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Abstract. We study a BGK-like approximation to hyperbolic conservation laws forced by a multiplicative noise. First, we make
use of the stochastic characteristics method and establish the existence of a solution for any fixed parameter ε. In the next step, we
investigate the limit as ε tends to 0 and show the convergence to the kinetic solution of the limit problem.

Résumé. Dans ce papier, nous étudions une approximation de type BGK pour des lois de conservations hyperboliques soumises à
un bruit multiplicatif. Dans un premier temps, nous utilisons la méthode des caractéristiques dans le cadre stochastique et établis-
sons l’existence d’une solution pour tout paramètre ε fixé. Nous nous intéressons ensuite à la limite quand ε tend vers 0 et prouvons
la convergence vers la solution cinétique du problème limite.
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1. Introduction

In the present paper, we consider a scalar conservation law with stochastic forcing

du + div
(
A(u)

)
dt = Φ(u)dW, t ∈ (0, T ), x ∈ T

N,
(1.1)

u(0) = u0

and study its approximation in the sense of Bhatnagar–Gross–Krook (a BGK-like approximation for short). In partic-
ular, we aim to describe the conservation law (1.1) as the hydrodynamic limit of the stochastic BGK model, as the
microscopic scale ε goes to 0.

The literature devoted to the deterministic counterpart, i.e., corresponding to the situation Φ = 0, is quite extensive
(see [1,12,16–21]). In that case, the BGK model is given as follows

(
∂t + a(ξ) · ∇)

f ε = χuε − f ε

ε
, t > 0, x ∈ T

N, ξ ∈ R, (1.2)
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where χuε , the so-called equilibrium function, is defined by

χuε (ξ) = 10<ξ<uε − 1uε<ξ<0,

and a is the derivative of A. The differential operator ∇ is with respect to the space variable x. The additional real-
valued variable ξ is called velocity; the solution f ε is then a microscopic density of particles at (t, x) with velocity ξ .
The local density of particles is defined by

uε(t, x) =
∫
R

f ε(t, x, ξ)dξ.

The collisions of particles are given by the nonlinear kernel on the right-hand side of (1.2). The idea is that, as ε → 0,
the solutions f ε of (1.2) converge to χu where u is the unique kinetic or entropy solution of the deterministic scalar
conservation law.

The addition of the stochastic term to the basic governing equation is rather natural for both practical and theoretical
applications. Such a term can be used for instance to account for numerical and empirical uncertainties and therefore
stochastic conservation laws has been recently of growing interest, see [2,3,6,8,11,13,23–25]. The first complete well-
posedness result for multi-dimensional scalar conservation laws driven by a general multiplicative noise was obtained
by Debussche and Vovelle [6] for the case of kinetic solutions. In the present paper, we extend this result and show
that the kinetic solution is the macroscopic limit of stochastic BGK approximations. As the latter are much simpler
equations that can be solved explicitly, this analysis can be used for developing innovative numerical schemes for
hyperbolic conservation laws.

The BGK model in the stochastic case reads

dFε + a(ξ) · ∇Fε dt = 1uε>ξ − Fε

ε
dt − ∂ξF

εΦ dW − 1

2
∂ξ

(
G2(−∂ξF

ε
))

dt,

(1.3)
Fε(0) = Fε

0 ,

where the function Fε corresponds to f ε + 10>ξ , the local density uε is given as above, and the function G2 will be
defined in (2.1). Note, that setting Φ = 0 in (1.3) yields an equation which is equivalent to the deterministic BGK
model (1.2). Our purpose here is twofold. First, we make use of the stochastic characteristics method as developed by
Kunita in [15] to study a certain auxiliary problem. With this in hand, we fix ε and prove the existence of a unique
weak solution to the stochastic BGK model (1.3). Second, we establish a series of estimates uniform in ε which
together with the results of Debussche and Vovelle [6] justify the limit argument, as ε → 0, and give the convergence
of the weak solutions of (1.3) to the kinetic solution of (1.1).

Let us make some comments on the deterministic BGK model (1.2). Even though the general concept of the proof
is analogous, we point out that the techniques required by the stochastic case are significantly different. In particular,
the characteristic system for the deterministic BGK model consists of independent equations

dxi(t)

dt
= ai(ξ), i = 1, . . . ,N,

and the ξ -coordinate of the characteristic curve is constant. Accordingly, it is much easier to control the behavior
of f ε for large ξ . Namely, if the initial data f ε

0 are compactly supported (in ξ ), the same remains valid also for the
solution itself and also the convergence proof simplifies. On the contrary, in the stochastic case, the ξ -coordinate of
the characteristic curve is governed by an SDE and therefore this property is, in general, lost. Similar issues has to be
dealt with in order to obtain all the necessary uniform estimates. To overcome this difficulty, it was needed to develop a
suitable method to control the decay at infinity in connection with the remaining variables ω, t, x (cf. Proposition 5.3).

There is another difficulty coming from the complex structure of the characteristic system for the stochastic BGK
model (1.3). Namely, the finite speed of propagation that is an easy consequence of boundedness of the solution
u of the conservation law in the deterministic case (see for instance [20]) is no longer valid and therefore some
growth assumptions on the transport coefficient a are in place. The hypothesis of bounded derivatives is natural for
the stochastic characteristics method as it implies the existence of global stochastic flows. Even though this already
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includes one important example of Burgers’ equation it is of essential interest to handle also more general coefficients
having polynomial growth. This was achieved by a suitable cut-off procedure which also guarantees all the necessary
estimates.

The exposition is organized as follows. In Section 2, we introduce the basic setting and state the main result,
Theorem 2.1. In order to make the paper more self-contained, Section 3 provides a brief overview of two concepts
which are the keystones of our proof of existence and convergence of the BGK model. On the one hand, it is the
notion of kinetic solution to stochastic hyperbolic conservation laws, on the other hand, the method of stochastic
characteristics for first-order linear SPDEs. Section 4 is mainly devoted to the existence proof for stochastic BGK
model, however, in the Section 4.2 we establish some important estimates useful in Section 5. This final section
contains technical details of the passage to the limit and completes the proof of Theorem 2.1.

2. Setting and the main result

We now give the precise assumptions on each of the terms appearing in the above equations (1.1) and (1.3). We
work on a finite-time interval [0, T ], T > 0, and consider periodic boundary conditions: x ∈ T

N where T
N is the

N -dimensional torus. The flux function

A = (A1, . . . ,AN) :R−→ R
N

is supposed to be of class C4,η , for some η > 0, with a polynomial growth of its first derivative, denoted by a =
(a1, . . . , aN).

Regarding the stochastic term, let (Ω,F , (Ft )t≥0,P) be a stochastic basis with a complete, right-continuous fil-
tration. The initial datum may be random in general, i.e., F0-measurable, and we assume u0 ∈ Lp(Ω;Lp(TN)) for
all p ∈ [1,∞). As we intend to apply the stochastic characteristics method developed by Kunita [15], we restrict
ourselves to finite-dimensional noise. Our method extends to infinite-dimensional setting, however, substantial gener-
alization of the results concerning stochastic flows have to be established. Let U be a finite-dimensional Hilbert space
and (ek)

d
k=1 its orthonormal basis. The process W is a d-dimensional (Ft )-Wiener process: W(t) = ∑d

k=1 βk(t)ek

with (βk)
d
k=1 being mutually independent real-valued standard Wiener processes relative to (Ft )t≥0. The diffusion

coefficient Φ is then defined as

Φ(z) :U −→ L2(
T

N
)

h �−→
d∑

k=1

gk

(·, z(·))〈ek, h〉, z ∈ L2(
T

N
)
,

where the functions g1, . . . , gd :TN × R → R are of class C4,η , for some η > 0, with linear growth and bounded
derivatives of all orders. Under these assumptions, the following estimate holds true

G2(x, ξ) =
d∑

k=1

∣∣gk(x, ξ)
∣∣2 ≤ C

(
1 + |ξ |2), x ∈ T

N, ξ ∈ R. (2.1)

However, in order to get all the necessary estimates (cf. Corollary 4.11, Remark 4.12), we restrict ourselves to two
special cases: either

gk(x,0) = 0, x ∈ T
N, k = 1, . . . , d, (2.2)

hence (2.1) rewrites as

G2(x, ξ) ≤ C|ξ |2, x ∈ T
N, ξ ∈ R,

or we strengthen (2.1) in the following way

G2(x, ξ) ≤ C, x ∈ T
N, ξ ∈ R. (2.3)
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Note, that the latter is satisfied for instance in the case of additive noise.
In this setting, we can assume without loss of generality that the σ -algebra F is countably generated and (Ft )t≥0 is

the completed filtration generated by the Wiener process and the initial condition. Let us denote by P the predictable
σ -algebra on Ω × [0, T ] associated to (Ft )t≥0 and by Ps the predictable σ -algebra on Ω × [s, T ] associated to
(Ft )t≥s . For notational simplicity, we write L∞

Ps
(Ω × [s, T ] ×T

N ×R) to denote1

L∞(
Ω × [s, T ] ×T

N ×R,Ps ⊗B
(
T

N
) ⊗B(R),dP⊗ dt ⊗ dx ⊗ dξ

)
.

Concerning the initial data for the BGK model (1.3), one possibility is to consider simply Fε
0 = 1u0>ξ , however,

one can also take some suitable approximations of 1u0>ξ . Namely, let {uε
0; ε ∈ (0,1)} be a set of approximate F0-

measurable initial data, which is bounded in Lp(Ω;Lp(TN)) for all p ∈ [1,∞), and assume in addition that uε
0 → u0

in L1(Ω;L1(TN)). Thus, setting Fε
0 = 1uε

0>ξ , f ε
0 = χuε

0
yields the convergence f ε

0 → f0 = χu0 in L1(Ω ×T
N ×R).

Let us close this section by stating the main result to be proved precisely.

Theorem 2.1 (Hydrodynamic limit of the stochastic BGK model). Let the above assumptions hold true. Then,
for any ε > 0, there exists Fε ∈ L∞

P (Ω × [0, T ] × T
N × R) which is a unique weak solution to the stochastic BGK

model (1.3) with initial condition Fε
0 = 1uε

0>ξ . Furthermore, if f ε = Fε − 10>ξ then (f ε) converges in Lp(Ω ×
[0, T ] × T

N × R), for all p ∈ [1,∞), to the equilibrium function χu, where u is the unique kinetic solution to the
stochastic hyperbolic conservation law (1.1). Besides, the local densities (uε) converge to the kinetic solution u in
Lp(Ω × [0, T ] ×T

N), for all p ∈ [1,∞).

Throughout the paper, we use the letter C to denote a generic positive constant, which can depend on different
quantities but ε and may change from one line to another. We also employ a shortened notation for various Lp-type
norms, e.g., we write ‖ · ‖L

p
ω,x,ξ

for the norm in Lp(Ω ×T
N ×R) and similarly for other spaces.

3. Preliminary results

As we are going to apply the well-posedness theory for kinetic solutions of hyperbolic scalar conservation laws (1.1)
as well as the theory of stochastic flows generated by stochastic differential equations, we provide a brief overview of
these two concepts.

3.1. Kinetic formulation for scalar conservation laws

The main reference for this subsection is the paper of Debussche and Vovelle [6]. For further reading about the kinetic
approach used in different settings, we refer the reader to [4,10,16,17], or [21]. In the paper [6], the notion of kinetic
and generalized kinetic solution to (1.1) was introduced and the existence, uniqueness and continuous dependence on
initial data were proved. In the following, we present the main ideas and results while skipping all the technicalities.

Let u be a smooth solution to (1.1). It follows from the Itô formula that u also satisfies the kinetic formulation of
(1.1)

∂tF + a(ξ) · ∇F = δu=ξΦ(u)Ẇ + ∂ξ

(
m − 1

2
G2δu=ξ

)
, (3.1)

where F = 1u>ξ and m is an unknown kinetic measure, i.e., a random nonnegative bounded Borel measure on [0, T ]×
T

N ×R that vanishes for large ξ in the following sense: if Bc
R = {ξ ∈ R; |ξ | ≥ R} then

lim
R→∞Em

(
T

N × [0, T ] × Bc
R

) = 0.

Hence we arrive at the notion of kinetic solution: let u ∈ Lp(Ω ×[0, T ],P,dP⊗ dt;Lp(TN)), ∀p ∈ [1,∞). It is said
to be a kinetic solution to (1.1) provided F = 1u>ξ is a solution, in the sense of distributions over [0, T ] × T

N × R,

1B(TN) and B(R), respectively, denotes the Borel σ -algebra on T
N and R, respectively.
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to the kinetic formulation (3.1) for some kinetic measure m. Replacing the indicator function by a general kinetic
function F we obtain the definition of a generalized kinetic solution. It corresponds to the situation where one does not
know the exact value of u(t, x) but only its law given by a probability measure νt,x . More precisely, let F(t), t ∈ [0, T ],
be a kinetic function on Ω × T

N ×R and νt,x(ξ) = −∂ξF (t, x, ξ). Then F is a generalized kinetic solution to (1.1)
provided: F(0) = 1u0>ξ and for any test function ϕ ∈ C∞

c ([0, T ) ×T
N ×R),

∫ T

0

〈
F(t), ∂tϕ(t)

〉
dt + 〈

F(0), ϕ(0)
〉 + ∫ T

0

〈
F(t), a(ξ) · ∇ϕ(t)

〉
dt

= −
d∑

k=1

∫ T

0

∫
TN

∫
R

gk(x, ξ)ϕ(t, x, ξ)dνt,x(ξ)dx dβk(t)

− 1

2

∫ T

0

∫
TN

∫
R

G2(x, ξ)∂ξϕ(t, x, ξ)dνt,x(ξ)dx dt + m(∂ξϕ) (3.2)

holds true P-a.s. The assumptions considered in [6] are the following: the flux function A is of class C1 with a poly-
nomial growth of its derivative; the process W is a (generally infinite-dimensional) cylindrical Wiener process, i.e.,
W(t) = ∑

k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued standard Wiener processes and (ek)k≥1

a complete orthonormal system in a separable Hilbert space U; the mapping Φ(z) :U → L2(TN) is defined for each
z ∈ L2(TN) by Φ(z)ek = gk(·, z(·)) where gk ∈ C(TN ×R) and the following conditions∑

k≥1

∣∣gk(x, ξ)
∣∣2 ≤ C

(
1 + |ξ |2),

∑
k≥1

∣∣gk(x, ξ) − gk(y, ζ )
∣∣2 ≤ C

(|x − y|2 + |ξ − ζ |h(|ξ − ζ |)),
are fulfilled for every x, y ∈ T

N, ξ, ζ ∈ R, with h being a continuous nondecreasing function on R+ satisfying, for
some α > 0,

h(δ) ≤ Cδα, δ < 1.

Under these hypotheses, the well-posedness result [6], Theorem 11, Theorem 19, states: For any u0 ∈ Lp(Ω × T
N)

for all p ∈ [1,∞) there exists a unique kinetic solution to (1.1). Besides, any generalized kinetic solution F is actually
a kinetic solution, i.e., there exists a process u such that F = 1u>ξ . Moreover, if u1, u2 are kinetic solutions with initial
data u1,0 and u2,0, respectively, then for all t ∈ [0, T ]

E
∥∥u1(t) − u2(t)

∥∥
L1

x
≤ E‖u1,0 − u2,0‖L1

x
.

3.2. Stochastic flows and stochastic characteristics method

The results mentioned in this subsection are due to Kunita and can be found in [14] and [15]. To begin with, we
introduce some notation. We denote by C

l,δ
b (Rd) the space of all l-times continuously differentiable functions with

bounded derivatives up to order l (the function itself is only required to be of linear growth) and δ-Hölder continuous
lth derivatives.

Let Bt = (B1
t , . . . ,Bm

t ) be an m-dimensional Wiener process and let bk :Rd → R
d , k = 0, . . . ,m. We study the

following system of Stratonovich’s stochastic differential equations

dφt = b0(φt )dt +
m∑

k=1

bk(φt ) ◦ dBk
t . (3.3)

Under the hypothesis that b1, . . . , bm ∈ C
l+1,δ
b (Rd) and b0 ∈ C

l,δ
b (Rd) for some l ≥ 1 and δ > 0, and for any given

y ∈ R
d , s ∈ [0, T ], the problem (3.3) possesses a unique solution starting from y at time s. Let us denote this solution
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by φs,t (y). It enjoys several important properties. Namely, it is a continuous Cl,ε-semimartingale for any ε < δ and
defines a forward Brownian stochastic flow of Cl-diffeomorphisms, i.e., there exists a null set N of Ω such that for
any ω ∈ Nc , the family of continuous maps {φs,t (ω);0 ≤ s ≤ t ≤ T } satisfies

(i) φs,t (ω) = φr,t (ω) ◦ φs,r (ω) for all 0 ≤ s ≤ r ≤ t ≤ T ,
(ii) φs,s(ω) = Id for all 0 ≤ s ≤ T ,

(iii) φs,t (ω) :Rd → R
d is l-times differentiable with respect to y, for all 0 ≤ s ≤ t ≤ T , and the derivatives are

continuous in (s, t, y),
(iv) φs,t (ω) :Rd →R

d is a Cl-diffeomorphism for all 0 ≤ s ≤ t ≤ T ,
(v) φti ,ti+1 , i = 0, . . . , n − 1, are independent random variables for any 0 ≤ t0 ≤ · · · ≤ tn ≤ T .

Therefore, for each 0 ≤ s ≤ t ≤ T , the mapping φs,t (ω) has the inverse ρs,t (ω) = φs,t (ω)−1 which satisfies

(vi) ρs,t (ω) :Rd → R
d is l-times differentiable with respect to y, for all 0 ≤ s ≤ t ≤ T , and the derivatives are

continuous in (s, t, y),
(vii) ρs,t (ω) = ρs,r (ω) ◦ ρr,t (ω) for all 0 ≤ s ≤ r ≤ t ≤ T ,

and consequently ρs,t is a stochastic flow of Cl-diffeomorphisms for the backward direction. Indeed, the following
holds true: For any 0 ≤ s ≤ t ≤ T , the process ρs,t (y) satisfies the backward Stratonovich stochastic differential
equation with the terminal condition y

ρs,t (y) = y −
∫ t

s

b0(ρr,t (y)
)

dr −
m∑

k=1

∫ t

s

bk
(
ρr,t (y)

) ◦ d̂Bk
r ,

where the last term is a backward Stratonovich integral defined by Kunita [15] using the time-reversing method. To be
more precise, the Brownian motion B is regarded as a backward martingale with respect to its natural two parametric
filtration

σ(Br1 − Br2; s ≤ r1, r2 ≤ t), 0 ≤ s ≤ t ≤ T ,

the integral is then defined similarly to the forward case and both stochastic flows φs,t as well as ρs,t are adapted to
this filtration. Furthermore, we have a growth control for both forward and backward stochastic flow. Fix arbitrary
δ ∈ (0,1), then the following convergences hold uniformly in s, t , P-a.s.,

lim|y|→∞
|φs,t (y)|

(1 + |y|)1+δ
= 0, lim|y|→∞

|ρs,t (y)|
(1 + |y|)1+δ

= 0,

lim|y|→∞
(1 + |y|)δ

1 + |φs,t (y)| = 0, lim|y|→∞
(1 + |y|)δ

1 + |ρs,t (y)| = 0.

In the remainder of this subsection we will discuss the stochastic characteristics method where the theory of
stochastic flows plays an important role. We restrict our attention to a first-order linear stochastic partial differen-
tial equation of the form

dv = b0(y) · ∇yv dt +
m∑

k=1

bk(y) · ∇yv ◦ dBk
t ,

(3.4)
v(0) = v0,

with coefficients bk :Rd → R
d , k = 0, . . . ,m. The associated stochastic characteristic system is defined by a system

of Stratonovich stochastic differential equations

dφt = b0(φt )dt +
m∑

k=1

bk(φt ) ◦ dBk
t . (3.5)
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A solution of (3.5) starting at y is the so-called stochastic characteristic curve of (3.4) and will be denoted by φt (y).
Assume that b1, . . . , bm ∈ C

l+1,δ
b (Rd) and b0 ∈ C

l,δ
b (Rd) for some l ≥ 3 and δ > 0. If the initial function v0 lies in

Cl,δ(Rd), then the problem (3.4) has a unique strong solution which is a continuous Cl,ε-semimartingale for some
ε > 0 and is represented by

v(t, y) = v0
(
φ−1

t (y)
)
, t ∈ [0, T ], (3.6)

where the inverse mapping φ−1
t is well defined according to the previous paragraph. It satisfies (3.4) in the following

sense

v(t, y) = v0(y) + b0(y) ·
∫ t

0
∇yv(r, y)dr +

m∑
k=1

bk(y) ·
∫ t

0
∇yv(r, y) ◦ dBk

r .

Moreover, if the initial condition v0 is rapidly decreasing then so does the solution itself and

E sup
t∈[0,T ]

(∫
Rd

∣∣v(t, y)
∣∣(1 + |y|)n dy

)p

< ∞, ∀n ∈ N0,p ∈ [1,∞).

The choice of the Stratonovich integral is more natural here and is given by application of the Itô–Wentzell-type
formula in the proof of the explicit representation of the solution (3.6). Indeed, in this case it is close to the classical
differential rule formula for composite functions (cf. [14], Theorem I.8.1, Theorem I.8.3).

4. Solution to the stochastic BGK model

This section is devoted to the existence proof for the stochastic BGK model (1.3). Let us start with the definition of
its solution.

Definition 4.1. Let ε > 0. Then Fε ∈ L∞
P (Ω ×[0, T ]×T

N ×R) satisfying Fε − 10>ξ ∈ L1(Ω ×[0, T ]×T
N ×R) is

called a weak solution to the stochastic BGK model (1.3) with initial condition Fε
0 provided the following holds true

for a.e. t ∈ [0, T ], P-a.s.,

〈
Fε(t), ϕ

〉 = 〈
Fε

0 , ϕ
〉 + ∫ t

0

〈
Fε(s), a · ∇ϕ

〉
ds

+ 1

ε

∫ t

0

〈
1uε(t)>ξ − Fε(t), ϕ(t)

〉
dt +

d∑
k=1

∫ t

0

〈
Fε(s), ∂ξ (gkϕ)

〉
dβk(s)

+ 1

2

∫ t

0

〈
Fε(s), ∂ξ

(
G2∂ξϕ

)〉
ds.

Remark 4.2. In particular, for any ϕ ∈ C∞
c (TN × R), there exists a representative of 〈Fε(t), ϕ〉 ∈ L∞(Ω × [0, T ])

which is a continuous stochastic process.

In order to solve the stochastic BGK model (1.3), we intend to employ the stochastic characterics method intro-
duced in the previous section. Hence we need to reformulate the problem in Stratonovich form. It will be seen from the
following lemma (see Corollary 4.4) that on the level of above defined weak solutions the problem (1.3) is equivalent
to

dFε + a(ξ) · ∇Fε dt = 1uε>ξ − Fε

ε
dt − ∂ξF

εΦ ◦ dW + 1

4
∂ξF

ε∂ξG
2 dt,

F ε(0) = Fε
0 .
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Lemma 4.3. If X be a C1(TN × R)-valued continuous (Ft )-semimartingale whose martingale part is given by
− ∫ t

0 ∂ξXΦ dW , then

−
∫ t

0
∂ξXΦ dW + 1

2

∫ t

0
∂ξ

(
G2∂ξX

)
dt = −

∫ t

0
∂ξXΦ ◦ dW + 1

4

∫ t

0
∂ξX∂ξG

2 dt. (4.1)

Moreover, the same is valid in the sense of distributions as well: let X be a D′(TN × R)-valued continuous
(Ft )-semimartingale whose martingale part is given by − ∫ t

0 ∂ξXΦ dW , i.e., 〈X(t),ϕ〉 is a continuous (Ft )-

semimartingale with martingale part − ∫ t

0 〈∂ξXΦ,ϕ〉dW for any ϕ ∈ C∞
c (TN × R). Then (4.1) holds true in

D′(TN ×R).

Proof. We will only prove the second part of the statement as the first one is straightforward and follows similar
arguments. Let us recall the relation between Itô and Stratonovich integrals (see [14] or [15]). Let Y be a continu-
ous local semimartingale and Ψ be a continuous semimartingale. Then the Stratonovich integral is well defined and
satisfies

∫ t

0
Ψ ◦ dY =

∫ t

0
Ψ dY + 1

2

〈〈Ψ,Y 〉〉
t
,

where 〈〈·, ·〉〉t denotes the cross-variation process. Therefore, we need to calculate the cross variation of −∂ξXgk

and the Wiener process βk , k = 1, . . . , d . Towards this end, we take a test function ϕ ∈ C∞
c (TN × R) and

derive the martingale part of 〈∂ξXgk,ϕ〉 (in the following, we emphasize only the corresponding martingale
parts).

〈X,ϕ〉 = · · · −
∫ t

0
〈∂ξXgk,ϕ〉dβk(s),

〈X,gkϕ〉 = · · · −
∫ t

0
〈∂ξXgk, gkϕ〉dβk(s),

〈∂ξX,gkϕ〉 = · · · +
∫ t

0

〈
∂ξXgk, ∂ξ (gkϕ)

〉
dβk(s),

where

〈
∂ξXgk, ∂ξ (gkϕ)

〉 = −〈
∂ξ (∂ξXgk), gkϕ

〉
= −〈

∂2
ξ Xg2

k , ϕ
〉 − 1

2

〈
∂ξX∂ξg

2
k , ϕ

〉
= −〈

∂ξ

(
g2

k∂ξX
)
, ϕ

〉 + 1

2

〈
∂ξX∂ξg

2
k , ϕ

〉
.

Consequently

〈〈〈−∂ξXgk,ϕ〉, βk

〉〉
t
=

∫ t

0

〈
∂ξ

(
g2

k∂ξX
)
, ϕ

〉
ds − 1

2

∫ t

0

〈
∂ξX∂ξg

2
k , ϕ

〉
ds

and the claim follows by summing up over k. �

Corollary 4.4. Let ε > 0. If Fε ∈ L∞
P (Ω × [0, T ] × T

N × R) is such that Fε − 10>ξ ∈ L1(Ω × [0, T ] × T
N × R)

then it is a weak solution to (1.3) if and only if, for any ϕ ∈ C∞
c (TN × R), there exists a representative of

〈Fε(t), ∂ξ (gkϕ)〉 ∈ L∞(Ω × [0, T ]) which is a continuous (Ft )-semimartingale and the following holds true for
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a.e. t ∈ [0, T ], P-a.s.,

〈
Fε(t), ϕ

〉 = 〈
Fε

0 , ϕ
〉 + ∫ t

0

〈
Fε(s), a · ∇ϕ

〉
ds

+ 1

ε

∫ t

0

〈
1uε(t)>ξ − Fε(t), ϕ(t)

〉
dt +

d∑
k=1

∫ t

0

〈
Fε(s), ∂ξ (gkϕ)

〉 ◦ dβk(s)

− 1

4

∫ t

0

〈
Fε(s), ∂ξ

(
ϕ∂ξG

2)〉ds.

As the first step in order to show the existence of a solution to the stochastic BGK model, we shall study the
following auxiliary problem:

dX + a(ξ) · ∇X dt = −∂ξXΦ ◦ dW + 1

4
∂ξX∂ξG

2 dt,

(4.2)
X(s) = X0.

It will be shown in Corollary 4.10 that this problem possesses a unique weak solution provided X0 ∈ L∞(Ω ×T
N ×

R). Let

S = {
S(t, s);0 ≤ s ≤ t ≤ T

}
be its solution operator, i.e., for any 0 ≤ s ≤ t ≤ T we define S(t, s)X0 to be the solution to (4.2). Then we have the
following existence result for the stochastic BGK model.

Theorem 4.5. For any ε > 0, there exists a unique weak solution of the stochastic BGK model (1.3) and is represented
by

Fε(t) = e−t/εS(t,0)F ε
0 + 1

ε

∫ t

0
e−(t−s)/εS(t, s)1uε(s)>ξ ds. (4.3)

The proof of Theorem 4.5 will be divided into several steps. First, we have to concentrate on the problem (4.2).

4.1. Application of the stochastic characteristics method

In this subsection, we prove the existence of a unique solution to (4.2) and study the behavior of the solution operator
S . The equation (4.2) is a first-order linear stochastic partial differential equation of the form (3.4), however, the
coefficient a, as well as ∂ξG

2 in the case of (2.2), is not supposed to have bounded derivatives. For this purpose we
introduce the following truncated problem: let (kR) be a smooth truncation on R, i.e., let kR(ξ) = k(R−1ξ), where k

is a smooth function with compact support satisfying 0 ≤ k ≤ 1 and

k(ξ) =
{

1, if |ξ | ≤ 1
2 ,

0, if |ξ | ≥ 1,

and define gR
k (x, ξ) = gk(x, ξ)kR(ξ), k = 1, . . . , d , and aR(ξ) = a(ξ)kR(ξ). Coefficients ΦR and GR,2, respectively,

can be defined similarly as Φ and G2, respectively, using gR
k instead of gk .2 Then

dX + aR(ξ) · ∇X dt = −∂ξXΦR ◦ dW + 1

4
∂ξX∂ξG

R,2 dt,

(4.4)
X(s) = X0

2For notational simplicity we write GR,2 as an abbreviation for (GR)2 and similarly g
R,2
k

instead of (gR
k

)2.
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can be solved by the method of stochastic characteristics. Indeed, the stochastic characteristic system associated with
(4.4) is defined by the following system of Stratonovich’s stochastic differential equations

dϕ0
t = −1

4
∂ξG

R,2(ϕt )dt +
d∑

k=1

gR
k (ϕt ) ◦ dβk(t),

(4.5)
dϕi

t = aR
i

(
ϕ0

t

)
dt, i = 1, . . . ,N,

where the processes ϕ0
t and ϕi

t , i = 1, . . . ,N , respectively, describe the evolution of the ξ -coordinate and xi -
coordinate, i = 1, . . . ,N , respectively, of the characteristic curve.

Let us denote by ϕR
s,t (x, ξ) the solution of (4.5) starting from (x, ξ) at time s. Then ϕR defines a stochastic flow of

C3-diffeomorphisms and we denote by ψR the corresponding inverse flow. It is the solution to the backward problem

dψ0
t = 1

4
∂ξG

R,2(ψt ) d̂t −
d∑

k=1

gR
k (ψt ) ◦ d̂βk(t),

(4.6)
dψi

t = −aR
i

(
ψ0

t

)
d̂t, i = 1, . . . ,N.

Remark 4.6. Note, that unlike the deterministic BGK model (i.e., gk = 0, k = 1, . . . , d), the stochastic case is not time
homogeneous: ϕR

s,t �= ϕR
0,t−s .

Proposition 4.7. Let R > 0. If X0 ∈ C3,η(TN ×R) almost surely,3 there exists a unique strong solution to (4.4) which
is a continuous C3,ϑ -semimartingale for some ϑ > 0, i.e., it satisfies (4.4) in the following sense

X(t, x, ξ ; s) = X0(x, ξ) − aR(ξ) ·
∫ t

s

∇X(r, x, ξ ; s)dr

−
d∑

k=1

gR
k (x, ξ)

∫ t

s

∂ξX(r, x, ξ ; s) ◦ dβk(r)

+1

4
∂ξG

R,2(x, ξ)

∫ t

s

∂ξX(r, x, ξ ; s)dr.

Moreover, it is represented by

X(t, x, ξ ; s) = X0
(
ψR

s,t (x, ξ)
)
.

Proof. The above representation formula corresponds to (3.6). It can be shown in a straightforward manner using the
Itô–Wentzell formula (see [15], Theorem 6.1.9). �

It is obvious, that the domain of definition of the solution operator to (4.4), hereafter denoted by SR , can be
extended to more general functions which do not necessarily fulfil the assumptions of Proposition 4.7. In this case, we
define consistently

SR(t, s)X0 = X0
(
ψR

s,t (x, ξ)
)
, 0 ≤ s ≤ t ≤ T .

Since diffeomorphisms preserve sets of measure zero the above is well defined also if X0 is only defined almost
everywhere. The resulting process cannot be a strong solution to (4.4), however, as it will be seen in Corollary 4.9 it
can still satisfy (4.4) in a weak sense. In the following proposition we establish basic properties of the operator SR .

Proposition 4.8. Let R > 0. Let SR = {SR(t, s),0 ≤ s ≤ t ≤ T } be defined as above. Then

3η > 0 is the Hölder exponent from Section 2.
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(i) SR is a family of bounded linear operators on L1(Ω ×T
N ×R) having the operator norm bounded by 1, i.e., for

any X0 ∈ L1(Ω ×T
N ×R), 0 ≤ s ≤ t ≤ T ,∥∥SR(t, s)X0

∥∥
L1

ω,x,ξ
≤ ‖X0‖L1

ω,x,ξ
, (4.7)

(ii) SR verifies the semigroup law

SR(t, s) = SR(t, r) ◦ SR(r, s), 0 ≤ s ≤ r ≤ t ≤ T ,

SR(s, s) = Id, 0 ≤ s ≤ T .

Proof. Fix arbitrary 0 ≤ s ≤ t ≤ T . The linearity of SR(t, s) follows easily from its definition. In order to prove (4.7),
we will proceed in several steps. First, we make an additional assumption upon the initial condition X0, namely,

X0 ∈ L1(Ω ×T
N ×R

) ∩ L∞(
Ω ×T

N ×R
)
. (4.8)

Let us now consider a suitable smooth approximation of X0. In particular, let (hδ) be an approximation to the identity
on T

N × R, and (kδ) a smooth truncation on R, i.e., define kδ(ξ) = k(δξ), where k was defined at the beginning of
this subsection. Then the regularization Xδ

0, defined in the following way

Xδ
0(ω) = (

X0(ω) ∗ hδ

)
kδ,

is bounded, pathwise smooth and compactly supported and

Xδ
0 −→ X0 in L1(Ω ×T

N ×R
); ∥∥Xδ

0

∥∥
L1

ω,x,ξ
≤ ‖X0‖L1

ω,x,ξ
. (4.9)

Furthermore, also all the partial derivatives ∂ξX
δ
0, ∂xi

Xδ
0, i = 1, . . . ,N , are bounded, pathwise smooth and compactly

supported.
Next, the process Xδ = SR(t, s)Xδ

0 is the unique strong solution to (4.4) or equivalently

dX + aR(ξ) · ∇X dt = −∂ξXΦR dW + 1

2
∂ξ

(
GR,2∂ξX

)
dt,

(4.10)
X(s) = Xδ

0

which follows by a similar approach as in Lemma 4.3. For any x ∈ T
N, ξ ∈ R, the above stochastic integral is a well

defined martingale with zero expected value. Indeed, for each k = 1, . . . , d , we have4

E

∫ T

s

∣∣∂ξX
δgR

k (x, ξ)
∣∣2 dr = CE

∫ T

s

∣∣∇x,ξX
δ
0

(
ψR

s,r (x, ξ)
) · ∂ξψ

R
s,r (x, ξ)

∣∣2 dr

≤ CE

∫ T

s

∣∣∂ξψ
R
s,r (x, ξ)

∣∣2 dr < ∞

since gR
k is bounded and the process ∂ξψ

R
s,r (x, ξ) solves a backward bilinear stochastic differential equation with

bounded coefficients (see [15], Theorem 4.6.5) and therefore possesses moments of any order which are bounded in
0 ≤ s ≤ r ≤ T ,x ∈ T

N, ξ ∈R. Nevertheless, we point out the same is not generally true without the assumption (4.8).
In this case, the stochastic integral can happen to be a local martingale only, which would significantly complicate the
subsequent steps.

We intend to integrate the equation (4.10) with respect to the variables ω,x, ξ and expect the stochastic integral to
vanish. Towards this end, it is needed to verify the interchange of integrals with respect to x, ξ and the stochastic one.

4By ∇x,ξ we denote the gradient with respect to the variables x, ξ .
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We make use of the stochastic Fubini theorem [5], Theorem 4.18. In order to verify its assumptions, the following
quantity

∫
TN

∫
R

(
E

∫ T

s

∣∣∂ξX
δgR

k (x, ξ)
∣∣2 dr

)1/2

dξ dx

=
∫
TN

∫
R

∣∣gR
k (x, ξ)

∣∣(E∫ T

s

∣∣∇x,ξX
δ
0

(
ψR

s,r (x, ξ)
) · ∂ξψ

R
s,r (x, ξ)

∣∣2
dr

)1/2

dξ dx

should be finite. Recall that gR
k , k = 1, . . . , d , are bounded and the moments of ∂ξψ

R
s,r (x, ξ) are finite and bounded

in s, r, x, ξ . Thus, since ∇x,ξX
δ
0 is bounded and pathwise compactly supported it is sufficient to show that so does

∇x,ξX
δ
0(ψ

R
s,r (x, ξ)). However, this fact follows immediately from the growth control on the stochastic flow ψR . In-

deed, all the assertions of [15], Section 4.5, in particular Exercise 4.5.9 and 4.5.10, can be modified in order to obtain
corresponding results for the component ψ

R,0
s,r only. Hence, for any η ∈ (0,1), we have uniformly in s, r, x,P-a.s.,

lim|ξ |→∞
|ψR,0

s,r (x, ξ)|
(1 + |ξ |)1+η

= 0, lim|ξ |→∞
(1 + |ξ |)η

1 + |ψR,0
s,r (x, ξ)| = 0.

Consequently, it yields: for any fixed L > 0, there exists l > 0 such that if |ξ | > l then it holds uniformly in s, r, x,
P-a.s.,(

1 + |ξ |)η ≤ L
(
1 + ∣∣ψR,0

s,r (x, ξ)
∣∣).

The support of Xδ
0 as well as ∇x,ξX

δ
0 in the variable ξ is included in [− 1

δ
, 1

δ
]. Therefore, if in addition (1 + |ξ |)η >

L(1 + 1
δ
) then |ψR,0

s,r (x, ξ)| > 1
δ

for all s, r, x, P-a.s., and accordingly ∇x,ξX
δ
0(ψ

R
s,r (x, ξ)) = 0 for all s, r, x, P-a.s. As

a consequence, the stochastic Fubini theorem can be applied.
Therefore, integrating the equation (4.10) with respect to ω,x, ξ yields

E

∫
TN

∫
R

Xδ(t, x, ξ)dξ dx +E

∫ t

s

∫
R

aR(ξ) ·
∫
TN

∇Xδ(r, x, ξ)dx dξ dr

= E

∫
TN

∫
R

Xδ
0 dξ dx + 1

2
E

∫ t

s

∫
TN

∫
R

∂ξ

(
GR,2(x, ξ)∂ξX

δ(r, x, ξ)
)

dξ dx dr,

where the second term on the left-hand side vanishes due to periodic boundary conditions and the second one on the
right-hand side due to the compact support of GR,2 in ξ . Hence we obtain

E

∫
TN

∫
R

SR(t, s)Xδ
0 dξ dx = E

∫
TN

∫
R

Xδ
0 dξ dx,

where the integrals on both sides are finite. Note, that if Xδ
0 is nonnegative (nonpositive) then also SR(t, s)Xδ

0 stays
nonnegative (nonpositive). Therefore,(

SR(t, s)Xδ
0

)+ = SR(t, s)
(
Xδ

0

)+
,

(
SR(t, s)Xδ

0

)− = SR(t, s)
(
Xδ

0

)−
,

and by splitting the initial data into positive and negative part we obtain that (4.7) is satisfied with equality in this case.
In addition to (4.9), also the convergence SR(t, s)Xδ

0 → SR(t, s)X0 holds true in L1(Ω × T
N × R). Indeed,

let us fix δ1, δ2 ∈ (0,1). Then (4.7) is also fulfilled by X
δ1
0 − X

δ2
0 hence the set {SR(t, s)Xδ

0; δ ∈ (0,1)} is Cauchy
in L1(Ω × T

N × R) and the limit is necessarily SR(t, s)X0 since diffeomorphisms preserve sets of zero measure.
Finally, application of the Fatou lemma gives (4.7) for X0.

As the next step, we avoid the hypothesis (4.8). Let X0 ∈ L1(Ω ×T
N ×R) and consider the following approxima-

tions

Xn
0 = X01|X0|≤n, n ∈ N.
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Then clearly

Xn
0 −→ X0 in L1(Ω ×T

N ×R
)
,

∥∥Xn
0

∥∥
L1

ω,x,ξ
≤ ‖X0‖L1

ω,x,ξ

and Xn
0 ∈ L∞(Ω × T

N × R) hence the estimate (4.7) is valid for all Xn
0 . As above, it is possible to show that

SR(t, s)Xn
0 → SR(t, s)X0 in L1(Ω ×T

N ×R) and by the lower semicontinuity of the norm we obtain the claim.
Finally, item (ii) can be shown by the flow property of ψ :

SR(t, r) ◦ SR(r, s)X0 = X0
(
ψR

s,r

(
ψR

r,t (x, ξ)
)) = X0

(
ψR

s,t (x, ξ)
) = SR(t, s)X0. �

Corollary 4.9. Let R > 0. For any Fs ⊗ B(TN) ⊗ B(R)-measurable initial datum X0 ∈ L∞(Ω × T
N × R) there

exists a unique X ∈ L∞
Ps

(Ω × [s, T ] ×T
N ×R) that is a weak solution to (4.10), i.e., the following holds true for any

φ ∈ C∞
c (TN ×R), a.e. t ∈ [s, T ], P-a.s.,

〈
X(t),φ

〉 = 〈X0, φ〉 +
∫ t

s

〈
X(r), aR · ∇φ

〉
dr

+
d∑

k=1

∫ t

s

〈
X(r), ∂ξ

(
gR

k φ
)〉

dβk(r) + 1

2

∫ t

s

〈
X(r), ∂ξ

(
GR,2∂ξφ

)〉
dr. (4.11)

Furthermore, it is represented by X = SR(t, s)X0.

Proof. Let us start with the proof of uniqueness. Due to linearity, it is enough to prove that any L∞-weak solution to
(4.10) starting from the origin X0 = 0 vanishes identically. Let X be such a solution. First, let (hτ ) be a symmetric
approximation to the identity on T

N ×R and test (4.10) by φ(x, ξ) = hτ (y−x, ζ −ξ). (Here, we employ the parameter
τ in order to distinguish from the regularization defined in Proposition 4.8, which will also be used in this proof.) Then
Xτ (t) := X(t) ∗ hτ , for a.e. t ∈ [s, T ], satisfies

Xτ (t, y, ζ ) = −
∫ t

s

[
aR · ∇X(r)

]τ
(y, ζ )dr −

d∑
k=1

∫ t

s

[
∂ξX(r)gR

k

]τ
(y, ζ )dβk(r)

+ 1

2

∫ t

s

[
∂ξ

(
GR,2∂ξX(r)

)]τ
(y, ζ )dr

hence is smooth in (y, ζ ) and can be extended to become continuous on [s, T ]. Now, we will argue as in [9], Theo-
rem 20, and make use of the stochastic flow ϕR . From the Itô–Wentzell formula for the Itô integral [15], Theorem 3.3.1,
we deduce

Xτ
(
t, ϕR

s,t (ỹ, ζ̃ )
) = −

∫ t

s

[
aR · ∇X(r)

]τ (
ϕR

s,r (ỹ, ζ̃ )
)

dr

−
d∑

k=1

∫ t

s

[
∂ξX(r)gR

k

]τ (
ϕR

s,r (ỹ, ζ̃ )
)

dβk(r)

+ 1

2

∫ t

s

[
∂ξ

(
GR,2∂ξX(r)

)]τ (
ϕR

s,r (ỹ, ζ̃ )
)

dr

+
∫ t

s

∇Xτ
(
r, ϕR

s,r (ỹ, ζ̃ )
) · aR

(
ϕR,0

s,r (ỹ, ζ̃ )
)

dr

+
d∑

k=1

∫ t

s

∂ξX
τ
(
r, ϕR

s,r (ỹ, ζ̃ )
)
gR

k

(
ϕR

s,r (ỹ, ζ̃ )
)

dβk(r)
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+ 1

2

∫ t

s

∂2
ξ Xτ

(
r, ϕR

s,r (ỹ, ζ̃ )
)
GR,2(ϕR

s,r (ỹ, ζ̃ )
)

dr

−
d∑

k=1

∫ t

s

∂ξ

[
∂ξX(r)gR

k

]τ (
ϕR

s,r (ỹ, ζ̃ )
)
gR

k

(
ϕR

s,r (ỹ, ζ̃ )
)

dr

= J1 + J2 + J3 + J4 + J5 + J6 + J7.

As the next step, we intend to show that J1 + J4 → 0, J2 + J5 → 0, and J3 + J6 + J7 → 0 in D′(TN × R), P-a.s., as
τ → 0. Remark, that unlike [9], working with the Stratonovich form of (4.10) would not bring any simplifications
here. To be more precise, the Stratonovich version of the Itô–Wentzell formula (see [15], Theorem 3.3.2) is close to
the classical differential rule formula for composite functions hence any correction terms (as J6, J7 in the Itô version)
are not necessary; however, due to the dependence on x, ξ of the coefficients gR

k , the corresponding Stratonovich
integrals would not cancel and therefore in order to guarantee their convergence to zero, one would need to control
the correction terms J6, J7 anyway.

Let us proceed with the proof of the above sketched convergence. Towards this end, we employ repeatedly the
arguments of the commutation lemma of DiPerna and Lions [7], Lemma II.1. In particular, in the case of J1 + J4 we
obtain for a.e. r ∈ [s, t], P-a.s., that

aR · ∇Xτ (r) − [
aR · ∇X(r)

]τ −→ 0 in D′(
T

N ×R
)
. (4.12)

Indeed, since

aR(ξ) · ∇Xτ (r, x, ξ) − [
aR · ∇X(r)

]τ
(x, ξ)

=
∫
TN

∫
R

X(r, y, ζ )
[
aR(ξ) − aR(ζ )

] · ∇hτ (x − y, ξ − ζ )dζ dy

and τ |∇hτ |(·) ≤ Ch2τ (·), we obtain the following bound by standard estimates on convolutions: for any φ ∈
C∞

c (TN ×R)∣∣〈aR · ∇Xτ (r) − [
aR · ∇X(r)

]τ
, φ

〉∣∣ ≤ C
∥∥aR

∥∥
W 1,∞(R)

∥∥X(r)
∥∥

Lp(Kφ)
‖φ‖Lq(TN×R),

where Kφ ⊂ T
N ×R is a suitable compact set and p,q ∈ [1,∞] are arbitrary conjugate exponents. As a consequence,

it is sufficient to consider X(r) continuous in (x, ξ) as the general case can be concluded by a density argument. We
have ∫

TN

∫
R

X(r, y, ζ )
[
aR(ξ) − aR(ζ )

] · ∇hτ (x − y, ξ − ζ )dζ dy

=
∫
TN

∫
R

∫ 1

0
X(r, y, ζ )DaR

(
ζ + σ(ξ − ζ )

)
(ξ − ζ ) · ∇hτ (x − y, ξ − ζ )dσ dζ dy

=
∫
TN

∫
R

∫ 1

0
X(r, x − τ ỹ, ξ − τ ζ̃ )DaR

(
ξ − (1 − σ)τ ζ̃

)
ζ̃ · ∇h(ỹ, ζ̃ )dσ dζ̃ dỹ

−→ X(r, x, ξ)DaR(ξ) ·
∫
TN

∫
R

ζ̃∇h(ỹ, ζ̃ )dζ̃ dỹ = 0

hence (4.12) follows by the dominated convergence theorem. Moreover, we deduce also that for a.e. r ∈ [s, t], P-a.s.,

aR
(
ϕR,0

s,r

) · ∇Xτ
(
r, ϕR

s,r

) − [
aR · ∇X(r)

]τ (
ϕR

s,r

) −→ 0 in D′(
T

N ×R
)
. (4.13)

It can be seen by using the change of variables formula: let JψR
s,r denote the Jacobian of the inverse flow ψR

s,r , then∣∣〈aR
(
ϕR,0

s,r

) · ∇Xτ
(
r, ϕR

s,r

) − [
aR · ∇X(r)

]τ (
ϕR

s,r

)
, φ

〉∣∣
= ∣∣〈aR · ∇Xτ (r) − [

aR · ∇X(r)
]τ

, φ
(
ψR

s,r

)∣∣JψR
s,r

∣∣〉∣∣
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≤ C
∥∥aR

∥∥
W 1,∞(R)

∥∥X(r)
∥∥

Lp(K)

∥∥φ
(
ψR

s,r

)
JψR

s,r

∥∥
Lq(K)

≤ C
∥∥aR

∥∥
W 1,∞(R)

ess sup
s≤r≤T

∥∥X(r)
∥∥

Lp(K)
‖φ‖L∞(K) sup

s≤r≤T

∥∥JψR
s,r

∥∥
Lq(K)

< ∞,

which holds for a suitably chosen compact set K ⊂ T
N × R as φ(ψR

s,r ) is compactly supported in T
N × R and any

conjugate exponents p,q ∈ [1,∞]. The estimate of sups≤r≤T ‖JψR
s,r‖Lq(K) is an immediate consequence of the fact

that for almost every ω ∈ Ω the mapping (r, x, ξ) �→ DψR
s,r (ω, x, ξ) is continuous due to the properties of stochastic

flows (see Section 3.2, (vi)) and therefore (r, x, ξ) �→ JψR
s,r (ω, x, ξ) is bounded on the given compact set [s, T ] × K .

Having this bound in hand, we infer (4.13) by using density again. Accordingly, the almost sure convergence J1 +J4 →
0 in D′(TN ×R) follows by the dominated convergence theorem.

In order to pass to the limit in the case of J2 + J5, we employ the same approach as above so we will only write the
main points of the proof. We obtain∣∣〈gR

k

(
ϕR

s,r

)
∂ξX

τ
(
r, ϕR

s,r

) − [
gR

k ∂ξX(r)
]τ (

ϕR
s,r

)
, φ

〉∣∣
≤ C

∥∥gR
k

∥∥
W 1,∞(R)

ess sup
s≤r≤T

∥∥X(r)
∥∥

Lp(K)
‖φ‖L∞(K) sup

s≤r≤T

∥∥JψR
s,r

∥∥
Lq(K)

hence for a.e. r ∈ [s, T ], P-a.s.,

gR
k

(
ϕR

s,r

)
∂ξX

τ
(
r, ϕR

s,r

) − [
gR

k ∂ξX(r)
]τ (

ϕR
s,r

) −→ 0 in D′(
T

N ×R
)

and accordingly we conclude by the dominated convergence theorem for stochastic integrals [22], Theorem 32, that
P-a.s. (up to subsequences) J2 + J5 → 0 in D′(TN ×R).

Now, it remains to verify the convergence of J3 + J6 + J7. As the first step, we will show that for a.e. r ∈ [s, T ],
P-a.s., in D′(TN ×R)

1

2

[
∂ξ

(
g

R,2
k ∂ξX(r)

)]τ + 1

2
∂2
ξξX

τ (r)g
R,2
k − ∂ξ

[
∂ξX(r)gR

k

]τ
gR

k −→ 0. (4.14)

Towards this end, we observe

1

2

[
∂ξ

(
g

R,2
k ∂ξX(r)

)]τ
(x, ξ) = 1

2

〈
∂ζ X(r)g

R,2
k , ∂ξhτ (x − ·, ξ − ·)〉,

1

2
∂2
ξξX

τ (r, x, ξ)g
R,2
k (x, ξ) = 1

2

〈
∂ζ X(r), ∂ξhτ (x − ·, ξ − ·)〉gR,2

k (x, ξ),

−∂ξ

[
∂ξX(r)gR

k

]τ
(x, ξ)gR

k (x, ξ) = −〈
∂ζ X(r)gR

k , ∂ξhτ (x − ·, ξ − ·)〉gR
k (x, ξ),

and hence the left-hand side of (4.14) evaluated at (x, ξ) is equal to

1

2

∫
TN

∫
R

∂ζ X(r, y, ζ )
(
gR

k (y, ζ ) − gR
k (x, ξ)

)2
∂ξhτ (x − y, ξ − ζ )dζ dy

= −
∫
TN

∫
R

X(r, y, ζ )
(
gR

k (y, ζ ) − gR
k (x, ξ)

)
∂ζ g

R
k (y, ζ )∂ξhτ (x − y, ξ − ζ )dζ dy

+ 1

2

∫
TN

∫
R

X(r, y, ζ )
(
gR

k (y, ζ ) − gR
k (x, ξ)

)2
∂2
ξξ hτ (x − y, ξ − ζ )dζ dy

= I1(x, ξ) + I2(x, ξ).

Next, we proceed as in the case of J1 + J4. We obtain

∣∣〈I1 + I2, φ〉∣∣ ≤ C
∥∥gR

k

∥∥2
W 1,∞(TN×R)

∥∥X(r)
∥∥

Lp(Kφ)
‖φ‖Lq(TN×R)
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which holds true for a suitable compact set Kφ ⊂ T
N ×R and arbitrary conjugate exponents p,q ∈ [1,∞] and in the

case of X(r) continuous in (x, ξ)

I1(x, ξ) −→ −X(r, x, ξ)
(
∂ξg

R
k (x, ξ)

)2
,

I2(x, ξ) −→ X(r, x, ξ)
(
∂ξg

R
k (x, ξ)

)2
,

which yields (4.14) by the dominated convergence theorem and density. As the next step, we conclude that∣∣〈I1
(
ϕR

s,r

) + I2
(
ϕR

s,r

)
, φ

〉∣∣
≤ C

∥∥gR
k

∥∥2
W 1,∞(TN×R)

ess sup
s≤r≤T

‖X(r)‖Lp(K)‖φ‖L∞(K) sup
s≤r≤T

∥∥JψR
s,r

∥∥
Lq(K)

and consequently for a.e. r ∈ [s, T ], P-a.s.,

1

2

[
∂ξ

(
g

R,2
k ∂ξX(r)

)]τ (
ϕR

s,r

) + 1

2
∂2
ξξX

τ
(
r, ϕR

s,r

)
g

R,2
k

(
ϕR

s,r

)
− ∂ξ

[
∂ξX(r)gR

k

]τ (
ϕR

s,r

)
gR

k

(
ϕR

s,r

) −→ 0 in D′(
T

N ×R
)
.

Therefore, the desired convergence of J3 + J6 + J7 is verified.
Finally, since it holds true for a.e. t ∈ [s, T ] that

Xτ (t)
w∗−→ X(t) in L∞(

T
N ×R

)
,P-a.s.,

we obtain for any φ ∈ C∞
c (TN ×R)

〈
X

(
t, ϕR

s,t

)
, φ

〉 = 〈
X(t),φ

(
ψR

s,t

)∣∣JψR
s,t

∣∣〉 = lim
τ→0

〈
Xτ (t), φ

(
ψR

s,t

)∣∣JψR
s,t

∣∣〉
= lim

τ→0

〈
Xτ

(
t, ϕR

s,t

)
, φ

〉 = 0

hence X = 0 since ϕR
s,t is a bijection and the proof of uniqueness is complete.

The proof of the explicit formula for X follows by employing the regularization Xδ
0 as in the proof of Proposi-

tion 4.8. The process Xδ = SR(t, s)Xδ
0 is the unique strong solution to (4.4) or equivalently (4.10) by using a similar

approach as in Lemma 4.3. Consequently, it satisfies for all φ ∈ C∞
c (TN ×R)

〈
Xδ(t), φ

〉 = 〈
Xδ

0, φ
〉 + ∫ t

s

〈
Xδ(r), aR(ξ) · ∇φ

〉
dr

+
d∑

k=1

∫ t

s

〈
Xδ(r), ∂ξ

(
gR

k φ
)〉

dβk(r) + 1

2

∫ t

s

〈
Xδ(r), ∂ξ

(
GR,2∂ξφ

)〉
dr.

Now, it only remains to take the limit as δ → 0. As Xδ
0 → X0 for a.e. ω,x, ξ we have Xδ = SR(t, s)Xδ

0 →
SR(t, s)X0 = X for a.e. ω,x, ξ and every t ∈ [s, T ]. Therefore, the convergence in all the terms apart from the
stochastic one follows directly by the dominated convergence theorem. For the case of stochastic integral we can
apply the dominated convergence theorem for stochastic integrals. Since it holds〈

Xδ(r), ∂ξ

(
gR

k φ
)〉 −→ 〈

X(r), ∂ξ

(
gR

k φ
)〉
, a.e. (ω, r) ∈ Ω × [s, T ]

and, setting K = suppφ ⊂ T
N ×R,

∣∣〈Xδ(r), ∂ξ

(
gR

k φ
)〉∣∣ ≤ C

∫
K

∣∣Xδ
0

(
ψR

s,r (x, ξ)
)∣∣dξ dx ≤ C,



1516 M. Hofmanová

where the constant C does not depend on δ due to the fact that∥∥Xδ
0

∥∥
L∞

ω,x,ξ
≤ ‖X0‖L∞

ω,x,ξ
.

Thus, we deduce (up to subsequences) the almost sure convergence of the stochastic integrals. Furthermore,
SR(t, s)X0 is exactly the representative (in t ) of the unique weak solution of (4.10) that satisfies (4.11) for all
t ∈ [s, T ], in particular, t �→ 〈SR(t, s)X0, φ〉 is a continuous (Ft )t≥s -semimartingale for any φ ∈ C∞

c (TN ×R). �

As the next step, we derive the existence of a unique weak solution to (4.2) which can be equivalently rewritten as

dX + a(ξ) · ∇X dt = −∂ξXΦ dW + 1

2
∂ξ

(
G2∂ξX

)
dt,

(4.15)
X(s) = X0

due to Lemma 4.3. With regard to the definition of the truncated coefficients, let us define

τR(s, x, ξ) = inf
{
t ≥ s; ∣∣ϕR,0

s,t (x, ξ)
∣∣ > R

}
(with the convention inf∅ = T ). Clearly, for any s ∈ [0, T ], x ∈ T

N , ξ ∈ R, τR(s, x, ξ) is a stopping time with respect
to the filtration (Ft )t≥s . Nevertheless, it can be shown that the blow-up cannot occur in a finite time and therefore

sup
R>0

τR(s, x, ξ) = T , P-a.s., s ∈ [0, T ], x ∈ T
N, ξ ∈R.

Indeed, for any R > 0, the process ϕR,0 satisfies the Itô equation

dϕ
R,0
t =

d∑
k=1

gR
k

(
ϕR

t

)
dβk(t),

where all the coefficients gR
k satisfy the linear growth estimate (2.1) that is independent of R and x and therefore the

claim follows by a standard estimation technique for SDEs. Moreover, if R′ > R then due to uniqueness τR′
(s, x, ξ) ≥

τR(s, x, ξ) and SR′
(t, s)X0 = SR(t, s)X0 on [0, τR(s, x, ξ)]. As a consequence, the pointwise limit[

S(t, s)X0
]
(ω, x, ξ) := lim

R→∞
[
SR(t, s)X0

]
(ω, x, ξ), 0 ≤ s ≤ t ≤ T ,

exists almost surely and we obtain the following result.

Corollary 4.10. The family S = {S(t, s),0 ≤ s ≤ t ≤ T } consists of bounded linear operators on L1(Ω × T
N × R)

having the operator norm bounded by 1, i.e., for any X0 ∈ L1(Ω ×T
N ×R), 0 ≤ s ≤ t ≤ T ,∥∥S(t, s)X0

∥∥
L1

ω,x,ξ
≤ ‖X0‖L1

ω,x,ξ
.

Furthermore, for any Fs ⊗ B(TN) ⊗ B(R)-measurable initial datum X0 ∈ L∞(Ω × T
N × R) there exists a unique

X ∈ L∞
Ps

(Ω × [s, T ] × T
N × R) that is a weak solution to (4.15). Besides, it is represented by X = S(t, s)X0 and

t �→ 〈S(t, s)X0, φ〉 is a continuous (Ft )t≥s -semimartingale for any φ ∈ C∞
c (TN × R). Consequently, S verifies the

semigroup law

S(t, s) = S(t, r) ◦ S(r, s), 0 ≤ s ≤ r ≤ t ≤ T ,

S(s, s) = Id, 0 ≤ s ≤ T .

Proof. The first part of the proof follows directly from Proposition 4.8 while the rest is a consequence of Corol-
lary 4.9. �
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Corollary 4.11. For all n ∈ [0,∞) it holds

sup
0≤s≤T

E sup
s≤t≤T

∥∥(
S(t, s)10>ξ − 10>ξ

)
(1 + |ξ |)n∥∥

L1
x,ξ

≤ C. (4.16)

Proof. Remark, that if (2.2) is fulfilled, then for any 0 ≤ s ≤ t ≤ T and x ∈ T
N the process ϕ

R,0
s,t (x,0) ≡ 0 is a solution

to the first equation in (4.5) for any R > 0. Moreover, since the solution to (4.5) is unique, we deduce

ϕ
R,0
s,t (x, ξ)

{≥ 0, if ξ ≥ 0,
≤ 0, if ξ ≤ 0.

As a consequence, the same is valid for the inverse stochastic flow ψR,0 hence SR(t, s)10>ξ = 10>ξ for all R > 0 and
thus the left-hand side in (4.16) is zero.

In the case of (2.3), it is enough to prove the statement for any SR provided the constant is independent on R. The
stochastic characteristic system (4.5) rewritten in terms of Itô’s integral takes the following form

dϕ0
t =

d∑
k=1

gR
k (ϕt )dβk(t),

dϕi
t = aR

i

(
ϕ0

t

)
dt, i = 1, . . . ,N,

whereas, in the case of the inverse flow, (4.6) reads

dψ0
t = −

d∑
k=1

gR
k (ψt ) d̂βk(t),

dψi
t = −aR

i

(
ψ0

t

)
dt, i = 1, . . . ,N.

Thus, we obtain

SR(t, s)10>ξ − 10>ξ = 1∑d
k=1

∫ t
s gR

k (ψR
r,t (x,ξ)) d̂βk(r)>ξ

− 10>ξ

= 1|ξ |≤|∑d
k=1

∫ t
s gR

k (ψR
r,t (x,ξ)) d̂βk(r)|

≤ (1 + |∑d
k=1

∫ t

s
gR

k (ψR
r,t (x, ξ)) d̂βk(r)|)n+2

(1 + |ξ |)n+2

and since the fact that ψR
r,t ◦ ϕR

s,t = ϕR
s,r implies

d∑
k=1

∫ t

s

gR
k

(
ψR

r,t (x, ξ)
)

d̂βk(r) =
d∑

k=1

∫ t

s

gR
k

(
ϕR

s,r (y, ζ )
)

dβk(r)

by setting (x, ξ) = ϕR
s,t (y, ζ ), we deduce that

E sup
s≤t≤T

∫
TN

∫
R

∣∣S(t, s)10>ξ − 10>ξ

∣∣(1 + |ξ |)n dξ dx

≤ C + C sup
(y,ζ )∈RN×R

E sup
s≤t≤T

∣∣∣∣∣
d∑

k=1

∫ t

s

gR
k

(
ϕR

s,r (y, ζ )
)

dβk(r)

∣∣∣∣∣
n+2

≤ C + C sup
(y,ζ )∈RN×R

E

(
d∑

k=1

∫ T

s

∣∣gR
k

(
ϕR

s,r (y, ζ )
)∣∣2 dr

)(n+2)/2

≤ C,
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where the constant C does not depend on R and s. �

Remark 4.12. Let us make some comments on hypotheses (2.2), (2.3) as the proof of Corollary 4.11 is their only
use. The main difficulty in proving (4.16) comes from the unknown structure of dependence of the stochastic flows ϕR

and ψR on ξ in connection with the remaining variables ω,x, s, t . Although one cannot say much in general, some
generalizations are possible. Namely, by using χc

u(ξ) = 1−c<ξ<u −1u<ξ<−c instead of χu(ξ) = 10<ξ<u −1u<ξ<0 one
can relax the condition (2.2) in the following way

∃c ∈R such that gk(x, c) = 0 ∀x ∈ T
N, k = 1, . . . , d. (4.17)

Such a generalization allows for instance to treat the linear case gk(x, ξ) = ξ − c, k = 1, . . . , d . Furthermore, in the
linear case one can also combine multiplicative and additive noise, in particular, if the stochastic characteristic curve
is governed by a linear system of stochastic differential equation as for instance

dϕ0
t =

N∑
k=0

(
1 + ϕk

t

)
dβk(t),

dϕi
t = ϕ0

t dt, i = 1, . . . ,N,

i.e., non of the conditions (2.2), (2.3), (4.17) is fulfilled since g0(x, ξ) = 1 + ξ , gk(x, ξ) = 1 + xk , k = 1, . . . ,N , then
both forward and backward stochastic flows are given by explicit formulas where the dependence on ξ is clear and,
as a consequence, the statement of Corollary 4.11 remains valid.

Now, we have all in hand to complete the proof of Theorem 4.5.

Proof of Theorem 4.5. Recall, that the local densities are defined as follows

uε(t, x) =
∫
R

f ε(t, x, ξ)dξ =
∫
R

(
Fε(t, x, ξ) − 10>ξ

)
dξ (4.18)

hence the function Fε is not integrable with respect to ξ . For the purpose of the proof it is therefore more convenient
to consider the process hε(t) = Fε(t) − S(t,0)10>ξ instead and prove that it exists and is given by a suitable integral
representation. Due to Corollary 4.10, S(t, s)10>ξ is the unique weak solution to (4.15) hence hε solves

dhε + a(ξ) · ∇hε dt = (1uε>ξ − S(t,0)10>ξ ) − hε

ε
dt − ∂ξh

εΦ dW − 1

2
∂ξ

(
G2(−∂ξh

ε
))

dt, (4.19)

hε(0) = χuε
0
,

in the sense of distributions. Then, by Lemma 4.3 and the weak version of Duhamel’s principle, the problem (4.19)
admits an equivalent integral representation

hε(t) = e−t/εS(t,0)χuε
0
+ 1

ε

∫ t

0
e−(t−s)/εS(t, s)

[
1uε(s)>ξ − S(s,0)10>ξ

]
ds (4.20)

and thus can be solved by a fixed point method. According to the identity∫
R

|1α>ξ − 1β>ξ |dξ = |α − β|, α,β ∈ R,

some space of ξ -integrable functions seems to be well suited to deal with the nonlinearity term 1uε>ξ . Let us denote
H = L∞(0, T ;L1(Ω ×T

N ×R)) and show that the mapping

(Kg)(t) = e−t/εS(t,0)χuε
0
+ 1

ε

∫ t

0
e−(t−s)/εS(t, s)

[
1v(s)>ξ − S(s,0)10>ξ

]
ds,
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where the local density v(s) = ∫
R
(g(s, ξ) + S(s,0)10>ξ − 10>ξ )dξ is defined consistently with (4.18), is a con-

traction on H . Let g,g1, g2 ∈ H with corresponding densities v, v1, v2. By Proposition 4.8, Corollary 4.11 and the
assumptions on initial data, we arrive at∥∥(Kg)(t)

∥∥
L1

ω,x,ξ

≤ e−t/ε‖χuε
0
‖L1

ω,x,ξ
+ 1

ε

∫ t

0
e−(t−s)/ε‖1v(s)>ξ − S(s,0)10>ξ‖L1

ω,x,ξ
ds

≤ ∥∥uε
0

∥∥
L1

ω,x
+ sup

0≤s≤t

(‖χv(s)‖L1
ω,x,ξ

+ ∥∥S(s,0)10>ξ − 10>ξ

∥∥
L1

ω,x,ξ

)
≤ C + sup

0≤s≤t

∥∥g(s)
∥∥

L1
ω,x,ξ

,

with a constant independent on t , hence

‖Kg‖L∞
t L1

ω,x,ξ
≤ C + ‖g‖L∞

t L1
ω,x,ξ

< ∞.

Next, we have

∥∥(Kg1)(t) − (Kg2)(t)
∥∥

L1
ω,x,ξ

≤ 1

ε

∫ t

0
e−(t−s)/ε‖1v1(s)>ξ − 1v2(s)>ξ‖L1

ω,x,ξ
ds

= 1

ε

∫ t

0
e−(t−s)/ε

∥∥v1(s) − v2(s)
∥∥

L1
ω,x

ds

≤ 1

ε

∫ t

0
e−(t−s)/ε

∥∥g1(s) − g2(s)
∥∥

L1
ω,x,ξ

ds,

so

‖Kg1 − Kg2‖L∞
t L1

ω,x,ξ
≤ (

1 − e−T/ε
)‖g1 − g2‖L∞

t L1
ω,x,ξ

and according to the Banach fixed point theorem, the mapping K has a unique fixed point in H . Moreover, we
deduce from Corollary 4.10 that hε is measurable with respect to P ⊗ B(TN) ⊗ B(R) and therefore, according to
the semigroup property of the solution operator S , we obtain the existence of a unique weak solution to (1.3) that is
expressed as (4.3) and the proof is complete. �

Remark 4.13. As a consequence of Corollary 4.10, it can be seen that the representative hε(t) of the unique weak
solution to (4.19) that is given by (4.20) satisfies: t �→ 〈hε(t), φ〉 is a continuous (Ft )-semimartingale for any φ ∈
C∞

c (TN ×R). Accordingly, t �→ 〈Fε(t), φ〉 is a continuous (Ft )-semimartingale for any φ ∈ C∞
c (TN ×R) provided

Fε(t) is the representative of the unique weak solution to (1.3) given by (4.3).

4.2. Further properties of the solution operator

In the previous subsection we showed that the family S consists of bounded linear operators on L1(Ω × T
N × R)

with the operator norm bounded by 1 which was essential for the existence proof for the stochastic BGK model in
Theorem 4.5. Nevertheless, for the proof of convergence of the BGK approximation in the next section, namely, to
derive certain uniform estimates, we need to study also its behavior in other spaces. In particular, S(t, s)X0 is well
defined if X0 ∈ Lp(Ω ×T

N ×R) and we obtain the following result.

Proposition 4.14. For any p ∈ [2,∞), the family S consists of bounded linear operators on Lp(Ω ×T
N ×R) having

the operator norm bounded by 1. Moreover, the solution to (4.2) belongs to Lp(Ω;L∞(0, T ;Lp(TN ×R))) provided
X0 ∈ Lp(Ω ×T

N ×R) and the following estimate holds true

sup
0≤s≤T

E sup
s≤t≤T

∥∥S(t, s)X0
∥∥p

L
p
x,ξ

≤ C‖X0‖p

L
p
ω,x,ξ

. (4.21)
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Proof. Note, that it is enough to prove the statement for any SR as the limit case of S then follows by Fatou lemma
provided the constant in (4.21) does not depend on R. If R > 0 is fixed then we use the same approach as in the proof
of Proposition 4.8, i.e., we will only prove the statement under the additional assumption

X0 ∈ Lp
(
Ω ×T

N ×R
) ∩ L∞(

Ω ×T
N ×R

)
.

Let Xδ
0 be bounded, pathwise smooth and compactly supported regularizations of X0 such that

Xδ
0 −→ X0 in Lp

(
Ω ×T

N ×R
)
,

∥∥Xδ
0

∥∥
L

p
ω,x,ξ

≤ ‖X0‖L
p
ω,x,ξ

,

and Xδ = SR(t, s)Xδ
0 is the unique solution to (4.15). Now, we apply the Itô formula to the function h(v) = ‖v‖p

L
p
x,ξ

.

If q is the conjugate exponent to p then h′(v) = p|v|p−2v ∈ Lq(TN ×R) and

h′′(v) = p(p − 1)|v|p−2 Id ∈ L
(
Lp

(
T

N ×R
);Lq

(
T

N ×R
))

.

Therefore∥∥Xδ(t)
∥∥p

L
p
x,ξ

= ∥∥Xδ
0

∥∥p

L
p
x,ξ

− p

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2

XδaR(ξ) · ∇Xδ dξ dx dr

− p

d∑
k=1

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2

Xδ∂ξX
δgR

k (x, ξ)dξ dx dβk(r)

+ p

2

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2

Xδ∂ξ

(
GR,2∂ξX

δ
)

dξ dx dr

+ p(p − 1)

2

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2∣∣∂ξX

δ
∣∣2

GR,2(x, ξ)dξ dx dr.

Using integration by parts, the second term on the right-hand side vanishes. Besides, having known the behavior of
Xδ for large ξ , we integrate by parts in the fourth term and obtain the fifth term with opposite sign. To deal with the
stochastic term, we also integrate by parts and observe

−p

∫
R

∣∣Xδ
∣∣p−2

Xδ∂ξX
δgR

k (x, ξ)dξ

= p(p − 1)

∫
R

∣∣Xδ
∣∣p−2

∂ξX
δXδgR

k (x, ξ)dξ + p

∫
R

∣∣Xδ
∣∣p∂ξg

R
k (x, ξ)dξ

hence

−p

∫
R

∣∣Xδ
∣∣p−2

Xδ∂ξX
δgR

k (x, ξ)dξ =
∫
R

∣∣Xδ
∣∣p∂ξg

R
k (x, ξ)dξ

and we arrive at

∥∥Xδ(t)
∥∥p

L
p
x,ξ

= ∥∥Xδ
0

∥∥p

L
p
x,ξ

+
d∑

k=1

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p∂ξg

R
k (x, ξ)dξ dx dβk(r),

where the stochastic integral on the right-hand side is a martingale with zero expected value. Taking the expectation
now yields

E
∥∥Xδ(t)

∥∥p

L
p
x,ξ

= E
∥∥Xδ

0

∥∥p

L
p
x,ξ

.
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In order to derive (4.21), we employ the Burkholder–Davis–Gundy inequality and boundedness of ∂ξgk :

E sup
s≤t≤T

∥∥Xδ(t)
∥∥p

L
p
x,ξ

≤ E
∥∥Xδ

0

∥∥p

L
p
x,ξ

+
d∑

k=1

E sup
s≤t≤T

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p∂ξg

R
k (x, ξ)dξ dx dβk(r)

≤ E
∥∥Xδ

0

∥∥p

L
p
x,ξ

+ CE

(∫ T

s

∥∥Xδ(r)
∥∥2p

L
p
x,ξ

dr

)1/2

≤ E
∥∥Xδ

0

∥∥p

L
p
x,ξ

+ 1

2
E sup

s≤t≤T

∥∥Xδ(t)
∥∥p

L
p
x,ξ

+ C

∫ T

s

E
∥∥Xδ(r)

∥∥p

L
p
x,ξ

dr

hence

E sup
s≤t≤T

∥∥Xδ(t)
∥∥p

L
p
x,ξ

≤ CE
∥∥Xδ

0

∥∥p

L
p
x,ξ

.

Note, that the constant C does not depend on δ, s,R. Therefore, the fact that the operator norm is equal to 1 as well
as the validity of (4.21) follow easily by the same reasoning as in the proof of Proposition 4.8. �

Proposition 4.15. Assume that w ∈ Lp(Ω × T
N) for all p ∈ [1,∞). Then for all n ∈ [0,∞) there exists r ∈ [1,∞)

such that

sup
0≤s≤T

E sup
s≤t≤T

∥∥(
S(t, s)χw

)(
1 + |ξ |)n∥∥

L1
x,ξ

≤ C
(
1 + ‖w‖r

Lr
ω,x

)
,

where the constant C does not depend on w.

Proof. We will prove that the claim holds true for all SR with a constant independent of R. Let us denote by ψR,x

the vector of all xi -coordinates of the stochastic flow ψR , i.e., ψ
R,x
s,t (x, ξ) = (ψ

R,1
s,t (x, ξ), . . . ,ψ

R,N
s,t (x, ξ)). Since it

holds, for any m ∈ [0,∞),

|χw| ≤ (1 + |w|2)m
(1 + |ξ |2)m 1|ξ |<|w|

we can estimate

∣∣SR(t, s)χw

∣∣(1 + |ξ |n) = ∣∣χ
w(ψ

R,x
s,t (x,ξ))

(
ψ

R,0
s,t (x, ξ)

)∣∣(1 + |ξ |)n

≤ (1 + |w(ψ
R,x
s,t (x, ξ))|2)m

(1 + |ψR,0
s,t (x, ξ)|2)m 1|ψR,0

s,t (x,ξ)|<|w(ψ
R,x
s,t (x,ξ))|

(
1 + |ξ |)n

≤ (1 + |ξ |2)n/2

(1 + |ψR,0
s,t (x, ξ)|2)mSR(t, s)

[(
1 + |w|2)m1|ξ |<|w|

]
, (4.22)

where the exact value of the exponent m will be determined later on. Now, we make use of the classical moment
estimate for SDEs that in our setting reads

sup
0≤s≤T

(y,ζ )∈TN×R

E sup
s≤t≤T

(1 + |ϕR,0
s,t (y, ζ )|2)p

(1 + |ζ |2)p ≤ C, ∀p ∈ [1,∞),
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and rewritten in terms of the inverse flow by setting (x, ξ) = ϕR
s,t (y, ζ )

sup
0≤s≤T

(x,ξ)∈TN×R

E sup
s≤t≤T

(1 + |ξ |2)p
(1 + |ψR,0

s,t (x, ξ)|2)p ≤ C, ∀p ∈ [1,∞), (4.23)

with a constant independent of R. Therefore, employing (4.22), the Young inequality, (4.23) and Proposition 4.14 we
obtain by a suitable choice of m

sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

∣∣SR(t, s)χw

∣∣(1 + |ξ |)n dξ dx

≤ C sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

(1 + |ξ |2)n
(1 + |ψR,0

s,t (x, ξ)|2)2m
dξ dx

+ C sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

∣∣SR(t, s)
[(

1 + |w|2)m1|ξ |<|w|
]∣∣2 dξ dx

≤ C + C
∥∥(

1 + |w|2)m1|ξ |<|w|
∥∥2

L2
ω,x,ξ

≤ C
(
1 + ‖w‖4m+1

L4m+1
ω,x

)
which completes the proof. �

5. Convergence of the BGK approximation

In this final section, we investigate the limit of the stochastic BGK model as ε → 0 and prove our main result,
Theorem 2.1. To be more precise, we consider the following weak formulation of (1.3), which is satisfied by Fε , and
show its convergence to the kinetic formulation of (1.1). Let ϕ ∈ C∞

c ([0, T ) ×T
N ×R) then

∫ T

0

〈
Fε(t), ∂tϕ(t)

〉
dt + 〈

Fε
0 , ϕ(0)

〉 + ∫ T

0

〈
Fε(t), a · ∇ϕ(t)

〉
dt

= −1

ε

∫ T

0

〈
1uε(t)>ξ − Fε(t), ϕ(t)

〉
dt +

∫ T

0

〈
∂ξF

ε(t)Φ dW(t),ϕ(t)
〉

+ 1

2

∫ T

0

〈
G2∂ξF

ε(t), ∂ξϕ(t)
〉
dt. (5.1)

A similar expression holds true also for hε , namely, it satisfies the weak formulation of (4.19). However, as in the
following we restrict our attention to the representatives Fε(t) and hε(t), respectively, given by (4.3) and (4.20),
respectively, we point out that both are true even in a stronger sense. For the case of hε(t), we have: let ϕ ∈ C∞

c (TN ×
R) then it holds for all t ∈ [0, T ]

〈
hε(t), ϕ

〉 = 〈
hε

0, ϕ
〉 + ∫ t

0

〈
hε(s), a · ∇ϕ

〉
ds

+ 1

ε

∫ t

0

〈
1uε(s)>ξ − S(s,0)10>ξ − hε(s), ϕ

〉
ds

−
∫ t

0

〈
∂ξh

ε(s)Φ dW(s),ϕ
〉 − 1

2

∫ t

0

〈
G2∂ξh

ε(s), ∂ξϕ
〉
ds. (5.2)

Proof of Theorem 2.1. Taking the limit in (5.1) is quite straightforward in all the terms apart from the first one on the
right-hand side and can be done immediately. Remark, that according to the representation formula (4.3) it holds that
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the set of solutions {Fε; ε ∈ (0,1)} is bounded in L∞
P (Ω × [0, T ] ×T

N ×R), more precisely, Fε ∈ [0,1], ε ∈ (0,1).
Therefore, by the Banach–Alaoglu theorem, there exists F ∈ L∞

P (Ω ×[0, T ]×T
N ×R) such that, up to subsequences,

Fε w∗−→ F in L∞
P

(
Ω × [0, T ] ×T

N ×R
)
. (5.3)

Hence, almost surely,∫ T

0

〈
Fε(t), ∂tϕ(t)

〉
dt −→

∫ T

0

〈
F(t), ∂tϕ(t)

〉
dt,

∫ T

0

〈
Fε(t), a · ∇ϕ(t)

〉
dt −→

∫ T

0

〈
F(t), a · ∇ϕ(t)

〉
dt,

1

2

∫ T

0

〈
G2∂ξF

ε(t), ∂ξϕ(t)
〉
dt −→ 1

2

∫ T

0

〈
G2∂ξF (t), ∂ξϕ(t)

〉
dt.

and, according to the hypotheses on the initial data,〈
Fε

0 , ϕ(0)
〉 −→ 〈

1u0>ξ ,ϕ(0)
〉
.

We intend to prove a similar convergence result for the stochastic term as well. Since〈
Fε, ∂ξ (gkϕ)

〉 −→ 〈
F,∂ξ (gkϕ)

〉
, a.e. (ω, t) ∈ Ω × [0, T ],

and, due to the boundedness of Fε and the assumptions on gk ,∣∣〈Fε, ∂ξ (gkϕ)
〉∣∣ ≤ C,

the dominated convergence theorem for stochastic integrals gives (up to subsequences) the desired almost sure con-
vergence∫ T

0

〈
∂ξF

ε(t)Φ dW(t),ϕ(t)
〉 −→

∫ T

0

〈
∂ξF (t)Φ dW(t),ϕ(t)

〉
.

Furthermore, multiplying (5.1) by ε yields, almost surely,∫ T

0

〈
1uε(t)>ξ − Fε(t), ϕ(t)

〉
dt −→ 0 (5.4)

and, in particular,

∂ξ 1uε>ξ − ∂ξF
ε −→ 0 (5.5)

in the sense of distributions over (0, T ) ×T
N ×R almost surely. In order to obtain the convergence in the remaining

term of (5.1) and in view of the kinetic formulation of (1.1), we need to show that the term 1
ε
(1uε>ξ − Fε) can be

written as ∂ξm
ε where mε is a random nonnegative measure over [0, T ] ×T

N ×R bounded uniformly in ε. However,
if we define

mε(ξ) = 1

ε

∫ ξ

−∞
(
1uε>ζ − Fε(ζ )

)
dζ

= 1

ε

∫ ξ

−∞
(
1uε>ζ − S(t,0)10>ζ − hε(ζ )

)
dζ, (5.6)

it is easy to check that mε ≥ 0 since Fε ∈ [0,1]. Indeed, mε(−∞) = mε(∞) = 0 and mε(t, x, ·) is increasing if
ξ ∈ (−∞, uε(t, x)) and decreasing if ξ ∈ (uε(t, x),∞).
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Due to the convergence in (5.1) it can be seen that for almost every ω ∈ Ω there exists a distribution m(ω) such
that, almost surely,

∫ T

0

〈
mε,ϕ(t)

〉
dt −→

∫ T

0

〈
m,ϕ(t)

〉
dt, (5.7)

for any ϕ ∈ C∞
c ([0, T )×T

N ×R). Besides, the conditions on test functions can be relaxed so that (5.7) holds true for
any ϕ ∈ C∞

c ([0, T ] ×T
N ×R). Now, it remains to verify that m is a kinetic measure. The following proposition will

be useful.

Proposition 5.1. The set of local densities {uε; ε ∈ (0,1)} is bounded in Lp(Ω;L∞(0, T ;Lp(TN))) for all p ∈
[1,∞).

Proof. We need to find a uniform estimate for uε . It follows from the definition of uε (4.18) and (4.3) that

uε(t, x) = e−t/ε

∫
R

(
S(t,0)1uε

0>ξ − 10>ξ

)
dξ

+ 1

ε

∫ t

0
e−(t−s)/ε

∫
R

(
S(t, s)1uε(s)>ξ − 10>ξ

)
dξ ds.

Let us now define the following auxiliary function

H(s) =
∣∣∣∣
∫
R

(
S(t, s)1uε(s)>ξ − 10>ξ

)
dξ

∣∣∣∣.
Then

H(t) ≤ e−t/εH(0) + (
1 − e−t/ε

)
max

0≤s≤t
H(s)

and we conclude that H(t) ≤ H(0), t ∈ [0, T ]. In order to estimate H(0), we make use of Proposition 4.15 and
Corollary 4.11. If p = 1 they can be used directly

E sup
0≤t≤T

∫
TN

∣∣uε(t, x)
∣∣dx ≤ E sup

0≤t≤T

∫
TN

∫
R

∣∣S(t,0)1uε
0>ξ − 10>ξ

∣∣dξ dx

≤ E sup
0≤t≤T

∥∥S(t,0)χuε
0

∥∥
L1

x,ξ
+E sup

0≤t≤T

∥∥S(t,0)10>ξ − 10>ξ

∥∥
L1

x,ξ

≤ C
(
1 + ∥∥uε

0

∥∥r1

L
r1
ω,x

)
,

whereas the case of p ∈ (1,∞) can be dealt with by the Hölder inequality and the fact that∣∣S(t,0)1uε
0>ξ − 10>ξ

∣∣p = ∣∣S(t,0)1uε
0>ξ − 10>ξ

∣∣.
Indeed,

E sup
0≤t≤T

∫
TN

∣∣uε(t, x)
∣∣p dx ≤ E sup

0≤t≤T

∫
TN

(∫
R

∣∣S(t,0)1uε
0>ξ − 10>ξ

∣∣dξ

)p

dx

≤ CE sup
0≤t≤T

∥∥S(t,0)χuε
0

(
1 + |ξ |)p∥∥

L1
x,ξ

+ CE sup
0≤t≤T

∥∥(
S(t,0)10>ξ − 10>ξ

)(
1 + |ξ |)p∥∥

L1
x,ξ

≤ C
(
1 + ∥∥uε

0

∥∥rp

L
rp
ω,x

)
.
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The above exponents rp are given by Proposition 4.15 and the proof is complete. �

Corollary 5.2. For any n ∈ [0,∞) it holds

sup
0≤t≤T

E
∥∥hε(t)

(
1 + |ξ |)n∥∥

L1
x,ξ

≤ C.

Proof. It follows from (4.20), Proposition 4.15, Corollary 4.11 and Proposition 5.1 that

sup
0≤t≤T

E
∥∥hε(t)

(
1 + |ξ |)n∥∥

L1
x,ξ

≤ sup
0≤s≤t≤T

E
∥∥S(t, s)χuε(s)

(
1 + |ξ |)n∥∥

L1
x,ξ

+ sup
0≤s≤t≤T

E
∥∥(

10>ξ − S(s,0)10>ξ

)(
1 + |ξ |)n∥∥

L1
x,ξ

≤ C
(

1 + sup
0≤s≤T

∥∥uε(s)
∥∥r

Lr
ω,x

)
≤ C. �

As a consequence, the assumptions of [6], Theorem 5, are satisfied for νε
t,x = δuε(t,x)=ξ and hence there exists a

kinetic measure νt,x vanishing at infinity such that νε → ν in the sense given by this theorem. We deduce from (5.5)
that ∂ξF = −ν hence F is a kinetic function in the sense of [6], Definition 4.

Remark, that it follows now from (5.6) that the function mε(t) satisfies

sup
0≤t≤T

E
∥∥mε(t)

(
1 + |ξ |)n∥∥

L1
x,ξ

≤ C(ε),

for any ε fixed. Nevertheless, we do not know yet if this fact holds true also uniformly in ε. Towards this end, we will
study the weak formulation for hε and employ a suitable test function.

Proposition 5.3. For any p ∈ [0,∞) it holds

E

∫
[0,T ]×TN×R

|ξ |2p dmε(t, x, ξ) ≤ C. (5.8)

Proof. Let p ∈ [1/2,∞). Regarding (5.2), we need to test by ϕ(ξ) = ξ2p+1

2p+1 . Due to the behavior of mε and hε for
large ξ we can consider test functions which are not compactly supported in ξ , however, in this case the stochastic
integral is not necessarily a martingale. Therefore we will first employ the truncation ϕδ(ξ) = ϕ(ξ)kδ(ξ) and then pass
to the limit. We have

0 ≤ E

∫ T

0

〈
mε(t), ∂ξϕ

δ
〉
dt

= E
〈
hε

0, ϕ
δ
〉 −E

〈
hε(T ),ϕδ

〉 − 1

2
E

∫ T

0

〈
G2∂ξh

ε(t), ∂ξϕ
δ
〉
dt.

The first and the second term on the right-hand side can be estimated by Corollary 5.2

E
〈
hε

0, ϕ
δ
〉 −E

〈
hε(T ),ϕδ

〉 ≤ C,

while for the remaining term we first employ the growth properties of G2 and ∂ξG
2 to obtain

E

∫ T

0

〈
G2∂ξh

ε(t), ∂ξϕ
δ
〉
dt

≤ CE

∫ T

0

〈∣∣hε(t)
∣∣, (1 + |ξ |)∂ξϕ

δ + (
1 + |ξ |2)∂2

ξ ϕδ
〉
dt

≤ CE

∫ T

0

〈∣∣hε(t)
∣∣, (1 + |ξ |)2p+3〉dt ≤ C.
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The constant C is independent of δ thus the claim follows.
If p = 0 a suitable modification in the above estimation leads to the proof in this case whereas the case of p ∈

(0,1/2) follows from (5.8) for p = 0 and p = 1/2 due to the fact that |ξ |2p ≤ 1 + |ξ |. �

Setting p = 0 in (5.8) we regard mε as random variables with values in Mb([0, T ]×T
N ×R), the space of bounded

Borel measures on [0, T ] × T
N × R whose norm is given by the total variation of measures. We deduce that the set

of laws {P ◦ [mε]−1; ε ∈ (0,1)} is tight and therefore any sequence has a weakly convergent subsequence due to the
Prokhorov theorem. Consequently, the law of m is supported in Mb([0, T ] ×T

N ×R). Besides, m is nonnegative as
it holds true for all mε . Moreover, since C0([0, T ] ×T

N ×R), the space of continuous functions vanishing at infinity
equipped with the supremum norm, is the predual of Mb([0, T ] × T

N × R) and C∞
c ([0, T ] × T

N × R) is dense in
C0([0, T ] ×T

N ×R) it can be seen that (5.7) holds true for any ϕ ∈ C0([0, T ] ×T
N ×R). Now, it is left to verify the

three points of the definition of a kinetic measure [6], Definition 1. The second requirement giving the behavior for
large ξ follows from the above uniform estimate (5.8). Indeed, let (kδ) be a truncation on R, e.g., the set of functions
defined in the proof of Proposition 4.8, then

E

∫
[0,T ]×TN×R

|ξ |2p dm(t, x, ξ) ≤ lim inf
δ→0

E

∫
[0,T ]×TN×R

|ξ |2pkδ(ξ)dm(t, x, ξ)

= lim inf
δ→0

lim
ε→0

E

∫
[0,T ]×TN×R

|ξ |2pkδ(ξ)dmε(t, x, ξ) ≤ C.

As a consequence, m vanishes for large ξ . The first point of [6], Definition 1, is straightforward for φ ∈ C0([0, T ] ×
T

N ×R) as a pointwise limit of measurable functions is measurable. The case of φ ∈ Cb([0, T ]×T
N ×R) now follows

by employing the truncation (kδ) together with the dominated convergence theorem as δ → 0 and the behavior of m

at for large ξ . In order to show predictability of the process

t �−→
∫

[0,t]×TN×R

φ(x, ξ)dm(s, x, ξ)

in the case of φ ∈ C0(T
N × R) let us remark that due to (5.2) it is the pointwise limit (in ω and t ) of predictable

processes

t �−→
∫

[0,t]×TN×R

φ(x, ξ)dmε(s, x, ξ)

and hence is also measurable with respect to the predictable σ -algebra. The case of φ ∈ Cb(T
N ×R) can be verified

by using truncations as above. Therefore, we have proved that m is a kinetic measure.
Finally, we deduce that F satisfies the generalized kinetic formulation (3.2) and thus is a generalized kinetic

solution to (1.1). Since any generalized kinetic solution is actually a kinetic one, due to the reduction theorem [6],
Theorem 11, it follows that F = 1u>ξ and ν = δu, where u ∈ Lp(Ω × [0, T ] × T

N) is the unique kinetic solution to
(1.1). Therefore, it only remains to verify the strong convergence of f ε and uε to χu and u, respectively.

According to (5.3), we deduce for f ε = Fε − 10>ξ that

f ε w∗−→ χu in L∞(
Ω × [0, T ] ×T

N ×R
)
,

and by (5.4) it holds

χuε −→ χu in D′((0, T ) ×T
N ×R

)
,P-a.s.

Besides, {χuε ; ε ∈ (0,1)} is bounded in L∞(Ω ×[0, T ]×T
N ×R) hence (up to subsequences) it converges weak* in

this space and since C∞
c ((0, T ) × T

N × R) is separable and dense in L1([0, T ] × T
N × R), it follows that χu is the

limit, i.e.,

χuε
w∗−→ χu in L∞(

Ω × [0, T ] ×T
N ×R

)
.
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Furthermore, according to Proposition 5.1, it holds for any n ∈ [0,∞)

sup
0≤t≤T

E

∫
TN

∫
R

(|χuε(t)| + |χu(t)|
)(

1 + |ξ |)n dξ dx ≤ C, (5.9)

hence we can relax the conditions on test functions and obtain the strong convergence χuε → χu in L2(Ω × [0, T ] ×
T

N ×R). Indeed,

E

∫ T

0

∫
TN

∫
R

|χuε − χu|2 dξ dx dt = E

∫ T

0

∫
TN

∫
R

|χuε | − 2χuεχu + |χu|dξ dx dt −→ 0 (5.10)

since for the first term on the right-hand side we have

E

∫ T

0

∫
TN

∫
R

|χuε |dξ dx dt = E

∫ T

0

∫
TN

∫
R

(χuε 1ξ>0 − χuε 1ξ<0)dξ dx dt,

where 1ξ>0,1ξ<0 can be taken as test functions due to (5.9) and for the second term on the right-hand side we consider
χu as a test function. As |χα − χβ |p = |χα − χβ | we conclude also the strong convergence in all Lp(Ω × [0, T ] ×
T

N ×R), p ∈ [1,∞).
Moreover, a similar approach can be used to prove the convergence of f ε . Indeed, the same calculation as in (5.10)

gives

f ε −→ χu in L2(Ω × [0, T ] ×T
N ×R

)
and using the uniform bound of {f ε; ε ∈ (0,1)} in L∞(Ω ×[0, T ]×T

N ×R) we deduce the convergence in Lp(Ω ×
[0, T ] ×T

N ×R) for all p ∈ [1,∞).
Eventually, by the properties of the equilibrium function we have

uε −→ u in L1(Ω × [0, T ] ×T
N

)
.

On the other hand, it follows from Proposition 5.1 that the set {uε; ε ∈ (0,1)} is bounded in Lp(Ω × [0, T ] × T
N),

for all p ∈ [1,∞), hence by application of the Hölder inequality, we get also the strong convergence

uε −→ u in Lp
(
Ω × [0, T ] ×T

N
) ∀p ∈ [1,∞).

Therefore, the proof of convergence in the stochastic BGK model is complete. �

Acknowledgements

The author is greatly indebted to Arnaud Debussche and Jan Seidler for many stimulating discussions. This research
was supported in part by the University Center for Mathematical Modelling, Applied Analysis and Computational
Mathematics (Math MAC), Czech Republic, and Inria, Centre de Recherche, Rennes – Bretagne Atlantique, France.

References

[1] F. Berthelin and J. Vovelle. A BGK approximation to scalar conservation laws with discontinuous flux. Proc. Roy. Soc. Edinburgh Sect. A 140
(2010) 953–972. MR2726116

[2] C. Bauzet, G. Vallet and P. Wittbolt. The Cauchy problem for conservation laws with a multiplicative noise. J. Hyperbolic Differ. Equ. 9 (4)
(2012) 661–709. MR3021756

[3] C. Q. Chen, Q. Ding and K. H. Karlsen. On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. MR2917120
[4] G. Q. Chen and B. Perthame. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non

Linéaire 20 (4) (2003) 645–668. MR1981403
[5] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia Math. Appl. 44. Cambridge Univ. Press, Cambridge,

1992. MR1207136

http://www.ams.org/mathscinet-getitem?mr=2726116
http://www.ams.org/mathscinet-getitem?mr=3021756
http://www.ams.org/mathscinet-getitem?mr=2917120
http://www.ams.org/mathscinet-getitem?mr=1981403
http://www.ams.org/mathscinet-getitem?mr=1207136


1528 M. Hofmanová

[6] A. Debussche and J. Vovelle. Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. MR2652180
[7] R. J. DiPerna and P. L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–

547. MR1022305
[8] J. Feng and D. Nualart. Stochastic scalar conservation laws. J. Funct. Anal. 255 (2) (2008) 313–373. MR2419964
[9] F. Flandoli, M. Gubinelli and E. Priola. Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180 (2010) 1–

53. MR2593276
[10] M. Hofmanová. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123 (2013) 4294–4336. MR3096355
[11] H. Holden and N. H. Risebro. Conservation laws with a random source. Appl. Math. Optim. 36 (2) (1997) 229–241. MR1455435
[12] C. Imbert and J. Vovelle. A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications.

SIAM J. Math. Anal. 36 (1) (2004) 214–232. MR2083859
[13] J. U. Kim. On a stochastic scalar conservation law. Indiana Univ. Math. J. 52 (1) (2003) 227–256. MR1970028
[14] H. Kunita. Stochastic differential equations and stochastic flows of diffeomorphisms. In École d’Été de Probabilités de Saint-Flour XII –

1982 143–303. Lecture Notes in Math. 1097. Springer, Berlin, 1984. MR0876080
[15] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press, Cambridge, 1990. MR1070361
[16] P. L. Lions, B. Perthame and E. Tadmor. Formulation cinétique des lois de conservation scalaires multidimensionnelles. C. R. Acad. Sci. Paris

Sér. I Math. 312 (1991) 97–102. MR1086510
[17] P. L. Lions, B. Perthame and E. Tadmor. A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer.

Math. Soc. 7 (1) (1994) 169–191. MR1201239
[18] A. Nouri, A. Omrane and J. P. Vila. Boundary conditions for scalar conservation laws from a kinetic point of view. J. Stat. Phys. 94 (5-6)

(1999) 779–804. MR1694068
[19] A. Nouri, A. Omrane and J. P. Vila. Erratum to “Boundary conditions for scalar conservation laws from a kinetic point of view.” J. Stat. Phys.

115 (2004) 1755–1756. MR2066298
[20] B. Perthame and E. Tadmor. A kinetic equation with kinetic entropy functions for scalar conservation laws. Comm. Math. Phys. 136 (3)

(1991) 501–517. MR1099693
[21] B. Perthame. Kinetic Formulation of Conservation Laws. Oxford Lecture Ser. Math. Appl. 21. Oxford Univ. Press, Oxford, 2002. MR2064166
[22] P. E. Protter. Stochastic Integration and Differential Equations. Springer, Berlin, 2004. MR2020294
[23] B. Saussereau and I. L. Stoica. Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure.

Stochastic Process. Appl. 122 (2012) 1456–1486. MR2914759
[24] G. Vallet and P. Wittbolt. On a stochastic first order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. Relat.

Top. 12 (4) (2009) 613–651. MR2590159
[25] E. Weinan, K. Khanin, A. Mazel and Ya. Sinai. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2) 151 (2000)

877–960. MR1779561

http://www.ams.org/mathscinet-getitem?mr=2652180
http://www.ams.org/mathscinet-getitem?mr=1022305
http://www.ams.org/mathscinet-getitem?mr=2419964
http://www.ams.org/mathscinet-getitem?mr=2593276
http://www.ams.org/mathscinet-getitem?mr=3096355
http://www.ams.org/mathscinet-getitem?mr=1455435
http://www.ams.org/mathscinet-getitem?mr=2083859
http://www.ams.org/mathscinet-getitem?mr=1970028
http://www.ams.org/mathscinet-getitem?mr=0876080
http://www.ams.org/mathscinet-getitem?mr=1070361
http://www.ams.org/mathscinet-getitem?mr=1086510
http://www.ams.org/mathscinet-getitem?mr=1201239
http://www.ams.org/mathscinet-getitem?mr=1694068
http://www.ams.org/mathscinet-getitem?mr=2066298
http://www.ams.org/mathscinet-getitem?mr=1099693
http://www.ams.org/mathscinet-getitem?mr=2064166
http://www.ams.org/mathscinet-getitem?mr=2020294
http://www.ams.org/mathscinet-getitem?mr=2914759
http://www.ams.org/mathscinet-getitem?mr=2590159
http://www.ams.org/mathscinet-getitem?mr=1779561

	Introduction
	Setting and the main result
	Preliminary results
	Kinetic formulation for scalar conservation laws
	Stochastic ﬂows and stochastic characteristics method

	Solution to the stochastic BGK model
	Application of the stochastic characteristics method
	Further properties of the solution operator

	Convergence of the BGK approximation
	Acknowledgements
	References

