants de graphes.
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1. Introduction

The goal of this work is to investigate the convergence of density processes in finite voter models to the Wright–
Fisher diffusion. This convergence gives a mean-field approximation for voter models, and is also closely related
to the mean-field approximation of coalescence times for the associated dual Markov chains (cf. the recent work of
Oliveira [23] and [24]). Earlier examples for such convergence of density processes are few and include the traditional
mean-field models and the voter models on d-dimensional tori for d ≥ 2 (cf. Cox [5]). In the present work, we give
mixing conditions on the underlying voting kernels which hold for a large class of finite voter models, and in particular
generalize the earlier results.
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Wes introduce the class of voter models considered throughout this paper. See Chapter V of Liggett [18] or Sec-
tion 4.3 of Liggett [19] for a general account of voter models. Recall that for a finite set E, a Q-matrix q is indexed
by x, y ∈ E and satisfies

q(x, y) ≥ 0 ∀x �= y and q(x) ≡−q(x, x) =
∑

y:y �=x

q(x, y) (1.1)

(see Chapter 2 of [19]). For such a pair (q,E) with q irreducible, the associated continuous-time voter model (ξs) is
the {0,1}E-valued Markov chain evolving according to the following rule. At independent exponential random times,
the “voter” at site x replaces its “opinion,” which is 0 or 1, with that of another site chosen independently according
to q(x, ·) on E \ {x}. More precisely, the voter model (ξs) is the pure-jump Markov process on {0,1}E with generator

Lf (ξ) ≡
∑
x∈E

c
(
ξ, ξx

)(
f
(
ξx
)− f (ξ)

)
. (1.2)

Here, for any configuration ξ , ξx is obtained by switching the opinion of ξ at x to the opposite one and differs from ξ

only at this site, and the flip rate at which ξ changes to ξx is given by

c
(
ξ, ξx

)=∑
y∈E

[
ξ(x)̂ξ(y) + ξ̂ (x)ξ(y)

]
q(x, y), (1.3)

for ξ̂ = 1 − ξ . Hence, the Q-matrix q can be interpreted as the voting kernel of (ξs). By allowing q to be a general
Q-matrix as in (1.3), we can consider the case that the total voting rates q(x) defined in (1.1) are site-dependent.

We consider in particular the density process (p1(ξs)) of such a voter model, where

p1(ξ) =
∑
x∈E

π(x)ξ(x) (1.4)

and π is the unique stationary (probability) distribution of the irreducible q-Markov chain, that is the Markov chain
with semigroup (etq; t ≥ 0). The simplest example arises from the mean-field model in which each q(x, ·) is the
uniform distribution on the set E \ {x}, and it is often called the Moran model in population genetics. In this setting,
π is the uniform distribution on E, and it is straightforward to apply diffusion approximation to the density processes.
More precisely, these processes, after time-changes by suitable constants, converge in distribution in the Skorokhod
space to the Wright–Fisher diffusion as the “population size” |E| tends to infinity. Here, we recall that the Wright–
Fisher diffusion, denoted by(

Y, (Pu)u∈[0,1]
)

throughout this paper, is a Markov process on [0,1] which uniquely solves the well-posed martingale problem for

G ≡ 1

2
x(1 − x)

d2

dx2
(1.5)

and initial condition u for every u ∈ [0,1]. In particular, the Wright–Fisher diffusion is a continuous martingale with
predictable quadratic variation

〈Y 〉t =
∫ t

0
Ys(1 − Ys)ds. (1.6)

See Section 10.3 in Ethier and Kurtz [13] for the convergence of these density processes and Chapter 4 in the same
reference for martingale problems.

For more realistic modelling, several works consider finite voter models where the voting kernels q are defined by
spatial structures, or more precisely by the transition kernels of (simple) random walks on graphs (see Chapter 14 in
[2,5], Section 6.9 in [11,12,23] and [26]). We note that in theoretical biology, such voter models play an important role
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in the study of evolutionary dynamics where the use of general spatial structures for the underlying social networks of
biological identities is essential (cf. [4,8,25] and the references there). Voter models in these contexts become harder
to analyze, but the mean-field case mentioned above may still serve as an important example in their studies.

For density processes in spatial voter models, the work Cox [5] obtains a similar diffusion approximation on d-
dimensional discrete tori for d ≥ 2. It proves that if the initial laws for voter models are Bernoulli product measures
with a constant density, then the density processes, again after suitable constant time-changes, converge to the Wright–
Fisher diffusion. We note that the voting kernels defining the voter models in [5] are nearest-neighbor ones allowing
only “local” interactions, whereas interactions in the mean-field case are defined by voters living in “well-mixed”
populations and are very different in nature. Hence, the fact that the Wright–Fisher diffusion appears as the diffusion
limit in both cases suggests that this type of diffusion approximation of density processes should occur in some
generality. We will focus on the case as in [5] that the initial conditions are Bernoulli product measures.

To introduce our perspective on this question, we restrict our attention to the simple case that

q = p − IdE (1.7)

for some symmetric probability matrix p with zero diagonal throughout this section. Here, IdE is the identity matrix
indexed by elements of E, and such a Q-matrix q arises when we consider the usual time-change of a discrete-
time Markov chain with transition matrix p by an independent rate-1 Poisson process (cf. Section 20.1 of [17]). In
Section 2, we will give our result for general irreducible voting kernels q , and more notation is required then. Now,
the stationary distribution π for a voting kernel q of the form (1.7) is the uniform distribution, and the density process

(
p1(ξs)

)
is a martingale with jump size

1

|E| . (1.8)

By introducing a constant time-scale factor γ > 0, the density process has predictable quadratic variation

〈
p1(ξγ ·)

〉
t
= 2γ

|E|
∫ t

0
p10(ξγ s)ds, (1.9)

where

p10(ξ) = 1

|E|
∑

x,y∈E

q(x, y)ξ(x)̂ξ (y) (1.10)

is a weighted average of (1,0) pairs in the configuration ξ . See Proposition 3.1 for these properties of density pro-
cesses.

This observation should readily reveal the similarity of the density process and the Wright–Fisher diffusion in
terms of martingales, under the condition that the population size |E| is large and the predictable quadratic variation
of the density process, a weighted average of (1,0) pairs in (ξγ s) by (1.9), satisfies

〈
p1(ξγ ·)

〉
t
≈
∫ t

0
p1(ξγ s)

[
1 − p1(ξγs )

]
ds as |E| −→∞ (1.11)

(recall the predictable quadratic variation (1.6) of the Wright–Fisher diffusion). The mean-field case gives the simplest
example satisfying this condition, since

p10(ξ) = |E|
|E| − 1

p1(ξ)
[
1 − p1(ξ)

]
, (1.12)

and hence (1.11) holds plainly with γ = |E|/2. In general, if we pass |E| to infinity and p1(ξ0) converges, then
under (1.11) the density processes should converge to a continuous martingale by (1.8) which solves the well-posed
martingale problem associated with the differential operator G in (1.5). In other words, the limiting object should be
the Wright–Fisher process, and indeed, standard martingale arguments confirm this. See Section 5 for the details, and
also its last two paragraphs for the use of general initial conditions.
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We will formalize the condition (1.11) by the convergence in probability of the differences

〈
p1(ξγ ·)

〉
t
−
∫ t

0
p1(ξγs )

[
1 − p1(ξγ s)

]
ds (1.13)

for any t ∈ (0,∞). Here, we pass to the limit along a sequence of voter models, started with Bernoulli product
measures with a constant density and defined by (q(n),En)n∈N with |En| −→ ∞, and a sequence of constant time
scales (γn). Our first main result in this paper shows that such convergence of the differences (1.13) is in fact an
equivalent condition for the convergence of the voter densities toward the Wright–Fisher diffusion. See Theorem 2.1.

Let us discuss how the method of moments in Cox [5] can be applied to general finite voter models, and compare
this method with the method of martingale problems stated above. In [5], the convergence of densities for voter
models on discrete tori of dimension d ≥ 2 toward the Wright–Fisher diffusion was obtained by proving that certain
coalescence times of random walks are approximately sums of independent exponential variables and then appealing
to the method of moments via the well-known duality between voter models and coalescing Markov chains (see
[18] or (3.7) below). In fact, there is an equivalence between such almost exponentiality of coalescence times and
the convergence to the Wright–Fisher diffusion of voter density processes. It takes several forms, and they hold in
general (see Proposition 2.5 and Proposition 2.6). To apply these, we note that the recent work of Oliveira in [23]
obtains the required asymptotic behavior of coalescence times for general Markov chains under Aldous’s condition
discussed below. This result can be readily used to get the mean-field behavior for one-dimensional marginals of the
associated voter densities. Nonetheless, in contrast to the method of moments, we believe that the present approach
by martingale problems gives greater insight into why the convergence to the Wright–Fisher diffusion should hold. It
leads to an equivalent condition in terms of the lower-order densities in (1.13).

The second main result of this paper is concerned with sufficient conditions for the convergence of the differences
(1.13) in terms of the underlying sequence of voting kernels q(n). By Proposition 5.3 below, the convergence in
probability of the differences (1.13) for q(n) can be reinforced to convergence in L2-norm. Hence with duality, it
can be shown that this convergence is equivalent to a condition involving the coalescence times of four q(n)-Markov
chains (recall (1.9) and see the remark below Proposition 5.3). We give two simpler sufficient conditions for the
convergence, and each involves just two q(n)-Markov chains. These conditions result from the classical conditions
for almost exponentiality of hitting times (see Aldous [1] and Proposition 5.23 of Aldous and Fill [2]), and carry the
informal idea that the time for two independent chains to coalesce “falls far behind” the time for the chain to get
close to stationarity. See Theorem 2.2 for the precise formulations. In formalizing the time to stationarity, while one
of our two conditions (cf. Theorem 2.2(i)) uses mixing times and also appears in [23] for almost exponentiality of
coalescence times, the other one (cf. Theorem 2.2(ii)) is based on spectral gaps and can be weaker, or more readily
applied in some instances. On the other hand, by duality and our result for the convergence of voter densities, the
latter condition can also serve as a weaker condition for the convergence in distribution of coalescence times to sums
of independent exponential variables (Proposition 2.5). See also Section 1.1 in [23] for this issue when it comes to the
stronger L1-Wasserstein approximation of coalescence times.

As a final remark, we compare our results with the convergence of the rescaled measure-valued densities of voter
models on Zd to super-Brownian motions as in Cox, Durrett and Perkins [7] for d ≥ 2 and to a nonnegative solution
of an SPDE as in Mueller and Tribe [22] for d = 1. These voter models live on infinite spatial structures which, after
rescaling, converge in the natural way to tractable geometric objects, namely Euclidean spaces of the same dimension,
and hence allow more detailed studies of the associated voter models. In our case, the analysis relies on the martingale
property of densities, and we circumvent the issue of limiting spatial structures by turning to analytic conditions for
almost exponentiality of coalescence times.

The paper is organized as follows. In Section 2, we present our main results for general finite voter models. In
Section 3, we study some martingales associated with a density process and use the duality equation for voter models
to interpret these martingale properties in terms of coalescing Markov chains. In Section 4, we characterize the con-
vergence of the second moment of density processes in terms of the asymptotic exponentiality of coalescence times.
The results in this section are the core of our approach to obtain the convergence of density processes. In Section 5,
we study tightness of densities and prove a general version (see Theorem 2.1) of the statement that the convergence
of density processes to the Wright–Fisher diffusion is equivalent to the convergence in probability of the differences
in (1.13). As an application of this result, we prove in Section 6 two sufficient conditions, each involving only two
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independent q-Markov chains, for the convergence of voter densities (see Theorem 2.2). In Section 7, we discuss some
connections between the convergence of coalescence times and the convergence of density processes, and the main
results will be given below in Proposition 2.5 and Proposition 2.6. Finally, Section 8 is devoted to a few examples to
illustrate our sufficient conditions (see Theorem 2.2 and Corollary 2.3) for the convergence of density processes to the
Wright–Fisher diffusion.

2. Main results

From this section on, we consider voter models subject to irreducible Q-matrices (recall (1.1)) unless otherwise
mentioned. We work with a sequence of irreducible Q-matrices(

q(n),En

)
n∈N

with stationary (probability) distributions (π(n)) whenever we study voter models on large sets, and a pair (q,E) with
stationary distribution π otherwise. The voter models associated with such a sequence (q(n),En) started at Bernoulli
product measures μu with density μu(ξ(x) = 1) = u are denoted by ((ξs),P

(n)
μu ). We will always assume that

|En| −→∞.

Whenever necessary, other quantities depending on (q(n),En) will carry subscripts “n” or superscripts “(n).”
We start with our result for the equivalent condition of the convergence of voter densities to the Wright–Fisher

diffusion. Now, for any pair (q,E), the associated density process (p1(ξγ t )) for γ > 0 is a martingale with jump size
bounded above by maxx∈E π(x), and its predictable quadratic variation takes a more general form than (1.9) which is
for the simpler case (1.7). To state the formula for the general case, we set up some notation. Introduce the following
measures on the product space E ×E induced by π and q:

ν(x, y) ≡ π(x)2q(x, y)1x �=y, (2.1)

ν̄(x, y) ≡ ν(x, y)/ν(1). (2.2)

In addition, set p10(ξ) and p01(ξ) as the ν̄-weighted averages of the ordered pairs (1,0) and (0,1), respectively, in
the configuration ξ , given by

p10(ξ) =
∑

x,y∈E

ν̄(x, y)ξ(x)̂ξ (y), (2.3)

p01(ξ) =
∑

x,y∈E

ν̄(x, y)̂ξ(x)ξ(y). (2.4)

Then 〈
p1(ξγ ·)

〉
t
= γ ν(1)

∫ t

0

[
p10(ξγ s)+ p01(ξγ s)

]
ds (2.5)

(see Proposition 3.1 below). Note that if q is of the particular form (1.7), then ν(1) = 1/|E|, both p10(ξ) and p01(ξ)

agree with the right-hand side of (1.10), and the right-hand sides of (1.9) and (2.5) are equal.

Below we use
(d)−→

n→∞ to denote convergence in distribution and write

πdiag =
∑
x∈E

π(x)2.

Theorem 2.1. Let u ∈ (0,1) and let (γn) be a sequence of strictly positive constants. Assume that

lim
n→∞π

(n)
diag = 0. (2.6)
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Then the convergence of density processes(
p1(ξγn·),P(n)

μu

) (d)−→
n→∞(Y,Pu) (2.7)

under the Skorokhod J1-topology for càdlàg functions holds if and only if the following mean-field condition holds:
for any T ∈ (0,∞),

γnνn(1)

∫ T

0

[
p10(ξγns)+ p01(ξγns)

]
ds

−
∫ T

0
p1(ξγns)

[
1 − p1(ξγns)

]
ds

(d)−→
n→∞0. (2.8)

We will show in Section 4 below (see Theorem 4.1) that the condition (2.6) is in fact necessary for (2.7).
Next, we discuss our second main result which gives sufficient conditions for the mean-field condition (2.8). We

need some notation concerning the mixing of the q-Markov chain. Let (qt ) = (etq ) be the semigroup of the q-Markov
chain on E, and dE be the maximal total variation distance

dE(t) = max
x∈E

∥∥qt (x, ·) − π(·)∥∥TV, (2.9)

where ‖ · ‖TV refers to the total variation distance. Note that dE(t) is always finite. We recall that the mixing time

tmix = inf

{
t ≥ 0: dE(t) ≤ 1

2e

}
< ∞ (2.10)

provides, informally speaking, one measurement of the time for the one-dimensional marginals to get close to the
equilibrium distribution π . An alternative for this purpose for the q-Markov chain is the associated relaxation time
g−1, where g ∈ (0,∞) is the spectral gap and is the second smallest eigenvalue of −q . We refer to [2] and [17] for
standard properties of spectral gaps and their connections with mixing times (the arguments there can be adapted in
a straightforward manner to the context of Markov chains defined by general Q-matrices according to the setup in
Section 1.1 of [3]). In particular, we note that g−1 ≤ tmix.

Next, let MU,U ′ be the meeting time of two independent q-Markov chains with semigroup (qt ) started at spatial
locations (U,U ′), where the sites U and U ′ are independent and distributed according to π . We define the expected
meeting time to be

tmeet = E[MU,U ′ ]. (2.11)

Theorem 2.2. For each n ∈ N, let gn, t(n)
mix and t(n)

meet be the spectral gap, mixing time and expected meeting time of
the q(n)-Markov chain, respectively. In addition, we put

π(n)
max = max

{
π(n)(x);x ∈ En

}
,

q(n)
max = max

{
q(n)(x);x ∈ En

}
.

(Recall that the voting rates q(n)(x) are defined in (1.1).) Suppose that either of the following conditions is satisfied:

(i) lim
n→∞π

(n)
diag = 0 and lim

n→∞
t(n)
mix

t(n)
meet

= 0,

(ii) the q(n)-Markov chains are reversible and satisfy,

lim
n→∞π

(n)
diag = 0 and lim

n→∞
log(e ∨ t(n)

meet

√
π

(n)
maxq

(n)
maxνn(1))

gnt(n)
meet

= 0. (2.12)

Then for all u ∈ [0,1], (2.8) holds with γn = t(n)
meet, and consequently, (2.7) holds.
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Let us make some observation for the condition (ii) of Theorem 2.2. From an inequality (see (3.21)) proved later
on, we have

t(n)
meetπ

(n)
maxq

(n)
max ≥ t(n)

meet

√
π

(n)
maxq

(n)
maxνn(1) ≥ (1 − π

(n)
diag)

2

4
. (2.13)

Also, it is plain that

lim
n→∞π

(n)
diag = 0 ⇐⇒ lim

n→∞π(n)
max = 0. (2.14)

Hence if the voting rates (q(n)(x);x ∈ En) are uniformly bounded and limn→∞ π
(n)
diag = 0, then limn→∞ t(n)

meet = ∞,

and moreover, t(n)
meet has order at least (π

(n)
max)

−1. This, applied to the second part of (2.12), gives the following.

Corollary 2.3. If the Markov chains defined by (q(n),En) are reversible and satisfy limn→∞ π
(n)
diag = 0,

lim sup
n→∞

max
x∈En

q(n)(x) < ∞ and lim inf
n→∞ gn > 0,

then the same conclusions of Theorem 2.2 hold. In particular, these conditions hold when q(n) = p(n) − IdEn for
symmetric probability matrices p(n) (not necessarily with zero diagonals), and the Markov chains defined by (q(n),En)

satisfy lim infn→∞ gn > 0.

If the sequence (t(n)
meetπ

(n)
maxq

(n)
max)n∈N is bounded above, then plainly the second condition in (2.12) reduces to

lim
n→∞gnt(n)

meet =∞. (2.15)

This is the condition suggested by Aldous and Fill on almost exponentiality of hitting times in [2], for the particular
case of the first meeting time of two independent q-Markov chains (see also Section 1.1 in [23]). Moreover, if q(n) =
p(n) − IdEn for a probability matrix p(n) and the matrices p(n) satisfy sufficient symmetry (see Chapter 7 in [2] for
the notion of symmetric chains and note that it is stronger than requiring p(n)(x, y) = p(n)(y, x) for any x, y), then
2t(n)

meet is equal to the so-called random target time and so can be expressed explicitly in terms of the eigenvalues of
p(n) (Section 4.2 in [2]). In this case, the condition (2.15) only involves the eigenvalues of −q(n).

Remark 2.4. One notion of “transience” (respectively, “recurrence”) for a sequence of finite Markov chains (see
Section 15.2.3 in [2]) is essentially that the sequence (t(n)

meetπ
(n)
maxq

(n)
max)n∈N be bounded above (respectively, tend to

infinity). See Remark 8.1 for more details on this terminology. Theorem 2.2 applies in both cases. In fact, we use
considerably more delicate arguments in the present proof of Theorem 2.2, in order to take into account the recurrent
case as well.

Our last results concern coalescence times of Markov chains. Suppose again that we have a sequence of irreducible
Q-matrices (q(n),En), with stationary distributions (π(n)). For a given n, let U1,U2, . . . be i.i.d. with distribution π(n).
Let (X̂x

t , x ∈ En) be a system of coalescing q(n)-Markov chains, with X̂x
0 = x, independent of the Ui ’s. This means

that the q(n)-Markov chains X̂x move independently until they meet, at which time they coalesce and move together.
Define the coalescence times

C(n)
k,j = inf

{
t > 0; ∣∣{X̂U1

t , . . . , X̂
Uk
t

}∣∣= j
}
, 1 ≤ j ≤ k ≤ |En|,

and let Z2,Z3, . . . be independent exponential random variables with E[Zj ] = 1/
(
j
2

)
. In the mean-field case, it is

well-known and easy to check that with γn = |En|/2,

C(n)
k,j

γn

(d)−→
n→∞

k∑
i=j+1

Zi, 1 ≤ j < k < ∞. (2.16)
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(See Chapter 14 in [2].) In fact, this convergence is an easy consequence of the convergence of voter model densities
to the Wright–Fisher diffusion.

Proposition 2.5. If (2.7) holds, then so does (2.16). In particular, if either of the conditions of Theorem 2.2 hold, then
so does (2.16) with γn = t(n)

meet.

We refer the readers to [23] and [24] for recent results on the almost exponentiality of Markov chain hitting times
of general sets, and in particular, of Markov chain coalescence times. These results give the convergence in (2.16) with
explicit convergence rates under slightly different conditions than the ones we give here. Remarkably, the convergence
of the “full” coalescence times Ĉ(n)

1 of {X̂x;x ∈ En} is also obtained in [23], where

Ĉ(n)
j = inf

{
t ≥ 0; ∣∣{X̂x

t ;x ∈ En

}∣∣= j
}
, 1 ≤ j ≤ |En|.

In this direction, we also have Proposition 2.6 below, which interprets the convergence of full coalescence times in
terms of the convergence of voter densities to the Wright–Fisher diffusion.

Proposition 2.6. Let τ
(n)
1 denote the first hitting time of 1 by the density process (p1(ξγnt )), and τY

1 the first hitting
time of 1 by the Wright–Fisher diffusion (Yt ). Then the following convergences are equivalent:

(
τ

(n)
1

γn

,P(n)
μu

)
(d)−→

n→∞
(
τY

1 ,Pu

)
, ∀u ∈ [0,1], (2.17)

Ĉ(n)
j

γn

(d)−→
n→∞

∞∑
i=j+1

Zi, ∀j ∈N. (2.18)

We note that the convergence (2.17) does not follow immediately from the weak convergence of density processes
since first hitting times are in general not continuous with respect to the Skorokhod J1-topology. To see this, we
may reinforce the convergence (2.7) to almost-sure convergence in the Skorokhod J1-topology by the Skorokhod
representation (see [13]). Then, for example, the approximating density processes (p1(ξγn·),P

(n)
μu ) may “linger” very

close to the absorbing state 1 for long periods of time before getting absorbed at 1, while the limiting process (Yt ) has
already reached 1. Hence, (2.17) rules out this lingering behavior of the density process (p1(ξγn·),P

(n)
μu ) for all large n

in particular.

3. Martingale property and duality

Fix a Markov chain defined by (q,E) with stationary distribution π , and consider the corresponding voter model (ξt ).
Recall the definition (1.4) of p1, and set

p0 ≡ 1 − p1.

In this section, we identify some martingales associated with the density process (p1(ξt )) and then resort to the duality
equation for voter models (see (3.7) below) for their interpretations in terms of coalescing Markov chains.

Proposition 3.1. For any initial configuration ξ ∈ {0,1}E , all of the following three processes are Pξ -martingales:

(i) (p1(ξt )).
(ii) (p1(ξt )p0(ξt )+ ν(1)

∫ t

0 [p10(ξs)+ p01(ξs)]ds).
(iii) (p2

1(ξt )− ν(1)
∫ t

0 [p10(ξs)+ p01(ξs)]ds).
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Proof. Recall that the generator L and the flip rates of the voter model (ξt ) are given by (1.2) and (1.3), respectively.
In the following, we will show

Lp1 ≡ 0, (3.1)

L(p1p0) ≡−ν(1)(p10 + p01). (3.2)

Then our assertions for the processes in (i) and (ii) follow from these and a standard result of Markov processes. The
fact that the process in (iii) is a martingale then follows from the analogous properties of the processes in (i) and (ii),
since p2

1 = p1 − p1p0.
We first show (3.1). Plainly

p1
(
ξx
)− p1(ξ) = π(x)

[̂
ξ(x)− ξ(x)

]
, (3.3)

and thus by (1.2) we get

Lp1(ξ) =
∑
x∈E

ξ̂(x)
∑
y∈E

ξ(y)q(x, y)π(x) −
∑
x∈E

ξ(x)
∑
y∈E

ξ̂(y)q(x, y)π(x)

=
∑

x,y∈E

ξ(y)π(x)q(x, y) −
∑

x,y∈E

ξ(x)ξ(y)π(x)q(x, y)

−
∑

x,y∈E

ξ(x)π(x)q(x, y) +
∑

x,y∈E

ξ(x)ξ(y)π(x)q(x, y) = 0,

because
∑

y∈E q(x, y) = 0 and
∑

x∈E π(x)q(x, y) = 0 for all y ∈ E. Hence, (3.1) follows, and the density process
(p1(ξt )) is a martingale.

Next, to show (3.2), we note that for any x ∈ E,

p1
(
ξx
)
p0
(
ξx
)− p1(ξ)p0(ξ)

= [
p1
(
ξx
)− p1(ξ)

] · [p0
(
ξx
)− p0(ξ)

]+ p0(ξ)
[
p1
(
ξx
)− p1(ξ)

]
+ p1(ξ)

[
p0
(
ξx
)− p0(ξ)

]
=−π(x)2 + p0(ξ)

[
p1
(
ξx
)− p1(ξ)

]+ p1(ξ)
[
p0
(
ξx
)− p0(ξ)

]
,

where we have used (3.3) and the analogue p0(ξ
x)−p0(ξ) = π(x)[ξ(x)− ξ̂ (x)] in the last line. Since Lp1 = Lp0 = 0,

the last equality implies that∑
x∈E

c(x, ξ)
[
p1
(
ξx
)
p0
(
ξx
)− p1(ξ)p0(ξ)

]
=−

∑
x,y∈E

[
ξ(x)̂ξ (y) + ξ̂ (x)ξ(y)

]
q(x, y)π(x)2

=−ν(1)
[
p10(ξ) + p01(ξ)

]
,

where the last equality follows from the definitions (2.1)–(2.4). This gives (3.2), and our assertion for (ii) is proved.
The proof is complete. �

Recall that μu denotes the Bernoulli product measure on E with density μu(ξ(x) = 1) = u.

Corollary 3.2. For any γ, t ∈ (0,∞) and initial configuration ξ ∈ {0,1}E , the martingale (p1(ξγ t )) under Pξ has
predictable quadratic variation process

〈
p1(ξγ ·)

〉
t
= γ ν(1)

∫ t

0

[
p10(ξγ s)+ p01(ξγ s)

]
ds. (3.4)
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Also for any u ∈ [0,1], we have

Eμu

[
p1(ξγ t )p0(ξγ t )

]= u(1 − u)(1 − πdiag)− γ ν(1)

∫ t

0
Eμu

[
p10(ξγ s)+ p01(ξγ s)

]
ds. (3.5)

Proof. The equation (3.4) follows readily from Proposition 3.1 for the process in (iii) and the standard characterization
of predictable quadratic variations (cf. [15]). Similarly, by (ii) in the same proposition, we have

Eξ

[
p1(ξγ t )p0(ξγ t )

]= p1(ξ)p0(ξ) − γ ν(1)

∫ t

0
Eξ

[
p10(ξγ s)+ p01(ξγ s)

]
ds, (3.6)

and so a randomization of the initial configuration ξ by μu leads to (3.5). �

The rest of this section is devoted to interpreting the above results by coalescing Markov chains, and now we
recall duality. Using the coalescing Markov chains (X̂x, x ∈ E) introduced in Section 2, we can formulate the duality
equation for voter models (see Chapter V of [18] or Section 4.3 of [19]) as

Eη

[∏
x∈F

ξt (x)

]
= E

[∏
x∈F

η
(
X̂x

t

)] ∀η ∈ {0,1}E, t ∈R+ (3.7)

for any nonempty subset F of E. The readers will see later on that the duality formula becomes particularly tractable
for a voter model with initial law μu.

We will make frequent use of a special case of (3.7) stated as follows. For convenience, let (Xx
t , x ∈ E) be another

system of q-Markov chains with Q-matrix q and Xx
0 = x, but now consisting of independent chains. We define the

first meeting times of Xx and Xy by

Mx,y = inf
{
t ≥ 0: Xx

t = X
y
t

}
, x, y ∈ E.

Then (3.7) implies

Eξ

[
ξt (x)̂ξt (y)

]= E
[
ξ
(
Xx

t

)̂
ξ
(
X

y
t

);Mx,y > t
]
. (3.8)

Next, we recall that (U,U ′) has law π ⊗ π , and now introduce (V ,V ′) with law

P
(
V = a,V ′ = b

)≡ ν̄(a, b), a, b ∈ E (3.9)

(recall the definition of ν̄ from (2.2)). We assume, in addition, that these random elements (U,U ′) and (V ,V ′) are
independent of the system (Xx;x ∈ E).

Proposition 3.3. For any γ, t > 0 and initial configuration ξ ∈ {0,1}E ,

Eξ

[
p1(ξγ t )p0(ξγt )

]= E
[
ξ
(
XU

γ t

)̂
ξ
(
XU ′

γ t

);MU,U ′ > γ t
]
, (3.10)

Eξ

[
p10(ξγ t )

]= E
[
ξ
(
XV

γ t

)̂
ξ
(
XV ′

γ t

);MV,V ′ > γ t
]
, (3.11)

Eξ

[
p01(ξγ t )

]= E
[̂
ξ
(
XV

γ t

)
ξ
(
XV ′

γ t

);MV,V ′ > γ t
]
. (3.12)

Proof. By the duality equation (3.8) and the definitions of p1,p0 and (U,U ′), we have

Eξ

[
p1(ξγ t )p0(ξγ t )

] = ∑
x,y∈E

π(x)π(y)E
[
ξ
(
Xx

γ t

)̂
ξ
(
X

y
γ t

);Mx,y > t
]

= E
[
ξ
(
XU

γ t

)̂
ξ
(
XU ′

γ t

);MU,U ′ > γ t
]
,

which proves (3.10). The equations (3.11) and (3.12) can be derived in the same fashion by using the definition (3.9)
of (V ,V ′). �
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We point out that (3.10)–(3.12) are closely related to the tail distributions of some particular meeting times. By
(3.11) and (3.12), we have

sup
ξ∈{0,1}E

Eξ

[
p10(ξγ t )+ p01(ξγ t )

]≤ 2P(MV,V ′ > γ t). (3.13)

Moreover, if we start the voter model with the product measure μu for u ∈ [0,1], then Proposition 3.3 implies

Eμu

[
p1(ξγ t )p0(ξγt )

]= u(1 − u)P(MU,U ′ > γ t) (3.14)

and

Eμu

[
p10(ξγ t )

]= Eμu

[
p01(ξγ t )

]= u(1 − u)P(MV,V ′ > γ t). (3.15)

As a particular application of (3.14) and (3.15), we give simple proofs for some known results in Markov chain
theory in Corollary 3.4 below (see Section 5.3 of Chapter 3 in [2]).

Corollary 3.4. The tail distributions of MU,U ′ and MV,V ′ are related by the formula: for any γ, t > 0,

P(MU,U ′ > γ t) = 1 − πdiag − 2γ ν(1)

∫ t

0
P(MV,V ′ > γ s)ds. (3.16)

Moreover, we have

E[MV,V ′ ] = 1 − πdiag

2ν(1)
, (3.17)

E[MU,U ′ ] = ν(1)E
[
M2

V,V ′
]
. (3.18)

Proof. We start with (3.16). If we fix u ∈ (0,1), and plug (3.14) and (3.15) into (3.5), then cancelling the factor
u(1 − u) gives (3.16). We remark that (3.16) can be alternatively derived by a standard Markov chain “last time”
decomposition (see Section A.2 of [7]), and leave the details to the readers.

We then consider the two equalities (3.17) and (3.18). Since q is irreducible, the meeting time Mx,y is finite a.s.
for any x, y ∈ E. Thus, by setting γ = 1 and passing t −→∞ in the identity (3.16), we deduce (3.17). To obtain the
second equality (3.18), we set γ = 1 and integrate both sides of (3.16):

E[MU,U ′ ] = 2ν(1)

∫ ∞

0

(
1 − πdiag

2ν(1)
−
∫ t

0
P(MV,V ′ > s)ds

)
dt

= 2ν(1)

∫ ∞

0

∫ ∞

t

P(MV,V ′ > s)ds dt

= 2ν(1)

∫ ∞

0
sP(MV,V ′ > s)ds

= 2ν(1)
E[M2

V,V ′ ]
2

= ν(1)E
[
M2

V,V ′
]
,

where (3.17) is used in the second equality below. We have proved (3.18). The proof is complete. �

Remark 3.5. (1) Some useful consequences of Corollary 3.4 are the following. First, (3.17) and Markov’s inequality
imply that for any γ, t > 0,

2γ ν(1)P(MV,V ′ > γ t) ≤ 1 − πdiag

t
. (3.19)
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Second, passing t −→∞ in (3.16), we obtain

2γ ν(1)

∫ ∞

0
P(MV,V ′ > γ s)ds ≤ 1. (3.20)

Finally, from (3.17), (3.18) and the Cauchy–Schwarz inequality we obtain a useful lower bound of tmeet = E[MU,U ′ ]:

tmeet ≥ 1

ν(1)

(
1 − πdiag

2

)2

. (3.21)

See also Section 5.1 of [2] for a similar inequality.
(2) If q is of the form (1.7) for a symmetric probability matrix p with zero diagonal, then ν(1) = 1/|E| and

P((V ,V ′) = (a, b)) = π(a)q(a, b). In this case, (3.17) and (3.18) reduce to

E[MV,V ′ ] = |E| − 1

2
and E

[
M2

V,V ′
]= |E| · E[MU,U ′ ],

respectively.

4. Pairwise coalescence times

Throughout this section we take an arbitrary sequence of irreducible Markov chains defined by Q-matrices
(q(n),En)n∈N. With π(n) being the stationary distribution of q(n), we write

π
(n)
diag =

∑
x∈En

π(n)(x)2,

νn(x, y) ≡ π(n)(x)2q(n)(x, y)1x �=y, ν̄n = νn

νn(1)

as before. Let (ξs) with law P
(n)
λ denote the voter model defined by the voting kernel q(n) with initial distribution λ.

By convention, P(n)
ξ = P

(n)
δξ

for delta measures δξ .
In this section, we consider the density processes of these voter models and study the necessary and sufficient

conditions for the convergence of their second moments to the second moment of the Wright–Fisher diffusion
(Y, (Pu)u∈[0,1]) which is defined by the differential operator G in (1.5). Our main result in this section is Theorem 4.1
below. In the following, let e denote the exponential random variable with mean 1, and L (X) denote the law of a
random element X.

Theorem 4.1. Assume that

lim
n→∞π

(n)
diag = Δ ∈ [0,1), (4.1)

and let (γn) be a sequence of constants in (0,∞). Then the following conditions are equivalent.

(1) For some u ∈ (0,1),

lim
n→∞E(n)

μu

[
p1(ξγnt )p0(ξγnt )

]= (1 − Δ)Eu

[
Yt (1 − Yt )

] ∀t ∈R+. (4.2)

(2) For all t ∈R+,

lim
n→∞2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds = (1 −Δ)

(
1 − e−t

)
.
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(3) For all μ ∈R+,

lim
n→∞2γnνn(1)E(n)

[
1 − e−μMV,V ′/γn

]= (1 −Δ)E
[
1 − e−μe].

(4) L

(
MU,U ′

γn

)
(d)−→

n→∞(1 −Δ) ·L (e)+Δ · δ0.

Moreover, if any of these four conditions holds, then (4.2) holds for any u ∈ [0,1].

Proof. We will prove this theorem in the order: (2) ⇐⇒ (4), (1) ⇐⇒ (2), and finally (2) ⇐⇒ (3).
Step 1: (2) ⇐⇒ (4). Note that (4) is equivalent to

P(n)(MU,U ′ > γnt) −→ (1 −Δ)e−t , ∀t > 0,

and so it follows immediately from (3.16) and (4.1) that (2) and (4) are equivalent.
Step 2: (1) ⇐⇒ (2). Suppose that (1) holds for some u ∈ (0,1). Note that

Eu

[
Yt (1 − Yt )

]= u(1 − u)e−t , t ∈R+.

Using the foregoing equality, (3.14) and (3.16), we see that (1) implies

(1 − Δ)u(1 − u)e−t = lim
n→∞E(n)

μu

[
p1(ξγnt )p0(ξγnt )

]
= u(1 − u)

[
(1 −Δ) − lim

n→∞2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds

]
.

Cancelling out the factor u(1 − u) on both sides of the foregoing equality, we obtain (2). For the converse, we take
any u ∈ (0,1) and then reverse this argument. In particular, (4.2) holds for all u ∈ [0,1] whenever (2) applies.

Step 3: (2) ⇐⇒ (3). Let us make some elementary observations. First, for any (0,∞)-valued random variable X

and any μ > 0, it is elementary to obtain

E
[
1 − e−μX

] = μ

∫ ∞

0
e−μsP(X > s)ds (4.3)

= μ2
∫ ∞

0
e−μt

∫ t

0
P(X > s)ds dt. (4.4)

In addition, (3.20) gives

2γnνn(1)

∫ ∞

0
P(n)(MV,V ′ > γns)ds ≤ 1, ∀n ∈N. (4.5)

Now assume that (2) holds. Taking X = MV,V ′/γn in (4.4), we have for any μ > 0

2γnνn(1)E(n)
[
1 − e−μMV,V ′/γn

]= μ2
∫ ∞

0
e−μt

∫ t

0
2γnνn(1)P(n)(MV,V ′ > γns)ds dt. (4.6)

We pass n →∞ for both sides of the foregoing equality. The bound (4.5) justifying the use of the dominated conver-
gence theorem, the limit of the right-hand side of (4.6) equals

(1 − Δ)μ2
∫ ∞

0
e−μt

(
1 − e−t

)
dt = (1 −Δ)E

[
1 − e−μe],

where the last equality follows from (4.4) with X = e. We have proved (3).
The proof that (3) implies (2) is more involved. Employing (4.3) again, we see that (3) implies that for all λ > 0,

2γnνn(1)

∫ ∞

0
e−λsP(n)(MV,V ′ > γns)ds → (1 − Δ)

∫ ∞

0
e−λsP(e > s)ds (4.7)
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as n →∞. For any μ > 0 and t > 0, define

fn,μ(t) = e−μtP(n)(MV,V ′ > γnt)∫∞
0 e−μsP(n)(MV,V ′ > γns)ds

,

fμ(t) = e−μtP(e > t)∫∞
0 e−μsP(e > s)ds

.

Applying (4.7) twice, we obtain for any λ > 0,∫ ∞

0
e−λtfn,μ(t)dt = 2γnνn(1)

∫∞
0 e−(λ+μ)tP(n)(MV,V ′ > γnt)dt

2γnνn(1)
∫∞

0 e−μsP(n)(MV,V ′ > γns)ds

−→
∫ ∞

0
e−λtfμ(t)dt

as n → ∞. Hence, we deduce from Lévy’s continuity theorem for Laplace transforms of distributions on R+ (cf.
Theorem 4.3 in [16]) and (4.7) with λ replaced by μ > 0 that for all t ≥ 0,

2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds ≥ 2γnνn(1)

∫ t

0
e−μsP(n)(MV,V ′ > γns)ds

→ (1 − Δ)

∫ t

0
e−μsP(e > s)ds (4.8)

as n →∞. Since μ > 0 is arbitrary, this implies

lim inf
n→∞ 2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds ≥ (1 − Δ)

∫ t

0
P(e > s)ds. (4.9)

To prove the converse inequality, we start with the decomposition

2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds = 2γnνn(1)

∫ t

0

(
1 − e−μs

)
P(n)(MV,V ′ > γns)ds

+ 2γnνn(1)

∫ t

0
e−μsP(n)(MV,V ′ > γns)ds. (4.10)

Fix any μ > 0. By Markov’s inequality and the elementary fact that 1 − e−μs ≤ μs if μs ≥ 0, the first integral on the
right-hand side above is bounded by

2γnνn(1)

∫ t

0
μ

E(n)[MV,V ′ ]
γn

ds ≤ μt,

where the last inequality is a consequence of (3.17). Applying the foregoing inequality to (4.10) and using (4.8), we
obtain

lim sup
n→∞

2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds ≤ μt + (1 − Δ)

∫ t

0
e−μsP(e > s)ds.

If we let μ −→ 0 in the above inequality and then combine the result with (4.9), we obtain

2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds −→ (1 −Δ)

∫ t

0
P(e > s)ds, (4.11)

which is (2). The proof of the theorem is now complete. �
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Corollary 4.2. Under the assumption (4.1), any of (1)–(4) of Theorem 4.1 implies that

lim
n→∞2γnνn(1)P(n)(MV,V ′ > γnt) = (1 −Δ)e−t , ∀t > 0. (4.12)

If in addition the limit mΔ = limn→∞ 2γnνn(1) exists, then mΔ ∈ [1 − Δ,+∞] and

L

(
MV,V ′

γn

)
(d)−→

n→∞
1 − Δ

mΔ

L (e)+
(

1 − 1 −Δ

mΔ

)
δ0

with the convention that 1
+∞ = 0.

Proof. We prove (4.12), from which the second assertion immediately follows. We may assume that (2) of Theo-
rem 4.1 holds. For each n ≥ 1, define

fn(t) = 2γnνn(1)P(n)(MV,V ′ > γnt), t ∈ (0,∞).

Then each fn is continuous and decreasing. Moreover, by (3.19),

0 ≤ fn(t) ≤ 1

t
.

Now fix a > 0 and define Gn(t) = 1 − afn(t), t ∈ [a,∞). By the above inequality, (Gn) is a sequence of distribution
functions on [a,∞). Hence by Helly’s selection principle, there exist a subsequence (Gnk

) and some (sub-)distribution
function G such that Gnk

(t) −→ G(t) for every continuity point t ∈ (a,∞) of G. Since G is monotone, it can have
only countably many discontinuity points, and hence for any a < s < t ,

lim
k→∞

∫ t

s

Gnk
(u)du =

∫ t

s

G(u)du

by dominated convergence. It then follows from (2) of Theorem 4.1 that∫ t

s

G(u)du = (t − s)+ a(1 −Δ)
(
e−t − e−s

)
,

which implies that G(t) = 1 − a(1 − Δ)e−t for every continuity point t ∈ (a,∞) of G. Since G is increasing, this
equality holds for any t ∈ (a,∞). Therefore, G is continuous on (a,∞) and we have

lim
k→∞Gnk

(t) = 1 − a(1 − Δ)e−t for any t ∈ (a,∞).

As the limit does not depend on the subsequence, this proves that

lim
n→∞fn(t) = (1 −Δ)e−t for any t ∈ (a,∞).

Since a > 0 is arbitrary, we have proved (4.12). �

We now study what is left out in the conclusion of Corollary 4.2 and consider, informally, the instant sn after
which the tail of 2γnνn(1)P(n)(MV,V ′/γn ∈ ·) starts to behave like the (1 − Δ) multiple of the standard exponential
distribution. The following result will play a crucial role in the proof of Theorem 2.2.

Proposition 4.3. Suppose that (4.1) and any of (1)–(4) of Theorem 4.1 holds.

(1) Let (sn) ⊆R+ be any sequence such that

lim inf
n→∞ 2γnνn(1)P(n)(MV,V ′ > sn) ≥ 1 −Δ. (4.13)

Then sn = o(γn) as n −→∞.



Convergence of voter densities to Wright–Fisher diffusion 301

(2) Let (sn) ⊆R+ be any sequence such that

lim
n→∞2γnνn(1)P(n)(MV,V ′ > sn) = 1 −Δ. (4.14)

If (s′n) is a sequence in R+ such that s′n ≥ sn and s′n = o(γn), then (4.14) holds with (s′n) in place of (sn).

Proof. Consider (1) first, and we may assume that (4) of Theorem 4.1 holds. Assume the converse that sn/γn does
not converge to zero. By passing to a subsequence if necessary, we may assume without loss of generality that (sn)

satisfies sn/γn −→ δ for some δ ∈ (0,∞] as n −→∞. By assumption,

1 −Δ ≤ lim inf
n→∞ 2γnνn(1)P(n)(MV,V ′ > sn)

≤ lim
n→∞2γnνn(1)

1 − π
(n)
diag

2snνn(1)
= (1 − Δ) lim

n→∞
γn

sn
,

where the second inequality is due to (3.19). Hence, we must have δ ≤ 1. On the other hand, by (3.16) of Corollary 3.4,

P(n)

(
MU,U ′

γn

>
sn

γn

)
= 1 − π

(n)
diag − 2γnνn(1)

∫ sn/γn

0
P(n)(MV,V ′ > γns)ds. (4.15)

Using (4) of Theorem 4.1, we get

lim
n→∞P(n)

(
MU,U ′

γn

>
sn

γn

)
= (1 − Δ)e−δ.

Apply this to (4.15), and we obtain

(1 − Δ)
(
1 − e−δ

) = lim
n→∞2γnνn(1)

∫ sn/γn

0
P(n)(MV,V ′ > γns)ds

≥ lim inf
n→∞ 2γnνn(1)

(
sn

γn

)
P(n)(MV,V ′ > sn)

≥ (1 −Δ)δ

by the definition of δ and (4.13). As a consequence, 1− e−δ ≥ δ, whereas it is easy to see that 1− e−δ′ < δ′ as long as
δ′ > 0. This proves that δ must be 0, so (1) follows.

To prove (2), we let (s′n) ⊂R+ satisfy s′n ≥ sn and s′n = o(γn). It is immediate that

lim sup
n→∞

2γnνn(1)P(n)
(
MV,V ′ > s′n

)
≤ lim

n→∞2γnνn(1)P(n)(MV,V ′ > sn) = 1 −Δ (4.16)

by the present assumption (4.14). To obtain the converse inequality, we fix ε > 0. Since s′n
γn

< ε for all large enough n,

2γnνn(1)P(n)
(
MV,V ′ > s′n

)
≥ 2γnνn(1)P(n)(MV,V ′ > εγn) −→ (1 −Δ)e−ε

as n −→ ∞ by our assumption on the validity of any of (1)–(4) in Theorem 4.1 and Corollary 4.2. Since ε > 0 is
arbitrary, we deduce that

lim inf
n→∞ 2γnνn(1)P(n)

(
MV,V ′ > s′n

)≥ 1 −Δ. (4.17)

We now get the asserted equality (4.14) for (s′n) from (4.16) and (4.17). The proof is complete. �
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5. Proof of Theorem 2.1

In this section, we prove limit theorems for density processes. We will focus on the martingale property of the density
processes and use semimartingale limit theorems for our purpose. As before, we take a sequence of irreducible Q-
matrices (q(n),En) with stationary distributions (π(n)) and a sequence of strictly positive constants (γn).

We first introduce some notation for density processes used throughout this section. For each n, we write Yn =
(Yn(t)) for the density processes (p1(ξγnt )) of the voter model defined by q(n). By Proposition 3.1, each Yn is a càdlàg
(F n

t )-martingale, where

F n
t = σ(ξγns; s ≤ t). (5.1)

We recall from (3.4) that the predictable quadratic variation process of Yn is given by the continuous process

〈Yn〉t = γnνn(1)

∫ t

0

[
p10(ξγns)+ p01(ξγns)

]
ds. (5.2)

Note that the process in (5.2) is different from the quadratic variation process, which is given by

[Yn]t =
∑
s:s≤t

(
ΔYn(s)

)2
(see [15]).

In the following theorem, we refer to [15] for the necessary stochastic calcuus definitions and theorems.

Theorem 5.1. Assume that (4.1) holds with Δ = 0 and any of (1)–(4) of Theorem 4.1 holds. Then we have the
following.

(1) For any u ∈ [0,1], the sequence of laws of the càdlàg martingales(
Yn,P

(n)
μu

)
, n ∈N (5.3)

is C-tight.
(2) For any u ∈ [0,1], every subsequential limit of the laws of the martingales in (5.3) is the law of a continuous

nonnegative martingale bounded by 1.
(3) Suppose that, by choosing a subsequence if necessary, the sequence of laws of the martingales in (5.3) converges

to the law of a continuous martingale Z. Then a stronger convergence holds:(
Yn, [Yn], 〈Yn〉

) (d)−→
n→∞

(
Z, [Z], [Z]). (5.4)

Proof. We begin with the proof of the assertion:

the sequence of laws of
(〈Yn〉,P(n)

μu

)
, n ∈N, is C-tight. (5.5)

This follows by verifying (5.6) and (5.9) below for the sequence of laws of 〈Yn〉 (cf. Theorem VI.4.5 of [15]). First,
we check the compact containment condition:

∀ε > 0, T > 0,∃K > 0 such that sup
n∈N

P(n)
μu

(
sup
s≤T

〈Yn〉s ≥ K
)
≤ ε. (5.6)

We make use of the monotonicity of 〈Yn〉, which gives, for every ε > 0, T > 0 and n ∈N,

P(n)
μu

(
sup
s≤T

〈Yn〉s ≥ K
)
≤ E

(n)
μu [〈Yn〉T ]

K

= γnνn(1)

K

∫ T

0
E(n)

μu

[
p10(ξγns)+ p01(ξγns)

]
ds
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≤ 2γnνn(1)

K

∫ T

0
P(n)(MV,V ′ > γns)ds (5.7)

≤ 1

K
, (5.8)

where (5.7) follows from (3.15), and (5.8) from (3.20). We have proved (5.6).
The second condition which we need to check is Aldous’s criterion:

∀ε > 0, lim
θ→0

lim sup
n→∞

sup
S,T :S≤T≤S+θ

P(n)
μu

(∣∣〈Yn〉T − 〈Yn〉S
∣∣≥ ε

)= 0, (5.9)

where S and T range over all finite (F n
t )-stopping times. For any θ > 0 and finite (F n

t )-stopping times S and T

satisfying S ≤ T ≤ S + θ , we have

E(n)
μu

[∣∣〈Yn〉T − 〈Yn〉S
∣∣] = γnνn(1)E(n)

μu

[∫ T

S

[
p10(ξγns)+ p01(ξγns)

]
ds

]
≤ γnνn(1)E(n)

μu

[∫ S+θ

S

[
p10(ξγns)+ p01(ξγns)

]
ds

]
= γnνn(1)E(n)

μu

[
E

(n)
ξγnS

[∫ θ

0

[
p10(ξγns)+ p01(ξγns)

]
ds

]]
≤ 2γnνn(1)

∫ θ

0
P(n)(MV,V ′ > γns)ds, (5.10)

where the last inequality follows from (3.13). Note that the right-hand side of the last inequality is independent of the
stopping times S and T . By assumption, condition (2) of Theorem 4.1 holds, and thus

lim
n→∞2γnνn(1)

∫ θ

0
P(n)(MV,V ′ > γnr)dr = 1 − e−θ .

Our claim (5.9) now follows by applying this equality to the right-hand side of (5.10). We have proved that the
sequence of laws of the continuous processes 〈Yn〉 is tight, or more precisely, C-tight.

The next step is to prove the desired properties (1)–(3) of the sequence of laws of the càdlàg martingales Yn,
given that we have obtained the C-tightness of the sequence of laws of 〈Yn〉. Since the sequence of laws of the initial
conditions (Yn(0)) is clearly tight, we may apply Theorem VI.4.13 of [15] and conclude that the sequence (Yn,P

(n)
μu ) is

tight. Since the jumps of Yn are uniformly bounded by π
(n)
max, and π

(n)
max −→ 0 as n −→∞ on account of the assumption

that Δ = 0, it follows from Proposition VI.3.26 of [15] the sequence of laws of (Yn) is C-tight, so we have proved (1)
of our theorem.

We now consider (2). Suppose that (Z,Qu) is a subsequential limit of the sequence of laws of (Yn,P
(n)
μu ). For

convenience, we may assume that(
Yn,P

(n)
μu

) (d)−→
n→∞(Z,Qu).

Since (Yn,P
(n)
μu ) is C-tight and each member is a nonnegative martingale uniformly bounded by 1, it follows that

the limiting object (Z,Qu) is a continuous martingale bounded by 1 by Proposition IX.1.1 in [15], and (2) follows.
Moreover, Corollary VI.6.30 of [15] implies that(

Yn, [Yn]
) (d)−→

n→∞
(
Z, [Z]). (5.11)

It remains to prove (3), and we need to reinforce the convergence in (5.11) to (5.4). To this end, it suffices to
show that the sequence of laws of 〈Yn〉 converge to the law of [Z] = 〈Z〉 as well. We have shown the C-tightness of
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the sequence of laws of 〈Yn〉 in the proof of (1). Hence, by taking a subsequence if necessary, we may assume that
the sequence of laws of (Yn, 〈Yn〉) converges to the law of (Z,B) for some continuous increasing process B . The
sequence (Yn) is obviously uniformly integrable. We will show in the last paragraph of this proof that {〈Yn〉T }n∈N is
L2-bounded for any T > 0, and hence uniformly integrable. It then follows that both Z and Z2 − B are continuous
martingales with respect to the filtration generated by Z and B . The standard characterization of 〈Z〉 implies that
〈Z〉 = B , and we can reinforce the convergence (5.11) to(

Yn, [Yn], 〈Yn〉
) (d)−→

n→∞
(
Z, [Z], [Z]). (5.12)

To complete the proof, we verify that for any fixed T > 0,

sup
n∈N

E(n)
μu

[〈Yn〉2
T

]
< ∞. (5.13)

With (5.2) as our starting point, we expand and use the Markov property at time s < u to obtain

E(n)
μu

[〈Yn〉2
T

] = 2
(
γnνn(1)

)2 ∫ T

0
ds

∫ T

s

duE(n)
μu

[[
p10(ξγns)+ p01(ξγns)

]
×E

(n)
ξγns

[
p10(ξγn(u−s))+ p01(ξγn(u−s))

]]
≤ 2

(
γnνn(1)

)2 ∫ T

0
E(n)

μu

[
p10(ξγns)+ p01(ξγns)

]
ds

×
∫ T

0
2P(n)(MV,V ′ > γnu)du,

where the last inequality is due to (3.13). Applying (3.13) again, we obtain

E(n)
μu

[〈Yn〉2
T

]≤ 2

[
2γnνn(1)

∫ T

0
P(n)(MV,V ′ > γnu)du

]2

≤ 2

by (3.20). This gives (5.13), and the proof of (5.12) is complete. �

Corollary 5.2. Suppose that (2.6) holds (i.e., (4.1) holds with Δ = 0). Then the convergence (2.7) implies the mean-
field condition (2.8).

Proof. Suppose that the sequence of laws of (Yn,P
(n)
μu ) converges to the distribution of the Wright–Fisher diffusion.

This implies that condition (1) of Theorem 4.1 holds. As a consequence, Theorem 5.1 applies, and thus (5.4) must
hold with the limit Z distributed as the Wright–Fisher diffusion Y and hence

[Z]t =
∫ t

0
Zs(1 −Zs)ds. (5.14)

Since

w �−→
(∫ t

0
w(s)

[
1 −w(s)

]
ds; t ∈R+

)
:D
(
R+, [0,1])−→ D(R+,R) (5.15)

defines a continuous function (cf. the proof of Proposition 3.7.1 in [13]) for any T ∈ (0,∞), the equation (5.14) and
the convergence (5.4) imply

〈Yn〉T −
∫ T

0
Yn(s)

[
1 − Yn(s)

]
ds

(d)−→
n→∞0,

which is exactly the mean-field condition (2.8). �
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Our strategy to complete the proof of Theorem 2.1 is to argue that if (2.6) and the mean-field condition (2.8)
hold then the conditions of Theorem 4.1 must hold, so that Theorem 5.1 applies. To do this, we first show that the
mean-field condition is itself a statement of local convergence in Lp(P) for any p ∈ [1,∞).

Proposition 5.3. For any voter model defined by an irreducible Q-matrix and initial configuration ξ ,

Eξ

[(∫ ∞

0
ν(1)

[
p10(ξs)+ p01(ξs)

]
ds

)m]
≤ m! ∀m ∈N. (5.16)

Hence, the mean-field condition (2.8) holds if and only if for all T ∈ (0,∞),

lim
n→∞E(n)

μu

[∣∣∣∣∫ T

0

(
γnνn(1)

[
p10(ξγns)+ p01(ξγns)

]− p1(ξγns)p0(ξγns)
)

ds

∣∣∣∣p]= 0

∀p ∈ [1,∞). (5.17)

If we set m = 2 and use duality, then the convergence condition (5.17) is equivalent to a condition that can be
expressed in terms of two pairs of coalescing Markov chains started at different times. We show in the next section
that an argument using only a single pair of Markov chains is sufficient to obtain this convergence.

Proof of Proposition 5.3. By (3.13) and (3.20), for any initial configuration ξ ,

ν(1)Eξ

[∫ ∞

0

[
p10(ξs)+ p01(ξs)

]
ds

]
≤ 2ν(1)

∫ ∞

0
P(MV,V ′ > s)ds ≤ 1. (5.18)

For m ∈N, if we expand the left-hand side of (5.16), and then use the Markov property at time sm−1 < sm, we obtain

m!(ν(1)
)m ∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sm−1

dsmEξ

[
m∏

i=1

[
p10(ξsi )+ p01(ξsi )

]]

= m!(ν(1)
)m ∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sm−2

dsm−1Eξ

[
m−1∏
i=1

[
p10(ξsi )+ p01(ξsi )

]
×Eξsm−1

∫ ∞

sm−1

[
p10(ξsm−sm−1)+ p01(ξsm−sm−1)

]
dsm

]
.

By applying the bound (5.18) and iteration, we obtain (5.16).
For the second assertion, we only need to show that the mean-field condition implies (5.17), because the converse

follows immediately from Markov’s inequality. Moreover, given the mean-field condition, by Skorokhod’s represen-
tation and a standard result of uniform integrability, it is enough to derive a uniform bound on the mth moment of

γnνn(1)

∫ ∞

0

[
p10(ξγns)+ p01(ξγns)

]
ds

for any m ∈ N, which is precisely the content of the first assertion. Hence, (5.17) holds, and the proof is complete.
�

The following result connects the mean-field condition and the various equivalent conditions in Theorem 4.1. It
completes the proof of Theorem 2.1.

Theorem 5.4. Suppose that (2.6) holds (i.e., (4.1) holds with Δ = 0). Then the mean-field condition (2.8) implies all
of the conditions of Theorem 4.1 hold, as well as the convergence (2.7) for all u ∈ [0,1].
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Proof. Let (γn) be a sequence of strictly positive constants so that the mean-field condition (2.8) holds. For the first
assertion, it is enough to show that (1) of Theorem 4.1 holds. By taking a subsequence if necessary, we may assume
that

I (t) = lim
n→∞

∫ t

0
E(n)

μu

[
p1(ξγns)p0(ξγns)

]
ds (5.19)

exists in R+ for all t ∈ Q+. Since s �−→ E
(n)
μu [p1(ξγns)p0(ξγns)] is uniformly bounded, a monotonicity argument

implies that the foregoing limit exists for all t ∈R+ and defines a continuous function I on R+. Moreover, given that
the mean-field condition holds, we can write the function I as

I (t) = lim
n→∞γnνn(1)

∫ t

0
E(n)

μu

[
p10(ξγns)+ p01(ξγns)

]
ds (5.20)

by Proposition 5.3. In view of (3.5) and the last display, we obtain

lim
n→∞E(n)

μu

[
p1(ξγnt )p0(ξγnt )

]= u(1 − u)− I (t) ∀t ∈R+. (5.21)

By the bounded convergence theorem and the definition of I (t), this implies

I (t) =
∫ t

0

[
u(1 − u) − I (s)

]
ds

by (5.19). Solving this integral equation gives I (t) = u(1 − u)(1 − e−t ). By plugging this solution into the right-hand
side of (5.21), we find that

lim
n→∞E(n)

μu

[
p1(ξγnt )p0(ξγnt )

]= u(1 − u)e−t ,

which is (1) of Theorem 4.1. This proves the first assertion.
Having proved that the conditions of Theorem 4.1 hold, we may now apply Theorem 5.1. By (i) of Theorem 5.1, the

family (Yn,P
(n)
μu ) is C-tight for any u ∈ [0,1]. If (Ynk

,P
(nk)
μu ) is any weakly convergent subsequence, then (ii) and (iii)

of Theorem 5.1 imply that

(
Ynk

, 〈Ynk
〉) (d)−→

n→∞
(
Z, 〈Z〉)

for a continuous martingale Z. Thanks to the continuity of the map (5.15), we deduce from the mean-field condition
(2.8) that

〈Z〉T =
∫ T

0
Zs(1 −Zs)ds ∀T ∈R+

almost surely. Hence, Z is a Wright–Fisher diffusion, and the proof is complete. �

Although we only consider Bernoulli initial conditions throughout this section, the readers may notice that most of
the proofs do apply to the context where for each n, the initial condition of the voter model defined by (q(n),En) is a
general probability measure λn on {0,1}En .

More precisely, the same proofs of Theorem 5.1, Corollary 5.2, and Proposition 5.3 still apply, if we consider such
a generalization. For the extension of Theorem 5.4, we consider general initial conditions λn for which the sequence
of laws λn(p1(ξ) ∈ ·) converges weakly to a probability measure, say, λ̂∞ on [0,1], and use (3.4) instead of (3.5)
to obtain an analogue of (5.21). This leads to the conclusion that, whenever the mean-field condition (2.8), with μu

replaced by λn for each voter model defined q(n), holds, we have the weak convergence of the associated density
processes to the Wright–Fisher diffusion with initial condition λ̂∞.
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6. Proof of Theorem 2.2

For the convenience of readers, we give an informal outline of the proof of Theorem 2.2 first. We take a generic voter
model as usual and a constant γ > 0. Falling back in time by a small amount δ and using the Markov property of voter
models, we get for any instant s

γ ν(1)
[
p10(ξγ s)+ p01(ξγ s)

]− p1(ξγ s)p0(ξγ s)

� γ ν(1)
(
Eξγ (s−δ)

[
p10(ξγ δ)

]+Eξγ (s−δ)

[
p01(ξγ δ)

])− p1(ξγ (s−δ))p0(ξγ (s−δ))

on σ(ξγu;u ≤ s). We then resort to duality and interpret the right-hand side, or more generally the term

γ ν(1)
(
Eξ

[
p10(ξγ δ)

]+Eξ

[
p01(ξγ δ)

])− p1(ξ)p0(ξ) (6.1)

for arbitrary ξ , by moving forward in time from the point of view of q-Markov chains. For the first two terms
Eξ [p10(ξγ δ)] and Eξ [p01(ξγ δ)], we use Proposition 3.3 and read them as expectations of the function

(x, y) �−→ ξ(x)̂ξ(y)

of some pairs of q-Markov chains before they meet. On the other hand, p1(ξ) and p0(ξ) are the π -expectations
of configurations ξ and ξ̂ , respectively, where π is the stationary distribution of the q-Markov chain. Applying these
observations to the quantity (6.1), we can regard (2.8) as a result that, informally speaking, the time that two q-Markov
chains meet “falls far behind” the time that a q-Markov chain gets close to its equilibrium distribution π . See also [9]
for an application of this “falling-back-moving-forward” argument.

Some additional notation will be useful in the first step of making the above precise. Recall the system (Xx
t ) of

independent q-Markov chains on E with semigroup (qt ) and stationary distribution π . For any real function f on E

define π(f ) =∑
x∈E f (x)π(x), qtf (x) =∑

y∈E qt (x, y)f (y), and

Varπ (f ) =
∑
x∈E

(
f (x)− π(f )

)2
π(x).

The following bounds will be useful. First, we have two bounds on the difference between qt ξ(x) and p1(ξ). Recall
the definition of dE in (2.9). Since p1(ξ) = π(ξ) and ξ is bounded by 1, it follows that∣∣qt ξ(x) − p1(ξ)

∣∣≤ 2dE(t), ∀x ∈ E,ξ ∈ {0,1}E (6.2)

(see Proposition 4.5 in [17]). A second bound (see, e.g., Lemma 2.4 of [10]) is available when (qt ) is reversible and
has spectral gap g. In this case, for any f ,

Varπ (qtf ) ≤ Varπ (f )e−2gt . (6.3)

Second, it follows from the definition of tmix in (2.10) that

dE(ktmix) ≤ e−k, ∀k ∈N (6.4)

(see Section 4.5 of [17]).

Proposition 6.1. Let (q,E) be an irreducible Q-matrix. For any 0 < s < t < ∞, we have the following estimates.

(1) If dE denotes the maximal total variation distance defined by (2.9), then

sup
ξ∈{0,1}E

∣∣Eξ

[
p10(ξt )

]− P(MV,V ′ > s)p1(ξ)p0(ξ)
∣∣

≤ P
(
MV,V ′ ∈ (s, t])+ 4P(MV,V ′ > s)dE(t − s). (6.5)

The same inequality holds if p10 is replaced by p01.
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(2) If the q-Markov chain is reversible and g is the associated spectral gap, then

sup
ξ∈{0,1}E

∣∣Eξ

[
p10(ξt )

]− P(MV,V ′ > s)p1(ξ)p0(ξ)
∣∣

≤ P
(
MV,V ′ ∈ (s, t])+ 2

√
πmaxqmax

ν(1)
e−g(t−s), (6.6)

where πmax = max{π(x);x ∈ E} and qmax = max{q(x);x ∈ E}. The same inequality holds if p10 is replaced by
p01.

Proof. The proofs of (1) and (2) are based on the preliminary bound∣∣Eξ

[
p10(ξt )

]− p1(ξ)p0(ξ)P(MV,V ′ > s)
∣∣

≤ P
(
MV,V ′ ∈ (s, t])+ ∣∣E[qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

)− p1(ξ)p0(ξ);MV,V ′ > s
]∣∣. (6.7)

To get this bound, we first use Proposition 3.3 and write for any configuration ξ ,

Eξ

[
p10(ξt )

] = E
[
ξ
(
XV

t

)̂
ξ
(
XV ′

t

);MV,V ′ > t
]

= E
[
ξ
(
XV

t

)̂
ξ
(
XV ′

t

);MV,V ′ > s
]+ ε1(s, t; ξ), (6.8)

where∣∣ε1(s, t; ξ)
∣∣≤ P

(
MV,V ′ ∈ (s, t]) (6.9)

uniformly in ξ . Applying the Markov property of the two-dimensional process (XV ,XV ′
) at time s, we have

E
[
ξ
(
XV

t

)̂
ξ
(
XV ′

t

);MV,V ′ > s
] = E

[
E
[
ξ
(
Xv

t−s

)̂
ξ
(
Xv′

t−s

)]∣∣
(v,v′)=(XV

s ,XV ′
s )

;MV,V ′ > s
]

= E
[
qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

);MV,V ′ > s
]

= p1(ξ)p0(ξ)P(MV,V ′ > s)

+ E
[
qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

)− p1(ξ)p0(ξ);MV,V ′ > s
]
.

Combining this equality and the bound (6.9) on ε1 with (6.8) gives (6.7).
We now consider the proof of (1). The last term in (6.7) is bounded above by

E
[∣∣qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

)− p1(ξ)p0(ξ)
∣∣;MV,V ′ > s

]
≤ E

[
p0(ξ)

∣∣p1(ξ) − qt−sξ
(
XV

s

)∣∣;MV,V ′ > s
]

+ E
[
qt−sξ

(
XV

s

)∣∣p0(ξ) − qt−s ξ̂
(
XV ′

s

)∣∣;MV,V ′ > s
]

≤ 4dE(t − s)P(MV,V ′ > s),

where we have used (6.2). Plugging this bound into (6.7) gives (6.5).
Next, we turn to the proof of (2). In this case, we bound the last term in (6.7) in the following way:

E
[∣∣qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

)− π(ξ)π(̂ξ)
∣∣]

≤ E
[∣∣qt−sξ

(
XV

s

)− π(ξ)
∣∣]+ E

[∣∣qt−s ξ̂
(
XV ′

s

)− π(̂ξ)
∣∣]

≤ E
[(

qt−sξ
(
XV

s

)− π(ξ)
)2]1/2 + E

[(
qt−s ξ̂

(
XV ′

s

)− π(̂ξ)
)2]1/2

. (6.10)
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Recall the distribution of (V ,V ′) in (3.9). For all x ∈ E and s ≥ 0, we have

P
(
XV

s = x
)= ν̄

({x} ×E
)= π(x)2q(x)

ν(1)
≤ πmaxqmax

ν(1)
π(x).

Since (Xx) is independent of V , it follows from the foregoing inequality that

E
[(

qt−sξ
(
XV

s

)− π(ξ)
)2]≤ πmaxqmax

ν(1)
Varπ (qt−sξ ) ≤ πmaxqmax

ν(1)
e−2g(t−s), (6.11)

where we have used (6.3) and the fact that Var(f ) ≤ 1 if |f | is bounded by 1. The same bound holds if we replace
ξ(XV

s ) with ξ̂ (XV ′
s ). Indeed, we still have

P
(
XV ′

s = x
)≤ πmaxqmax

ν(1)
π(x) ∀x ∈ E and s ≥ 0,

since for any x ∈ E, reversibility implies

P
(
V ′ = x

) = ∑
a:a �=x π(a)2q(a, x)

ν(1)

= π(x)
∑

a:a �=x π(a)q(x, a)

ν(1)
≤ πmaxqmax

ν(1)
π(x).

Hence by (6.11) and its analogue when V is replaced by V ′, we obtain from (6.10) that

E
[∣∣qt−sξ

(
XV

s

)
qt−s ξ̂

(
XV ′

s

)− π(ξ)π(̂ξ)
∣∣]≤ 2

√
πmaxqmax

ν(1)
e−g(t−s).

Plugging this bound into (6.7) completes the proof of (6.6). �

Lemma 6.2. If γn = t(n)
meet, then under either condition of Theorem 2.2, any of the conditions in Theorem 4.1 holds

with Δ = 0. Moreover, we can choose (s′n) satisfying (4.14) with s′n = o(γn) such that with δn = s′n/γn,

εn = sup
ξ∈{0,1}En

∣∣γnνn(1)E
(n)
ξ

[
p10(ξγn·2δn) + p01(ξγn·2δn)

]− p1(ξ)p0(ξ)
∣∣ −→
n→∞0 (6.12)

(cf. the informal discussion at the beginning of this section).

Proof. Let γn = t(n)
meet = E(n)[MU,U ′ ]. The strategy is to first prove that (4) of Theorem 4.1 holds, i.e.,

MU,U ′

γn

(d)−→
n→∞ e, (6.13)

and then use Proposition 4.3 and the bounds in Proposition 6.1 to choose a sequence (s′n) satisfying (6.12).
Suppose first that (i) of Theorem 2.2 holds, and consider the product chain comprised of two independent copies

of q(n)-Markov chains. For the product chain started at its stationary distribution π ⊗ π , the first hitting time of the
diagonal Dn has the same law as the meeting time MU,U ′ . Letting (q̃

(n)
t ) denote the product chain semigroup, we have

the obvious inequality∥∥q̃(n)
t (·)− π(n) ⊗ π(n)(·)∥∥TV ≤ 2dEn(t).

By this inequality and our assumption that t(n)
mix/t(n)

meet −→ 0, Theorem 1.4 of [1] on the convergence of Markov chain
hitting times to exponential laws applies to the product chain q̃t , giving (6.13).
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Now let (sn) be a sequence with sn = o(γn) satisfying (4.14) (here Δ = 0 by assumption). Note that the existence
of such a sequence (sn) is guaranteed by (4.12). Define (s′n) by

s′n = sn ∨ unt(n)
mix,

where (un) satisfies

lim
n→∞un =∞ and lim

n→∞
unt(n)

mix

γn

= 0.

Observe that δn = s′n/γn → 0 as n → ∞, and also that s′n/t(n)
mix → ∞ implies dEn(s

′
n) → 0 by (6.4). Furthermore,

applying (2) of Proposition 4.3 to both (s′n) and (2s′n), we have

lim
n→∞2γnνn(1)P(n)

(
MV,V ′ > s′n

)= 1 and lim
n→∞2γnνn(1)P(n)

(
MV,V ′ ∈ (s′n,2s′n

])= 0. (6.14)

By (1) of Proposition 6.1, taking s = s′n and t = 2s′n, we have for any initial configuration ξ ,∣∣γnνn(1)E
(n)
ξ

[
p10(ξγn·2δn)+ p01(ξγn·2δn)

]− p1(ξ)p0(ξ)
∣∣

≤ 2γnνn(1)P(n)
(
MV,V ′ ∈ (s′n,2s′n

])+ 8γnνn(1)P(n)
(
MV,V ′ > s′n

)
dEn

(
s′n
)

+ ∣∣2γnνn(1)P(n)
(
MV,V ′ > s′n

)− 1
∣∣p1(ξ)p0(ξ). (6.15)

Therefore, (6.12) follows from (6.14) and (6.15).
Next, suppose that (ii) of Theorem 2.2 holds, so gnt(n)

meet → ∞ as n → ∞. We consider again the product chain,
the hitting time of the diagonal and the meeting time MU,U ′ . The product chain is reversible, and has spectral gap
g̃n = gn/2 by Lemma 3.2 in [10]. It follows from Proposition 3.23 in [2] that the hitting time for the diagonal Dn is
approximately exponentially distributed in the sense that (6.13) holds.

We again select a sequence (sn) such that sn = o(γn) and (4.14) holds. The existence of (sn) is due to the same
reason as in the case (i). Now we choose (un) such that

lim
n→∞un =∞ and lim

n→∞un

log(e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1))

gnγn

= 0, (6.16)

and define (s′n) by

s′n = sn ∨ γn

un

.

Clearly δn = s′n/γn → 0, and (6.14) holds by (2) of Proposition 4.3. By (2) of Proposition 6.1 with s = s′n and t = 2s′n,
we get for any initial configuration ξ ,∣∣γnνn(1)E

(n)
ξ

[
p10(ξγn·2δn)+ p01(ξγn·2δn)

]− p1(ξ)p0(ξ)
∣∣

≤ 2γnνn(1)P(n)
(
MV,V ′ ∈ (s′n,2s′n

])+ 4
√

π
(n)
maxq

(n)
maxνn(1)γne−gns′n

+ ∣∣2γnνn(1)P(n)
(
MV,V ′ > s′n

)− 1
∣∣p1(ξ)p0(ξ). (6.17)

As before, by our choice of (s′n) and Proposition 4.3, the first term and the third one on the right-hand side above tend
to 0 as n →∞.

To show that the second term on the right-hand side of (6.17) also tends to zero, we make some observations for
the condition (ii) of Theorem 2.2. Now, π

(n)
diag → 0, and so the inequality (2.13) implies that

lim inf
n→∞ γn

√
π

(n)
maxq

(n)
maxνn(1) = lim inf

n→∞ t(n)
meet

√
π

(n)
maxq

(n)
maxνn(1) > 0.
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On the other hand,

gnγn

un

− log
(
e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1)

) = log
(
e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1)

)( gnγn

un log(e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1))

− 1

)

≥ gnγn

un log(e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1))

− 1 −→∞,

where the convergence follows from the choice of un in (6.16). We deduce from the last two displays that

gns
′
n − log

(
e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1)

)≥ gnγn

un

− log
(
e ∨ γn

√
π

(n)
maxq

(n)
maxνn(1)

)−→∞,

which is enough for the desired convergence. The proof is complete. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We have shown in the proof of Lemma 6.2 that (6.13) holds, and hence all of the equivalent
conditions of Theorem 4.1 hold. Also, the sequences (δn) and (εn) defined in Lemma 6.2 satisfy δn −→ 0 and εn −→ 0
as n −→∞.

Our goal in this proof is to prove the L1-norm version of the mean-field condition, namely (5.17) with p = 1 for
any T > 0. For this, we first note that (3.13) gives

E(n)
μu

[∫ 2δn

0

∣∣γnνn(1)
[
p10(ξγns)+ p01(ξγns)

]− p1(ξγns)p0(ξγns)
∣∣ds

]
≤ 2γnνn(1)

∫ 2δn

0
P(n)(MV,V ′ > γns)ds + 2δn,

and the right-hand side tends to 0 as n −→∞ by (2) of Theorem 4.1 and the fact that δn −→ 0. Hence, it remains to
show that

lim
n→∞E(n)

μu

[∣∣∣∣∫ T

2δn

(
γnνn(1)

[
p10(ξγns)+ p01(ξγns)

]− p1(ξγns)p0(ξγns)
)

ds

∣∣∣∣]= 0, (6.18)

for any T > 0.
For convenience, we write from now on

p̄(ξ) ≡ p10(ξ) + p01(ξ),

and for any s ≥ 2δn,

Hn(s) ≡ γnνn(1)p̄(ξγns)−E(n)
μu

[
γnνn(1)p̄(ξγns)|F n

s−2δn

]
(recall the definition of F n

t from (5.1)). Note that Hn(s) ∈ F n
s−2δn

. Then

E(n)
μu

[∣∣∣∣∫ T

2δn

γnνn(1)p̄(ξγns)− p1(ξγns)p0(ξγns)ds

∣∣∣∣]
≤ E(n)

μu

[(∫ T

2δn

Hn(s)ds

)2]1/2

+E(n)
μu

[∫ T

2δn

∣∣E(n)
μu

[
γnνn(1)p̄(ξγns)|F n

s−2δn

]− p1(ξγn(s−2δn))p0(ξγn(s−2δn))
∣∣ds

]
+E(n)

μu

[∣∣∣∣∫ T

2δn

p1(ξγn(s−2δn))p0(ξγn(s−2δn)) − p1(ξγns)p0(ξγns)ds

∣∣∣∣], (6.19)

and so to verify (6.18) it suffices to prove that each term on the right-hand side of the above tends to 0 as n −→∞.
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We first prove that the first term on the right-hand side of (6.19) tends to zero. Note that

E(n)
μu

[(∫ T

2δn

Hn(s)ds

)2]
= 2E(n)

μu

[∫ ∫
2δn≤r≤s≤T

Hn(s)Hn(r)1r>s−2δn ds dr

]
. (6.20)

To justify the restriction “1r>s−2δn” for the right-hand side, we note that for 2δn ≤ r < s − 2δn,

E(n)
μu

[
Hn(s)|F n

r

]= 0,

and hence, we obtain by conditioning on F n
r that

E(n)
μu

[
Hn(s)Hn(r)

]= 0, 2δn ≤ r < s − 2δn.

Now expanding Hn(r)Hn(s), we obtain

E(n)
μu

[∫ ∫
2δn≤r≤s≤T

dr dsHn(s)Hn(r)1r>s−2δn

]

= E(n)
μu

[∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds
(
γnνn(1)

)2
p̄(ξγnr )p̄(ξγns)

]

−
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[(
γnνn(1)

)2
E(n)

μu

[
p̄(ξγnr )|F n

r−2δn

]
p̄(ξγns)

]
−
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[(
γnνn(1)

)2
p̄(ξγnr )E

(n)
μu

[
p̄(ξγns)|F n

s−2δn

]]
+
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[(
γnνn(1)

)2
E(n)

μu

[
p̄(ξγnr )|F n

r−2δn

]
×E(n)

μu

[
p̄(ξγns)|F n

s−2δn

]]
. (6.21)

We will show that each of the four terms on the right-hand side of the last equality tends to zero as n →∞. To do
this we first state three facts which we will use repeatedly. By our choice of s′n and δn = s′n/γn in Lemma 6.2, and by
Proposition 4.3,

lim
n→∞2γnνn(1)P(n)(MV,V ′ > 2γnδn) = 1. (6.22)

By (2) of Theorem 4.1, for each t > 0,

Kt = sup
n∈N

2γnνn(1)

∫ t

0
P(n)(MV,V ′ > γns)ds < ∞. (6.23)

Finally, by Markov property and (3.13), we have for r < s,

E(n)
μu

[
p̄(ξγns)|F n

r

]= E
(n)
ξγnr

[
p̄(ξγn(s−r))

]≤ 2P(n)
(
MV,V ′ > γn(s − r)

)
. (6.24)

We start with the first term on the right-hand side of (6.21), arguing in more detail than we will for the other terms.
By conditioning at time r < s and using (6.24) repeatedly, we obtain

E(n)
μu

[∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds
(
γnνn(1)

)2
p̄(ξγnr )p̄(ξγns)

]

=
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[
γnνn(1)p̄(ξγnr )E

(n)
μu

[
γnνn(1)p̄(ξγns)|F n

r

]]
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≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[
γnνn(1)p̄(ξγnr )

]
2γnνn(1)P(n)

(
MV,V ′ > γn(s − r)

)
≤ 2γnνn(1)

∫ T

2δn

P(n)(MV,V ′ > γnr)dr × 2γnνn(1)

∫ 2δn

0
P(n)(MV,V ′ > γns)ds

≤ KT × 2γnνn(1)

∫ 2δn

0
P(n)(MV,V ′ > γns)ds −→ 0 as n −→∞,

where we have used (3.13), (6.23) and (2) of Theorem 4.1.
For the second term on the right-hand side of (6.21), again applying (6.24) repeatedly, we obtain

0 ≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[(
γnνn(1)

)2
E(n)

μu

[
p̄(ξγnr )|F n

r−2δn

]
p̄(ξγns)

]
≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds2γnνn(1)P(n)(MV,V ′ > γn2δn)2γnνn(1)P(n)(MV,V ′ > γns)

≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds
[
2γnνn(1)P(n)(MV,V ′ > 2γnδn)

]2
≤ 2δnT × (

2γnνn(1)P(n)(MV,V ′ > 2γnδn)
)2 −→ 0 as n −→∞,

where we have made use of the fact that s ≥ r ≥ 2δn above, (6.22) and the fact that δn → 0.
The third term on the right-hand side of (6.21) is slightly different from the previous one. Now, we use (6.24) in

the following way:

0 ≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[(
γnνn(1)

)2
E(n)

μu

[
p̄(ξγns)|F n

s−2δn

]
p̄(ξγnr )

]
≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds2γnνn(1)P(n)(MV,V ′ > 2γnδn)2γnνn(1)P(n)(MV,V ′ > γnr)

≤ 2δn × 2γnνn(1)P(n)(MV,V ′ > γn2δn)

∫ T

0
dr2γnνn(1)P(n)(MV,V ′ > γnr)

≤ 2δn × 2γnνn(1)P(n)(MV,V ′ > γn2δn)×KT −→ 0 as n −→∞,

which follows from (6.22), (6.23), and the fact that δn → 0.
Finally, for the last term on the right-hand side of (6.21), the bound (6.24) remains useful and we get

0 ≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

dsE(n)
μu

[
E(n)

μu

[
γnνn(1)p̄(ξγnr )|F n

r−2δn

]
×E(n)

μu

[
γnνn(1)p̄(ξγns)|F n

s−2δn

]]
≤
∫ T

2δn

dr

∫ T∧(r+2δn)

r

ds
(
2γnνn(1)P(n)(MV,V ′ > 2γnδn)

)2
≤ 2δnT × (

2γnνn(1)P(n)(MV,V ′ > 2γnδn)
)2 −→ 0 as n −→∞

since δn → 0 and we have (6.22). We have thus verified the desired convergence for the first term of (6.19).
We now make some observations for the other two terms in (6.19). To handle the second term, we apply the Markov

property of the voter model to the integrand at time s − 2δn. It follows from Lemma 6.2 that the integrand∣∣E(n)
μu

[
γnνn(1)p̄(ξγns)|F n

s−2δn

]− p1(ξγn(s−2δn))p0(ξγn(s−2δn))
∣∣
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is uniformly bounded by εn, so that the second term is no larger than εnT . By a simple change-of-variable argument,
the third term above is easily seen to be bounded by 4δn. Since both of the sequences (εn) and (δn) tend to zero, the
last two terms in (6.19) both tend to zero. This completes the proof of Theorem 2.2. �

7. Coalescence times and density processes

Let (Dt ) be the pure-death process on N which jumps from k to k − 1 at rate
(
k
2

)
, k ≥ 2. Set Z1 =∞, and recall that

we let Z2,Z3, . . . be independent exponential variables with mean E[Zj ] = 1/
(
j
2

)
. For any integer k ≥ 2, it is easy to

see from independence of Zj and
∑k

i=j+1 Zi that

Pk(Dt = j) = P

(
k∑

i=j+1

Zi ≤ t <

k∑
i=j

Zi

)
, 1 ≤ j ≤ k.

Furthermore, (Dt ) and the Wright–Fisher diffusion (Yt ) are linked by the following duality equation (see equation
(7.21) of [27]):

Eu

[
Y k

t

]= Ek

[
uDt

]
, ∀u ∈ [0,1], k ∈N, t ∈R+. (7.1)

The proofs of Proposition 2.5 and Proposition 2.6 are both based on this simple equality.

Proof of Proposition 2.5. Let us fix t > 0 and k ≥ 2. By the duality equation (3.7), and the fact that the initial law of
ξ0 is μu,

E(n)
μu

[(
p1(ξγnt )

)k] = k∑
j=1

uj P(n)
(∣∣{X̂U1

tγn
, . . . , X̂

Uk
tγn

}∣∣= j
)

=
k∑

j=1

uj P(n)
(
C(n)

k,j ≤ γnt < C(n)
k,j−1

)
, (7.2)

with the convention that C(n)
k,k = 0. On the other hand, by assumption and the duality equation (7.1),

lim
n→∞E(n)

μu

[(
p1(ξγnt )

)k] = Eu

[
Y k

t

]
= Ek

[
uDt

]= k∑
j=1

uj Pk[Dt = j ]

=
k∑

j=1

uj P

(
k∑

i=j+1

Zi ≤ t <

k∑
i=j

Zi

)
. (7.3)

Combining (7.2) and (7.3) we see that

lim
n→∞

k∑
j=1

uj P(n)
(
C(n)

k,j ≤ γnt < C(n)
k,j−1

)= k∑
j=1

uj P

(
k∑

i=j+1

Zi ≤ t <

k∑
i=j

Zi

)
.

The foregoing equality holds for all u ∈ [0,1], so it must be the case that

lim
n→∞P(n)

(
C(n)

k,j ≤ γnt < C(n)
k,j−1

)= P

(
k∑

i=j+1

Zi ≤ t <

k∑
i=j

Zi

)
, ∀1 ≤ j ≤ k.
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It follows by dominated convergence that for any λ > 0

lim
n→∞

∫ ∞

0
λe−λtP(n)

(
C(n)

k,j ≤ γnt < C(n)
k,j−1

)
dt =

∫ ∞

0
λe−λtP

(
k∑

i=j+1

Zi ≤ t <

k∑
i=j

Zi

)
dt

and hence

lim
n→∞

(
E(n)

[
e−λC(n)

k,j−1/γn
]− E(n)

[
e−λC(n)

k,j /γn
])= E

[
e−λ

∑k
i=j Zi

]− E
[
e−λ

∑k
i=j+1 Zi

]
for any 1 ≤ j ≤ k and our assertion follows plainly. �

Proof of Proposition 2.6. The proof of Proposition 2.6 is a slight generalization of Proposition 2.5, so we will skip
some details. We start with two equalities. First, as in (7.2), we have

P(n)
μu

(
τ

(n)
1 ≤ γnt

) = E(n)
μu

[ ∏
x∈En

ξγnt (x)

]

=
|En|∑
j=1

uj P(n)
(
Ĉ(n)

j ≤ γnt < Ĉ(n)
j−1

)
. (7.4)

Also by (7.1), we have

Pu

(
τY

1 ≤ t
)= lim

k→∞Eu

[
Y k

t

]= ∞∑
j=1

uj P

( ∞∑
i=j+1

Zi ≤ t <

∞∑
i=j

Zi

)
. (7.5)

That (2.18) implies (2.17) now follows from the two displays (7.4) and (7.5) and dominated convergence.
The converse also uses the same two displays, but now we need another elementary result: For any nonnegative an

j ,
for n, j ∈N, with

∑
j an

j ≤ 1, the condition that

lim
n→∞

∑
j

an
j uj exists for every u ∈ (0,1) (7.6)

is enough to obtain that limn→∞ an
j exists for every j ∈ N. Indeed, if (nk) and (n′

k) are two subsequences such that

limk→∞ a
nk

j and limk→∞ a
n′

k

j exist for all j ∈ N, then the limits are all in [0,1], and so by dominated convergence
(7.6) implies∑

j

(
lim

k→∞a
nk

j

)
uj =

∑
j

(
lim

k→∞a
n′

k

j

)
uj , u ∈ [0,1).

We deduce from these that limk→∞ a
nk

j = limk→∞ a
n′

k

j for all j ∈ N, which, by a diagonal argument on selecting
convergent subsequences of (an

j )n∈N each j ∈N, is enough for our claim that limn→∞ an
j exists for every j ∈N.

Using this elementary result, and assuming (2.17) so that the right-hand side of (7.4) converges to the right-hand
side of (7.5), we obtain that for every j ∈N,

lim
n→∞P(n)

(
Ĉ(n)

j ≤ γnt < Ĉ(n)
j−1

)
must exist and this limit must be

P

( ∞∑
i=j+1

Zi ≤ t <

∞∑
i=j

Zi

)
.

This establishes (2.18), and the proof is complete. �



316 Y.-T. Chen, J. Choi and J. T. Cox

8. Examples

In this section, we consider various sequences of (q(n),En)-Markov chains for which one of the conditions of The-
orem 2.2 and Corollary 2.3 applies, and hence the convergence of the corresponding voter model densities in (2.7)
holds.

The Q-matrices q(n) considered below are of the form q(n) = p(n) − IdEn , where p(n) is a symmetric probability
matrix but not necessarily has zero diagonal. In this case, 1 − λ is an eigenvalue of −q(n) if and only if λ is an
eigenvalue of p(n). If in addition p(n) has zero diagonal, the inequality (3.21) for such a particular Q-matrix q(n)

becomes

t(n)
meet ≥

(|En| − 1)2

4|En| . (8.1)

All our examples below can be viewed as random walks on graphs, although we do not use this language for the
examples in Section 8.1 which include and generalize Theorem 2 of [5].

8.1. Discrete tori

For n,d ∈N, we consider irreducible (q(n),En)-Markov chains where for d,n ∈N,

En = (
(−n/2, n/2] ∩Z

)d
and q(n)(x, y) = q(n)(0, y − x) for x �= y. Here, the difference y − x is read coordinate-wise mod n. By the assumed
symmetry of q(n), the bound (8.1) applies.

8.1.1. Nearest-neighbor walk
Assume d ≥ 2 and q(n)(x, y) = (2d)−1 if |x − y| = 1 (the difference is computed mod n coordinate-wise). Then as
n −→∞, t(n)

mix = O(n2) in all dimensions d (see Theorem 5.5 in [17]) and

t(n)
meet ∼

{ 1
2π |En| log |En| if d = 2,

Gd |En| if d ≥ 3,
(8.2)

where the constant Gd is the expected number of visits to the origin by a simple symmetric random walk in Zd starting
at the origin (see [5]). Hence, (i) of Theorem 2.2 holds, and we have the convergence of voter model densities to the
Wright–Fisher diffusion in (2.7). This result was first obtained in Theorem 2 of [5].

Remark 8.1. As in Section 13.2.3 in [2], we say that the sequence (q(n),En)n∈N is transient if supn∈N t(n)
meet/|En| is

finite, and is recurrent otherwise. We note that the asymptotic behavior in (8.2) indicates recurrence for d = 2 and
transience for d ≥ 3. This is consistent with the fact that simple symmetric random walk on Zd is recurrent if d = 2
and is transient if d ≥ 3.

With this notion in mind, we note that (8.1) gives the correct asymptotic rate of growth for t(n)
meet for the transient

case d ≥ 3, but not for the recurrent case d = 2.

8.1.2. Intermediate-range random walk
We consider the random walks studied in [6], which have range tending to infinity. Let (mn) be a sequence of positive
integers such that mn < n/2 for all n and mn →∞. For any d ≥ 1, let

Λn = Λd
n = ([−mn,mn] ∩Z

)d \ {0}, (8.3)

and put

q(n)(x, y) = |Λn|−1 if y − x ∈ Λn (8.4)

(again the difference y − x is read mod n coordinate-wise).
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Proposition 8.2. Assume d = 2 and

lim
n→∞

m2
n

logn
= 0. (8.5)

Then

t(n)
mix = O

(
n2/m2

n

)
as n →∞, (8.6)

lim inf
n→∞

t(n)
meet

n2 logn/m2
n

> 0. (8.7)

Taken together, (8.6) and (8.7) imply condition (i) of Theorem 2.2, and so we have the convergence of voter model
densities in (2.7).

Proof of Proposition 8.2. To obtain (8.6) and (8.7), we make use of results from of [6]. Since conditions (P1)–(P3)
in [6] hold by Proposition 1.1 there, we deduce from Theorem 1.7 of [6] that if limn→∞ sn/(n

2/m2
n) =∞, then

∑
x∈En

∣∣q(n)
sn

(0, x) − πn(x)
∣∣≤ n2 sup

x∈En

∣∣∣∣q(n)
sn

(0, x) − 1

n2

∣∣∣∣→ 0,

which implies (8.6).
Next, to get (8.7), we first reduce t(n)

meet to a simpler time. Let (Xt ) be the Markov chain on En given by q(n), and

H0 = inf{t ≥ 0: Xt = 0}
be the hitting time of 0. Since the difference of two rate-one random walks is a rate-two random walk (see also
Proposition 7.1 and Proposition 14.5 of [2] for a more general fact), we have

E(n)[MU,U ′ ] = E(n)

π(n)[H0]
2

. (8.8)

The limit (8.7) can then be derived from the estimates on the expectations E(n)
x [H0] given in Theorem 1.3 in [6], but

we will use instead the following simpler argument, which relies on only (6.1) from [6].
We now claim

lim inf
n→∞

E(n)

π(n) [H0]
n2 logn/m2

n

≥ 12

π
, (8.9)

as entails (8.7) by (8.8). For x ∈ En and λ > 0, let

Gn(x,λ) =
∫ ∞

0
e−λsq(n)

s (0, x)ds.

By standard Markov chain arguments,

E(n)
x

[
exp(−λH0)

]= Gn(x,λ)

Gn(0, λ)
. (8.10)

Clearly
∑

x∈En
π(n)(x)Gn(x,λ) = 1

n2λ
, and thus by (8.10),

E(n)

π(n)

[
e−λH0

]= (n2λ)−1

Gn(0, λ)
. (8.11)
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According to (6.1) of [6] with tn = logn/m2
n, we have

lim
n→∞

Gn(0, λ/(n2tn))

tn
= λ−1 + 12

π
.

Applying this fact to (8.11), we get

lim
n→∞E(n)

π(n)

[
e−λH0/n2tn

]= 1

1 + (12/π)λ
.

We deduce (8.9) from the Skorokhod representation and Fatou’s lemma. The proof is complete. �

In view of (8.7), the condition m2
n/ logn → 0 implies t(n)

meet/|En| → ∞. This means the Markov chain sequences
considered in this example are, like the nearest-neighbor d = 2 case, recurrent. Also, although we will not give the
details here, Theorem 2.2 still holds if instead of (8.5) we consider the (transient) case in which (8.5) is replaced with
limn→∞ m2

n/ logn =∞.

Proposition 8.3. Assume d = 1 and

lim
n→∞

mn√
n
=∞. (8.12)

For q(n) given as in (8.4), let gn denote the spectral gap of q(n). Then

lim
n→∞ngn =∞. (8.13)

Assuming Proposition 8.3 for now, we may write the second condition in (ii) of (2.2) in the form

log(e ∨ t(n)
meet

√
π

(n)
maxq

(n)
maxνn(1))

gnt(n)
meet

≤ log[e ∨ (t(n)
meet/n)]

(ngn)(t
(n)
meet/n)

.

By the meeting time bound (8.1), t(n)
meet/n is bounded away from 0, and thus (8.13) implies that the right-hand side

above tends to 0. That is, condition (ii) of Theorem 2.2 holds and we obtain convergence of voter model densities to
the Wright–Fisher diffusion.

For the proof of Proposition 8.3, we recall the definition of the bottleneck ratio Φ∗ here. For a reversible Markov
chain (q,E) with q = p − I for a probability matrix p with zero diagonal, define

Φ(S) =
∑

x∈S,y∈S� π(x)q(x, y)

π(S)
, S ⊂ E, (8.14)

and

Φ∗(q) = min

{
Φ(S);S ⊂ E,π(S) ≤ 1

2

}
. (8.15)

The inequality we need is

g ≥ 1

2

(
Φ∗(q)

)2
. (8.16)

See Section 13.3.2 in [17] for this inequality, and note that g is equal to 1−λ for λ being the second largest eigenvalue
of p.
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Proof of Proposition 8.3. It is easy to see from the definition (8.14) that

Φ(S) = |∂S|
2mn|S| , (8.17)

where ∂S = {(x, y);x ∈ S,y ∈ S�,1 ≤ |x − y| ≤ mn}. For 1 ≤ k ≤ n/2, let Ik be an “interval” of k elements in En:

Ik = {0,1, . . . , k − 1}.
A little thought shows that the minimum of |∂S| among all S with |S| = k is obtained by taking S = Ik , which implies
that

Φ∗ = min
{
Φ(Ik);1 ≤ k ≤ �n/2 }.

It is easy to check that if mn < k ≤ n/2, then

|∂Ik| = 2
mn∑
j=1

j = mn(mn + 1).

Similarly, if 1 ≤ k ≤ mn, then |∂Ik| is

2
mn∑

j=mn−k+1

j = mn(mn + 1)− (mn − k)(mn − k + 1) = k(2mn − k + 1).

It follows from (8.17) that

Φ(Ik) =
{

mn+1
2k

if mn < k ≤ n/2,
2mn−k+1

2mn
if 1 ≤ k ≤ mn.

Taking k = n/2, we see that

Φ∗
(
q(n)

)= Φ(I�n/2 ) = mn + 1

2�n/2 .

It is now immediate from (8.12) and the inequality (8.16) that

lim
n→∞ngn ≥ lim

n→∞
n

2
· m2

n

4�n/2 2
=∞,

which completes the proof. �

Although we will not prove it here, the condition (8.12) implies that t(n)
meet = O(n), which means that the chain

considered in Proposition 8.3 is transient.

8.2. Random walk on simple graphs

We consider in this section graphs which are simple, that is have no loops or multiple edges, and are connected. The
simple random walk on such a graph G = (V,E) with vertex set V and edge set E is the Markov chain (q,V) with
q(x, y) = 1/deg(x) if (x, y) is an edge for x �= y. Note that q is reversible with stationary distribution

π(x) = deg(x)

2|E| .

See [20] for a survey and the standard terminology of random walks on graphs.
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8.2.1. Hypercubes
For n ∈N, take Vn = {0,1}n and for x, y ∈ Vn let |x − y| =∑n

j=1 |xi − yi |. We draw an edge between any x, y ∈ Vn

with |x − y| = 1, and obtain the n-dimensional hypercube, a connected n-regular graph. The random walk Q-matrix
q(n) on this graph is given by q(n)(x, y) = 1/n if |x − y| = 1, and is irreducible and symmetric with π(x) ≡ 2−n.
Furthermore, it is known (see Example 5.15 in [2]) that

gn =
(

n

2

)−1

and t(n)
meet ∼ 2n−1 as n −→∞.

It is easy to see from these facts that (ii) of Theorem 2.2 is satisfied.

8.2.2. Expander graphs
Fix α ∈ (0,∞) and k ∈ N with k ≥ 3, and take a (k,α)-expander family of graphs (Gn) with corresponding random
walk Q-matrices q(n). Here as in Section 13.6 of [17], (Gn) is a graph sequence such that the number of vertices of
Gn tends to infinity, each Gn is connected and k-regular, and satisfies

Φ∗
(
q(n)

)≥ α, ∀n ∈N

(see (8.15) for notation). By (8.16), lim inf gn ≥ 1
2α2, and thus the conditions of Corollary 2.3 apply.

8.3. Random walk on general graphs

We now consider finite graphs without the simplicity condition, nor the connectivity condition. For such a graph G

with vertex set V, its edge set E is now defined by using an adjacency matrix

A : V × V −→ Z+

with A(x,x) ∈ {0,1,2}, so that A(x,y) gives the number of edges joining x and y. For x �= y, A(x,y) simply gives
the number of edges between x and y. In Section 8.3.1 below, we consider several models of random graphs due
to Friedman [14] in which the convention is that A(x,x) = 1 means a “half-loop” at x, and A(x,x) = 2 means a
“whole-loop” at x.

If we take a sequence (Gn) of such general graphs with Gn = (Vn,En) and En being encoded by An, then the
q(n)-random walk on Gn has Q-matrix defined by

q(n)(x, y) = An(x, y)

An(x)
, x �= y,

where An(x) =∑
y∈Vn

An(x, y). Hence, q(n) = p(n) − I , where the xth row of p(n) is obtained by dividing the xth

row of An by An(x). In this case, the second largest eigenvalue of the transition matrix p(n) is different from 1 if and
only if the graph Gn is connected, and so the second smallest eigenvalue of −q(n) is different from 0 if and only if the
graph Gn is connected.

8.3.1. Random regular graphs
The work [14] considers various models of growing random k-regular graphs (Gn) on n vertices (see the models
Gn,k , Hn,k , In,k , and Jn,k there), and each is defined for a large set of admissible degrees k. For simplicity, we only
consider the model Gn,k below, although the following discussion applies to other models Hn,k , In,k , and Jn,k in [14]
for moderately large admissible degrees k as well.

The random regular graphs Gn,k are defined for even integers k with Vn = {1, . . . , n}, and for each n the edge set is
given by

En = {(
x,ρj (x)

)
,
(
x,ρ−1

j (x)
); j = 1, . . . , k/2, x ∈ Vn

}
,
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where ρ1, . . . , ρk/2 are i.i.d. permutations of {1, . . . , n} and each ρi is chosen uniformly from the set of n! permuta-
tions. Then for any even integer k, we have

lim
n→∞P

(
max

2≤i≤n

∣∣λi(Gn,k)
∣∣≤ 2

√
k − 1

k
+ ε

)
= 1, ∀ε > 0,

where

1 = λ1(Gn,k) ≥ λ2(Gn,k) ≥ · · · ≥ λn(Gn,k)

are the ordered eigenvalues associated with the normalized adjacency matrix p(n) on Gn,k . More precisely, we have

P

(
max

2≤i≤n

∣∣λi(Gn,k)
∣∣> 2

√
k − 1

k
+ ε

)
≤ c

n"(√k−1+1)/2#−1
, (8.18)

where c is a constant. See Theorem 1.1 in [14], and also [21] for estimates of mixing times on other random regular
graphs.

If we assume in addition that Gn,k , for n ∈ N, are independent random graphs, then it follows from (8.18) and the
Borel–Cantelli lemma that for each even k ≥ 12,

lim inf
n→∞ g(Gn,k) > 0 a.s.

Since the stationary distribution of q(n) is always uniform, the sequence of q(n)-Markov chains now satisfies the
conditions of Corollary 2.3 with probability one (with respect to the randomness of q(n)). We obtain the convergence
of voter model densities (2.7) along (Gn,k)n∈N with probability one.
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