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NUMERICAL SIMULATION OF QUADRATIC BSDES

BY JEAN-FRANÇOIS CHASSAGNEUX1 AND ADRIEN RICHOU

Imperial College London and Université de Bordeaux

This article deals with the numerical approximation of Markovian back-
ward stochastic differential equations (BSDEs) with generators of quadratic
growth with respect to z and bounded terminal conditions. We first study a
slight modification of the classical dynamic programming equation arising
from the time-discretization of BSDEs. By using a linearization argument
and BMO martingales tools, we obtain a comparison theorem, a priori esti-
mates and stability results for the solution of this scheme. Then we provide a
control on the time-discretization error of order 1

2 − ε for all ε > 0. In the last
part, we give a fully implementable algorithm for quadratic BSDEs based on
quantization and illustrate our convergence results with numerical examples.

1. Introduction. In this paper, we are interested in the numerical approxima-
tion of solutions to a special class of backward stochastic differential equations
(BSDEs for short in the sequel). Let us recall that solving a BSDE consists in
finding an adapted couple (Y,Z) satisfying the equation

Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds −

∫ T

t
Zs dWs, 0 ≤ t ≤ T ,

where W is a d-dimensional Brownian motion on a probability space (�,A,P).
We denote by (Ft )0≤t≤T the Brownian filtration. In their seminal paper [38], Par-
doux and Peng prove the existence of a unique solution (Y,Z) to this equation for
a given square integrable terminal condition ξ and a Lipschitz random driver f .
Many extensions to this Lipschitz setting have been considered. In particular, the
class of BSDE, with generators of quadratic growth with respect to the variable z,
has received a lot of attention in recent years. These equations arise, by example, in
the context of utility optimization problems with exponential utility functions, or
alternatively in questions related to risk minimization for the entropic risk measure
(see, e.g., [27, 36, 41] among many other references). Existence and uniqueness
of solution for such BSDEs has been first proved by Kobylanski [34]. Since then,
many authors worked on this question. When the terminal condition is bounded,
we refer to [7, 34, 35, 42], and, in the unbounded case, we refer to [3, 8, 9, 19, 20].
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We will focus here on the numerical approximation of the so-called “quadratic
BSDE” in a Markovian setting, namely

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,(1.1)

Yt = g(XT ) +
∫ T

t
f (Xs,Ys,Zs) ds −

∫ T

t
Zs dWs.(1.2)

Throughout this paper, we assume that the functions b :Rd → Rd×d , σ :Rd →
Rd×d are K-Lipschitz continuous functions and the function g is a bounded K-
Lipschitz continuous function, for a positive constant K . We also assume that the
function f :Rd × R × R1×d → R is a K-Lipschitz continuous function with re-
spect to x and y, that is,∣∣f (x1, y1, z) − f (x2, y2, z)

∣∣≤ K
(|x1 − x2| + |y1 − y2|)

for all y1, y2 ∈R, x1, x2 ∈ Rd and z ∈R1×d , and a L-locally Lipschitz continuous
function with respect to z: for all x ∈ Rd , y ∈ R, z, z′ ∈ R1×d ,∣∣f (x, y, z) − f

(
x, y, z′)∣∣≤ L

(
1 + |z| + ∣∣z′∣∣)∣∣z − z′∣∣,

where L is a positive constant. Moreover f is bounded with respect to x: for all
x ∈ Rd , y ∈ R, z ∈ R1×d ,∣∣f (x, y, z)

∣∣≤ L
(
1 + |y| + |z|2).

Let us notice that all convergence results obtained in this paper do not need extra
assumptions on b, σ , f and g. Especially, we emphasize that no uniform ellipticity
condition is necessary on σ .

1.1. Known results on the approximation of quadratic BSDEs. The design of
efficient algorithms to solve BSDEs in any reasonable dimension has been inten-
sively studied since the first work of Chevance [15]; see, for example, [5, 10, 11,
23, 43] and the references therein. In all these articles, the driver f of the BSDE is
a Lipschitz function with respect to z and this assumption plays a key role in the
proofs.

Up to now, there have been few results on the time-discretization and numerical
simulation of quadratic BSDEs. We review now all the techniques that allow to
compute the solution of quadratic BSDEs, to the best of our knowledge. None of
them provide a suitable complete answer to the approximation of the BSDE (1.2).

First of all, when the generator has a specific form (roughly speaking the gen-
erator is a sum of a purely quadratic term z �→ C|z|2 and a Lipschitz function) it
is possible to solve almost explicitly the quadratic BSDE by using an exponential
transformation method, also called Cole–Hopf transform (see, e.g., [29]).

It is also possible to solve some specific quadratic Markovian BSDEs by solving
a fully coupled forward backward system, that is, when Y and Z appear also in the
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coefficients of (1.1). This is the method used by Delarue and Menozzi in [17, 18]
where they solved in particular the deterministic KPZ equation. But approximation
results for fully coupled forward–backward systems need strong assumptions on
the regularity of coefficients and a uniform ellipticity assumption for σ . Moreover,
their implementation is not straightforward (due to the coupling).

In some cases, one can also rely on “classical” schemes for Lipschitz BSDEs in
order to numerically solve quadratic BSDEs. Indeed, when the terminal condition
g is a bounded Lipschitz-continuous function and σ is bounded then it is known
that Z is bounded by a constant M (see, e.g., Theorem 3.6 in [40]). Since the
generator f is assumed to be locally Lipschitz with respect to z, one only needs to
replace the generator f by a new generator f̃M(·, ·, ·) = f (·, ·, ϕM(·)) where ϕM

is the projection on the centered Euclidean ball of radius M . Then one can easily
show that these two BSDEs with generators f and f̃M have the same solution. It
is then possible to solve the second BSDE with Lipschitz driver f̃M to retrieve the
solution to the quadratic BSDE. Let us remark that some exponential terms appear
in the constant M which lead to a new generator with possibly huge Lipschitz
constant with respect to z and may cause numerical difficulties; see [4].

In the general case, Z may be unbounded. Nevertheless, when g is a bounded
Lipschitz function and σ is Lipschitz but not necessarily bounded the following
nonuniform bound holds true

|Zt | ≤ C
(
1 + |Xt |) for all t ≤ T ;(1.3)

see, for example, Theorem 3.6 in [40].
Now, replacing the generator f with the Lipschitz generator f̃M we obtain a

solution (YM,ZM) which is different from (Y,Z). But it is possible to estimate
the error between the two using the estimate on Z. The error is bounded by Cp

Mp

for every p > 1; see [28, 40]. Once again, since the new generator f̃M is Lips-
chitz, we can easily apply classical numerical approximation schemes for Lips-
chitz BSDEs. Problems occur when one tries to obtain a rate of convergence for
this technique. The classical (squared) error estimate for the discrete-time approx-
imation of Lipschitz BSDEs is C

n
with n the number of time steps, but the constant

C depends strongly on the Lipschitz constant of f̃M with respect to z and so it
depends on M ; see, for example, [5, 43]. In fact, one obtains an upper bound for
the time-discretization error (squared) of order CeCM2

n−1, the exponential term
resulting from the use of Gronwall’s lemma. Finally, an upper bound of the global
error (squared) equals to

Cp

Mp
+ CeCM2

n
.

When M increases, n−1 will have to be small exponentially fast. The resulting rate
of convergence turns out to be bad: setting M = (logn)1/2 the global error bound
becomes Cp(logn)−p which is not satisfactory.
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To circumvent the above difficulties, one can impose a specific growth assump-
tion on σ , leading to exponential moment control on X, in order to retrieve a better
bound for the error between (Y,Z) and (YM,ZM). In this case, the global error
becomes satisfactory; see Theorem 5.9 in [40]. Reasonable convergence rate can
also be retrieved for unbounded locally Lipschitz-continuous terminal conditions,
using estimates in the spirit of (1.3), but in the very restrictive case of constant σ ;
see Theorem 5.7 in [40]. Note that dealing with an unbounded terminal condition
is already a challenge for the theoretical study of (1.2).

In this paper, we focus on Lipschitz-continuous bounded terminal condition and
unbounded Lipschitz-continuous σ . This covers the case of models with great prac-
tical interest as geometric Brownian motion (Black–Scholes model). Using a sim-
ilar truncation procedure as the one described above, we are able to obtain a bound
on the time discretization error which does not depend on M . The global (squared)
error bound is shown to be almost the classical one, that is to say Cε

n1−ε , for all
ε > 0.

Let us conclude this review with the case of non-Lipschitz bounded terminal
condition. In this case—even in the Lipschitz setting for the generator—new dif-
ficulties arise in the simulation of BSDEs; see, for example, [24]. In the quadratic
case, when σ is bounded, it is possible to use estimates of the form

|Zt | ≤ C√
T − t

or |Zt | ≤ C

(T − t)(1−α)/2

if the terminal condition is α-Hölder; see [16, 39]. Thanks to these estimates one
can replace the generator f by a Lipschitz generator such that the Lipschitz con-
stant with respect to z depends on time and blows up near the time T . The time
discretization problem is addressed in [39] and the approximation of discretized
BSDEs thanks to least-squares regression is tackled in the paper [25]. In these two
papers, the time-discretization grid is not uniform taking into account the estimates
on Z. In particular, there are more points near the terminal time T than near the
initial time. We think that it would be very interesting to try to extend our results
and techniques in the case of irregular terminal conditions.

1.2. Main results of the paper. We now present in more depth our main re-
sults. As already mentioned, to tackle the problem of the numerical approxima-
tion of (1.2), we introduce a Lipschitz-continuous approximation of the driver f :
fN(·, ·, ·) = f (·, ·, ϕN(·)) and ϕN is the projection on the centered Euclidean ball
of radius ρN with ρ > 0 chosen such that fN is N -Lipschitz-continuous with re-
spect to z.

Given a grid π = {0 = t0 < t1 < · · · < tn = T } of the time interval [0, T ], we
define hi = ti+1 − ti the time-step between times ti and ti+1, and h := maxi hi

assuming that

hn ≤ C and there exists θ ≥ 1 such that hin
θ ≥ C > 0,0 ≤ i < n.(1.4)
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Here and in the sequel, C is a positive constant, which may change from line to
line but which does not depend on n. We denote it Cp if it depends on an extra
parameter p.

DEFINITION 1.1. We denote (Y π
i ,Zπ

i )0≤i≤n the solution of the BTZ2-scheme
satisfying:

(i) the terminal condition is (Y π
n ,Zπ

n ) = (g(Xπ
n ),0),

(ii) for i < n, the transition from step i + 1 to step i is given by{
Yπ

i = Eti

[
Yπ

i+1 + hifN

(
Xπ

i , Y π
i ,Zπ

i

)]
,

Zπ
i = Eti

[
Yπ

i+1H
R
i

]
,

(1.5)

where Et [·] stands for E[·|Ft ], 0 ≤ t ≤ T .

The discrete-time process (Xπ
i )0≤i≤n is an approximation of (Xt)t∈[0,T ] and we

choose to work here with the Euler scheme{
Xπ

0 = x,

Xπ
i+1 = Xπ

i + b
(
Xπ

i

)
hi + σ

(
Xπ

i

)
(Wti+1 − Wti ), 0 ≤ i < n.

The coefficients (HR
i )0≤i<n are some R1×d independent random vectors defined,

given R > 0, by

(
HR

i

)� = −R√
hi

∨ W�
ti+1

− W�
ti

hi

∧ R√
hi

, 1 ≤ � ≤ d.(1.6)

We observe that (HR
i )0≤i<n satisfies

Eti

[
HR

i

]= 0,
(1.7)

hiEti

[(
HR

i

)�
HR

i

]= hiE
[(

HR
i

)�
HR

i

]= ciId×d and
λ

d
≤ ci ≤ 

d
,

where λ,  are positive constants that do not depend on R, for R big enough.
Moreover, it is well known (see, e.g., [33]) that, under the Lipschitz continuity
assumption on b and σ ,

E
[

sup
0≤i≤n

∣∣Xπ
i

∣∣2p
]
≤ Cp and

(1.8)
max

0≤i≤n
E
[

sup
t∈[ti ,ti+1]

∣∣Xt − Xπ
i

∣∣2p
]
≤ Cphp, p ≥ 1.

Combining (1.7), (1.8) and the Lipschitz continuity property of fN , an easy in-
duction argument proves that (Y π ,Zπ) are square integrable, and thus conditional

2Bouchard–Touzi–Zhang, the first authors to consider this scheme; see [5, 43].
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expectations involved at each step of the algorithm are well defined. Moreover,
assuming Kh < 1 allows for the implicit definition of Yπ

i , i < n.
The first main result of the paper is the following theorem.

THEOREM 1.1. Setting, for some α ∈ (0,1/2),

N = nα and R = log(n),(1.9)

we have, for all η > 0,

E
[

sup
0≤i≤n

∣∣Yti − Yπ
i

∣∣2]+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Zs − Zπ
i

∣∣2 ds

]
≤ Cα,ηh

1−η.

The choice of N and R as specific functions of n will be made clear in the
following. The truncation procedure guarantees the stability of the scheme. Letting
these constants grow with n guarantees the convergence of the scheme. Obviously,
a good balance between the two has to be found.

To obtain this theorem, we first prove stability results for the scheme given in
Definition 1.1. This is a priori not straightforward because the Lipschitz constant
explodes. In order to do this, we use a linearization argument leading to a compar-
ison theorem and relying on BMO martingales tools. We then study carefully the
truncation error induced by the time-discretization. In particular, we have to revisit
Zhang’s path regularity result.

One has to observe that the above scheme is still a theoretical one since it as-
sumes a perfect computation of the conditional expectations. In practice, these
conditional expectations have to be estimated. Many methods can be used and
Theorem 1.1 is a key step toward a complete convergence analysis.

In this paper, we chose to compute the conditional expectation using a Marko-
vian quantization procedure which is now quite well known. We refer to [26, 37]
for general results about quantization and [2] for application to American options
pricing and to [17] for application to coupled forward–backward SDEs. We present
in Section 4 a fully implementable numerical scheme and prove the following up-
per bound for the convergence error:∣∣Y0 − Ŷ π

0

∣∣≤ Cα,ηh
(1/2)−η for all η > 0,

with (Ŷ π , Ẑπ ) the solution of the scheme (1.1) where conditional expectations are
replaced by implementable approximations. See Corollary 4.1 for a suitable choice
of parameters.

The rest of this paper is organized as follows. In Section 2, we introduce the lin-
earization tool for discrete schemes and we obtain some very useful estimates on
(Y π ,Zπ) together with some stability results. Section 3 is devoted to the conver-
gence analysis of the time discretization for quadratic BSDEs. In the last section,
we give a fully implementable scheme, we study its convergence error and we
provide some numerical illustrations.
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2. Preliminary results. First of all, let us recall that under the assumptions
on the generator f and the terminal condition g given in the previous section,
existence and uniqueness result holds for (1.1) and (1.2). Moreover, the solution is
known to have the following properties; see, for example, [1, 6, 34].

PROPOSITION 2.1. The FBSDE (1.1) and (1.2) has a unique solution
(X,Y,Z) ∈ S2 ×S∞ ×M2. Moreover, the martingale (

∫ t
0 Zs dWs)t∈[0,T ] belongs

to the space of BMO martingales. The S∞ norm of Y and the BMO norm of
(
∫ t

0 Zs dWs)t∈[0,T ] are bounded by a constant that depends only on T , |g|∞, and
the constant that appears in the growth assumption on the generator f .

BMO martingales theory plays a key role for a priori estimates needed in our
study. For details about the theory, we refer the reader to [32]. We now recall the
definition of a BMO martingale and introduce some notation. Let (Mt)0≤t≤T be a
martingale for the filtration (Gt )0≤t≤T . We say that M is a BMO martingale if it is
a square integrable martingale such that

‖M‖2
BMO(G) := sup

τ
E
[|MT − Mτ−|2|Gτ

]
< +∞,

where the supremum is taken over all stopping times τ ∈ [0, T ].

2.1. Lipschitz approximation. We first recall a key result concerning the Lips-
chitz approximation of quadratic BSDEs. We introduce (YN

t ,ZN
t )t∈[0,T ] the solu-

tion of the following BSDE:

YN
t = g(XT ) +

∫ T

t
fN

(
Xs,Y

N
s ,ZN

s

)
ds −

∫ T

t
ZN

s dWs(2.1)

recalling that fN(·, ·, ·) = f (·, ·, ϕN(·)) and ϕN is the projection on the centered
Euclidean ball of radius ρN with ρ > 0 chosen such that fN is N -Lipschitz with
respect to z.

REMARK 2.1. The results of Proposition 2.1 hold true for processes (X,YN,

ZN). Importantly the S∞ norm of YN and the BMO norm of (
∫ t

0 ZN
s dWs)t∈[0,T ]

are bounded by a constant that does not depend on N .

THEOREM 2.2. For all q > 0 and p ≥ 1, there exists a constant Cq,p > 0
such that

E
[

sup
0≤t≤T

∣∣Yt − YN
t

∣∣2p
]
+E

[(∫ T

0

∣∣Zs − ZN
s

∣∣2 ds

)p]
≤ Cq,p

Nq
.

The proof of this theorem is given by Theorem 6.2 in [28] (see also Remark 5.5
in [40]).
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REMARK 2.2. The control of the above error in terms of any power of N−1

legitimates the choice to set N := nα for some α > 0.

The above result is strongly linked to the following estimate on Z, and on ZN ,
proved, for example, in [40], stated here for later use.

PROPOSITION 2.3. Under our standing assumptions, for all t ∈ [0, T ] and all
N > 0, ∣∣ZN

t

∣∣+ |Zt | ≤ C
(
1 + |Xt |).

Importantly, C does not depend on N .

We conclude this section by two technical lemmas.

LEMMA 2.1. Setting, for all i < n,

Z̄N
i := 1

hi

Eti

[∫ ti+1

ti

ZN
s ds

]
,(2.2)

then

Eti

[
n−1∑
j=i

hj

∣∣Z̄N
j

∣∣2]≤ C and
∣∣Z̄N

i

∣∣≤ C
(
1 +Eti

[
sup

ti≤s≤ti+1

|Xs |
])

.

PROOF. 1. For the first claim, we observe that, for i ≤ j < n,

Eti

[∣∣Z̄N
j

∣∣2]≤ 1

hj

Eti

[∫ tj+1

tj

∣∣ZN
s

∣∣2 ds

]
.

Summing over j the previous inequality and using Remark 2.1, we obtain

Eti

[
n−1∑
j=i

hj

∣∣Z̄N
j

∣∣2]≤ Eti

[∫ T

ti

∣∣ZN
s

∣∣2 ds

]
≤
∥∥∥∥∫ .

0
ZN

s dWs

∥∥∥∥
BMO(F)

≤ C.

2. For the second claim, we compute∣∣Z̄N
i

∣∣= 1

hi

∣∣∣∣Eti

[∫ ti+1

ti

ZN
s ds

]∣∣∣∣≤ Eti

[
sup

ti≤s≤ti+1

∣∣ZN
s

∣∣]≤ C
(
1 +Eti

[
sup

ti≤s≤ti+1

|Xs |
])

,

where we used Proposition 2.3. �

LEMMA 2.2. We assume that α ≤ 1/2. Setting, for all i < n,

Z̃N
i := Eti

[
YN

ti+1

(Wti+1 − Wti )
�

hi

]
,(2.3)

then

Eti

[
n−1∑
j=i

hj

∣∣Z̃N
j

∣∣2]≤ C and
∣∣Z̃N

i

∣∣≤ C
(
1 +Eti

[
sup

ti≤s≤ti+1

|Xs |4
]1/2)

.
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PROOF. 1. For the first claim, we observe that

Eti

[
n−1∑
j=i

hj

∣∣Z̃N
j

∣∣2]≤ 2Eti

[
n−1∑
j=i

hj

∣∣Z̄N
j

∣∣2]+ 2Eti

[
n−1∑
j=i

hj

∣∣Z̄N
j − Z̃N

j

∣∣2].
The first term was already studied in Lemma 2.1. For the second term we compute,
thanks to assumptions on fN , Remark 2.1 and Cauchy–Schwarz inequality, for
i ≤ j < n,

hjEti

[∣∣Z̄N
j − Z̃N

j

∣∣2]= hjEti

[∣∣∣∣Etj

[∫ tj+1

tj

fN

(
Xs,Y

N
s ,ZN

s

)
ds

Wtj+1 − Wtj

hj

]∣∣∣∣2]

≤ hjEti

[∫ tj+1

tj

∣∣fN

(
Xs,Y

N
s ,ZN

s

)∣∣2 ds

]

≤ C

(
h2 + (1 + N2h

)
Eti

[∫ tj+1

tj

∣∣ZN
s

∣∣2 ds

])
.

Summing over j , we obtain

Eti

[
n−1∑
j=i

hj

∣∣Z̄N
j − Z̃N

j

∣∣2]≤ C

(
1 +

∥∥∥∥∫ .

0
ZN

s dWs

∥∥∥∥2

BMO(F)

)
≤ C.

2. For the second claim, once again we have∣∣Z̃N
i

∣∣≤ ∣∣Z̄N
i

∣∣+ ∣∣Z̄N
i − Z̃N

i

∣∣.
The first term is dealt with combining Lemma 2.1 and Cauchy–Schwarz inequal-
ity. For the second term, we compute, thanks to the growth assumption on fN ,
Remark 2.1, Proposition 2.3 and the Cauchy–Schwarz inequality,

∣∣Z̄N
i − Z̃N

i

∣∣≤ CEti

[∫ ti+1

ti

∣∣fN

(
Xs,Y

N
s ,ZN

s

)∣∣ds
|Wti+1 − Wti |

hj

]
(2.4)

≤ CEti

[(
1 + sup

ti≤s≤ti+1

|Xs |2
)∣∣Wti+1 − Wti

∣∣]
≤ Ch1/2

(
1 +Eti

[
sup

ti≤s≤ti+1

|Xs |4
]1/2)

.(2.5) �

2.2. Linearization of the BTZ scheme.

DEFINITION 2.1. We consider the solution (Yi,Zi)0≤i≤n of the following
BTZ scheme:

(i) the terminal condition is given by Yn = ξ for some ξ ∈ L2(FT ) and Zn = 0;
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(ii) for 0 ≤ i < n, the transition from step i + 1 to step i is given by{
Yi = Eti

[
Yi+1 + hiFi(Yi,Zi)

]
,

Zi = Eti [Yi+1Hi],
with (Hi)0≤i<n some R1×d independent random vectors such that, for all 0 ≤ i <

n, Hi is Fti+1 measurable, Eti [Hi] = 0,

ciId×d = hiE
[
H�

i Hi

]= hiEti

[
H�

i Hi

]
,(2.6)

and

λ

d
≤ ci ≤ 

d
,(2.7)

where λ,  are positive constants. Let us remark that (2.6) and (2.7) imply that

λ ≤ hiE
[|Hi |2]= hiEti

[|Hi |2]≤ .(2.8)

For the reader’s convenience, we denote the above scheme by E[(Fi), ξ ].
In the sequel, we use the following assumption on the coefficients of the scheme

given in Definition 2.1.

ASSUMPTION (H1). (i) Functions Fi :� ×R×R1×d →R are Fti ⊗B(R) ⊗
B(Rd)-measurable. They satisfy for some positive constants Ky and Kn

z which do
not depend on i but Kn

z may depend on n,

◦ Fi(0,0) ∈ L2(Fti ),
◦ |Fi(y, z) − Fi(y

′, z′)| ≤ Ky |y − y′| + Kn
z |z − z′|.

(ii) For a given ε ∈]0,1[ which does not depend on n, we have that

hKy < 1 − ε.

(iii) The following holds:(
sup

0≤i≤n−1
hi |Hi |

)
Kn

z < 1.

Observe that (H1)(ii) guarantees the well-posedness of the scheme.

We now give a representation result for the difference of two BTZ scheme solu-
tions. Let (Y 1

i ,Z1
i )0≤i≤n be the solution of E[(F 1

i ), ξ1] and (Y 2
i ,Z2

i )0≤i≤n be the
solution of E[(F 2

i ), ξ2].
We denote δYi = Y 1

i −Y 2
i , δZi = Z1

i −Z2
i and δFi = F 1

i (Y 2
i ,Z2

i )−F 2
i (Y 2

i ,Z2
i ).

Then, we have the following representation result.
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PROPOSITION 2.4 (Euler scheme linearization). Assume that F 1 satisfies
(H1)(i)–(ii). Setting, for 0 ≤ i ≤ n,

Eπ
i =

n−1∏
j=i

(1 + hjHjγj ) and Bπ
i =

n−1∏
j=i

(1 − hjβj ),

with

βj = F 1
j (Y 1

j ,Z1
j ) − F 1

j (Y 2
j ,Z1

j )

Y 1
j − Y 2

j

1{Y 1
j −Y 2

j �=0}

and

γj = F 1
j (Y 2

j ,Z1
j ) − F 1

j (Y 2
j ,Z2

j )

|Z1
j − Z2

j |2
(
Z1

j − Z2
j

)�1{Z1
j −Z2

j �=0},

then the following holds:

δYi = Eti

[
Eπ

i

(
Bπ

i

)−1
(
δYn +

n−1∑
k=i

hkB
π
k+1δFk

)]
.(2.9)

We used the convention
∏n−1

j=n · = 1.

PROOF. For 0 ≤ i ≤ n − 1, we compute that

δYi = Eti [δYi+1 + hiβiδYi + hiδZiγi + hiδFi].(2.10)

Observing that δZi = Eti [HiδYi+1], we obtain

δYi = 1

1 − hiβi

Eti

[
(1 + hiHiγi)δYi+1 + hiδFi

]
= 1

1 − hiβi

Eti

[
(1 + hiHiγi)(δYi+1 + hiδFi)

]
.

Under (H1)(ii), we observe that 1 − hiβi �= 0 and the previous equality is well
defined. Using an easy induction argument, we obtain

δYi = Eti

[
Eπ

i

(
Bπ

i

)−1
(
δYn +

n−1∑
k=i

hk

(
Eπ

k+1
)−1

Bπ
k+1δFk

)]
.

The proof is complete using the tower property of conditional expectation and the
fact that Etk+1[Eπ

k+1] = 1. �

The previous representation leads to the following comparison result for the
BTZ scheme.
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COROLLARY 2.5 (Comparison theorem). Assume that F 1 satisfies (H1). If

Y 1
n ≥ Y 2

n and F 1
i

(
Y 2

i ,Z2
i

)≥ F 2
i

(
Y 2

i ,Z2
i

)
, 0 ≤ i ≤ n − 1,

then we have that

Y 1
i ≥ Y 2

i , 0 ≤ i ≤ n.

PROOF. We will use the BTZ scheme linearization given in Proposition 2.4.
Since |βi | ≤ Ky and |γi | ≤ Kn

z , the condition (sup0≤i<n hi |Hi |)Kn
z < 1 combined

with hKy < 1, implies that the coefficients Eπ
i , Bπ

i are positive, for i < n. More-
over, we assume that

Y 1
n ≥ Y 2

n and F 1
i

(
Y 2

i ,Z2
i

)≥ F 2
i

(
Y 2

i ,Z2
i

)
, 0 ≤ i ≤ n − 1,

so we have

δYn ≥ 0 and δFi ≥ 0, 0 ≤ i ≤ n − 1.

Thus, (2.9) gives us for all 0 ≤ i ≤ n

δYi = Eti

[
Eπ

i

(
Bπ

i

)−1
(
δYn +

n−1∑
k=i

hkB
π
k+1δFk

)]
≥ 0.

�

REMARK 2.3. (i) As for the classical comparison theorem, the previous result
stays true if we replace the condition

F 1 satisfies (H1) and F 1
i

(
Y 2

i ,Z2
i

)≥ F 2
i

(
Y 2

i ,Z2
i

)
, 0 ≤ i ≤ n − 1,

with

F 2 satisfies (H1) and F 1
i

(
Y 1

i ,Z1
i

)≥ F 2
i

(
Y 1

i ,Z1
i

)
, 0 ≤ i ≤ n − 1.

(ii) The comparison result for BS�Es is already proved in [13] but without
using the scheme linearization.

(iii) The truncation of the generator is essential to make the comparison theorem
hold: Example 4.1 in [14] shows that comparison fails for quadratic BS�Es with
bounded terminal condition.

2.3. A priori estimates (in the quadratic case). In this part, we establish some
a priori estimates for the solution of the BTZ scheme given by Definition 2.1 with
quadratic generator. More precisely, we show that classical a priori estimates for
quadratic BSDEs stay true for the corresponding BTZ scheme under suitable con-
ditions. We consider schemes with essentially bounded terminal condition ξ and
coefficients F satisfying more restrictive assumptions.



274 J.-F. CHASSAGNEUX AND A. RICHOU

ASSUMPTION (H2). (i) ξ ∈ L∞(FT ) and (Fi)0≤i≤n−1 satisfy (H1),
(ii) Fi(0,0) ∈ L∞(Fti ) for all 0 ≤ i ≤ n − 1 and there exists a constant C̃ that

does not depend on n and such that

sup
0≤i≤n

∣∣Fi(0,0)
∣∣≤ C̃,

(iii) there exist three positive constants Ky , L̃ and ̃ that do not depend on n

and such that

∣∣Fi(y, z)
∣∣≤ Ky |y| + L̃|z|2 + ςi with Eti

[
n∑

k=i

hk|ςk|
]

≤ ̃.(2.11)

The first key estimate is related to the uniform boundedness in n of (Yi)0≤i≤n.

PROPOSITION 2.6. Assume (H2)(i)–(ii) holds true. Then

|Yi | ≤
(
|ξ |∞ + T sup

0≤i≤n−1

∣∣Fi(0,0)
∣∣∞)eCKy/ε ≤ (|ξ |∞ + T C̃

)
eCKy/ε.

PROOF. We introduce (Y 2
i ,Z2

i )0≤i≤n the solution of the BTZ scheme E[(F 2
i ),

|ξ |∞] with F 2
i (y, z) = |Fi(0,0)|∞ +Ky |y|. We observe that the terminal condition

and the generator of this scheme are deterministic functions which implies that
Z2

i = 0 for all 0 ≤ i ≤ n. We are able to compare Fi and F 2
i under (H2)(i)–(ii):

Fi

(
Y 2

i ,Z2
i

)= Fi

(
Y 2

i ,0
)≤ ∣∣Fi(0,0)

∣∣∞ + Ky

∣∣Y 2
i

∣∣= F 2
i

(
Y 2

i ,Z2
i

)
.

Since ξ ≤ |ξ |∞ we can apply the comparison theorem given in Corollary 2.5:

Yi ≤ Y 2
i = |ξ |∞∏n−1

k=i (1 − hkKy)
+

n−1∑
j=i

hj |Fj (0,0)|∞∏j
k=i(1 − hkKy)

≤ |ξ |∞
(

1 + hKy

ε

)n−i

+
n−1∑
j=i

hj

∣∣Fj (0,0)
∣∣∞(1 + hKy

ε

)j−i+1

≤
(
|ξ |∞ + T sup

0≤j≤n−1

∣∣Fj (0,0)
∣∣∞)eCKy/ε.

Using similar arguments, we obtain that

Yi ≥
(
−|ξ |∞ − T sup

0≤j≤n−1

∣∣Fj (0,0)
∣∣∞)eCKy/ε

which completes the proof. �

The second estimate is related to (Zi)0≤i≤n.
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PROPOSITION 2.7. Under (H2), we have that

Eti

[
n−1∑
k=i

hk|Zk|2
]

≤ C, 0 ≤ i ≤ n − 1.

PROOF. Since (H2) holds, we can apply Proposition 2.6 and get

sup
0≤i≤n

|Yi | ≤ (|ξ |∞ + T C̃
)
eCKy/ε := m.

We split the proof in two steps, depending on the value of m.

1. In this first step, we assume that

2mL̃ ≤ d

2
.(2.12)

We observe that the BTZ scheme can be rewritten

Yi = Yi+1 + hiFi(Yi,Zi) − hic
−1
i ZiH

�
i − �Mi,

where ci is given by (2.6) and �Mi is an Fti+1 -measurable random variable sat-
isfying Eti [�Mi] = 0, Eti [|�Mi |2] < ∞ and Eti [�MiHi] = 0. Using the identity
|y|2 = |x|2 + 2x(y − x) + |y − x|2, we obtain, setting x = Yi and y = Yi+1,

|Yi+1|2 = |Yi |2 + 2Yi

(−hiFi(Yi,Zi) + hic
−1
i ZiH

�
i + �Mi

)
+ ∣∣−hiFi(Yi,Zi) + hic

−1
i ZiH

�
i + �Mi

∣∣2.
Taking the conditional expectation w.r.t. Fti in the previous equality, we obtain
using (H2)(iii) and (2.6),

Eti

[|Yi+1|2]≥ |Yi |2 − 2YihiFi(Yi,Zi) +Eti

[∣∣hic
−1
i ZiH

�
i

∣∣2]
≥ |Yi |2 − 2mhi

(
Kym + L̃|Zi |2 + |ςi |)+ hi(ci)

−2ZihiEti

[
H�

i Hi

]
Z�

i

≥ |Yi |2 − 2mhi

(
Kym + L̃|Zi |2 + |ςi |)+ hi(ci)

−1|Zi |2

≥ |Yi |2 − 2m2Kyhi +
(

d


− 2mL̃

)
hi |Zi |2 − 2mhi |ςi |.

Finally, an easy induction over i allows to obtain

Eti

[
n−1∑
k=i

hk|Zk|2
]

≤ 1

d/ − 2mL̃

(
Eti

[|Yn|2]− |Yi |2 + 2m2KyT + 2m̃
)

≤ 2m2 + 2m2KyT + 2m̃

d/ − 2mL̃
.

Since the previous bound does not depend on n, the result is proved in this special
case.
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2a. To prove the result in the general case, we use similar arguments as in [42]:
we cut ξ and (Fi(0,0)) in pieces small enough such that we are able to use step 1.
Let us set an integer κ ∈ N∗ that does not depend on n and such that

4mL̃

κ
≤ d

2
.(2.13)

For each a ∈ {1, . . . , κ}, we denote (Y a
i ,Za

i )0≤i≤n the solution of E[(�a
i ), ξ

a] with
ξa = ξ

κ
and

�a
i (y, z) = Fi

(
y +

a−1∑
q=1

Y
q
i , z +

a−1∑
q=1

Z
q
i

)
− Fi

(
a−1∑
q=1

Y
q
i ,

a−1∑
q=1

Z
q
i

)
+ Fi(0,0)

κ
.

We observe that

Yi =
κ∑

a=1

Ya
i and Zi =

κ∑
a=1

Za
i .(2.14)

Since (H2)(i)–(ii) holds true for (�a
i ) and ξa , we can apply Proposition 2.6 and

remark that

sup
0≤i≤n

∣∣Ya
i

∣∣≤ (∣∣ξa
∣∣∞ + sup

0≤i≤n−1

∣∣�a
i (0,0)

∣∣∞T
)
eCKy/ε

≤
( |ξ |∞

κ
+ sup0≤i≤n−1 |Fi(0,0)|∞

κ
T

)
eCKy/ε(2.15)

≤ m

κ
.

2b. In this last step, we use an induction argument to show

Eti

[
n−1∑
k=i

hk

∣∣Za
k

∣∣2]≤ C, 0 ≤ i < n,(2.16)

for all a ∈ {1, . . . , κ}. Combined with (2.14), this proves the proposition in the
general case. We have proved in the first step that (2.16) is true for a = 1. Now let
us assume that it is true up to a < κ . Then we compute that

∣∣�a+1
i (y, z)

∣∣≤ ∣∣∣∣∣Fi

(
y +

a∑
q=1

Y
q
i , z +

a∑
q=1

Z
q
i

)∣∣∣∣∣
+
∣∣∣∣∣Fi

(
a∑

q=1

Y
q
i ,

a∑
q=1

Z
q
i

)∣∣∣∣∣+ |Fi(0,0)|
κ

≤ Ky |y| + 2L̃|z|2 + ςa
i ,

where ςa
i = 2Ky |∑a

q=1 Y
q
i | + 3L̃|∑a

q=1 Z
q
i |2 + 2|ςi | + |Fi(0,0)|∞/κ .

Assumption (H2)(iii), bound (2.15) and the induction hypothesis yield that
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Eti [
∑n

k=i hk|ςa
k |] ≤ C for all 0 ≤ i < n. Then we have that �a+1 satisfies As-

sumption (H2) with 2L̃ instead of L̃ and ςa instead of ς . Since we have assumed
that (2.13) holds true, then we can apply step 1 to obtain

Eti

[
n−1∑
k=i

hk

∣∣Za+1
k

∣∣2]≤ C, 0 ≤ i < n,

which completes the proof. �

We conclude this section by applying previous results to the scheme given in
Definition 1.1.

COROLLARY 2.8. Under assumptions of Theorem 1.1 the following holds
true, for n large enough,

sup
0≤i≤n

(∣∣Yπ
i

∣∣+Eti

[
n−1∑
k=i

∣∣Zπ
k

∣∣2hk

])
≤ C.

PROOF. We simply observe that with our special choice of parameters R

and N , we have for n large enough

(
sup

0≤i≤n−1
hi

∣∣HR
i

∣∣)nα ≤ √
h
√

dRnα ≤ C
√

d logn

n1/2−α
< 1,

and that the generator of the scheme given in Definition 1.1 satisfies (H2) (with
Kn

z = N := nα). The result follows then from a direct application of Proposi-
tion 2.6 and Proposition 2.7. �

REMARK 2.4. In a slightly different framework, Gobet and Turkedjiev have
already obtained the Corollary 2.8 in [25] by direct calculations without using the
linearization technique.

2.4. Scheme stability. In this part, we will establish some bounds on the differ-
ence between two schemes. Firstly, we introduce a perturbed version of the scheme
given in Definition 2.1.

DEFINITION 2.2. (i) The terminal condition is given by Ỹn = ξ̃ for some ξ̃ ∈
L∞(FT ) and Z̃n = 0;

(ii) for 0 ≤ i < n {
Ỹi = Eti

[
Ỹi+1 + hiFi(Ỹi, Z̃i)

]+ ζ Y
i ,

Z̃i = Eti [Ỹi+1Hi].
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Perturbations ζ Y
i are Fti -measurable and square integrable random variables.

Moreover, we assume that

sup
0≤i<n

Eti

[
n−1∑
j=i

|Z̃j |2hj

]
< C.(2.17)

2.4.1. Stability results for the Y component. Setting δYi := Yi − Ỹi and δZi :=
Zi − Z̃i , we obtain a key stability result for the Y component.

PROPOSITION 2.9. Assume that Assumption (H1) holds true. Then, for all
0 ≤ i ≤ n,

|δYi | ≤ CE
Qπ

ti

[
|δYn| +

n−1∑
j=i

∣∣ζ Y
j

∣∣],
where

dQπ

dQ
= Eπ

0 =
n−1∏
j=0

(1 + hjHjγj )

and

γj = Fj (Ỹj ,Zj ) − Fj (Ỹj , Z̃j )

|Zj − Z̃j |2
(Zj − Z̃j )

�1{Zj−Z̃j �=0}.(2.18)

PROOF. Using the Euler scheme linearization given in Proposition 2.4 and

observing δFk = −ζY
k

hk
, it follows from (2.9) that

|δYi | ≤ Eti

[∣∣Eπ
i

∣∣∣∣Bπ
i

∣∣−1
(
|δYn| +

n−1∑
k=i

∣∣Bπ
k+1

∣∣∣∣ζ Y
k

∣∣)].
Moreover,∣∣Bπ

i

∣∣−1∣∣Bπ
k+1

∣∣≤ ( 1

1 − hKy

)k+1−i

≤
(

1 + hKy

ε

)k+1−i

≤ e(CKy)/ε,

leading to

|δYi | ≤ CEti

[∣∣Eπ
i

∣∣(|δYn| +
n−1∑
k=i

∣∣ζ Y
k

∣∣)].
Under (H1)(iii), we get that Eπ

i > 0 for all 0 ≤ i ≤ n and then(
k∏

j=0

(1 + hjHjγj )

)
0≤k≤n

is a positive martingale with expectation equal to 1. The measure Qπ is thus a
probability measure. �
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2.4.2. Estimates on Qπ . In order to retrieve nice estimates on the probability
measure Qπ , we need to introduce a new assumption.

ASSUMPTION (H3). (i) (H2) holds true and (sup0≤i≤n−1 hi |Hi |)Kn
z < 1 − ε

with ε a positive constant that does not depend on n,
(ii) Fi are L̃-locally Lipschitz functions with respect to z: ∀y ∈ R, ∀z, z′ ∈

R1×d , ∀0 ≤ i ≤ n − 1,∣∣Fi(y, z) − Fi

(
y, z′)∣∣≤ L̃

(
1 + |z| + ∣∣z′∣∣)∣∣z − z′∣∣,

with L̃ a constant that does not depend on n.

PROPOSITION 2.10. Assume that (H3) holds true. Then Mt :=∑
ti≤t hiγiHi ,

with (γi)0≤i≤n−1 given by (2.18), is a BMO martingale for the discontinuous filtra-
tion Fn defined by Fn

t := Fti when ti ≤ t < ti+1. Moreover, there exists a constant
C that does not depend on n such that

‖M‖BMO(Fn) ≤ C.

PROOF. We have to show that there exists a constant C that does not depend
on n such that, for all stopping time S ≤ T ,

E
[|MT − MS−|2|FS

]≤ C.

Thanks to remark (76.4) in Chapter VII of [21], we know that it is sufficient to
show that for all 0 ≤ i < n,

Eti

[
n−1∑
j=i

|hjHjγj |2
]

≤ C.

To prove this point, we use the fact that Fi is a L̃-locally Lipschitz function with
respect to z and (2.8):

Eti

[
n−1∑
j=i

|hjHjγj |2
]

≤ 3L̃2 + 3L̃2Eti

[
n−1∑
j=i

|hjHj |2|Z̃j |2
]

+ 3L̃2Eti

[
n−1∑
j=i

|hjHj |2|Zj |2
]

≤ 3L̃2 + 3L̃2Eti

[
n−1∑
j=i

|Z̃j |2hj

]
+ 3L̃2Eti

[
n−1∑
j=i

|Zj |2hj

]
.

The proof is complete combining (2.17) with Proposition 2.7. �

Since M is a BMO martingale, we retrieve some strong properties for this pro-
cess.
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PROPOSITION 2.11. Assume that (H3) holds true. Then the Doléans–Dade
exponential Et :=∏

tj≤t (1 +hjHjγj ) is a uniformly integrable martingale for the
filtration Fn satisfying the “reverse Hölder inequality”

Et

[
E

p∗
T

E
p∗
t

]
≤ C, 0 ≤ t ≤ T ,

for some p∗ > 1 and C > 0 that depend only on ‖M‖BMO(Fn) and ε. In particular,
we can choose them independently of n. As a direct corollary, we have that M is a
Lp∗

bounded martingale.

PROOF. The first theorem in [31] states that (Et )0≤t≤1 is a uniformly inte-
grable martingale satisfying the “reverse Hölder inequality” for some p∗ > 1. We
just have to check that we can choose C and p∗ that only depend on ‖M‖BMO(Fn)

and ε. First, thanks to Theorem 2 in [30] we know that there exist positive constants
a and K such that

Eτ

[(
ET

Eτ

)a]
≤ K,(2.19)

for any stopping time τ . By checking carefully the proof of this theorem, we re-
mark that a is chosen such that

ka := 4a2 + a

ε2 <
1

‖M‖BMO(Fn)

and then K is set

K := 1

1 − ka‖M‖2
BMO(Fn)

.

To conclude, we use Lemma 3 in [31] that says that if M satisfies (2.19), then
it satisfies a “reverse Hölder inequality.” By checking carefully the proof of this
lemma, we can see that constants C and p∗ in the “reverse Hölder inequality” are
only obtained thanks to a, K and ε. �

Combining the previous proposition with Proposition 2.9, we obtain, using
Hölder’s inequality, the following result.

COROLLARY 2.1. Assume that (H3) holds true. Then there exist constants
C > 0 and q∗ > 1 that do not depend on n and such that, for all 0 ≤ i ≤ n,

|δYi | ≤ C

(
Eti

[|δYn|q∗]1/q∗ +Eti

[(
n−1∑
j=i

∣∣ζ Y
j

∣∣)q∗]1/q∗)
.

q∗ is the conjugate exponent of p∗ given in Proposition 2.11.
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REMARK 2.5. If ζ Y
i = ζ

Y,1
i + ζ

Y,2
i , it is easy to see that one may just apply

Corollary 2.1 on the first part of the perturbation:

|δYi | ≤ C

(
Eti

[|δYn|q∗]1/q∗ +Eti

[(
n−1∑
j=i

∣∣ζ Y,1
j

∣∣)q∗]1/q∗

+E
Qπ

ti

[
n−1∑
j=i

∣∣ζ Y,2
j

∣∣]),

0 ≤ i ≤ n.

2.4.3. Stability result for the Z component.

PROPOSITION 2.12. Assume that (H3) holds true. Then

E

[
n−1∑
i=0

hi |δZi |2
]

≤ C

(
E
[|δYn|2]+E

[
n−1∑
i=0

|ζ Y
i |2
hi

]
+E

[
sup

0≤i≤n−1
|δYi |4

]1/2
)
.

PROOF. As in the proof of Proposition 2.7, we first observe that equa-
tion (2.10) can be rewritten

δYi = δYi+1 + hiβiδYi + hiδZiγi + ζ Y
i − hic

−1
i δZiH

�
i − δ�Mi,

where δ�Mi is an Fti+1 random variable satisfying Eti [δ�Mi] = 0,
Eti [|δ�Mi |2] < ∞ and Eti [δ�MiHi] = 0. Using the identity |y|2 = |x|2 +2x(y −
x)+ |y − x|2 and taking the conditional expectation, we compute, setting x = δYi

and y = δYi+1,

Eti

[|δYi+1|2]≥ |δYi |2 − 2|δYi |2hiβi − 2hiδYiδZiγi

− 2δYiζ
Y
i + c−1

i hiδZic
−1
i hiEti

[
H�

i Hi

]
δZ�

i .

It follows from (2.6) and (2.7) applied to the previous inequality that

|δYi |2 + d


hi |δZi |2 ≤ Eti

[|δYi+1|2]+ 2δYiζ
Y
i + 2hiδYiδZiγi + 2|δYi |2hiβi

and Young’s inequality leads to

|δYi |2 + d

2
hi |δZi |2 ≤ Eti

[|δYi+1|2]+ hi

(
1 + 2Ky + 2|γi |2

d

)
|δYi |2 + |ζ Y

i |2
hi

.

Summing over i the previous inequality, we obtain

E

[
n−1∑
i=0

hi |δZi |2
]

≤ CE
[|δYn|2]+CE

[
n−1∑
i=0

hi

(
1 +|γi |2)|δYi |2

]
+CE

[
n−1∑
i=0

|ζ Y
i |2
hi

]
.

Applying Hölder’s inequality, we get

E

[
n−1∑
i=0

hi |δZi |2
]

≤ CE
[|δYn|2]+ CE

[
n−1∑
i=0

|ζ Y
i |2
hi

]

+ CE
[

sup
0≤i≤n−1

|δYi |4
]1/2

E

[(
1 +

n−1∑
i=0

|γi |2hi

)2]1/2

.
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To complete the proof, we just have to show that

E

[(
n−1∑
i=0

hi |γi |2
)2]

≤ C.

Using the Burkholder–Davis–Gundy inequality for the discrete martingale
(
∑j

i=0 hiHiγi)0≤j≤n, the previous inequality holds true if we have

E

[(
sup

0≤j≤n−1

j∑
i=0

hiHiγi

)4]
≤ C.

Thanks to Proposition 2.10 we know that Mt =∑
ti≤t hiHiγi is a BMO mar-

tingale with a BMO norm that does not depend on n. To complete the proof, we
use an energy inequality or the John–Nirenberg inequality; see, for example, The-
orem 109 and inequality (109.5) in Chapter VI of [21], and obtain

E

[(
sup

0≤j≤n−1

j∑
i=0

hiHiγi

)4]
≤ C

with C that depends only on ‖M‖BMO(Fn). �

3. Convergence analysis of the discrete-time approximation. The aim of
this part is to study the error between the solution (Y,Z) of the BSDE (1.2) and
(Y π ,Zπ) the solution of the BTZ scheme given in Definition 1.1, recalling (1.9).
Thanks to Theorem 2.2 we know that we just have to estimate the error between
(YN,ZN) and (Y π ,Zπ).

Let us first observe that we can apply results of the previous section to (Y π ,Zπ).

LEMMA 3.1. Under same assumptions as Theorem 1.1, the scheme given in
Definition 1.1 satisfies (H3).

PROOF. With our special choice of parameters R and N , there exists ε > 0
such that for n big enough we have Kf,yh ≤ CKf,y

n
< 1 − ε. Moreover, we have

also for n large enough(
sup

0≤i≤n−1
hi

∣∣HR
i

∣∣)nα ≤ √
hRnα ≤

√
C logn

n1/2−α
≤ 1 − ε. �

3.1. Expression of the perturbing error. We first observe that (YN,ZN) can
be rewritten as a perturbed BTZ scheme. Namely, setting Ỹi := YN

ti
, for all i ≤ n,

we have {
Ỹi = Eti

[
Ỹi+1 + hifN

(
Xπ

i , Ỹi , Z̃i

)]+ ζ Y
i ,

Z̃i = Eti

[
Ỹi+1H

R
i

]
,

(3.1)
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with

ζ Y
i = Eti

[∫ ti+1

ti

fN

(
Xs,Y

N
s ,ZN

s

)− fN

(
Xπ

i , YN
ti

, Z̃i

)
ds

]
.(3.2)

The following lemma will allow us to use the results of the last section.

LEMMA 3.2. The perturbed scheme (Ỹi , Z̃i)i≤n satisfies, for all 0 ≤ k ≤
n − 1,

Etk

[
n−1∑
i=k

∣∣Z̃i

∣∣2hi

]
≤ C.

PROOF. Observe that

Etk

[
n−1∑
i=k

hi |Z̃i |2
]

≤ C

(
Etk

[∑
i≥k

∣∣Z̃i − Z̃N
i

∣∣2hi

]
+Etk

[∑
i≥k

∣∣Z̃N
i

∣∣2hi

])
,(3.3)

where

Z̃N
i := Eti

[
YN

ti+1

�Wi

hi

]
.

Applying Lemma 2.2, we obtain

Etk

[
n−1∑
i=k

hi |Z̃i |2
]

≤ C

(
1 +Etk

[∑
i≥k

∣∣Z̃i − Z̃N
i

∣∣2hi

])
.(3.4)

Moreover, we compute

Etk

[∑
i≥k

∣∣Z̃i − Z̃N
i

∣∣2hi

]
= Etk

[∑
i≥k

∣∣∣∣Eti

[(
YN

ti+1
− YN

ti

)(
HR

i − �Wi

hi

)]∣∣∣∣2hi

]

≤ C
∑
i≥k

Etk

[∣∣YN
ti+1

− YN
ti

∣∣2],
where we used Cauchy–Schwarz inequality, recalling (2.8).

We then compute, thanks to assumptions on fN and Remark 2.1,

Etk

[∣∣YN
ti+1

− YN
ti

∣∣2]
≤ C

(
hiEtk

[∫ ti+1

ti

∣∣fN

(
Xs,Y

N
s ,ZN

s

)∣∣2 ds

]
+Etk

[∫ ti+1

ti

∣∣ZN
s

∣∣2 ds

])

≤ C

(
h2 + (1 + N2h

)
Etk

[∫ ti+1

ti

∣∣ZN
s

∣∣2 ds

])
.

Summing over i, recalling Remark 2.1, we obtain

Etk

[∑
i≥k

∣∣Z̃i − Z̃N
i

∣∣2hi

]
≤ C

(
1 +

∥∥∥∥∫ .

0
ZN

s dWs

∥∥∥∥2

BMO(F)

)
≤ C.(3.5)

The proof is complete combining the above inequality with (3.4). �
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3.2. Regularity. In the following, we need regularity results on (X,YN,ZN).
The specificity here is that we need the estimates under the probability measure P

and Qπ . The first result deals with the path regularity of Y under the probability
measure P. It is a mere generalization of Theorem 5.5 in [28].

PROPOSITION 3.1 (Y -part). For all p ≤ 1, we have

sup
0≤j≤n−1

E
[

sup
tj≤s≤tj+1

∣∣YN
s − YN

tj

∣∣2p
]
≤ Cphp.(3.6)

The second result is a slight modification of the well-known Zhang path regu-
larity theorem, whose proof is postponed to the ArXiv version of his paper.

PROPOSITION 3.2 (Z-part). For all p ≥ 1 and η > 0, we have

E

[
sup

0≤i≤n−1
E
Qπ

ti

[
n−1∑
j=i

(∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

)1+η
]p]

≤ Cη,php(1+η) .

Let us remark that the previous proposition stays true when we replace Qπ by P:
it is a mere generalization of Theorem 5.6 in [28].

3.3. Discretization error for the Y -component.

PROPOSITION 3.3. There exists q∗ > 1 and, for all η > 0 and p ≥ 1, there
exist constants Cp and Cα,η,p such that

E
[

sup
0≤i≤n

∣∣Yti − Yπ
i

∣∣2p
]

≤ Cα,η,php(1−η) + CpE
[

sup
0≤j≤n

∣∣Xtj − Xπ
j

∣∣2pq∗]1/q∗

+ Cp max
0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]4p

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2p)
.

Before giving the proof, let us emphasize that q∗ is the exponent given by Corol-
lary 2.1 and so it is the conjugate exponent of p∗ given by Proposition 2.11.

PROOF OF PROPOSITION 3.3. The proof is divided in several steps.

1. We first observe that

E
[

sup
0≤i≤n

∣∣Yti − Yπ
i

∣∣2p
]

(3.7)
≤ Cp

(
E
[

sup
0≤i≤n

∣∣Yti − YN
ti

∣∣2p
]
+E

[
sup

0≤i≤n

∣∣YN
ti

− Yπ
i

∣∣2p
])

.
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To bound the first term in the right-hand side of the above equation, we apply
Theorem 2.2 and get

E
[

sup
0≤i≤n

∣∣Yti − YN
ti

∣∣2p
]
≤ Cα,php ,

recalling (1.9).
2. To control the error between the solution YN and the scheme Yπ , we will

combine the stability results proved in the previous section with a careful analysis
of the perturbation error (ζ Y

i )0≤i<n given by (3.2). We first observe that

ζ Y
i = Eti

[∫ ti+1

ti

fN

(
Xs,Y

N
s ,ZN

s

)− fN

(
Xπ

i , YN
s ,ZN

s

)
ds

]

+Eti

[∫ ti+1

ti

fN

(
Xπ

i , YN
s ,ZN

s

)− fN

(
Xπ

i , YN
ti

,ZN
s

)
ds

]

+Eti

[∫ ti+1

ti

fN

(
Xπ

i , YN
ti

,ZN
s

)− fN

(
Xπ

i , YN
ti

, Z̄N
i

)
ds

]

+Eti

[∫ ti+1

ti

fN

(
Xπ

i , YN
ti

, Z̄N
i

)− fN

(
Xπ

i , YN
ti

, Z̃N
i

)
ds

]

+Eti

[∫ ti+1

ti

fN

(
Xπ

i , YN
ti

, Z̃N
i

)− fN

(
Xπ

i , YN
ti

, Z̃i

)
ds

]
:= ζ

Y,x
i + ζ

Y,y
i + ζ

Y,z̄
i + ζ

Y,z̃
i + ζ

Y,w
i ,

recalling (2.2) and (2.3).
Using Lemma 3.1 and Lemma 3.2, we apply Proposition 2.9 and Corollary 2.1

(see also Remark 2.5) to obtain∣∣YN
ti

− Yπ
i

∣∣
≤ CEti

[(
n−1∑
j=0

∣∣ζ Y,x
j

∣∣)q∗]1/q∗

+ CEti

[(
n−1∑
j=0

∣∣ζ Y,y
j

∣∣)q∗]1/q∗

+ CEti

[(
n−1∑
j=0

∣∣ζ Y,w
j

∣∣)q∗]1/q∗

+ CEti

[(
n−1∑
j=0

∣∣ζ Y,z̃
j

∣∣)q∗]1/q∗

+ CEti

[∣∣YN
tn

− Yπ
n

∣∣q∗]1/q∗ + CEti

[{
n−1∏
j=i

(
1 + hjH

R
j γ

N,n
j

)}{n−1∑
j=i

∣∣ζ Y,z̄
j

∣∣}].
A convexity inequality and Doob maximal inequality allow us to write, for all

p ≥ 1,

E
[

sup
0≤i≤n

∣∣YN
ti

− Yπ
i

∣∣2p
]
≤ C

(
Ex

p + Ey
p + Ew

p + E z̃
p + E z̄

p

)
,(3.8)
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with

Ex
p := E

[∣∣YN
tn

− Yπ
n

∣∣2pq∗]1/q∗ + CE

[(
n−1∑
j=0

∣∣ζ Y,x
j

∣∣)2pq∗]1/q∗

coming from the approximation of X by Xπ in the terminal condition and the
generator,

Ey
p := E

[(
n−1∑
j=0

∣∣ζ Y,y
j

∣∣)2pq∗]1/q∗

coming from the approximation of YN by
∑n−1

i=0 YN
ti

1ti≤t<ti+1 in the generator,

Ew
p := E

[(
n−1∑
j=0

∣∣ζ Y,w
j

∣∣)2pq∗]1/q∗

coming from the approximation of �Wi by hiHi ,

E z̃
p := E

[(
n−1∑
j=0

∣∣ζ Y,z̃
j

∣∣)2pq∗]1/q∗

coming from the approximation of
∑n−1

i=0 Z̄N
i 1ti≤t<ti+1 by

∑n−1
i=0 Z̃N

i 1ti≤t<ti+1 in
the generator, and finally

E z̄
p := npE

[
sup

0≤i≤n−1
E
Qπ

ti

[
n−1∑
j=i

∣∣ζ Y,z̄
j

∣∣2]p]
,

due to the approximation of ZN by
∑n−1

i=0 Z̄N
i 1ti≤t<ti+1 in the generator.

We will now bound these five terms.
2a. Since g is Lipschitz continuous, we have

E
[∣∣YN

tn
− Yπ

n

∣∣2pq∗]1/q∗ ≤ CpE
[∣∣Xπ

n − XT

∣∣2pq∗]1/q∗
.(3.9)

Similarly, since fN is Lipschitz-continuous in its x-variable,

E

[(
n−1∑
j=0

∣∣ζ Y,x
j

∣∣)2pq∗]1/q∗

≤ Cp sup
0≤j≤n−1

E
[(

sup
tj≤s≤tj+1

∣∣Xs − Xπ
j

∣∣)2pq∗]1/q∗

≤ Cp sup
0≤j≤n−1

E
[

sup
tj≤s≤tj+1

∣∣Xs − Xtj

∣∣2pq∗]1/q∗
(3.10)

+ Cp sup
0≤j≤n−1

E
[∣∣Xtj − Xπ

j

∣∣2pq∗]1/q∗
.
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Classical result on the path regularity of SDE’s solutions yields

sup
0≤j≤n−1

E
[

sup
tj≤s≤tj+1

|Xs − Xtj |2pq∗]1/q∗
≤ Cphp.(3.11)

Combining (3.9)–(3.10)–(3.11), we obtain

Ex
p ≤ Cphp + CpE

[
sup

0≤j≤n

∣∣Xtj − Xπ
j

∣∣2pq∗]1/q∗
.(3.12)

2b. We easily compute that

E

[(
n−1∑
j=0

∣∣ζ Y,y
j

∣∣)2pq∗]1/q∗

≤ Cpn−1
n−1∑
j=0

E
[

sup
tj≤s≤tj+1

∣∣YN
s − YN

tj

∣∣2pq∗]1/q∗
.

Applying inequality (3.6), this leads to

Ey
p ≤ Cphp.(3.13)

2c. Using (H3)(ii) and Remark 2.1, we have∣∣ζ Y,w
j

∣∣≤ Chj

(
1 + ∣∣Z̃N

j

∣∣+ |Z̃j |)∣∣Z̃N
j − Z̃j

∣∣
≤ Chj

(
1 + ∣∣Z̃N

j

∣∣)(∣∣Z̃N
j − Z̃j

∣∣2 + ∣∣Z̃N
j − Z̃j

∣∣)
≤ Chj

(
1 + ∣∣Z̃N

j

∣∣)
×
(
Etj

[∣∣YN
tj+1

∣∣∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2

+Etj

[∣∣YN
tj+1

∣∣∣∣∣∣HR
j − �Wj

hj

∣∣∣∣])

≤ Chj

(
1 + ∣∣Z̃N

j

∣∣)(E[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]),

and thus, we obtain

E

[(
n−1∑
j=0

∣∣ζ Y,w
j

∣∣)2pq∗]1/q∗

≤ Cp max
0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣])2p

×
(
1 +E

[
max

0≤i≤n−1

∣∣Z̃N
i

∣∣2pq∗]1/q∗)
.

Using Lemma 2.2, we compute

E
[

max
0≤i≤n−1

∣∣Z̃N
i

∣∣2pq∗]1/q∗
≤ Cp

(
1 +E

[
max

0≤i≤n−1
Eti

[
sup

0≤s≤T

|Xs |4
]pq∗]1/q∗)

≤ Cp

(
1 +E

[
sup

0≤s≤T

|Xs |4pq∗]1/q∗)
≤ Cp,
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where we used the Doob maximal inequality. Finally, we obtain

Ew
p ≤ Cp max

0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]4p

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2p)
.(3.14)

2d. Using (H3)(ii), (2.5), Lemma 2.1 and Lemma 2.2, we have∣∣ζ Y,z̃
j

∣∣≤ Chj

(
1 + ∣∣Z̃N

j

∣∣+ ∣∣Z̄N
j

∣∣)∣∣Z̃N
j − Z̄N

j

∣∣
≤ Ch1/2hj

(
1 + ∣∣Z̃N

j

∣∣+ ∣∣Z̄N
j

∣∣)(1 +Etj

[
sup

tj≤s≤tj+1

|Xs |4
]1/2)

≤ Ch1/2hj

(
1 +Etj

[
sup

tj≤s≤tj+1

|Xs |4
])

.

Then by same arguments than in part 2c we obtain

E z̃
p ≤ Cphp.(3.15)

2e. The last term is the more involved. Since the functions f and fN are locally
Lipschitz with respect to z, compute |ζ Y,z̄

j |:
∣∣ζ Y,z̄

j

∣∣≤ CEtj

[(
1 + sup

tj≤s≤tj+1

∣∣ZN
s

∣∣+ ∣∣Z̄N
j

∣∣) ∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣ds

]
,

and so,

∣∣ζ Y,z̄
j

∣∣2 ≤ ChjEtj

[(
1 + sup

tj≤s≤tj+1

∣∣ZN
s

∣∣2 + ∣∣Z̄N
j

∣∣2)∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]
.(3.16)

Let us remark that in the previous bound, the term inside the conditional expecta-
tion is a Ftj+1 -measurable random variable, so we have

Etj

[(
1 + sup

tj≤s≤tj+1

∣∣ZN
s

∣∣2 + ∣∣Z̄N
j

∣∣2)∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]

= E
Qπ

tj

[
1

1 + hjH
R
j γ

N,n
j

(
1 + sup

tj≤s≤tj+1

∣∣ZN
s

∣∣2 + ∣∣Z̄N
j

∣∣2)

×
∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]

≤ 1

ε
E
Qπ

tj

[(
1 + sup

tj≤s≤tj+1

∣∣ZN
s

∣∣2 + ∣∣Z̄N
j

∣∣2)∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]

≤ 1

ε
E
Qπ

tj

[(
1 + sup

0≤s≤T

∣∣ZN
s

∣∣2 + max
0≤i≤n−1

∣∣Z̄N
i

∣∣2)∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]
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since 1/(1 + hjH
R
j γ

N,n
j ) ≤ 1/ε under (H3). Then (3.16) becomes∣∣ζ Y,z̄

j

∣∣2 ≤ ChjE
Qπ

tj

[(
1 + sup

0≤s≤T

∣∣ZN
s

∣∣2 + max
0≤i≤n−1

∣∣Z̄N
i

∣∣2)
(3.17)

×
∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]
.

Thanks to Proposition 2.3 and Lemma 2.1 we can simplify the first part of our
estimate:

sup
0≤s≤T

∣∣ZN
s

∣∣≤ C
(
1 + sup

0≤s≤T

|Xs |
)

and
max

0≤i≤n−1

∣∣Z̄N
i

∣∣≤ C
(
1 + max

0≤i≤n−1
Eti

[
sup

ti≤s≤ti+1

|Xs |
])

≤ C
(
1 + max

0≤i≤n−1
Eti

[
sup

0≤s≤T

|Xs |
])

.

Inserting these two bounds into (3.17), we obtain

E z̄
p ≤ CE

[
sup

0≤i≤n−1
E
Qπ

ti

[(
1 + max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
])

×
n−1∑
j=i

∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

]p]
,

and, using Hölder’s inequality and a convexity inequality, we get for any η > 0

E z̄
p ≤ Cη,p

(
1 +E

[
sup

0≤i≤n−1
E
Qπ

ti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](1+η)/η]p]η/(1+η))

×E

[
sup

0≤i≤n−1
E
Qπ

ti

[(
n−1∑
j=i

∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

)1+η]p]1/(1+η)

≤ Cη,ph−(pη)/(1+η)(3.18)

×
(
1 +E

[
sup

0≤i≤n−1
E
Qπ

ti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](1+η)/η]p]η/(1+η))

×E

[
sup

0≤i≤n−1
E
Qπ

ti

[
n−1∑
j=i

(∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

)1+η
]p]1/(1+η)

.

We can easily upper bound the first part of the last estimate. Indeed, thanks to
Proposition 2.11 we are able to use once again Hölder’s inequality with p∗ and q∗:

E
[

sup
0≤i≤n−1

E
Qπ

ti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](1+η)/η]p]η/(1+η)

≤ E

[
sup

0≤i≤n−1
Eti

[
n−1∏
j=i

(
1 + hjH

R
j γ

N,n
j

)p∗
]p/p∗
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×Eti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](q∗(1+η))/η]p/q∗]η/(1+η)

≤ Cη,pE
[

sup
0≤i≤n−1

Eti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](q∗(1+η))/η]p/q∗]η/(1+η)

≤ Cη,pE
[

sup
0≤i≤n−1

Eti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](q∗(1+η))/η]2p]η/(2q∗(1+η))

.

To conclude now, we just have to use Doob maximal inequality and classical esti-
mates on X to obtain

E
[

sup
0≤i≤n−1

Eti

[
max

0≤j≤n
Etj

[
sup

0≤s≤T

|Xs |2
](q∗(1+η))/η]2p]η/(2q∗(1+η))

≤ Cη,pE
[

sup
0≤s≤T

|Xs |(2pq∗(1+η))/η
]η/(2q∗(1+η)) ≤ Cη,p.

Finally, (3.18) becomes

E z̄
p ≤ Cη,ph−(pη)/(1+η)

(3.19)

×E

[
sup

0≤i≤n−1
E
Qπ

ti

[
n−1∑
j=i

(∫ tj+1

tj

∣∣ZN
s − Z̄N

j

∣∣2 ds

)1+η
]p]1/(1+η)

.

Applying Proposition 3.2, we deduce from the last inequality

E z̄
p ≤ Cη,php/(1+η) = Cη,php(1−η̃),(3.20)

with η̃ = 1 − 1/(1 + η). Since (3.20) is true for all η > 0, then it is true for all
η̃ > 0 and then we can replace η̃ by η.

3. Inserting estimates (3.12)–(3.13)–(3.14)–(3.20) in (3.8) completes the proof
of the proposition. �

3.4. Discretization error for the Z-component.

PROPOSITION 3.4. There exists q∗ > 1 (the same as in Proposition 3.3) such
that for all η > 0,

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Zs − Zπ
i

∣∣2 ds

]

≤ Cα,ηh
1−η + CE

[
sup

0≤j≤n

∣∣Xtj − Xπ
j

∣∣4q∗]1/(2q∗)

+ C max
0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]4

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2)
.
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PROOF. The proof is divided in several steps.

1. First, thanks to Theorem 2.2 we know that we just have to estimate the error
between ZN and Zπ . We then observe

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣ZN
s − Zπ

i

∣∣2 ds

]

≤ 4E

[
n−1∑
i=0

∫ ti+1

ti

∣∣ZN
s − Z̄N

i

∣∣2 ds

]
+ 4E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̄N
i − Z̃N

i

∣∣2 ds

]

+ 4E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃N
i − Z̃i

∣∣2 ds

]
+ 4E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃i − Zπ
i

∣∣2 ds

]
.

Applying Theorem 5.6 in [28], we obtain

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣ZN
s − Z̄N

i

∣∣2 ds

]
≤ Ch.

Moreover, by using (2.5) and classical estimates en X, we directly have that

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̄N
s − Z̃N

i

∣∣2 ds

]
≤ Ch.

Finally, by using the fact that YN is bounded uniformly in n (see Remark 2.1) we
easily compute that

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃N
i − Z̃i

∣∣2 ds

]
≤ E

[
n−1∑
i=0

∫ ti+1

ti

Eti

[∣∣YN
ti+1

∣∣∣∣∣∣HR
i − �Wi

hi

∣∣∣∣]2

ds

]

≤ C max
0≤j≤n−1

E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2

.

Thus, we conclude that

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣ZN
s − Zπ

i

∣∣2 ds

]
≤ Ch + C max

0≤j≤n−1
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃i − Zπ
i

∣∣2 ds

]
.

2. Applying the stability results of Proposition 2.12, we obtain

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃i − Zπ
i

∣∣2 ds

]
≤ CE

[∣∣YN
tn

− Yπ
n

∣∣2]+ CE

[
n−1∑
i=0

|ζ Y
i |2
hi

]
(3.21)

+ CE
[

sup
0≤i≤n−1

∣∣YN
ti

− Yπ
i

∣∣4]1/2
.
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Using the same arguments as in proof of Proposition 3.3 with the simpler setting
p = 1 and Qπ = P (these arguments also require to show Proposition 3.2 with
Qπ = P), one retrieves that

E
[∣∣YN

tn
− Yπ

n

∣∣2]+E

[
n−1∑
i=0

|ζ Y
i |2
hi

]

≤ Cηh
1−η + CE

[
sup

0≤j≤n

∣∣Xtj − Xπ
j

∣∣2]

+ C max
0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]4

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2)
.

Plugging the last inequality in equation (3.21) and applying Proposition 3.3,
with p = 2, we obtain

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z̃i − Zπ
i

∣∣2 ds

]

≤ Cηh
1−η + CE

[
sup

0≤j≤n

∣∣Xtj − Xn
j

∣∣4q∗]1/(2q∗)

+ C max
0≤j≤n−1

(
E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]4

+E

[∣∣∣∣HR
j − �Wj

hj

∣∣∣∣]2)
.

Combining this last inequality with step 1 completes the proof of the proposi-
tion. �

3.5. Proof of Theorem 1.1. We have to combine Proposition 3.3 with p = 1,
Proposition 3.4 with classical estimates on the Euler scheme for SDE, recall (1.8),
and classical results about Gaussian distribution tails. Indeed, we compute that

E

[∣∣∣∣HR
i − �Wi

hi

∣∣∣∣]≤ E

[∣∣∣∣HR
i − �Wi

hi

∣∣∣∣2]1/2

≤
(

2d

hi

∫ +∞
R

x2 e−x2/2
√

2π
dx

)1/2

(3.22)

≤ C

(
Re−R2/2

hi

)1/2

≤ C

(
logn

e1/2(logn)2−θ logn

)1/2

≤ C

n
,

recall (1.4).

4. Numerical scheme.

4.1. Definition and convergence. In this part, we propose a fully imple-
mentable numerical scheme based on a Markovian quantization method; see, for
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example, [26, 37] for general results about quantization and [2, 17] for a setting re-
lated to ours. To this end, given δ > 0 and κ ∈ N∗, we consider the bounded lattice
grid:

� = {
x ∈ δZd |∣∣xj

∣∣≤ κδ,1 ≤ j ≤ d
}
.

Observe that there are (2κ)d + 1 points in �. We then introduce a projection oper-
ator � on the grid � centered in X0 given by, for x ∈ Rd ,

(
�[x])j =

⎧⎪⎪⎨⎪⎪⎩
δ
⌊
δ−1(xj − X

j
0

)+ 1
2

⌋+ X
j
0 , if

∣∣xj − X
j
0

∣∣≤ κδ,

κδ, if xj − X
j
0 > κδ,

−κδ, if xj − X
j
0 < κδ.

To compute the conditional expectation appearing in the scheme given in Def-
inition 1.1, we use an optimal quantization of Gaussian random variables (�Wi).
These random variables are approximated by a sequence of centered random vari-
ables (�Ŵi = √

hiGM(�Wi√
hi

)) with discrete support. Here, GM denotes the pro-
jection operator on the optimal quantization grid for the standard Gaussian distri-
bution with M points in the support; see [26, 37] for details.3 Moreover, it is shown
in [26] that

E
[∣∣�Wi − �Ŵi

∣∣p]1/p ≤ Cp,d

√
hM−1/d .(4.1)

In this context, we introduce the following discrete/truncated version of the Eu-
ler scheme: {

X̂π
0 = X0,

X̂π
i+1 = �

[
X̂π

i + hib
(
X̂π

i

)+ σ
(
X̂π

i

)
�Ŵi

]
.

(4.2)

We observe that X̂π is a Markovian process living on � and satisfying |X̂π
i | ≤

C(|X0| + κδ), for all i ≤ n.
We then adapt the scheme given in Definition 1.1 to this framework.

DEFINITION 4.1. We denote (Ŷ π , Ẑπ )0≤i≤n the solution of the BTZ-scheme
satisfying:

(i) the terminal condition is (Ŷ π
n , Ẑπ

n ) = (g(X̂π
n ),0);

(ii) for i < n, the transition from step i + 1 to step i is given by{
Ŷ π

i = Eti

[
Ŷ π

i+1 + hifN

(
X̂π

i , Ŷ π
i , Ẑπ

i

)]
,

Ẑπ
i = Eti

[
Ŷ π

i+1Ĥ
R
i

]
.

(4.3)

The coefficients (ĤR
i ) are defined, given R > 0, by(

ĤR
i

)� = −R√
hi

∨ (�Ŵi)
�

hi

∧ R√
hi

, 1 ≤ � ≤ d.(4.4)

The parameters R and N are chosen as in (1.9).

3The grids can be downloaded from the website: http://www.quantize.maths-fi.com/.

http://www.quantize.maths-fi.com/
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PROPOSITION 4.1. (Ŷ π , Ẑπ ) is a Markovian process. More precisely, for all
i ∈ {0, . . . , n}, there exist two functions uπ(ti, ·) : � →R and vπ(ti, ·) :� →R1×d

such that

Ŷ π = uπ (ti , X̂π
i

)
and Ẑπ

i = vπ (ti , X̂π
i

)
.

These functions can be computed on the grid by the following backward induction:
for all i ∈ {0, . . . , n} and x ∈ �,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vπ(ti, x) = E

[
uπ (ti+1,�

(
x + hib(x) +√

hiσ (x)GM(U)
))GR

M(U)√
hi

]
,

uπ(ti, x) = E
[
uπ (ti+1,�

(
x + hib(x) +√

hiσ (x)GM(U)
))]

+ hfN

(
ti , x, uπ(ti, x), vπ(ti, x)

)
for i < n,

(4.5)

with U ∼N (0,1) and (GR
M(·))� = (−R) ∨ (GM(·))� ∧ R, for � ∈ {1, . . . , d}.

The terminal condition is given by uπ(tn, x) = g(x) and vπ(tn, x) = 0.

REMARK 4.1. Observe that the above scheme is implicit in uπ(ti, x). We then
use a Picard iteration to compute this term in practice, the error is very small be-
cause hKy � 1 and we do not study it here.

THEOREM 4.1. For all r > 0 and η > 0, the following holds:∣∣Y0 − Ŷ π
0

∣∣≤ Cα,ηh
(1/2)−η + Crn(κδ)−r + C

(
δn + nα+(1/2)M−1/d).

From the above theorem, we straightforwardly deduce the following corollary.

COROLLARY 4.1. Setting δ = n−3/2, κ = n3/2+η̃ and M = n(1+α)d , we obtain∣∣Y0 − Ŷ π
0

∣∣≤ Cα,η,η̃h
(1/2)−η,

for all η > 0, η̃ > 0 and 0 < α < 1
2 .

PROOF OF THEOREM 4.1. 1. Error on Y : We first observe that∣∣Y0 − Ŷ π
0

∣∣≤ ∣∣Y0 − Yπ
0

∣∣+ ∣∣Yπ
0 − Ŷ π

0

∣∣.
Applying Theorem 1.1, we obtain∣∣Y0 − Ŷ π

0

∣∣≤ Cα,ηh
(1/2)−η + ∣∣Yπ

0 − Ŷ π
0

∣∣.
For the second term, we simply rewrite (Ŷ π , Ẑπ ) as a perturbation of the scheme
given in Definition 1.1, namely

Ŷ π
i = Eti

[
Ŷ π

i+1 + hifN

(
Xπ

i , Ŷ π
i ,Eti

[
Ŷ π

i+1H
R
i

])+ ζ Y
i

]
with

ζ Y
i := hi

(
fN

(
X̂π

i , Ŷ π
i , Ẑπ

i

)− fN

(
Xπ

i , Ŷ π
i ,Eti

[
Ŷ π

i+1H
R
i

]))
.



NUMERICAL SIMULATION OF QUADRATIC BSDES 295

Applying Proposition 2.7 for the two schemes and the Corollary 2.1, we obtain for
some q > 1,

∣∣Yπ
0 − Ŷ π

0

∣∣≤ C

(
E
[∣∣Xπ

n − X̂π
n

∣∣q]1/q +E

[(
n−1∑
i=0

∣∣ζ Y,x
i

∣∣)q]1/q

(4.6)

+E

[(
n−1∑
i=0

∣∣ζ Y,z
i

∣∣)q]1/q)
,

where

ζ
Y,x
i := hi

(
fN

(
X̂π

i , Ŷ π
i , Ẑπ

i

)− fN

(
Xπ

i , Ŷ π
i , Ẑπ

i

))
,

ζ
Y,z
i := hi

(
fN

(
Xπ

i , Ŷ π
i , Ẑπ

i

)− fN

(
Xπ

i , Ŷ π
i ,Eti

[
Ŷ π

i+1H
R
i

]))
.

We easily compute that

E

[(
n−1∑
i=0

∣∣ζ Y,x
i

∣∣)q]1/q

≤ C E
[
sup

i

∣∣Xπ
i − X̂π

i

∣∣q]1/q
(4.7)

and

E

[(
n−1∑
i=0

∣∣ζ Y,z
i

∣∣)q]1/q

≤ Cnα sup
i

E
[∣∣HR

i − ĤR
i

∣∣q]1/q
.(4.8)

From (4.1), it follows that

E
[∣∣HR

i − ĤR
i

∣∣q]1/q ≤ Cn1/2M−1/d .

Combining the above estimations with (4.6), we obtain∣∣Yπ
0 − Ŷ π

0

∣∣≤ C
(
E
[
sup

i

∣∣Xπ
i − X̂π

i

∣∣q]1/q + nα+(1/2)M−1/d
)
.(4.9)

2. We now study the first term in the right-hand side of the above equation,
namely the error on the forward component.

Let X̃π denote the Euler scheme for X where we replace �Wi by �Ŵi , that is,

X̃π
i+1 = X̃π

i + hib
(
X̃π

i

)+ σ
(
X̃π

i

)
�Ŵi.

We then split the error into two terms:

E
[
sup

i

∣∣Xπ
i − X̂π

i

∣∣q]1/q

≤ C
(
E
[
sup

i

∣∣Xπ
i − X̃π

i

∣∣2q
]1/(2q) +E

[
sup

i

∣∣X̃π
i − X̂π

i

∣∣2q
]1/(2q))

.

2a. We now write X̃π as a perturbation of Xπ , namely

X̃π
i+1 = X̃π

i + hib
(
X̃π

i

)+ σ
(
X̃π

i

)
�Wi + ζ X̃

i
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with

ζ X̃
i = σ

(
X̃π

i

)
(�Ŵi − �Wi).

Applying Lemma A.1, we obtain

E
[

sup
0≤j≤n

∣∣Xπ
j − X̃π

j

∣∣2q
]1/(2q) ≤ CE

[(
n∑

j=0

∣∣ζ X̃
j

∣∣)2q]1/(2q)

.

Moreover, we compute

E

[(
n∑

j=0

∣∣ζ X̃
j

∣∣)2q]
≤ n2q−1

n∑
j=0

E
[∣∣ζ X̃

j

∣∣2q]≤ CnqM−2q/d

since

E
[∣∣ζ X̃

j

∣∣2q]≤ CE
[(

1 + ∣∣X̃π
j

∣∣)4q]1/2
E
[|�Ŵj − �Wj |4q]1/2

≤ ChqM−(2q)/d .

Combining the above estimation, we obtain

E
[

sup
0≤j≤n

∣∣Xπ
j − X̃π

j

∣∣2q
]1/(2q) ≤ C

√
nM−1/d .

2b. We now write X̂π as a perturbation of X̃π , namely

X̂π
i+1 = X̂π

i + hib
(
X̂π

i

)+ σ
(
X̂π

i

)
�Ŵi + ζ X̂

i ,

with

ζ X̂
i = �[X̌i+1] − X̌i+1 and X̌i+1 := X̂π

i + hib
(
X̂π

i

)+ σ
(
X̂π

i

)
�Ŵi.

Applying Lemma A.1, we get

E
[

sup
0≤j≤n

∣∣X̃π
j − X̂π

j

∣∣2q
]1/(2q) ≤ CE

[(
n∑

j=0

∣∣ζ X̂
j

∣∣)2q]1/(2q)

.

From the definition of the projection operator, we have that, for all r > 1,

∣∣ζ X̂
j

∣∣≤ δ + |X̌i+1|1{|X̌i+1|>κδ} ≤ δ + |X̌i+1|r+1

(κδ)r

which leads to

E
[

sup
0≤j≤n

∣∣X̃π
j − X̂π

j

∣∣2q
]1/(2q) ≤ Cn

(
δ + 1

(κδ)r
E
[

sup
0≤j≤n

|X̌j |2q(r+1)
]1/(2q)

)
.

The proof for this step is complete observing that E[supj |X̌j |2q(r+1)]1/(2q) ≤ Cr .
3. The proof is concluded by inserting the above estimate in (4.9). �
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4.2. A numerical example. We illustrate in this part the convergence of the
algorithm given in Definition 4.1 with d ∈ {1,2,3}. To this end, we consider the
following quadratic Markovian BSDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

X�
t = X�

0 +
∫ t

0
νX�

s dW�
s , � ∈ {1,2,3},

Yt = g(X1) +
∫ 1

t

a

2
‖Zs‖2 ds −

∫ 1

t
Zs dWs,

0 ≤ t ≤ 1,

where a, ν and (X�
0)�∈{1,2,3} are given real positive parameters and g :Rd → R is

a bounded Lipschitz function.
Applying Itô’s formula, one can show that the solution is given by

Yt = 1

a
log
(
Et

[
exp

(
ag(X1)

)])
, t ≤ 1.

For any given g, ν and a, it is possible to estimate the solution Y0 at time 0
using an approximation of the Gaussian distribution at time T = 1, since X�

1 =
X�

0e
−(ν2/2)+νW�

1 .

4.2.1. Illustration when d = 2. For our numerical illustration, g is given by

g :x �→ 3
2∑

�=1

sin2(x�),
and we set ν = 1, X1

0 = X2
0 = 1.

Given n the number of time steps in the approximation grid, we consider

N(n) = n1/4 and R(n) = log(n),

recalling (1.9). We will refer to the scheme given in Definition 4.1 with this set
of parameters (N,R) as the “adaptive truncation” scheme. We discuss in Sec-
tion 4.2.3 below the choice of α.

The graph on Figure 1 shows the convergence of the algorithm for time step
varying from 5 to 40. In the simulation, we fixed M to be large enough (M = 100),
so that the error in the space discretization can be neglected in the analysis.

The expected convergence rate should be between 0.5, that is to say the minimal
rate proved in this paper, and 1 the general optimal rate for the Euler scheme; see,
for example, [11, 22]. We found a rate 0.6 which then seems reasonable. Note that
all the convergence rate estimated below are also in the predicted range.

On Figure 2, we illustrate qualitatively the importance of the truncation proce-
dure.

When a = 1, we already observed that the scheme given in Definition 4.1 is con-
verging nicely. It appears that for this specific choice of parameters X0, ν, g and a,
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FIG. 1. Empirical convergence of the scheme given in Definition 4.1.

the usual BTZ-scheme, referred to as “no truncation” scheme, is also converging.
But, when a becomes bigger, the usual BTZ-scheme becomes unstable.

On Figure 2, we consider a = 3.5. In this case, the behavior of the usual BTZ-
scheme is interesting. First, let us mention that we plot a truncated error which
explains the flat alignment of some points. This shows that the scheme is not stable.
It manages though to be stabilised when the number of time step is big enough (h
small enough). We are not able to explain yet this behavior. The detailed study of
the numerical stability (or unstability) of the BTZ-scheme in the quadratic setting
is outside the scope of this paper. These questions are left for further research. In
the (more classical) Lipschitz case, we refer the reader to [12].

We also observe that the “adaptive truncation” scheme is converging nicely,
even for this large value of a.

4.2.2. Illustration when d = 3. For our numerical illustration, we tested the
usual BTZ-scheme and the adaptively truncated scheme given in Definition 4.1
(α = 1/4) for various models, that is, various terminal conditions g :R3 → R and
values of a. In practice, we used the following parameters:

(i) Model I: g(x) = 3 sin2(
∑3

�=1 x�) and a = 5.

(ii) Model II: g(x) = 3
∑3

�=1 sin2(x�) and a = 5.
(iii) Model III: g(x) = 4 atan(

∑3
�=1 x�) and a = 5.

(iv) Model IV: g(x) = 3 ∧ [x1 − x2]+ + [2 − x3]+ and a = 4.



NUMERICAL SIMULATION OF QUADRATIC BSDES 299

FIG. 2. Comparison of schemes’ convergence.

We set the number of time steps N = 12.4 We gather in the Table 1 the results
we obtained. The true value is estimated using the Cole–Hopf transform and we
indicate, when relevant, the relative error between parenthesis.

4It takes 1/2 hour to obtain one value on an ultrabook with Intel Core i7-3667U CPU @ 2.00 GHz
(4 cores).
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TABLE 1
Comparison between the truncated and the untruncated scheme for different models in dimension 3

Scheme/Model I II III IV

True value 2.67 7.53 5.38 3.96
No truncation 7.06 × 106 4.98 × 1059 5.31 (<2%) 1.13 × 1029

Adaptive truncation 2.69 (<1%) 7.29 (∼3%) 5.31 (<2%) 4.37 (∼10%)

For this large value of a, the adaptively truncated scheme is always able to
compute good estimates of the true value. This is only the case for Model III when
using the BTZ-scheme. For the other models, the usual BTZ-scheme is unstable.

4.2.3. Influence of the α parameter. To conclude this numerical illustration,
we would like to comment on the choice of α. To do this, we work with d =
1 in order to be able to use quite a lot of time steps (n = 250). Moreover, we
set ν = 0.4, a = 5 and g = 3 sin2. We plot on Figure 3 the convergence error of
the scheme for α = 0, 1

8 , 1
4 , 3

8 , 5
8 thus varying the truncation parameter N = nα .

The theoretical convergence result of Corollary 4.1 states no dependence upon α

for the convergence rate when α ∈ (0, 1
2). This is of course an asymptotic result.

Nevertheless, we are able to observe this on Figure 3 for α = 1
8 , 1

4 , 3
8 noticing small

discrepancies for low n and some “unstability” for α = 3/8. For α = 0—meaning
that the truncation is fixed to 1—we observe that the scheme comes close to the

FIG. 3. Convergence profile for different α–Y (α).



NUMERICAL SIMULATION OF QUADRATIC BSDES 301

correct value but then diverges, as expected. For α = 5
8 , the scheme is unstable

but manages to stabilize for large n. This numerical example is quite interesting
as it illustrates the different behaviours of the scheme in terms of α. In general,
the choice of α should depend on the various parameters of the problem X0, ν, a

and ‖g‖∞ specially for small n. The optimal choice of α (balancing convergence
error and stability) is an interesting question that requires a deeper understanding
of the qualitative behavior of the scheme in terms of the model parameters. These
questions are left for further research.

APPENDIX

A.1. Stability result for the Euler scheme of an SDE.

LEMMA A.1. Let us consider q ≥ 1 and two forward schemes (Xi)0≤i≤n and
(X̃i)0≤i≤n given by

Xi+1 = Xi + hib(Xi) + σ(Xi)
√

hiNi,

X̃i+1 = X̃i + hib(X̃i) + σ(X̃i)
√

hiNi + ζi,

with (ζi)0≤i<n some random variables in L2q and (Ni)0≤i<n some independent
and centered random variables in L2q such that Ni is Fti measurable for all 0 ≤
i < n and Eti [N2

i ] = E[N2
i ] ≤ C with C that does not depend on n. Then we have

the following stability result:

E
[

sup
0≤k≤n

|Xk − X̃k|2q
]
≤ Cq |X0 − X̃0|2q + CqE

[(
n−1∑
j=0

|ζj |
)2q]

.

PROOF. By considering the difference between the two schemes, we have

Xi − X̃i = X0 − X̃0 +
i−1∑
j=0

hj

[
b(Xj ) − b(X̃j )

]

+
i−1∑
j=0

√
hj

[
σ(Xj ) − σ(X̃j )

]
Nj +

i−1∑
j=0

ζj ,

and

E
[

sup
0≤k≤i

|Xk − X̃k|2q
]
≤ Cq |X0 − X̃0|2q + CqE

[(
i−1∑
j=0

|ζj |
)2q]

+ CqE

[
sup

0≤k≤i

∣∣∣∣∣
k−1∑
j=0

hj

[
b(Xj ) − b(X̃j )

]∣∣∣∣∣
2q]

+ CqE

[
sup

0≤k≤i

∣∣∣∣∣
k−1∑
j=0

√
hj

[
σ(Xj ) − σ(X̃j )

]
Nj

∣∣∣∣∣
2q]

.
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Recalling that b and σ are Lipschitz and by using a convexity inequality and the
Burkholder–Davis–Gundy inequality, we obtain

E
[

sup
0≤k≤i

|Xk − X̃k|2q
]
≤ Cq |X0 − X̃0|2q + CqE

[(
i−1∑
j=0

|ζj |
)2q]

+ Cq

i−1∑
j=0

hjE
[

sup
0≤k≤j

|Xk − X̃k|2q
]

+ CqE

[(
i−1∑
j=0

hj |Xj − X̃j |2
)q]

≤ Cq |X0 − X̃0|2q + CqE

[(
n−1∑
j=0

|ζj |
)2q]

+ Cq

i−1∑
j=0

hjE
[

sup
0≤k≤j

|Xk − X̃k|2q
]
.

The proof is concluded by a direct application of the discrete Gronwall’s lemma.
�
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