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Abstract. This paper concerns the macroscopic behavior of solutions to parabolic equations with large, highly oscillatory, random
potential. When the correlation function of the random potential satisfies a specific integrability condition, we show that the random
solution converges, as the correlation length of the medium tends to zero, to the deterministic solution of a homogenized equation in
dimension d ≥ 3. Our derivation is based on a Feynman–Kac probabilistic representation and the Kipnis–Varadhan method applied
to weak convergence of Brownian motions in random sceneries. For sufficiently mixing coefficients, we also provide an optimal rate
of convergence to the homogenized limit using a quantitative martingale central limit theorem. As soon as the above integrability
condition fails, the solution is expected to remain stochastic in the limit of a vanishing correlation length. For a large class of
potentials given as functionals of Gaussian fields, we show the convergence of solutions to stochastic partial differential equations
(SPDE) with multiplicative noise. The Feynman–Kac representation and the corresponding weak convergence of Brownian motions
in random sceneries allows us to explain the transition from deterministic to stochastic limits as a function of the correlation function
of the random potential.

Résumé. Nous considérons le comportement macroscopique de solutions d’équations paraboliques présentant un terme poten-
tiel aléatoire de grande intensité et oscillant rapidement. Lorsque la fonction de corrélation du potentiel aléatoire satisfait une
condition précise d’intégrabilité, nous démontrons que la solution aléatoire converge vers la solution déterministe d’une équation
homogénéisée quand la longueur de corrélation du milieu tend vers zéro en toute dimension d ≥ 3. Notre preuve s’appuie sur une
représentation probabiliste de type Feynman–Kac et sur la methodologie introduite par Kipnis et Varadhan permettant de montrer
la convergence de mouvements browniens dans des milieux aléatoires. Lorsque les coefficients aléatoires sont suffisamment mélan-
geants, nous présentons un taux optimal de convergence grâce à une approche quantitative du théorème de la limite centrale pour les
martingales. Dès que la condition d’intégrabilité mentionée ci-dessus n’est plus satisfaite, nous pensons que la solution restera for-
tement stochastique pour toute longueur de corrélation du milieu. Nous montrons, pour une classe de potentiels décrits comme des
fonctionnelles de champs gaussiens, que la solution converge vers celle d’une équation différentielle stochastique. La représentation
de Feynman–Kac et la convergence faible de mouvements browniens nous permet d’obtenir une description précise de la transition
d’une limite déterministe vers une limite stochastique en fonction des propriétés de la fonction de corrélation du potentiel aléatoire.
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1. Introduction

Solutions of partial differential equations with small scale structures arise in many aspects of physical and applied
sciences. Homogenization theory has proved to be useful, both from the theoretical and numerical points of view, to
provide macroscopic descriptions for such solutions. We consider here the setting of a parabolic equation with a large
and highly oscillatory random potential. One of the salient features of such models is that the properties of the limit-
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ing macroscopic model strongly depend on the correlation properties of the random medium. When an integrability
condition on the correlation function is met, then the stochastic solution converges in the limit of vanishing correlation
length to a deterministic, homogenized solution. However, when that condition is not satisfied, the random solution
remains stochastic in that limit and converges to the solution of a stochastic partial differential equation (SPDE) with
multiplicative noise. The main objective of this paper is to provide a derivation of such results and an understanding of
the transition from deterministic to stochastic limits from a probabilistic point of view. When the solution converges
to a deterministic limit, we also derive optimal rates of convergence provided the potential satisfies certain mixing
conditions.

Similar such equations have been analyzed recently. When the random potential is Gaussian, a Duhamel infinite
series expansions and combinatorial techniques allows us to understand such a convergence for a relatively large class
of parabolic equations including parabolic Anderson and Schrödinger models; see [3–5,35,36]. These explicit methods
do not seem to extend to non-Gaussian potentials. In the one-dimensional setting of the heat equation, the convergence
to a stochastic limit in the mixing case was addressed in [29] using the same probabilistic (Feynman–Kac formula)
representation we consider in this paper. The convergence to deterministic limits for time-dependent potentials (not
considered in this paper) has been considered in [18,30].

In this paper, we adapt the Feynman–Kac approach to analyze a parabolic equation in dimension d ≥ 3 of the form

∂tuε = 1

2
Δuε + iVεuε, (1.1)

where Vε(x) = ε−γ V (x/ε) is a large, time-independent, highly oscillatory, random potential. An imaginary potential
is introduced to obtain a uniform bound on the energy of the solution, which considerably simplifies the analysis of
exponential functionals of Brownian motion and the passage to the limit as ε → 0. The corresponding heat equation
(with iVε replaced by Vε) might be analyzed using techniques developed in [18] but this problem is not considered
further here. Note that the scalar equation of the form ∂tu = 1

2Δu + iV u may be recast as the system

∂t

(
u1
u2

)
=
( 1

2Δ 0
0 1

2Δ

)(
u1
u2

)
+
(

0 −V

V 0

)(
u1
u2

)
, (1.2)

with u = u1 + iu2. Here, V may model a conservative process of interaction between two components otherwise
satisfying independent diffusions. We obtain (1.1) by looking at the long time, large distance asymptotic limit
uε(t, x) = u(t/ε2, x/ε) for ε � 1. To obtain nontrivial effects from the potential, it suffices to impose on V a weak
amplitude εζ with ζ > 0 to be determined. Deriving the equation of uε(t, x) leads to (1.1) with γ = 2 − ζ . We an-
alyze the asymptotic behavior of uε as ε → 0, and prove homogenization and convergence to SPDE under different
assumptions on V (x).

There is a large body of literature on stochastic homogenization, starting from the work of Kozlov [24] and
Papanicolaou–Varadhan [28], where elliptic operators of the form ∇ · a( ·

ε
)∇ are considered for stationary and er-

godic coefficients. Homogenization results show that as ε → 0 the elliptic operator converges in an appropriate sense
to a homogenized operator with constant coefficients. The rates of convergence are less well understood. Yurinskii
[34] provided the first quantitative estimates for the statistical error. Discrete cases have been analyzed in [12,15,26,
27], using analytic and probabilistic approaches respectively. For the fully-nonlinear case, see [1,11]. When d = 1, an
explicit solution is available, which simplifies the analysis of the statistical fluctuations and allows to derive central
limits for the random fluctuations, see [7,10,16]. In the setting of bounded random potentials, [2,6,8,14] analyzed
elliptic equations and derived central limit results.

From a probabilistic point of view, different realizations of the random differential operator ∇ · a( ·
ε
)∇ correspond

to families of diffusion processes, so that homogenization may be recast as a problem of weak convergence of random
motions in random environments; see [22] and the references therein. For the heat equation considered here, our
setting is that of a Brownian motion propagating in random sceneries. It is the continuous counterpart of Kesten’s
model of random walk in random scenery, for which the invariance principle has been proved in [9,20]. The weak
convergence of Brownian motion in random scenery is based on the Kipnis–Varadhan approach [21]. We apply to the
homogenization setting the point of view of the medium seen from an observer and their methods of corrector equation
and martingale decomposition. The same probabilistic approach was used in [25] to handle equations in more general
forms with random potentials written as derivatives of bounded processes.
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Theorem 2.2 below provides a convergence result for the most general class of potentials for which such a con-
vergence is expected; see Assumption 2.1 below. Using the probabilistic representation, the difference between the
heterogeneous and homogenized solutions is approximately reduced to the Wasserstein distance between martingales
and Brownian motions. We use the quantitative martingale central limit theorem developed in [27] to estimate the
Wasserstein distance and obtain the optimal convergence rates when the random potential satisfies additional mixing
conditions in Theorem 2.6. The mixing property is only used in moment estimation. While this imposes the constraint
that the random potentials be sufficiently short-range-correlated, we apply the same quantitative martingale central
limit theorem and extend the result to long-range-correlated Gaussian potentials; see Theorem 2.9 below.

When Assumption 2.1 below is not satisfied, we do not expect convergence to a deterministic homogenized solu-
tion. Exhibiting all possible macroscopic limits in this case seems to be out of reach. From the analysis of the simpler
setting of random fluctuations beyond homogenization [6,7,16], we expect the class of possible limits to be rather
large. We consider here a large class of random potentials with covariance function decaying sufficiently slowly so
that Assumption 2.1 is violated and prove a result of convergence to SPDE in Theorem 2.11. A sharp transition to
stochasticity is thus observed beyond Assumption 2.1. In the long-range-correlation setting, these results relate to limit
theorems of sum of strongly correlated random variables, where non-Gaussian limit might appear in certain circum-
stances [32]. Our random coefficients are chosen as functionals of Gaussian processes and we obtain a SPDE driven
by multiplicative Gaussian noise in the limit. Similar type of limiting equation is analyzed in [19] by Feynman–Kac
formula. In [23], the heat equation with long-range correlated Gaussian potential is studied with a similar type of
limiting equation as in [19].

The rest of paper is organized as follows. We state our main results in Section 2 and discuss possible extensions
in Section 2.3. We then prove convergence to homogenized limit and error estimate under different assumptions in
Section 3. The result of convergence to SPDE is proved in Section 4. We present some technical lemmas in the
Appendix.

Here are notations used throughout the paper. In the product probability space, we use E to denote the expectation
only with respect to random coefficients and EB the expectation only with respect to the Brownian motion starting
from the origin. Joint expectation is denoted by EEB . a � b stands for a ≤ Cb for some ε-independent constant
C > 0. We use a ∧ b = min(a, b). N(μ,σ 2) is the Gaussian distribution with mean μ and variance σ 2, and qt (x)

denotes the density function of N(0, t). When we write Ψ (r) � 1 ∧ r−β for any β > 0, the constant of proportionality
might depend on β .

2. Main results

We rely on the Feynman–Kac representation for the solution to (1.1) in dimension d ≥ 3. Assuming the initial condi-
tion uε(0, x) = f (x) for f ∈ Cb(R

d), the Feynman–Kac solution is given by

uε(t, x) = EB

{
f (x + Bt) exp

(
i
∫ t

0
Vε(x + Bs)ds

)}
. (2.1)

Without any regularity assumption on Vε , (1.1) is not always solvable in the classical sense, and the solution given
by (2.1) is not necessarily a classical solution. In Propositon A.1, we show it is indeed a weak solution almost surely
provided that Vε(x) = ε−γ V (x/ε) for some random potential V (x) that has locally bounded sample path.

Since V (x) may be unbounded, proving uniqueness of the solution to (1.1) is a difficult task. Such a task becomes
easy when the equation is posed on a bounded domain since V is then bounded almost surely. But calculations with
the corresponding Brownian motion on bounded domains involve standard complications which we wish to avoid
here. When we refer to “the” solution to (1.1), we therefore mean the weak solution given by the Feynman–Kac
probabilistic representation in the rest of the paper.

In the following, we state the main results of homogenization and convergence to SPDE respectively.
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2.1. Convergence to homogenized limit and error estimate

Let (Ω,F ,P) be a random medium associated with a group of measure-preserving, ergodic transformation {τx, x ∈
R

d}. Let V ∈ L2(Ω) with
∫
Ω
V(ω)P(dω) = 0. Define V (x,ω) =V(τxω) and we consider the equation when d ≥ 3:

∂tuε(t, x,ω) = 1

2
Δuε(t, x,ω) + i

1

ε
V

(
x

ε
,ω

)
uε(t, x,ω), (2.2)

with initial condition uε(0, x,ω) = f (x) for f ∈ Cb(R
d), i.e., in (1.1) we choose γ = 1. For detailed setup of random

medium, we refer to e.g. [22,28]. We will write uε(t, x) and V (x) from now on.
Let {Dk, k = 1, . . . , d} be the L2(Ω) generator of Tx defined as Txf (ω) = f (τxω), and Laplacian operator L =

1
2

∑d
k=1 D2

k . We use 〈·, ·〉 to denote the inner product in L2(Ω) and ‖ · ‖ the L2(Ω) norm, and assume that:

Assumption 2.1.〈
V,−L−1

V
〉
< ∞. (2.3)

By assuming Tx is strongly continuous in L2(Ω), we obtain the spectral resolution

Tx =
∫
Rd

eiξxU(dξ), (2.4)

where U(dξ) is the associated projection valued measure. We assume there is a non-negative power spectrum R̂(ξ)

associated with V, i.e., R̂(ξ)dξ = (2π)d〈U(dξ)V,V〉. Then Assumption 2.1 is equivalent to

∫
Rd

R̂(ξ)

|ξ |2 dξ < ∞. (2.5)

We also have that

R(x) := 〈TxV,V〉 = 1

(2π)d

∫
Rd

eiξ ·xR̂(ξ)dξ. (2.6)

Defining

σ 2 = 2
〈
V,−L−1

V
〉= 4

(2π)d

∫
Rd

R̂(ξ)

|ξ |2 dξ,

and uhom(t, x) such that

∂tuhom(t, x) = 1

2
Δuhom(t, x) − 1

2
σ 2uhom(t, x) (2.7)

with same initial condition uhom(0, x) = f (x), we have the following theorem:

Theorem 2.2 (Homogenization). Under Assumption 2.1, uε(t, x) → uhom(t, x) in probability as ε → 0.

Remark 2.3. Clearly, Assumption 2.1 merely ensures σ 2, i.e., the homogenized constant, to be well-defined. Since uε

and uhom are both bounded, moment convergence holds as well. Furthermore, if f ∈ L1(Rd), |uε(t, ·)|, |uhom(t, ·)|
are both bounded by U(t, ·) ∈ L2(Rd), which solves ∂tU = 1

2ΔU with initial condition U(0, x) = |f (x)|, so∫
Rd E{|uε(t, x) − uhom(t, x)|2}dx → 0 as ε → 0.

We are also interested in the convergence rate of uε → uhom. To give error estimate, one possible assumption we
need is the following strongly mixing property of the random potential V (x):
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Assumption 2.4. E{V 6(x)} < ∞ and there exists a mixing coefficient ρ(r) decreasing in r ∈ [0,∞) such that for any
β > 0, ρ(r) ≤ Cβ(1 ∧ r−β) for some Cβ > 0 and the following bound holds

E
{
φ1(V )φ2(V )

}≤ ρ(r)

√
E
{
φ2

1(V )
}
E
{
φ2

2(V )
}

(2.8)

for any two compact sets K1,K2 with d(K1,K2) = infx1∈K1,x2∈K2{|x1 − x2|} ≥ r and any random variables
φ1(V ),φ2(V ) with φi(V ) being FKi

-measurable and E{φi(V )} = 0.

Remark 2.5. Under Assumption 2.4, we have |R(x)| = |E{V (0)V (x)}| � 1 ∧ |x|−β for any β > 0. Note that

σ 2 = 4

(2π)d

∫
Rd

R̂(ξ)

|ξ |2 dξ = 1

πd/2
Γ

(
d

2
− 1

)∫
Rd

R(x)

|x|d−2
dx, (2.9)

so the strongly mixing assumption implies finiteness of the homogenization constant.

The following is the result of convergence rate for strongly mixing potentials:

Theorem 2.6 (Error estimate for strongly mixing potentials). Under Assumption 2.4, if f ∈ C∞
c (Rd), the following

error estimates hold:

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}≤ (1 + t)Cd,f,ρ

⎧⎨
⎩

√
ε d = 3,

ε
√| log ε| d = 4,

ε d > 4.

(2.10)

Remark 2.7. As suggested by the notation, Cd,f,ρ only depends on the dimension, initial condition and mixing coef-
ficient. If we follow the proof, it is easy to check that we only need to assume ρ(r) � 1 ∧ r−β for sufficiently large β ,
and the regularity assumption on f could be improved as well.

The error estimate given in Theorem 2.6 is universal in the sense that it is independent of the potential as long as
Assumption 2.4 holds. The strongly mixing property is only used when estimating moments of V (x) and controlling
relevant integrals. For Gaussian potentials, the calculation of moments is straightforward, and this enables us to extend
the error estimate to long-range-correlation setting.

Assumption 2.8. V (x) is a zero-mean Gaussian random field with auto-covariance function R(x) ∼ |x|−β as x → ∞
for β ∈ (2, d).

The condition β > 2 ensures that R(x)|x|2−d is integrable so Assumption 2.1 holds. On the other hand, β < d so
R(x) is not integrable and it is the long-range-correlated case. The following theorem is a precise description of how
the homogenization error depends on the interaction between the dimension d and the decay rate β of auto-covariance
function.

Theorem 2.9 (Error estimate for long-range-correlated Gaussian potentials). Under Assumption 2.8, if f ∈
C∞

c (Rd), the following error estimates hold:

• when d = 3,4,

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}≤ (1 + t)Cd,f,βεβ/2−1, (2.11)

• when d > 4,

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}≤ (1 + t)Cd,f,β

⎧⎨
⎩

εβ/2−1 β ∈ (2,4),

ε
√| log ε| β = 4,

ε β ∈ (4, d).

(2.12)
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The result shows that for sufficiently long-range-correlated random potentials, the convergence rate in homoge-
nization could be potential-dependent, e.g., when β → 2, the error is of order εβ/2−1 and could be arbitrarily close to
O(1). On the other hand, it can be shown that when the covariance function is integrable, i.e., β > d , we recover the
result for strongly mixing potentials.

2.2. Convergence to SPDE

Let (Ω,F ,P) be a probability space. The following is our assumption on random coefficient V (x) = V (x,ω) with
ω ∈ Ω labeling the particular realization.

Assumption 2.10. V (x) = Φ(g(x)), where

• g(x) is a stationary Gaussian field with zero mean and unit variance. The auto-covariance function Rg(x) =
E{g(0)g(x)} satisfies that |Rg(x)| �

∏d
i=1 min(1, |xi |−αi ) with αi ∈ (0,1) and Rg(x) ∼ cd

∏d
i=1 |xi |−αi as

mini=1,...,d |xi | → ∞. α :=∑d
i=1 αi ∈ (0,2).

• Φ is a deterministic function with Hermite rank 1, i.e.,
∫
R

Φ2(x) 1√
2π

exp(−x2/2)dx < ∞ and if we define Vk =
E{Φ(g)Hk(g)} with Hk(x) = (−1)k exp(x2/2) dk

dxk exp(−x2/2) the kth Hermite polynomial, then V0 = 0,V1 �= 0.

We will see later that R(x) = E{V (0)V (x)} ∼ V 2
1 cd

∏d
i=1 |xi |−αi , and since α =∑d

i=1 αi < 2, R(x)|x|2−d is not
integrable, so σ 2 in (2.7) is not well-defined and we do not expect the result of homogenization. We consider the
equation when d ≥ 3:

∂tuε(t, x,ω) = 1

2
Δuε(t, x,ω) + i

1

εα/2
V

(
x

ε
,ω

)
uε(t, x,ω), (2.13)

with initial condition uε(0, x,ω) = f (x) for f ∈ Cb(R
d), i.e., in (1.1), we choose γ = α

2 < 1. The following is the
result of convergence to SPDE.

Theorem 2.11. Under Assumption 2.10, we have uε(t, x) → uspde(t, x) in distribution, with uspde solving the SPDE
with multiplicative noise:

∂tuspde = 1

2
Δuspde + iV1

√
cdẆuspde, (2.14)

where Ẇ (x) is a generalized Gaussian random field with covariance function E{Ẇ (x)Ẇ (y)} =∏d
i=1 |xi − yi |−αi .

For the limiting SPDE (2.14), the product between Ẇ and uspde is in the Stratonovich’s sense. The solution will be
defined through a Feynman–Kac formula and shown to be a weak solution.

Remark 2.12. The proof of Theorem 2.11 also holds for d = 1,2. When d = 2, since α1, α2 ∈ (0,1), α = α1 + α2 ∈
(0,2) is automatically satisfied. When d = 1, we have α = α1 ∈ (0,1).

2.3. Remarks

One of the main ingredients in the proof of both homogenization and convergence to SPDE is the weak conver-
gence of Brownian motion in random scenery. In the homogenization setting, Kipnis–Varadhan’s result implies
ε−1
∫ t

0 V (Bs/ε)ds ⇒ σWt in C([0, T ]) in P-probability, with only necessary assumptions of stationarity, ergodic-
ity, and finiteness of asymptotic variance. In the SPDE setting, Proposition 4.7 below shows ε−α/2

∫ t

0 V (Bs/ε)ds ⇒
V1

√
cd

∫ t

0 Ẇ (Bs)ds in the annealed sense, where V is chosen as functionals of stationary Gaussian process. The dif-
ference between the results of weak convergence sheds light on the transition from homogenization to stochasticity
from a probabilistic point of view.
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To obtain optimal error estimate, a quantification of ergodicity is in need and we assume a strong mixing of the
random potential. Ergodicity is quantified by controlling the tail of the mixing coefficient and is used only to estimate
the fourth-order moment of the random potential. When the fourth-order moment can be estimated explicitly without
any mixing condition, then similar error estimates can be derived. We considered here the example of long-range-
correlated Gaussian potential and derived convergence rate depending on its decorrelation rate.

In the homogenization setting of low dimensions, when d = 2, weak convergence of Brownian motion in random
scenery has been proved for specific types of short-range-correlated potentials in the annealed sense, including Gaus-
sian, Poissonian [17] and piecewise-constant cases [31]. The size of potentials then includes a logarithm correction. It
is not clear whether Kipnis–Varadhan’s approach works to obtain weak convergence in probability. With the annealed
weak convergence, homogenization could be derived by showing the convergence of E{uε(t, x)} and E{|uε(t, x)|2}
respectively. When d = 1, [29] derived a stochastic limit for short-range-correlated potentials.

Intuitively, Theorem 2.2 of homogenization corresponds to law of large numbers while Theorem 2.6 and 2.9 relate
to error estimate. It is natural to inquire about central limit type result, i.e., the weak convergence of ε−δ(uε(t, x) −
uhom(t, x)) for appropriate δ > 0. In [4], for the same type of equations, central limit type of result is derived by a
different approach for Gaussian potentials. The probabilistic approach is currently under study.

3. Proof of homogenization and error estimate

3.1. Feynman–Kac formula, medium seen from the observer and auxiliary equation

The solution to (2.2) is written as

uε(t, x) = EB

{
f (x + Bt) exp

(
i
1

ε

∫ t

0
V

(
x + Bs

ε

)
ds

)}
, (3.1)

with Brownian motion Bs starting from the origin.
By the scaling property of Brownian motion,

uε(t, x) = EB

{
f (x + εBt/ε2) exp

(
iε
∫ t/ε2

0
V

(
x

ε
+ Bs

)
ds

)}
.

Since uhom is deterministic, by stationarity of V , the difference between the solutions to the heterogeneous and ho-
mogenized equations can be written as

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}
= E

{∣∣∣∣EB

{
f (x + εBt/ε2) exp

(
iε
∫ t/ε2

0
V (Bs)ds

)}
−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}∣∣∣∣
}
. (3.2)

Now we look at Xε(t) := ε
∫ t/ε2

0 V(τBs ω)ds = ε
∫ t/ε2

0 V (Bs)ds. For ys := τBs ω, it is a stationary, ergodic Markov

process taking values in Ω with invariant measure P, and the generator of ys is given by L = 1
2

∑d
k=1 D2

k , see e.g.
[22].

We define the corrector function Φλ for any λ > 0 such that

(λI − L)Φλ =V, (3.3)

then the following proposition holds.

Proposition 3.1.

Φλ =
∫
Rd

1

λ + (1/2)|ξ |2 U(dξ)V. (3.4)
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Under Assumption 2.1, λ〈Φλ,Φλ〉 → 0 as λ → 0.
Under Assumption 2.4,

λ〈Φλ,Φλ〉 �

⎧⎨
⎩

√
λ d = 3,

λ| logλ| d = 4,

λ d > 4.

(3.5)

Under Assumption 2.8,

λ〈Φλ,Φλ〉 �

⎧⎨
⎩

λβ/2−1 β ∈ (2,4),

λ| logλ| β = 4,

λ β > 4.

(3.6)

If we define

ηk =
∫
Rd

2iξk

|ξ |2 U(dξ)V (3.7)

for k = 1, . . . , d , σ 2 =∑d
k=1 ‖ηk‖2. Defining σ 2

λ =∑d
k=1 ‖DkΦλ‖2, the following proposition holds.

Proposition 3.2. Under Assumption 2.1, DkΦλ → ηk in L2(Ω) as λ → 0.
Under Assumption 2.4,

∣∣σ 2
λ − σ 2

∣∣�
⎧⎨
⎩

√
λ d = 3,

λ| logλ| d = 4,

λ d > 4.

(3.8)

Under Assumption 2.8,

∣∣σ 2
λ − σ 2

∣∣�
⎧⎨
⎩

λβ/2−1 β ∈ (2,4),

λ| logλ| β = 4,

λ β > 4.

(3.9)

Proof of Proposition 3.1. First, we have

λ〈Φλ,Φλ〉 =
∫
Rd

λ

λ + (1/2)|ξ |2
R̂(ξ)

λ + (1/2)|ξ |2 dξ �
∫
Rd

λ

λ + |ξ |2
R̂(ξ)

|ξ |2 dξ. (3.10)

Under Assumption 2.1, i.e., R̂(ξ)|ξ |−2 is integrable, by the dominated convergence theorem, λ〈Φλ,Φλ〉 → 0 as
λ → 0.

If Assumption 2.4 holds, R̂(ξ) is bounded, and we obtain by direct calculation:

λ〈Φλ,Φλ〉 � λd/2−1
∫
Rd

1

1 + |ξ |2
R̂(

√
λξ)

|ξ |2 dξ

� λd/2−1
∫

√
λ|ξ |<1

1

1 + |ξ |2
1

|ξ |2 dξ + λ

∫
|ξ |>1

R̂(ξ)

|ξ |4 dξ

� λd/2−1
∫ 1/

√
λ

0

rd−3

1 + r2
dr + λ, (3.11)

so when d = 3, λ〈Φλ,Φλ〉 �
√

λ. When d = 4, λ〈Φλ,Φλ〉 � λ| logλ|. When d > 4, λ〈Φλ,Φλ〉 � λ.
If Assumption 2.8 holds, R̂(ξ) � |ξ |β−d at the origin, and the proof is similar. �
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Proof of Proposition 3.2. Since

‖DkΦλ − ηk‖2 = 1

(2π)d

∫
Rd

λ2ξ2
k

(λ + 1
2 |ξ |2)2(1/4)|ξ |4 R̂(ξ)dξ �

∫
Rd

λ2

λ2 + |ξ |4
R̂(ξ)

|ξ |2 dξ, (3.12)

and

σ 2
λ − σ 2 = − 16

(2π)d

∫
Rd

(λ2 + λ|ξ |2)
|ξ |2(2λ + |ξ |2)2

R̂(ξ)dξ, (3.13)

we obtain the result as in the proof of Proposition 3.1. �

Now we are ready to prove the main theorems. We choose λ = ε2 from now on.
By Itô’s formula, the process of Brownian motion in random scenery can be decomposed as

Xε(t) = ε

∫ t/ε2

0
V(τBs ω)ds = Rε

t + Mε
t , (3.14)

where

Rε
t : = ε

∫ t/ε2

0
λΦλ(ys)ds − εΦλ(yt/ε2) + εΦλ(y0), (3.15)

Mε
t : = ε

∫ t/ε2

0

d∑
k=1

DkΦλ(ys)dBk
s . (3.16)

Therefore, the error is decomposed correspondingly as uε(t, x) − uhom(t, x) = E1 + E2, where

E1 = EB

{
f (x + εBt/ε2) exp

(
iRε

t + iMε
t

)}−EB

{
f (x + εBt/ε2) exp

(
iMε

t

)}
, (3.17)

E2 = EB

{
f (x + εBt/ε2) exp

(
iMε

t

)}−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}
. (3.18)

We see E1 is caused by the residue Rε
t , i.e., a measure of how close Xε(t) is to a martingale, while E2 relates to the

convergence of the martingale Mε
t , i.e., a measure of how close the martingale is to a Brownian motion. Since f is

bounded, we have the estimate E{|E1|} � EEB{|Rε
t |}. It is straightforward to check that

E
{|E1|
}

� EEB

{∣∣Rε
t

∣∣}�√λ〈Φλ,Φλ〉(1 + t). (3.19)

In the following, we estimate the convergence of Mε
t to a Brownian motion in different ways to prove homoge-

nization and error estimate respectively.

3.2. Homogenization: Proof of Theorem 2.2

We rewrite

Mε
t = ε

∫ t/ε2

0

d∑
k=1

(DkΦλ − ηk)(ys)dBk
s + ε

∫ t/ε2

0

d∑
k=1

ηk(ys)dBk
s := E3 + E4,

so

|E2| ≤ ∣∣EB

{
f (x + εBt/ε2) exp

(
iMε

t

)}−EB

{
f (x + εBt/ε2) exp(iE4)

}∣∣
+
∣∣∣∣EB

{
f (x + εBt/ε2) exp(iE4)

}−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}∣∣∣∣
� EB

{|E3|
}+EB

{
f (x + εBt/ε2) exp(iE4)

}−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}
. (3.20)
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On one hand, we clearly have that

EEB

{|E3|
}≤
√√√√t

d∑
k=1

‖DkΦλ − ηk‖2. (3.21)

On the other hand, by ergodic theorem and the fact that E{ηk} = 0 for k = 1, . . . , d , and
∑d

k=1 ‖ηk‖2 = σ 2, we
obtain for almost every ω ∈ Ω and k = 1, . . . , d :

ε2
∫ t/ε2

0
ηk(τBs ω)ds → 0,

ε2
∫ t/ε2

0

d∑
k=1

η2
k(τBs ω)ds → σ 2

almost surely. Now by martingale central limit theorem [13, page 339, Theorem 1.4], we conclude for almost every
ω ∈ Ω that:(

εBt/ε2, ε

∫ t/ε2

0

d∑
k=1

ηk(τBs ω)dBk
s

)
⇒ (W 1

t , σW 2
t

)
, (3.22)

where W 1
t is a d-dimensional Brownian motion and W 2

t is an independent 1-dimensional Brownian motion. Therefore,

EB

{
f (x + εBt/ε2) exp(iE4)

}−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}
→ 0 (3.23)

as ε → 0 almost surely.
To summarize, we have

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}

�
√

λ〈Φλ,Φλ〉(1 + t) +
√√√√t

d∑
k=1

‖DkΦλ − ηk‖2

+E

{∣∣∣∣EB

{
f (x + εBt/ε2) exp(iE4)

}−EB

{
f (x + εBt/ε2) exp

(
−1

2
σ 2t

)}∣∣∣∣
}
. (3.24)

By Proposition 3.1 and 3.2, and the dominated convergence theorem, the proof of Theorem 2.2 is complete.

3.3. Error estimate: Proof of Theorem 2.6 and 2.9

Defining f̂ (ξ) = ∫
Rd f (x)e−iξ ·x dx, we can write E2 as

E2 = 1

(2π)d

∫
Rd

f̂ (ξ)eiξ ·x
EB

{
ei(εξ ·B

t/ε2 +Mε
t ) − eiεξ ·B

t/ε2−(1/2)σ 2t}dξ, (3.25)

where εξ · Bt/ε2 + Mε
t = ε
∫ t/ε2

0

∑d
k=1(ξk + DkΦλ(ys))dBk

s is a continuous, square-integrable martingale for almost

every ω ∈ Ω . The estimation of EB{ei(εξ ·B
t/ε2+Mε

t ) − eiεξ ·B
t/ε2 −(1/2)σ 2t } reduces to a control of the Wasserstein dis-

tance between εξ · Bt/ε2 + Mε
t and εξ · Bt/ε2 + σWt , where Wt is an independent Brownian motion from Bt . A

general quantitative martingale central limit theorem is proved in [27], from which we extract the following result for
continuous martingales.
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Proposition 3.3 (Theorem 3.2, [27]). If Mt is a continuous martingale and Wt is a standard Brownian motion, then

d1,k(M1,W1) ≤ (1 ∨ k)E
{∣∣〈M〉1 − 1

∣∣}, (3.26)

with the distance d1,k defined as

d1,k(X,Y ) = sup
{∣∣E{f (X) − f (Y )

}∣∣: f ∈ C2
b(R),
∥∥f ′∥∥∞ ≤ 1,

∥∥f ′′∥∥∞ ≤ k
}
. (3.27)

For the sake of convenience, we present the proof in the Appendix.
Since σ 2

λ =∑d
k=1〈DkΦλ,DkΦλ〉, by Proposition 3.3 we have for almost every ω ∈ Ω :

∣∣EB

{
ei(εξ ·B

t/ε2+Mε
t )}− e−1/2(|ξ |2+σ 2

λ )t
∣∣

≤
(

1 ∨ 1√
(|ξ |2 + σ 2

λ )t

)
EB

{∣∣∣∣∣ε2
∫ t/ε2

0

d∑
k=1

(
ξk + DkΦλ(ys)

)2
ds − (|ξ |2 + σ 2

λ

)
t

∣∣∣∣∣
}

. (3.28)

Now we can write |E2| ≤ E5 + E6, where

E5 = 1

(2π)d

∫
Rd

∣∣f̂ (ξ)
∣∣(1 ∨ 1√

(|ξ |2 + σ 2
λ )t

)
EB

{∣∣∣∣∣ε2
∫ t/ε2

0

d∑
k=1

(
ξk + DkΦλ(ys)

)2 ds − (|ξ |2 + σ 2
λ

)
t

∣∣∣∣∣
}

dξ,

E6 = 1

(2π)d

∫
Rd

∣∣f̂ (ξ)
∣∣∣∣e−1/2(|ξ |2+σ 2

λ )t − e−1/2(|ξ |2+σ 2)t
∣∣dξ.

First, we have

E6 �
∣∣σ 2

λ − σ 2
∣∣t. (3.29)

Secondly, we rewrite

E5 = 1

(2π)d

∫
Rd

∣∣f̂ (ξ)
∣∣(1 ∨ 1√

(|ξ |2 + σ 2
λ )t

)
EB

{∣∣∣∣ε2
∫ t/ε2

0
Zλ,ξ (Bs)ds

∣∣∣∣
}

dξ, (3.30)

where

Zλ,ξ (x) :=
d∑

k=1

(
ξk +
∫
Rd

∂xk
Gλ(x − y)V (y)dy

)2

− |ξ |2 − σ 2
λ ,

with Gλ the Green’s function of λ − 1
2Δ. Note that we have used the fact that

DkΦλ(τxω) =
∫
Rd

∂xk
Gλ(x − y)V (y)dy.

Clearly Zλ,ξ has zero mean; and by the ergodic theorem, we expect ε2
∫ t/ε2

0 Zλ,ξ (Bs)ds to be small. This is quantified
by the following control of the variance of Brownian motion in random scenery.

Lemma 3.4. If V is a mean zero, stationary random field with covariance function R(x), and Bs is Brownian motion
independent from V , then

EEB

{(
ε

∫ t/ε2

0
V (Bs)ds

)2}
� t

∫
Rd

|R(x)|
|x|d−2

dx. (3.31)
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Proof. By direct calculation, we have

EEB

{(
ε

∫ t/ε2

0
V (Bs)ds

)2}
= 2ε2

∫ t/ε2

0

∫ s

0

∫
Rd

R(x)
1

(2πu)d/2
e−|x|2/(2u) dx duds

= 2ε2
∫ ∞

0
du

(
t

ε2
− u

)
1u<t/ε2

∫
Rd

R(x)
1

(2πu)d/2
e−|x|2/(2u) dx

= ε2
∫ ∞

0
dλ

(
t

ε2
− |x|2

2λ

)
1|x|2/(2λ)<t/ε2λ

d/2−2e−λ

∫
Rd

1

πd/2
R(x)

1

|x|d−2
dx

� t

∫
Rd

|R(x)|
|x|d−2

dx. (3.32)
�

Now we write Zλ,ξ (x) = Z1,λ,ξ (x) + Z2,λ,ξ (x) with

Z1,λ,ξ (x) =
d∑

k=1

(∫
Rd

∂xk
Gλ(x − y)V (y)dy

)2

− σ 2
λ , (3.33)

Z2,λ,ξ (x) = 2
d∑

k=1

ξk

∫
Rd

∂xk
Gλ(x − y)V (y)dy. (3.34)

Since σ 2
λ =∑d

k=1〈DkΦλ,DkΦλ〉, we have E{Zi,λ,ξ (x)} = 0, i = 1,2. Therefore, Lemma 3.4 implies

E{E5} � ε

(2π)d

∫
Rd

∣∣f̂ (ξ)
∣∣(1 ∨ 1√

(|ξ |2 + σ 2
λ )t

)√
t

∫
Rd

|R1,λ,ξ (x)| + |R2,λ,ξ (x)|
|x|d−2

dx dξ, (3.35)

where Ri,λ,ξ (x) := E{Zi,λ,ξ (0)Zi,λ,ξ (x)}, i = 1,2. By recalling (3.19) and (3.29), we have

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}

�
(√

λ〈Φλ,Φλ〉 + ∣∣σ 2
λ − σ 2

∣∣+ ε

∫
Rd

f̂ (ξ)

√∫
Rd

|R1,λ,ξ (x)| + |R2,λ,ξ (x)|
|x|d−2

dx dξ

)
(1 + t). (3.36)

The estimation of Ri,λ,ξ is done for strongly mixing potentials and long-range-correlated Gaussian potentials
respectively in the following sections.

3.3.1. Strongly mixing case: Proof of Theorem 2.6
Defining

Fλ,c,β(x) := λd/2−1e−c
√

λ|x| + 1 ∧ e−c
√

λ|x|

|x|d−2
+ 1 ∧ 1

|x|β (3.37)

for c,β > 0, we have the following result.

Proposition 3.5. Under Assumption 2.4, there exist a constant c > 0 and a sufficiently large β > 0 such that

∣∣R1,λ,ξ (x)
∣∣+ ∣∣R2,λ,ξ (x)

∣∣� (1 + |ξ |)2Fλ,c,β(x). (3.38)
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Proof. We first consider R1,λ,ξ (x). By denoting φλ(x) = ∫
Rd Gλ(x − y)V (y)dy, for any m,n = 1, . . . , d , we have

E
{(

∂xmφλ(0)
)2(

∂xnφλ(x)
)2}

=
∫
R4d

∂xmGλ(y1)∂xmGλ(z1)∂xnGλ(y2)∂xnGλ(z2)E
{
V (−y1)V (−z1)V (x − y2)V (x − z2)

}
dy1 dy2 dz1 dz2

=
∫
R4d

∂xmGλ(y1)∂xmGλ(z1)∂xnGλ(y2)∂xnGλ(z2)R(y1 − z1)R(y2 − z2)dy1 dy2 dz1 dz2 + Imn

= ‖DmΦλ‖2‖DnΦλ‖2 + Imn, (3.39)

where Imn are remainders in the calculation of fourth moment. By Lemma A.6, we obtain

|Imn| ≤ 2
∫
R4d

∣∣∂mGλ(y1)∂mGλ(z1)∂nGλ(y2)∂nGλ(z2)
∣∣Ψ (x − y1 + y2)Ψ (x − z1 + z2)dy1 dy2 dz1 dz2, (3.40)

where |Ψ (x)| � 1 ∧ |x|−β for any β > 0. Since Gλ is the Green’s function of λ − 1
2Δ, by scaling property, Gλ(x) =

λd/2−1G1(
√

λx). The estimate |∇G1(x)| � e−ρ|x||x|1−d holds for some ρ > 0 [33, page 271, (6.49)]. Therefore, by
change of variables, we have

|Imn| �
(

1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
Ψ

(
x − y − z√

λ

)
dy dz

)2

. (3.41)

Since σ 4
λ =∑d

m,n=1 ‖DmΦλ‖2‖DnΦλ‖2, we derive the following estimate

∣∣R1,λ,ξ (x)
∣∣� (1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
Ψ

(
x − y − z√

λ

)
dy dz

)2

. (3.42)

Now we consider R2,λ,ξ (x). Similary, we obtain that

∣∣R2,λ,ξ (x)
∣∣ =
∣∣∣∣∣4

d∑
m,n=1

ξmξn

∫
R2d

∂mGλ(y)∂nGλ(z)R(x − y + z)dy dz

∣∣∣∣∣
� |ξ |2 1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
|R|
(

x − y − z√
λ

)
dy dz. (3.43)

Since |Ψ (x)| � 1 ∧ |x|−β for β > 0 sufficiently large, by Lemma A.4, we obtain∣∣R1,λ,ξ (x)
∣∣+ ∣∣R2,λ,ξ (x)

∣∣� (1 + |ξ |)2Fλ,c,β(x) (3.44)

for some constant c > 0, and β > 0 sufficiently large. The proof is complete. �

By combining Proposition 3.5 and (3.36), we obtain that

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}
�
(√

λ〈Φλ,Φλ〉 + ∣∣σ 2
λ − σ 2

∣∣+ ε

√∫
Rd

Fλ,c,β(x)

|x|d−2
dx

)
(1 + t). (3.45)

We also see that for the initial condition f , the only requirement is |f̂ (ξ)|(1 + |ξ |) being integrable.
By Proposition 3.1 and 3.2 and λ = ε2, we have under Assumption 2.4

√
λ〈Φλ,Φλ〉 + ∣∣σ 2

λ − σ 2
∣∣�
⎧⎨
⎩

√
ε d = 3,

ε
√| log ε| d = 4,

ε d > 4.

(3.46)
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Together with the following Lemma 3.6 and (3.45), the proof of Theorem 2.6 is complete.

Lemma 3.6.

∫
Rd

Fλ,c,β(x)

|x|d−2
dx �

⎧⎨
⎩

λ−1/2 d = 3,

| logλ| d = 4,

1 d > 4.

(3.47)

Proof. Note that 1 ∧ |x|−β gives a term of order 1 since β could be sufficiently large. We first look at

∫
Rd

1

|x|d−2
λd/2−1e−c

√
λ|x| dx = λd/2−2

∫
Rd

e−c|y|

|y|d−2
dy � λd/2−2. (3.48)

Now we only have to deal with 1 ∧ e−c
√

λ|x|
|x|d−2 .

∫
Rd

1

|x|d−2
1 ∧ e−c

√
λ|x|

|x|d−2
dx ≤
∫

|x|<1

1

|x|d−2
dx +
∫

|x|>1

e−c
√

λ|x|

|x|2d−4
dx. (3.49)

When d > 4, RHS is bounded. When d ≤ 4,

∫
|x|>1

e−c
√

λ|x|

|x|2d−4
dx = λ(d−4)/2

∫ ∞
√

λ

e−cr

rd−3
dr, (3.50)

which concludes the proof. �

3.3.2. Long-range-correlated Gaussian case: Proof of Theorem 2.9
If we follow the proof of Proposition 3.5, it is straightforward to check that when V is Gaussian, the following estimate
holds:∣∣R1,λ,ξ (x)

∣∣+ ∣∣R2,λ,ξ (x)
∣∣� (1 + |ξ |)2(Fλ,ρ(x) + F 2

λ,ρ(x)
)
, (3.51)

with

Fλ,ρ(x) := 1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
|R|
(

x − y − z√
λ

)
dy dz.

From (3.36), we have

E
{∣∣uε(t, x) − uhom(t, x)

∣∣}

�
(√

λ〈Φλ,Φλ〉 + ∣∣σ 2
λ − σ 2

∣∣+ ε

√∫
Rd

Fλ,ρ(x) + F 2
λ,ρ(x)

|x|d−2
dx

)
(1 + t), (3.52)

then Theorem 2.9 comes from Lemma A.5 and Propositions 3.1, 3.2.

4. Proof of convergence to SPDE

From the proof of Theorem 2.2, we see that the key assumption for homogenization to occur besides stationarity
and ergodicity is the integrability of R̂(ξ)|ξ |−2. In other words, R(x) has to decays faster than |x|−2 at infinity. In
this section, we go beyond Assumption 2.1 by assuming R(x) decays sufficiently slowly, and prove the transition to
stochasticity from homogenization.
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First, we recall that the nth order Hermite polynomial is defined as

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
−x2

2

)
, (4.1)

and it has the property that

E
{
Hm(X)Hn(Y )

}= {n!(E{XY })n m = n,

0 m �= n,
(4.2)

if X,Y ∼ N(0,1) and are jointly Gaussian.
Under Assumption 2.10, g(x) is a stationary Gaussian field with zero mean and unit variance, so we can expand V

in Hermite polynomials [32, Section 3]:

V (x) = Φ
(
g(x)
)= ∞∑

n=0

Vn

n! Hn

(
g(x)
)
, (4.3)

where Vn = E{Hn(g(x))Φ(g(x))}. By the assumption V0 = 0,V1 �= 0, we have

R(x) = E
{
V (0)V (x)

}= E
{
Φ
(
g(0)
)
Φ
(
g(x)
)}= ∞∑

n=0

V 2
n

(n!)2
E
{
Hn

(
g(0)
)
Hn

(
g(x)
)}

=
∞∑

n=0

V 2
n

n! Rg(x)n = V 2
1 Rg(x) +

∞∑
n=2

V 2
n

n! Rg(x)n. (4.4)

Since
∑∞

n=0
V 2

n

n! < ∞, R(x) ∼ V 2
1 Rg(x) as |x| → ∞. In addition, Rg(x) ∼ cd

∏d
i=1 |xi |−αi , which leads to R(x) ∼

V 2
1 cd

∏d
i=1 |xi |−αi as mini=1,...,d |xi | → ∞.

The assumption of V1 �= 0 is crucial for the appearance of Gaussian noise in the limiting equation, and it turns
out that by this assumption we can reduce the possibly non-Gaussian case to Gaussian case, namely V (x) = g(x),
so conditioning on B , Xε(t) := ε−α/2

∫ t

0 V (Bs/ε)ds is Gaussian, and we can prove its weak convergence by proving
convergence of the conditional mean and variance. Before that, following [19] we define the solution to the limiting
SPDE (2.14).

4.1. Limiting SPDE

We first define the formally-written random variable
∫ t

0 Ẇ (Bs)ds = ∫ t

0

∫
Rd δ(x − Bs)W(dx)ds, where W(dx) is the

generalized Gaussian random field independent from Brownian motion Bt . We use E to denote the expectation with
respect to W(dx), and assume that the covariance function E{W(dx)W(dy)} =∏d

i=1 |xi − yi |−αi dx dy. For a con-
struction of such generalized Gaussian random field, we refer to e.g. [19, Section 2].

For Brownian motion B , we use Bi(s) to denote its ith component. Later below we shall consider a collection of
several vector-valued Brownian motions. The j th element of that collection will be denoted by Bj , and its value at
time s by B

j
s , while the value at time s of its kth coordinate would be B

j
k (s).

Proposition 4.1. Assume αi ∈ (0,1), i = 1, . . . , d and
∑d

i=1 αi < 2 and define Yε(t) = ∫ t

0

∫
Rd qε(x − Bs)W(dx)ds,

where qε is the density of N(0, ε). Then Yε(t) converges in L2 as ε → 0 to some random variable Y(t), denoted as

Y(t) =
∫ t

0
Ẇ (Bs)ds =

∫ t

0

∫
Rd

δ(x − Bs)W(dx)ds.

When conditioning on B , then Yt is a Gaussian random variable with zero mean and variance

E
{
Y(t)2}= ∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

ds du. (4.5)
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Proof. We first point out that the RHS of (4.5) is almost surely finite, and this comes from the fact that αi ∈ (0,1) and∑d
i=1 αi < 2 and

EB

{∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

ds du

}
=
∫ t

0

∫ t

0

1

|s − u|∑d
i=1 αi/2

ds du

d∏
i=1

∫
R

|x|−αi q1(x)dx. (4.6)

Secondly, we calculate

EEB

{
Y 2

ε (t)
}= ∫ t

0

∫ t

0

∫
R2d

EB

{
qε(x − Bs)qε(y − Bu)

} 1∏d
i=1 |xi − yi |αi

dx dy ds du. (4.7)

By Lemma A.7 we obtain
∫
R2d qε(x − Bs)qε(y − Bu)

1∏d
i=1 |xi−yi |αi

dx dy → 1∏d
i=1 |Bi(s)−Bi(u)|αi

as ε → 0. By

Lemma A.8 and the dominated convergence theorem, we have the convergence

EEB

{
Y 2

ε (t)
}→ ∫ t

0

∫ t

0
EB

{
1∏d

i=1 |Bi(s) − Bi(u)|αi

}
ds du. (4.8)

Similarly, we can show

EEB

{
Yε1(t)Yε2(t)

}→ ∫ t

0

∫ t

0
EB

{
1∏d

i=1 |Bi(s) − Bi(u)|αi

}
ds du (4.9)

as ε1, ε2 → 0. Thus, we have shown that {Yε(t)} is a Cauchy sequence in L2, since

lim
ε1,ε2→0

EEB

{(
Yε1(t) − Yε2(t)

)2}= 0.

The limit is then denoted as Y(t) = ∫ t

0 Ẇ (Bs)ds = ∫ t

0

∫
Rd δ(x − Bs)W(dx)ds.

Next, we consider the conditional distribution. Since Yε(t) → Y(t) in L2, there exists a subsequence εk such that
Yεk

(t) → Y(t) almost surely. Note that W(dx) and Bt are independent, so the probability space is the product space.
Then we know that conditioning on the Brownian motion, Yεk

(t) → Y(t) almost surely as k → ∞, and this leads to
convergence in distribution. Given B , Yε(t) is Gaussian with variance

E
{
Y 2

ε (t)
} =
∫ t

0

∫ t

0

∫
R2d

qε(x − Bs)qε(y − Bu)
1∏d

i=1 |xi − yi |αi

dx dy ds du

→
∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

ds du. (4.10)

The proof is complete. �

Remark 4.2. If we define Y i(t) = ∫ t

0

∫
Rd δ(x − Bi

s)W(dx)ds for independent Brownian motions B1,B2, the
same proof implies that Y 1(t), Y 2(t) are jointly Gaussian with covariance function given by E{Y 1(t)Y 2(t)} =∫ t

0

∫ t

0

∏d
i=1 |B1

i (s) − B2
i (u)|−αi ds du when conditioning on B1,B2.

Remark 4.3. By the same discussion as in Proposition 4.1, we can define random variable
∫ t

0

∫
Rd δ(y − x −

Bs)W(dy)ds as the L2 limit of
∫ t

0

∫
Rd qε(y − x − Bs)W(dy)ds for any x ∈R

d . It is straightforward to check that the

joint distribution of
∫ t

0

∫
Rd δ(y − x − B1

s )W(dy)ds, . . . ,
∫ t

0

∫
Rd δ(y − x − BN

s )W(dy)ds does not depend on x, where
Bi, i = 1, . . . ,N are independent Brownian motions.

With the random variables
∫ t

0

∫
Rd δ(y − x − Bs)W(dy)ds for any x ∈R

d , the solution to the SPDE

∂tu = 1

2
Δu + iẆu (4.11)
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with initial condition u(0, x) = f (x) is formally written by Feynman–Kac formula as

u(t, x) = EB

{
f (x + Bt) exp

(
i
∫ t

0

∫
Rd

δ(y − x − Bs)W(dy)ds

)}
. (4.12)

We point that the u(t, x) defined as above coincides with the usual definition of weak solution to SPDE (4.11):

Definition 4.4. A random field u(t, x) is a weak solution to (4.11) if for any C∞ function φ with compact support we
have ∫

Rd

u(t, x)φ(x)dx =
∫
Rd

f (x)φ(x)dx + 1

2

∫ t

0

∫
Rd

u(s, x)Δφ(x)dx ds

+ i
∫
Rd

∫ t

0
u(s, x)φ(x)dsW(dx), (4.13)

where the stochastic integral on the RHS of the above display is understood as a Stratonovich type integral whose
meaning is given in Definition 4.1 of [19].

Proposition 4.5. If αi ∈ (0,1), i = 1, . . . , d and
∑d

i=1 αi < 2, u(t, x) is a weak solution to (4.11).

The proof is a direct adaption of Theorem 4.3 in [19], and we do not present it here.

4.2. Convergence to a stochastic equation: Proof of Theorem 2.11

First we reduce V (x) = Φ(g(x)) to the Gaussian case by the following lemma:

Lemma 4.6. In the annealed sense, Xε(t) := ε−α/2
∫ t

0 (Φ(g(Bs/ε)) − V1g(Bs/ε))ds → 0 in probability as ε → 0.

Proof. Since Φ(g) − V1g =∑∞
n=2

Vn

n! Hn(g) and
∑∞

n=0
V 2

n

n! < ∞, we have conditionally upon B that

E
{
Xε(t)

2} = 1

εα

∫ t

0

∫ t

0

∞∑
n=2

V 2
n

n! Rg

(
Bs − Bu

ε

)n

ds du

≤ C

εα

∫ t

0

∫ t

0
Rg

(
Bs − Bu

ε

)2

ds du (4.14)

for some constant C. Since Rg is bounded and satisfies |Rg(x)| �∏d
i=1 |xi |−αi , we have

E
{
Xε(t)

2} ≤ C sup
|x|≥M

∣∣Rg(x)
∣∣ ∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

1|Bs−Bu|>Mε ds du

+ C

εα

∫ t

0

∫ t

0
1|Bs−Bu|≤Mε ds du, (4.15)

which leads to

EEB

{
Xε(t)

2}≤ C sup
|x|≥M

∣∣Rg(x)
∣∣+ C

εα

∫ t

0

∫ t

0
EB{1|Bs−Bu|≤Mε}ds du. (4.16)

By Lemma A.9, first let ε → 0, then M → ∞, the proof is complete. �
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Now we can prove the weak convergence of Xε(t) = ε−α/2
∫ t

0 V (Bs/ε)ds.

Proposition 4.7. For fixed t > 0, in the annealed sense Xε(t) ⇒ V1
√

cd

∫ t

0

∫
Rd δ(x − Bs)W(dx)ds as ε → 0.

Proof. By writing

Xε(t) = 1

εα/2

∫ t

0

(
Φ

(
g

(
Bs

ε

))
− V1g

(
Bs

ε

))
ds + 1

εα/2

∫ t

0
V1g

(
Bs

ε

)
ds

and applying Lemma 4.6, we only need to show the weak convergence of ε−α/2
∫ t

0 V1g(Bs/ε)ds.
By conditioning on B , we calculate the characteristic function as

E

{
exp

(
iθ

1

εα/2

∫ t

0
V1g

(
Bs

ε

)
ds

)}
= exp

(
−V 2

1 θ2

2εα

∫ t

0

∫ t

0
Rg

(
Bs − Bu

ε

)
ds du

)
. (4.17)

Recall that Rg(x) ∼ cd

∏d
i=1 |xi |−αi as mini=1,...,d |xi | → ∞ and |Rg(x)| �∏d

i=1 |xi |−αi , we have

1

εα

∫ t

0

∫ t

0
Rg

(
Bs − Bu

ε

)
ds du → cd

∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

ds du (4.18)

almost surely. Now we only need to apply the dominated convergence theorem to derive

EEB

{
exp

(
iθ

1

εα/2

∫ t

0
V1g

(
Bs

ε

)
ds

)}
→ EB

{
exp

(
−1

2
θ2V 2

1 cd

∫ t

0

∫ t

0

1∏d
i=1 |Bi(s) − Bi(u)|αi

ds du

)}

= EEB

{
exp

(
iθV1

√
cd

∫ t

0

∫
Rd

δ(x − Bs)W(dx)ds

)}
(4.19)

as ε → 0. �

Now we are ready to prove the main theorem.

Proof of Theorem 2.11. For fixed (t, x), we let

Zε := uε(t, x) = EB

{
f (x + Bt) exp

(
i

1

εα/2

∫ t

0
V

(
x + Bs

ε

)
ds

)}
, (4.20)

Z0 := uspde(t, x) = EB

{
f (x + Bt) exp

(
iV1

√
cd

∫ t

0

∫
Rd

δ(y − x − Bs)W(dy)ds

)}
, (4.21)

and claim that ∀m,n ∈N, E{Zm
ε Z

n

ε } → E{Zm
0 Z

n

0}.
Actually, we have

E
{
Zm

ε Z
n

ε

} = EEB

{
m∏

j=1

f
(
x + B

j
t

) m+n∏
j=m+1

f
(
x + B

j
t

)

× exp

(
i

εα/2

∫ t

0

(
m∑

j=1

V

(
x + B

j
s

ε

)
−

m+n∑
j=m+1

V

(
x + B

j
s

ε

))
ds

)}
, (4.22)

where B
j
t , j = 1, . . . ,N = m + n are independent Brownian motions. Since all relevant functions are bounded and

continuous, to prove the convergence of E{Zm
ε Z

n

ε } → E{Zm
0 Z

n

0}, we only need to prove the annealed weak conver-
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gence of

Wε :=
N∑

j=1

αjB
j
t +

N∑
j=1

βj

1

εα/2

∫ t

0
V

(
B

j
s

ε

)
ds

⇒
N∑

j=1

αjB
j
t + V1

√
cd

N∑
j=1

βj

∫ t

0

∫
Rd

δ
(
y − B

j
s

)
W(dy)ds (4.23)

for αj ,βj ∈R, where we have used the stationarity of V (x) and Remark 4.3.
Now we write Wε = I1 + I2 + I3 with

I1 =
N∑

j=1

αjB
j
t , (4.24)

I2 =
N∑

j=1

βj

1

εα/2

∫ t

0
V1g

(
B

j
s

ε

)
ds, (4.25)

I3 =
N∑

j=1

βj

1

εα/2

∫ t

0

(
Φ

(
g

(
B

j
s

ε

))
− V1g

(
B

j
s

ε

))
ds, (4.26)

I3 → 0 in probability by Lemma 4.6, and for I1 + I2, we calculate

EEB

{
exp(iθ1I2 + iθ2I2)

}
= EB

{
exp

(
iθ1

N∑
j=1

αjB
j
t

)
exp

(
−1

2
V 2

1 θ2
2

N∑
i,j=1

βiβj

1

εα

∫ t

0

∫ t

0
Rg

(
Bi

s − B
j
u

ε

)
ds du

)}
, (4.27)

and by the same proof as in Proposition 4.7, we have

1

εα

∫ t

0

∫ t

0
Rg

(
Bi

s − B
j
u

ε

)
ds du →

∫ t

0

∫ t

0

cd∏d
k=1 |Bi

k(s) − B
j
k (u)|αk

ds du (4.28)

almost surely. Therefore, we see that

I1 + I2 ⇒
N∑

j=1

αjB
j
t + V1

√
cd

N∑
j=1

βj

∫ t

0

∫
Rd

δ
(
y − B

j
s

)
W(dy)ds (4.29)

in distribution in light of Remark 4.2, so (4.23) is proved.
Note that |Zε|, |Z0| are uniformly bounded, if we let Zε = Zε,1 + iZε,2,Z0 = Z0,1 + iZ0,2, the corresponding real

and imaginary parts are uniformly bounded as well. From the fact that E{Zm
ε Z

n

ε } → E{Zm
0 Z

n

0}, we know ∀m,n ∈ N,
E{Zm

ε,1Z
n
ε,2} → E{Zm

0,1Z
n
0,2}. So

E
{
exp(iθ1Zε,1 + iθ2Zε,2)

} =
∞∑

k=0

1

k!E
{
(iθ1Zε,1 + iθ2Zε,2)

k
}

→
∞∑

k=0

1

k!E
{
(iθ1Z0,1 + iθ2Z0,2)

k
}= E
{
exp(iθ1Z0,1 + iθ2Z0,2)

}
, (4.30)

which completes the proof. �
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Appendix: Technical lemmas

Proposition A.1. Consider the equation ∂tu = 1
2Δu + iV (x)u with initial condition u(0, x) = f (x) ∈ Cb(R

d). Let us

define u(t, x) = EB{f (x + Bt) exp(i
∫ t

0 V (x + Bs)ds)}. If V has locally bounded sample path almost surely, we have
for any ϕ ∈ C∞

c (Rd),∫
Rd

u(t, x)ϕ(x)dx =
∫
Rd

f (x)ϕ(x)dx +
∫ t

0

∫
Rd

u(s, x)
1

2
Δϕ(x)dx ds

+ i
∫ t

0

∫
Rd

u(s, x)V (x)ϕ(x)dx ds, (A.1)

i.e., the Feynman–Kac solution u(t, x) is a weak solution almost surely.

Proof. Fixing any δ,M > 0, define

Vδ,M(x) =
∫
Rd

φδ(x − y)V (y)1|y|<M dy, (A.2)

where φδ is a family of compactly supported mollifier. Fixing the realization, since V (y)1|y|<M is bounded, Vδ,M is
bounded, and we have Vδ,M(x) → V (x)1|x|<M almost everywhere as δ → 0. In addition, Vδ,M is smooth, so for the
equation ∂tuδ,M = 1

2Δuδ,M + iVδ,Muδ,M with initial condition uδ,M(0, x) = f (x), we have its classical solution given
by the Feynman–Kac formula

uδ,M(t, x) = EB

{
f (x + Bt) exp

(
i
∫ t

0
Vδ,M(x + Bs)ds

)}
, (A.3)

and if we first let δ → 0, then M → ∞, uδ,M(t, x) → u(t, x) by the dominated convergence theorem. Since uδ,M is
also a weak solution, we have∫

Rd

uδ,M(t, x)ϕ(x)dx =
∫
Rd

f (x)ϕ(x)dx +
∫ t

0

∫
Rd

uδ,M(s, x)
1

2
Δϕ(x)dx ds

+ i
∫ t

0

∫
Rd

uδ,M(s, x)Vδ,M(x)ϕ(x)dx ds. (A.4)

Let δ → 0,M → ∞, we complete the proof. �

Proposition A.2. If Mt is a continuous martingale and Wt is a standard Brownian motion, then

d1,k(M1,W1) ≤ (1 ∨ k)E
{∣∣〈M〉1 − 1

∣∣}, (A.5)

with the distance d1,k defined as

d1,k(X,Y ) = sup
{∣∣E{f (X) − f (Y )

}∣∣: f ∈ C2
b(R),
∥∥f ′∥∥∞ ≤ 1,

∥∥f ′′∥∥∞ ≤ k
}
. (A.6)

Proof. Since Mt is continuous, the quadratic variation process 〈M〉t is continuous as well. We define

τ = sup
{
t ∈ [0,1]: 〈M〉t ≤ 1

}
, (A.7)

and it is clear that τ is a stopping time. We construct M̃t on [0,2] as

M̃t =

⎧⎪⎪⎨
⎪⎪⎩

Mt t ∈ [0, τ ],
Mτ t ∈ (τ,1],
Mτ + bt−1 t ∈ (1,2 − 〈M〉τ ],
Mτ + b1−〈M〉τ t ∈ (2 − 〈M〉τ ,2],

(A.8)

where b is an independent Brownian motion.
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Clearly M̃t is a continuous martingale and 〈M̃〉2 = 1, so M̃2 ∼ N(0,1). Therefore, d1,k(M1,W1) = d1,k(M1, M̃2)

and we have

d1,k(M1, M̃2) ≤ d1,k(M1,Mτ ) + d1,k(Mτ , M̃2). (A.9)

For the first term, if ‖f ′′‖∞ ≤ k,

∣∣E{f (M1)
}−E
{
f (Mτ )

}−E
{
(M1 − Mτ)f

′(Mτ )
}∣∣≤ k

2
E
{
(M1 − Mτ)

2}. (A.10)

Note LHS = |E{f (M1)} −E{f (Mτ )}| because E{E{(M1 − Mτ)f
′(Mτ )|Fτ }} = 0, and E{(M1 − Mτ)

2} = E{〈M〉1 −
〈M〉τ } ≤ E{|〈M〉1 − 1|}.

For the second term, we have M̃2 = Mτ + b1−〈M〉τ . So similarly

∣∣E{f (M̃2)
}−E
{
f (Mτ )

}−E
{
b1−〈M〉τ f ′(Mτ )

}∣∣≤ k

2
E
{
b2

1−〈M〉τ
}
. (A.11)

LHS = |E{f (M̃2)} −E{f (Mτ )}| since b is independent from M , and

RHS = k

2
E
{
1 − 〈M〉τ

}≤ k

2
E
{∣∣1 − 〈M〉1

∣∣}.
To summarize, we have d1,k(M1,W1) ≤ kE{|1 − 〈M〉1|}. �

Lemma A.3.∫
Rd

e−ρ|x−y|

|x − y|d−1

e−ρ|y|

|y|d−1
dy � e−ρ|x|

(
1 + 1

|x|d−2

)
. (A.12)

Proof. See [8] Lemma A.1. �

The result in Lemma A.4 is of convolution type. We prove it by the domain decomposition method. Here are some
notations appearing in the proof. If we denote B(z, r) = {y: |y −z| ≤ r}, then ∀x ∈R

d , let ρ = |x| > 0, A1 = {z: |z| <
|z − x|}, A2 = {z: |z| ≥ |z − x|}, and define (I) = B(0, ρ) ∩ A1, (II) = B(x,ρ) ∩ A2, (III) =R

d \ ((I) ∪ (II)).
(I), (II), (III) appears in the proof of Lemma A.4, and we will estimate the integral in each of them respectively.

Ψ is assumed to be some positive function such that Ψ (x) � 1 ∧ |x|−α for any α > 0.

Lemma A.4.

1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
Ψ

(
x − y − z√

λ

)
dy dz � λd/2−1e−c

√
λ|x| + 1 ∧ e−c

√
λ|x|

|x|d−2
+ 1 ∧ 1

|x|β (A.13)

for some c > 0 and sufficiently large β > 0.

Proof. By Lemma A.3, we have

1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
Ψ

(
x − y − z√

λ

)
dy dz � (i) + (ii), (A.14)

where

(i) = λd/2−1
∫
Rd

e−ρ
√

λ|y|
(

1 ∧ 1

|x − y|α
)

dy, (A.15)

(ii) =
∫
Rd

e−ρ
√

λ|y| 1

|y|d−2

(
1 ∧ 1

|x − y|α
)

dy. (A.16)

We have used Ψ (x) � 1 ∧ 1
|x|α for α sufficiently large. (i), (ii) will be estimated separately but in the same way.
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First of all, we clearly have that (i) � λd/2−1 and (ii) � 1. Now we assume |x| � 1 and divide R
d into three parts,

(I), (II), (III).
For (i), we have that when |y − x| ≤ 1,

∫
|y−x|≤1 e−ρ

√
λ|y| dy � e−ρ

√
λ|x|. In region (I), we have |y − x| ≥ |x|

2 , so∫
I
e−ρ

√
λ|y| 1

|x − y|α dy � 1

|x|α−d
.

In region (II), |y| ≥ |x|
2 , so∫

II
1|x−y|>1e−ρ

√
λ|y| 1

|x − y|α dy � e−ρ
√

λ|x|/2.

In region (III), |x − y| ≥ |y|/2, so∫
III

e−ρ
√

λ|y| 1

|x − y|α dy �
∫
Rd

1|y|>|x|
1

|y|α dye−ρ
√

λ|x| � e−ρ
√

λ|x|.

Therefore, in summary, we have∫
Rd

e−ρ
√

λ|y|
(

1 ∧ 1

|x − y|α
)

dy � 1 ∧
(

e−c
√

λ|x| + 1

|x|β
)

(A.17)

for c = ρ/2 > 0 and β sufficiently large.
For (ii), when |y − x| ≤ 1,∫

|y−x|≤1
e−ρ

√
λ|y| 1

|y|d−2
� e−ρ

√
λ|x| 1

|x|d−2
.

In region (I), by a similar discussion, we have∫
(I)

e−ρ
√

λ|y| 1

|y|d−2
dy

1

|x|α � 1

|x|α−2
.

In region (II), e−ρ
√

λ|y| 1
|y|d−2 � e−ρ

√
λ|x|/2 1

|x|d−2 , so

∫
(II)

e−ρ
√

λ|y| 1

|y|d−2

1

|x − y|α 1|x−y|>1 dy � e−ρ
√

λ|x|/2 1

|x|d−2
.

In region (III), we have∫
(III)

e−ρ
√

λ|y| 1

|y|d−2

1

|x − y|α dy � e−ρ
√

λ|x| 1

|x|d−2
.

The proof is complete. �

Lemma A.5. For

Fλ,ρ(x) = 1

λ

∫
R2d

e−ρ|y|

|y|d−1

e−ρ|z|

|z|d−1
|R|
(

x − y − z√
λ

)
dy dz,

and |R(x)| � 1 ∧ |x|−β with β ∈ (2, d), we have the following estimates for some c > 0:

Fλ,ρ(x) � λβ/2−1e−c
√

λ|x| + 1

λ|x|β
∫ √

λ|x|

0
e−cr rd−1 dr1|x|≥1/2 + λd/2−1e−c

√
λ|x||x|d−β1|x|≥1

+ 1 ∧
(

1

|x|β−2
e−c

√
λ|x| + 1

λ|x|β
∫ √

λ|x|

0
e−cr r dr + λβ/2−1

∫ ∞
√

λ|x|
e−cr r1−β dr

)
, (A.18)
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and we have

∫
Rd

Fλ,ρ(x) + F 2
λ,ρ(x)

|x|d−2
dx �

⎧⎨
⎩

λβ/2−2 β < 4,

log |λ| β = 4,

1 β > 4.

(A.19)

Proof. The proof is similar to that of Lemma A.4 and 3.6. The details are not presented here. �

Lemma A.6. Let xi ∈R
d , i = 1, . . . ,4, then under Assumption 2.4

∣∣E{V (x1)V (x2)V (x3)V (x4)
}− R(x1 − x2)R(x3 − x4)

∣∣
≤ Ψ
(|x1 − x3|

)
Ψ
(|x2 − x4|

)+ Ψ
(|x1 − x4|

)
Ψ
(|x2 − x3|

)
, (A.20)

where Ψ (r) � 1 ∧ r−β for any β > 0.

Proof. The proof could be found in Lemma 2.3. [18], where E{V 6(x)} < ∞ is used. �

Lemma A.7. When α ∈ (0,1),
∫
R2 qε(x)qε(y) 1

|z+x−y|α dx dy → 1
|z|α as ε → 0 for z �= 0.

Proof. By change of variables, we write

∫
R2

qε(x)qε(y)
1

|z + x − y|α dx dy =
∫
R2

qε(w + y − z)qε(y)
1

|w|α dy dw

=
(∫

|w|<|z|/2
+
∫

|w|>|z|/2

)
qε(w + y − z)qε(y)

1

|w|α dy dw

= (i) + (ii), (A.21)

and since

(ii) =
∫

|√εw+z|>|z|/2
q(w + y)q(y)

1

|√εw + z|α dy dw, (A.22)

by the dominated convergence theorem, we have (ii) → 1
|z|α as ε → 0. For (i), we write

(i) =
(∫

|w|<|z|/2,|y|>|z|/4
+
∫

|w|<|z|/2,|y|<|z|/4

)
qε(w + y − z)qε(y)

1

|w|α dy dw. (A.23)

For the first term, use qε(|z|/4) to bound qε(y), then integrate in y,w; for the second term, use qε(|z|/4) to bound
qε(w + y − z), then integrate in y,w. Since qε(|z|/4) → 0 as ε → 0, we have (i) → 0. The proof is complete. �

Lemma A.8. Assume α ∈ (0,1), then
∫
R2 qε1(x1 + y1)qε2(x2 + y2)|y1 − y2|−α dy1 dy2 ≤ C|x1 − x2|−α for some

uniform constant C.

Proof. See Lemma A.2 in [19]. �

Lemma A.9. When d ≥ 3 and α ∈ (0,2),

lim
ε→0

1

εα

∫ t

0

∫ t

0
P
(|Bs − Bu| ≤ ε

)
ds du = 0. (A.24)
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Proof. By explicit calculation, we have

1

εα

∫ t

0

∫ t

0
P
(|Bs − Bu| < ε

)
ds du

= 1

(π)d/2εα

∫ t

0

∫
|x|<ε

∫ ∞

|x|2/(2s)

λd/2−2e−λ 1

|x|d−2
dλdx ds

= 1

(π)d/2εα

∫ ∞

0

∫
Rd

∫ ∞

0
1|x|<ε1|x|2<2λs1s<tλ

d/2−2e−λ 1

|x|d−2
dλdx ds

= 1

(π)d/2εα

∫ ∞

0
dλ

∫
λd/2−2e−λ

(
λs1λ<ε2/(2s) + 1

2
ε21λ>ε2/(2s)

)
1s<t ds

= 1

(π)d/2εα

∫ ∞

0
dλλd/2−2e−λ

(
λt2

2
1ε2/(2λ)>t + ε2t

2
1ε2/(2λ)<t − ε4

8λ
1ε2/(2λ)<t

)
= (i) + (ii) + (iii). (A.25)

We check that (i) ∼ εd−α , and (ii) ∼ ε2−α , (iii) ∼ ε4−α + εd−α , so the proof is complete. �
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