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THE SET OF SOLUTIONS OF RANDOM XORSAT FORMULAE1
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The XOR-satisfiability (XORSAT) problem requires finding an assign-
ment of n Boolean variables that satisfy m exclusive OR (XOR) clauses,
whereby each clause constrains a subset of the variables. We consider random
XORSAT instances, drawn uniformly at random from the ensemble of formu-
lae containing n variables and m clauses of size k. This model presents several
structural similarities to other ensembles of constraint satisfaction problems,
such as k-satisfiability (k-SAT), hypergraph bicoloring and graph coloring.
For many of these ensembles, as the number of constraints per variable grows,
the set of solutions shatters into an exponential number of well-separated
components. This phenomenon appears to be related to the difficulty of solv-
ing random instances of such problems.

We prove a complete characterization of this clustering phase transition
for random k-XORSAT. In particular, we prove that the clustering threshold
is sharp and determine its exact location. We prove that the set of solutions
has large conductance below this threshold and that each of the clusters has
large conductance above the same threshold.

Our proof constructs a very sparse basis for the set of solutions (or the
subset within a cluster). This construction is intimately tied to the construc-
tion of specific subgraphs of the hypergraph associated with an instance of
k-XORSAT. In order to study such subgraphs, we establish novel local weak
convergence results for them.

1. Introduction. An instance of XOR-satisfiability (XORSAT) is specified
by an integer n (the number of variables) and by a set of m clauses of the form
xia(1) ⊕ · · · ⊕ xia(k) = ba for a ∈ [m] ≡ {1, . . . ,m}. Here, ⊕ denotes modulo-2
sum, b = (b1, . . . , bm) is a Boolean vector, ba ∈ {0,1}, specified by the problem
instances, and x = (x1, . . . , xn) is a vector of Boolean variables xi ∈ {0,1} that
must be chosen to satisfy the clauses.

Standard linear algebra methods allow us to determine whether a given XOR-
SAT instance admits a solution, to find a solution, and even to count the number
of solutions, all in polynomial time. In this paper, we shall be interested in the
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structural properties of the set of solutions S ⊆ {0,1}n of a random k-XORSAT
formula. More explicitly, we consider a random XORSAT instance I that is drawn
uniformly at random within the set G(n, k,m) of instances with m clauses over n

variables, whereby each clause involves exactly k variables. The set of solutions
S = S(I) is then defined as the set of binary vectors x that satisfy all m clauses.

Since I is a random formula, S is a random subset of the Hamming hypercube.
The structural properties of S are of interest for several reasons. First of all, lin-
ear systems over finite fields are combinatorial objects that emerge naturally in
a number of fields. Dietzfelbinger and collaborators [18] use a mapping between
XORSAT and the matching problem to establish tight thresholds for the perfor-
mances of Cuckoo Hashing, an archetypal load balancing scheme. Such thresholds
are computed by determining thresholds above which the set of solutions S of a
random XORSAT formula becomes empty. The existence of solutions is in turn
related to the existence of an even-degree subgraph in a random hypergraph. Ran-
dom sparse linear systems over finite fields are used to construct capacity achieving
error correcting codes [27, 28, 36]. The decodability of such codes is related to the
emergence of a nontrivial 2-core in the same random hypergraph—a phenomenon
that will play a crucial role in the following. Finally, structured linear systems over
finite fields are generated by popular factoring algorithms [25].

In the present paper, we are also motivated by the close analogy between ran-
dom k-XORSAT and other random ensembles of constraint satisfaction problems
(CSPs). The prototypical example of this family is random k-satisfiability (k-SAT).
The random k-SAT ensemble can be described in complete analogy to random k-
XORSAT with the modification of replacing exclusive OR clauses by OR clauses
among variables or their negations. Namely, in k-SAT each clause takes the form
(x′ia(1) ∨ · · · ∨ x′ia(k)), whereby x′ia(�) = xia(�) or x′ia(�) = xia(�). An extensive liter-
ature [1, 3, 26, 29, 30, 33] provides strong support for the existence of two sharp
thresholds in random k-SAT, as the number of clauses per variable α =m/n grows.
First, as α crosses a “satisfiability threshold” αs(k), random k-SAT formulae pass
from being with high probability (w.h.p., i.e., with probability converging to 1 as
n→∞) satisfiable [for α < αs(k)] to being w.h.p. unsatisfiable [for α > αs(k)].
For any α < αs(k) the set of solutions is therefore nonempty. However, it under-
goes a dramatic structural change as α crosses a second threshold αd(k) < αs(k).
While for α < αd(k), S is w.h.p. “well connected” (more precise definitions will
be given below), for α ∈ [αd(k), αs(k)] it shatters into an exponential number of
clusters. It has been argued that such a “clustered” structure of the space of so-
lutions can have an intimate relation with the failure of standard polynomial time
algorithms when applied to random formulae in this regime. The same scenario is
thought to hold for a number of random constraint satisfaction problems (includ-
ing, e.g., proper coloring of random graphs, bicoloring random hypergraphs, Not
All Equal-SAT, etc.).

Unfortunately, this fascinating picture is so far only conjectural. Even the best
understood element, namely the existence of a satisfiability threshold αs(k) has
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not been established (with the exception of the special case k = 2). In an early
breakthrough, Friedgut [21] used Fourier-analytic methods to prove the existence
of a—possibly n-dependent— sequence of thresholds αs(k;n). Proving that in fact
this sequence can be taken to be n-independent is one of the most challenging open
problems in probabilistic combinatorics and random graph theory. Understanding
the precise connection between clustering of the space of solutions and computa-
tional complexity is an even more daunting task.

Given such outstanding challenges, a fruitful line of research has pursued the
analysis of somewhat simpler models. A very interesting possibility is to study k-
SAT formulae for large but still bounded values of k. As explained in [1], each SAT
clause eliminates only one binary assignment of its k variables, out of 2k possible
assignments of the same variables. Hence, for k large, a single clause has a small
effect on the set of solutions, and most binary vectors are satisfying unless the for-
mula includes about 2k clauses per variable. This results in an “averaging” effect
and suitable moment methods provide asymptotically sharp results for large k. In
particular, Achlioptas and Peres [4] proved upper and lower bounds on αs(k) that
become asymptotically equivalent (i.e., whose ratio converges to 1) as k gets large.
Achlioptas and Coja-Oghlan [1, 2], proved that clustering indeed takes place in an
interval of values of α below the satisfiability threshold and obtained upper and
lower bounds on the corresponding threshold αd(k) that are asymptotically equiv-
alent for large k. Finally, Coja-Oghlan [13] proved that solutions can be found
w.h.p. in polynomial time for any α < αd,alg(k), whereby αd,alg(k) is asymptoti-
cally equivalent to αd(k) for large k. Intriguingly, no algorithm is known that can
provably find solutions in polynomial time for α ∈ ((1+ δ)αd(k), αs(k)), for any
δ > 0, and all k ≥ 3.

XORSAT is a very different example on which rigorous mathematical analysis
proved possible, thus providing precious complementary insights. The key sim-
plification is that the set of solutions S is, in this case, an affine subspace of the
Hamming hypercube {0,1}n (viewed as a vector space over GF[2]). This implies
a high degree of symmetry that can be exploited to obtain very sharp characteriza-
tions for large n, and any k (we assume throughout that k ≥ 3, since 2-XORSAT
is significantly simpler).

It was proved in [20] that, for k = 3, there exists an n-independent threshold
αs(k) such that a random k-XORSAT instance is w.h.p. satisfiable if α < αs(k)

and unsatisfiable if α > αs(k). The proof constructs a subformula, by considering
the 2-core of the hypergraph associated with the XORSAT instance. One can then
prove that the original formula is satisfiable if and only if the 2-core subformula
is. The threshold for the latter can be determined exactly using the second moment
method. The proof was extended to all k ≥ 4 in [18].

The existence of a 2-core in a random XORSAT formula has a sharp threshold
when the number of clauses per variable α crosses a value αcore(k). This was ar-
gued to be intimately related to the appearance of clusters. In particular, [12, 31]
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give an argument3 showing that, above αcore(k), the space of solutions shatters
into exponentially many clusters. In other words, αcore(k) is an upper bound on
the clustering threshold. [31] further shows that, for α < αcore(k), a particular co-
ordinate of a solution can be changed by changing O(1) other variables on average,
without leaving the space of solutions. If this argument is pushed a step further, one
can show that, w.h.p., any coordinate can be changed by flipping at most O(logn)

other coordinates. This suggests that it may be possible to concatenate a sequence
of such flips to connect any two solutions via a path through the solution space,
with O(logn) steps. However, the analysis [31] does not imply that this is the case,
as it does not address the main challenge, namely to construct a path from any solu-
tion to any other solution. In this work, we solve this problem and provide the first
proof of a lower bound of αcore(k) on the clustering threshold αd, thus establishing
that indeed αd(k)= αcore(k). For α > αd(k) we prove a sharp characterization of
the decomposition into clusters.

As mentioned above, random k-XORSAT formulae can be solved in polynomial
time using linear algebra methods, and this appears to be insensitive to the cluster-
ing threshold. Nevertheless, an intriguing algorithmic phase transition might take
place exactly at the clustering threshold αd(k). For any α < αd(k), solutions can
be found in time linear in the number of variables (the algorithm is in fact an im-
portant component of our proof). On the other hand, no algorithm is known that
finds a solution in linear time for α ∈ (αd(k), αs(k)). We think that our proof sheds
some light on this phenomenon.

1.1. Main result. In this paper, we obtain two sharp results characterizing the
clustering phase transition for random k-XORSAT:

(i) We exactly determine the clustering threshold αd(k), proving that the space
of solutions is w.h.p. well connected for α < αd(k), and instead shatters into expo-
nentially many clusters for α ∈ (αd(k), αs(k)).

(ii) We determine the exponential growth rate of the number of clusters, that is,
we show that this is w.h.p. exp{n�(α;k)+ o(n)} where �(α;k) is a nonrandom
function which is explicitly given. We prove that each of the clusters is itself “well
connected.”

This is therefore the first random CSP ensemble for which a sharp threshold for
clustering is proved.

Earlier literature fell short of establishing (i) since it did not provide any argu-
ment for connectedness below αd(k). Also, informal calculations only suggested a
lower bound on the number of clusters, but did not establish (ii) since they did not
prove connectedness of each cluster by itself. The situation is akin to the analysis

3The argument of [12, 31] is essentially rigorous, but does not deal with several technical steps.
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of Markov Chain Monte Carlo methods: It is often significantly more challeng-
ing to prove rapid mixing (connectedness of the space of configurations) than the
opposite (i.e., to find bottlenecks).

One important novelty is that the notion of connectedness used here is very
strong and goes beyond path connectivity, which was used earlier for k-SAT [1, 2].
We use a properly defined notion of conductance which we think can be applied to
a broader set of CSPs, and has the advantage of being closely related to important
algorithmic notions (fast mixing for MCMC and expansion). Given a subset of the
hypercube S ⊆ {0,1}n, and a positive integer �, we define the conductance of S
as follows. Construct the graph G(S, �) with vertex set S and an edge connecting
x, x′ ∈ S if and only if d(x, x′)≤ � [here and below, d(·, ·) denotes the Hamming
distance, i.e., d(x, x′) = |{i : 1 ≤ i ≤ n,xi �= x′i}|, where x = (x1, x2, . . . , xn) and
similarly for x′, and |B| denotes the cardinality of the set B]. Then we define the
�th conductance of S as the graph conductance of G(S, �), namely

�(S;�)≡ min
A⊆S

cutG(S,�)(A,S \A)

min(|A|, |S \A|) ,(1)

where, for a graph G = (V,E), and any B ⊆ V , we define

cutG(B,V \B)≡ ∣∣{e ∈ E : Exactly one of the two endpoints of e is in B}∣∣.
Notice that we measure the volume of a set by the number of its vertices instead
of the sum of its degrees.4

We define the distance between two subsets of the hypercube S1,S2 ⊆ {0,1}n
as

d(S1,S2)≡ min
x∈S1,x

′∈S2
d
(
x, x′

)
.

For our statements, k ≥ 3 is always fixed, together with a sequence m(n)= αn.
We say that a sequence of events (En)n>0 occurs with high probability (w.h.p.) if

limn→∞ P(En)= 1. (We refer to Section 2 for a formal definition of the underlying
probability space.)

THEOREM 1. Let S be the set of solutions of a random k-XORSAT formula
with n variables and m= nα clauses. For any k ≥ 3, let αd(k) be defined as

αd(k)≡ sup
{
α ∈ [0,1] : z > 1− e−kαzk−1

,∀z ∈ (0,1)
}
.(2)

4This difference is irrelevant for α < αd(k) since in this case S will be taken to be an affine
subspace of {0,1}n, and hence G(S, �) will be a regular graph. For α ∈ (αd(k),αs(k)), S will be
constructed as the union of a “small” number of affine spaces, and hence G(S, �) should be approxi-
mately regular. We keep the definition (1) since it simplifies our statements.
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1. If α < αd(k), there exists C = C(α, k) <∞ such that, w.h.p., �(S; (logn)C)≥
1/2.

2. If α ∈ (αd(k), αs(k)), then there exists ε = ε(k;α) > 0 such that, w.h.p.,
�(S;nε)= 0.

3. If α ∈ (αd(k), αs(k)), and δ > 0 is arbitrary, then there exist constants C =
C(α, k) <∞, ε = ε(α, k) > 0, � = �(α, k) > 0, and a partition of the set of
solutions S = S1 ∪ · · · ∪ SN , such that, w.h.p., the following properties hold:
(a) For each a ∈ [N ], we have �(Sa; (logn)C)≥ 1/2.
(b) For each a �= b ∈ [N ], we have d(Sa,Sb)≥ nε.
(c) exp{n(� − δ)} ≤ N ≤ exp{n(� + δ)}. Further, letting Q be the largest

positive solution of Q = 1 − exp{−kαQk−1} and Q̂ ≡ Qk−1, we have
�(α, k)=Q− kαQ̂+ (k − 1)αQQ̂.

1.2. Conductance and sparse basis. We will prove Theorem 1 by obtaining a
fairly complete description of the set S both above and below αd(k). In a nutshell,
for α < αd(k), S admits a sparse basis, while for α > αd(k) each of the clusters
S1, . . . ,SN admits a sparse basis but their union does not. This is particularly sug-
gestive of the connection between the clustering phase transitions and algorithm
performance. Below αd(k) the space of solutions admits a succinct explicit rep-
resentation [in O(n(logn)C) bits]. Above αd(k), we can produce a representation
that is succinct but implicit (as solutions of a given formula), or explicit but prolix
[no basis is known that can be encoded in o(n2) bits].

Given a linear subspace S ⊆ {0,1}n, we say that it admits an s-sparse basis if
there exist vectors x(l) ∈ S for l ∈ {1, . . . ,D} such that d(x(l),0)≤ s and (x(l))Dl=0
form a basis for S . The latter means that the vectors are linearly independent and
S = {∑D

l=1 alx
(l) : (al)

D
l=0 ∈ {0,1}D}.

We say that an affine space S ⊆ {0,1}n admits an s-sparse basis if, for x(0) ∈ S ,
the linear subspace S − x(0) admits an s-sparse basis. The property of having a
sparse basis indeed implies large conductance. The proof is immediate.

LEMMA 1.1. If the affine subspace S ⊆ {0,1}n admits a s-sparse basis, then
�(S; s)≥ 1/2.

Vice versa, assume that �(S; s)= 0. Then S does not admit a s-sparse basis.

PROOF. We can assume, without loss of generality, that S is a linear space. Let
d be its dimension. Further, given a graph G, let, with a slight abuse of notation

�(G)≡ min
A⊆S

cutG(A,S \A)

min(|A|, |S \A|) ,(3)

so that �(S;�)=�(G(S;�)).
Assume that S admits a s-sparse basis. This immediately implies the graph

G(S, s) contains a spanning subgraph that is isomorphic to the d-dimensional hy-
percube Hd . Further, G �→ �(G) is monotone increasing in the edge set of G.



THE SET OF SOLUTIONS OF RANDOM XORSAT FORMULAE 2749

Therefore, �(S; s) ≥ �(Hd) ≥ 1/2 where the last inequality follows from the
standard isoperimetric inequality on the hypercube [23]. �

The characterization of the solution space in terms of sparsity of its basis is
given below.

THEOREM 2. Let S be the set of solutions of a random k-XORSAT formula
with n variables and m = nα clauses. For any k ≥ 3, let αd(k) be defined as per
equation (2). Then the following hold:

1. If α < αd(k), there exists C = C(α, k) < ∞ such that, w.h.p., S admits a
(logn)C-sparse basis.

2. If α ∈ (αd(k), αs(k)), and δ > 0 is arbitrary, then there exist constants C =
C(α, k) <∞, ε = ε(α, k) > 0, � = �(α, k) > 0, and a partition of the set of
solutions S = S1 ∪ · · · ∪ SN , such that, w.h.p., the following properties hold:
(a) For each a ∈ [N ], Sa admits a (logn)C-sparse basis.
(b) For each a �= b ∈ [N ] we have d(Sa,Sb)≥ nε.
(c) exp{n(� − δ)} ≤ N ≤ exp{n(� + δ)}. Further, � is given by the same

expression given in Theorem 1.

Clearly, this theorem immediately implies Theorem 1 by applying Lemma 1.1.
The rest of this paper is devoted to the proof of Theorem 2.

1.3. Further technical contributions. To a given a XORSAT instance I , we
can associate a bipartite graph (“factor graph”) with vertex sets F (factor or check
nodes) corresponding to equations, and V (variable nodes) variables. The edge
set E includes those pairs (a, i) ∈ F × V such that variable xi participates in the
ath equation. The construction of the sparse basis in Theorem 2 relies heavily on
a characterization of the random factor graph associated to a random XORSAT
instance. This could be gleaned from the proof of [18, 20] that construct the 2-core
of G. In order to prove Theorem 2, we characterize a larger subgraph that we refer
to as the backbone of G. This subgraph has the following interpretation: if two
solutions x and x′ coincide on the core, then they coincide on every vertex of the
backbone.

The 2-core of the random graph G was studied in a number of papers [14, 27,
32, 35]. The key tool in these works is the analysis of an iterative procedure that
constructs the 2-core in �(n) iterations. This procedure has an important property:
At each step, the resulting graph remains uniformly random, given a small num-
ber of parameters (essentially, its degree distribution). Thanks to this property, the
analysis of [14, 27, 32, 35] is reduced to the study of a Markov chain in Z2. This is
done by showing that sample paths of this chain are shown to concentrate around
solutions of a certain ordinary differential equation.

Our analysis of the backbone has a similar starting point, namely the study of
an iterative procedure that constructs the backbone (indeed we define formally the
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backbone as the fixed point of this procedure). Unfortunately, the graphs generated
by this procedure are not uniformly random, conditional on a small number of
parameters. Hence, the techniques [14, 27, 32, 35] do not apply. We overcome this
difficulty by characterizing the large-n limit of its fixed point using the theory of
local weak convergence. This is in turn challenging because the fixed point is not,
a priori, a local function of G.

We consider this characterization of the backbone, and its proof, to be a contri-
bution of independent interest.

For describing the iterative procedure, we use the language of message pass-
ing algorithms, and will refer to it as to “belief propagation” (BP), as the same
algorithm is also of interest in iterative coding; see [29, 36]. Given a factor graph
G = (F,V,E), the algorithm updates 2|E| messages indexed by directed edges
in G. In other words, for each (a, v) ∈ E, a ∈ F and v ∈ V , and any iteration
number t ∈N, we have two messages νt

v→a , and ν̂t
a→v , taking values in {0,∗}. For

t ≥ 1, messages are computed following the update rules:

νt
v→a =

{
∗, if ν̂t−1

b→v = ∗ for all b ∈ ∂v \ a,
0, otherwise,

(4)

and

ν̂t
a→v =

{
0, if νt

u→a = 0 for all u ∈ ∂a \ v,
∗, otherwise.

(5)

We call this algorithm BP0 when all messages are initialized to 0: ν0
v→a = ν̂0

a→v =
0 for all (a, v) ∈ E. It is not hard to see that BP0 is monotone,5 in the sense that
messages only change from 0 to ∗, and hence converges to a fixed point ν∗v→a .

It is easy to check (see Lemma 4.3 below) that the core of G coincides with the
subgraph induced by the factor nodes that receive no ∗ message at the fixed point
of BP0. The backbone is instead the subgraph induced by factor nodes that receive
at most one ∗ message at the fixed point.

Denote by μ̃∗n the probability distribution on rooted factor graphs with marks
on the edges constructed as follows. Draw a graph uniformly at random from
G(n, k,m). Choose a uniformly random variable node i ∈ V as the root. Mark
the edges (in each direction) with the messages corresponding to the BP0 fixed
point ν∗v→a .

We next construct a random tree T̃∗(α, k) with marks on the directed edges
as follows. Marks take values in {0,∗} and to each undirected edge we asso-
ciate a mark for each of the two directions. We will refer to the direction to-
ward the root as to the “upward” direction, and to the opposite one as to the

5This can be established by induction: Since we start with all 0s, clearly messages can only change
from 0 to ∗ in the first iteration. Thereafter, this holds inductively for each subsequent iteration since
each of the update rules is monotone in the sense that if the incoming messages only change from 0
to ∗, then the same holds for the outgoing messages.
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“downward” direction. The marks correspond to fixed-point BP messages, and
we will call them messages as well in what follows. First, consider only edges
directed upward. This is a multitype Galton–Watson (GW) tree. At the root gen-
erate Poisson(kα) offsprings, and mark each of the edges to 0 independently
with probability Q̂, and to ∗ otherwise. At a nonroot variable node, if the parent
edge is marked 0, generate Poisson(kα(1− Q̂)) descendant edges marked ∗ and
Poisson≥1(kαQ̂) descendant edges marked 0 [here PoissonE(λ) denotes a Pois-
son random variable with parameter λ conditional on E]. If the parent edge is
marked ∗, generate Poisson(kα(1 − Q̂)) descendant edges marked ∗ and no de-
scendant edges marked 0. At a factor node, if the parent edge is marked 0, gen-
erate k − 1 descendant edges marked 0. If the parent node is marked ∗, generate
M ∼ Binom≤k−2(k − 1,Q) descendants marked 0, and k − 1 −M descendants
marked ∗.

For edges directed downward, marks are generated recursively following the
usual BP rules, cf. equations (4), (5), starting from the top to the bottom. It is easy
to check that with this construction, the marks in T̃∗(α, k) correspond to a BP fixed
point. Given a factor graph G = (F,V,E), we use BG(v, t) to denote the ball of
radius t centered at node v ∈ V . This ball is defined inductively as follows: The
BG(v,0) consists of node v alone and no edges. For t > 0, the BG(v, t) includes
BG(v, t − 1). In addition, it includes all factor nodes connected to variable nodes
in BG(v, t − 1) and associated edges, and all variable nodes connected to those
factor nodes and associated edges. [Thus, BG(v, t) includes nodes and edges up to
a distance t from v, where variable nodes are said to be separated by distance 1 if
they are connected to the same factor node.]

DEFINITION 1.2. Let {Gn}, Gn = (Fn,Vn,En) be a sequence of (random)
factor graphs. Let μ

(t)
n denote the empirical probability distribution of BGn(v, t)

when v ∈ Vn is uniformly random. Explicitly, for any locally finite rooted graph
T0 of depth at most t ,

μ(t)
n ≡ 1

n

∑
v∈Vn

I
(
BGn(v, t)� T0

)
,(6)

(with � denoting equality up to graph vertex relabeling.) We say that {Gn} con-
verges locally almost surely to the measure μ on rooted graphs if, for any finite t ,
and any locally finite rooted graph T0 of depth at most t , we have

lim
n→∞μ(t)

n (T0)= μ(t)(T0)(7)

holds almost surely with respect to the graph law. Here, μ(t) denotes the marginal
of μ with respect to a ball of radius t around the root.

The same notion of local graph convergence was used earlier in the literature, for
instance, in [15–17]. Given a random graph distribution, we first draw a sequence
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of {Gn}n≥1, and then check that μ
(t)
n (T0)→ μ(t)(T0) with probability one. It is

worth emphasizing the difference from a weaker notion (that we never use below),
whereby we only check EGnμ

(t)
n (T0)→ μ(t)(T0), with EGn denoting expectation

with respect to the graph distribution. In particular, establishing almost sure local
graph convergence is more challenging that proving convergence of the expecta-
tion EGnμ

(t)
n (T0) since it requires to control the deviations of the subgraph counts

μ
(t)
n (T0). With this clarification, we shall occasionally drop the “almost surely” in

“converges locally almost surely.”
As part of our proof of Theorem 2, we obtain the following result, which may

be of independent interest. (We refer to the next section for a complete definition
of the underlying probability space.)

THEOREM 3. The sequence {μ̃∗n}n≥0 converges locally almost surely to the
probability distribution of T̃∗.

Theorem 3 is proved in Section 4.
Besides this, our proof uses several other ideas:

• We show that Theorem 3 can be used to extend the low weight core solutions to
low weight solutions of the whole XORSAT instance (see Section 8).

• We show that the periphery (the complement of the core in G) is uniformly
random with a given degree sequence, conditioned on being “peelable.” We es-
timate precisely this degree distribution, and show that the periphery is indeed
peelable with positive probability for that degree sequence (see Section 6).

• In addition to the fixed point characterization, we obtain a precise characteriza-
tion of the convergence rate of BP0 (see Section 4), which allows us to bound
the sparsity of the basis constructed.

• For α > αd, convergence to the BP fixed point is geometric rather than quadratic.
In this regime, we show that in fact there are “strings” of degree 2 variable nodes
that slow down convergence but do not prevent the construction of a sparse basis.
We bound the sparsity by defining a certain “collapse” operator on such strings
(see Section 5).

1.4. Outline of the paper. In Section 2, we define some basic concepts and
notation. Section 3 describes the construction of clusters and sparse bases, and
uses this construction to prove Theorem 2. Several basic lemmas necessary for the
proof are stated in this section.

Section 4 introduces a certain belief propagation (BP) algorithm and a technical
tool called density evolution, that play a key role in our analysis: The BP algorithm
naturally decomposes the linear system into a “backbone” (consisting roughly of
the 2-core and the variables implied by it) and a “periphery.” Density evolution
allows us to track the progress of BP, eventually facilitating a tight characterization
of basic parameters (like number of nodes) of the backbone and periphery.
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Section 5 bounds the number of iterations of a “peeling” algorithm (related to
BP) that plays a key role in our construction of a sparse basis. Section 6 proves a
sharp characterization of the periphery. Together, this yields the first (large) set of
basis vectors.

Section 7 shows the 2-core has very few sparse solutions, leading to well sepa-
rated, small, “core-clusters.” Section 8 shows how to produce a sparse solution of
the linear system corresponding to each sparse solution of the 2-core subsystem.
This yields the second (small) set of basis vectors in our construction.

Several technical lemmas are deferred to the Appendices.
A short version of this paper was presented at the ACM-SIAM Symposium on

Discrete Algorithms SODA 2012.

2. Random k-XORSAT: Definitions and notation. As described in the In-
troduction, each k-XORSAT clause is actually a linear equation over GF[2]:
xia(1) ⊕ · · · ⊕ xia(k) = ba , for a ∈ [m] ≡ {1, . . . ,m}. Introducing a vector ha ∈{0,1}n, with nonzero entries only at positions i1(a), . . . , ik(a), this can be written
as hT

a x = ba . Hence, an instance is completely specified by the pair (H, b) where
H ∈ {0,1}m×n is a matrix with rows hT

1 , . . . , hT
m and b = (b1, . . . , bm)T ∈ {0,1}m.

The space of solutions is therefore S ≡ {x ∈ {0,1}n :Hx = b mod 2}. If S has at
least one element x(0), then S⊕x(0) is just the set of solutions of the homogeneous
linear system corresponding to b = 0 (the kernel of H). In the following we shall
always assume α < αs(k), so that S is nonempty w.h.p. [18]. Note that, if S is
nonempty, then S = S0 ⊕ x0 where x0 ∈ S is any solution of the original system
and S0 is the set of solutions of the homogeneous linear system Hx = 0. Since we
are only interested in geometric properties of the set of solutions that are invariant
under translation, we will assume hereafter that b= 0, and hence S = S0.

An XORSAT instance is therefore completely specified by a binary matrix H, or
equivalently by the corresponding factor graph G= (F,V,E). This is a bipartite
graph with two sets of nodes: F (factor or check nodes) corresponding to rows of
H, and V (variable nodes) corresponding to columns of H. The edge set E includes
those pairs (a, i), a ∈ F , i ∈ V such that Hai = 1. We denote by G(n, k,m) the set
of all factor graphs with n labeled variable nodes and m labeled check nodes, each
having degree exactly k (with no double edges). Note that |G(n, k,m)| = (n

k

)m.
With a slight abuse of notation, we will denote by G(n, k,m) also the uniform
distribution over this set, and write G∼G(n, k,m) for a uniformly random such
graph.

For v ∈ V or v ∈ F , we denote by degG(v), the degree of node v in graph G

(omitting the subscript when clear from the context) and we let ∂v denote the set
of neighbors of v. We define the distance with respect to G between two variable
nodes i, j ∈ V , denoted by dG(i, j) as the length of the shortest path from i to
j in G, whereby the length of a path is the number of check nodes encountered
along the path. Given a vector x, we denote by xA = (xi)i∈A its restriction to A.
The cardinality of set A is denoted by |A|.
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We only consider the “interesting” case k ≥ 3, and the asymptotics m,n →
∞ with m/n→ α and α ∈ [0, αs(k)), where αs(k) is the satisfiability threshold.
Hence, H has w.h.p. maximum rank, that is, rank(H)=m [29].

DEFINITION 2.1. Let F0 ⊆ F . The subgraph induced by F0 is defined as
(F0,V0,E0) where V0 ≡ {i ∈ V : ∂i ∩ F0 �= ∅} and E0 ≡ {(a, i) ∈ E :a ∈ F0, i ∈
V0}. A check-induced subgraph is the subgraph (F0,V0,E0) induced by some
F0 ⊆ F . Similarly, we can define the subgraph induced by V0 ⊆ V , and variable-
induced subgraphs.

Let F0 ⊆ F , V0 ⊆ V . The subgraph induced by (F0,V0) is defined as
(F0,V0,E0) where E0 ≡ {(a, i) ∈E :a ∈ F0, i ∈ V0}.

DEFINITION 2.2. A stopping set is a check-induced subgraph with the prop-
erty that every variable node has degree larger than one with respect to the sub-
graph. The 2-core of G is its maximal stopping set.

Notice that the maximal stopping set of G is uniquely defined because the union
of two stopping sets is a stopping set.

All of our statements are with respect to the following probability space, for a
fixed k ≥ 3, and an integer sequence {m(n)}n∈N. For each n, we let m=m(n) and
consider the finite set �n = G(n, k,m) of k-XORSAT instances with n variables
and m clauses. Formally, each element of G(n, k,m) is given by a pair (H, b)

where H ∈ {0,1}m×n is a matrix with k nonzero elements per row and b ∈ {0,1}m.
[In the proofs, we shall occasionally replace G(n, k,m) by slightly different sets—
defined therein—for technical convenience. The connection will be made clear.]

Since �m is finite, it is straightforward to endow it with the uniform probability
measure Pn over the complete σ -algebra 2�n . The probability space underlying
all of our statements is the product space � =×n∈N �n, with product probabil-
ity measure P =×n∈N Pn. An event E ⊆ � is a an element of the product σ -
algebra. As a special example, let fn :�n → R be a sequence of functions, and
ω = (ωi)i∈N ∈ �. Then existence of the limit limn→∞ fn(ωn) is a well defined
event in �.

With a slight abuse of language, we will identify any set En ⊆�n with an event,
namely with the cylindrical set C(En)≡ {ω = (ωi)i∈N ∈×i∈N �i :ωn ∈ En}. We
will typically write En for C(En) and P(En) = P({ωn ∈ En}) for the probabil-
ity of such an event. We say that En occurs with high probability (w.h.p.) if
limn→∞P(En) = 1. We say that a sequence of events (En)n>0 occurs eventually
almost surely if limn0→∞P(

⋂
n≥n0

C(En))= 1.
Note that, with this probability space, the notion of local almost sure conver-

gence in Definition 1.2 is well defined. Note that our main results (Theorems 1
and 2) are “with high probability results,” and hence do not require the definition
of a common probability space for different graph sizes. This is indeed mainly a
matter of technical convenience (and is of course needed for Theorem 3).
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A key fact to be used in the following is that a giant 2-core appears abruptly at
αd(k). Forms of the following statement appear in [14, 27, 32].

THEOREM 4 ([14, 27, 32]). Assume α < αd(k). Then w.h.p., a graph G ∼
G(n, k,m) does not contain any stopping set.

Vice versa, assume α > αd(k). Then there exists C(k) > 0 such that, w.h.p.,
a graph G drawn uniformly at random from G(n, k,m) contains a 2-core of size
larger than C(k)n.

We will often refer to the depth-t neighborhood of a node v in G.

DEFINITION 2.3. Given a node v ∈ V and an integer t , let V ′ = {u :u ∈
V,dG(u, v) ≤ t}. Then the ball of radius t around node v is defined as the
(variable-induced) subgraph BG(v, t) induced by V ′. With an abuse of notation,
we will use the same notation for the set of variable nodes in BG(v, t). Lastly, we
define |BG(v, t)| to be the number of variable nodes in the subgraph BG(v, t).

We will occasionally work with certain random infinite rooted factor graphs,
with marks on the edges or vertices. (Note that a factor graph can be regarded as
an ordinary graph, with additional marks on the vertices to distinguish “variable
nodes” from “factor nodes.”) A useful concept in this context is the one of “uni-
modular” random rooted graphs, that we briefly recall next. For a more complete
presentation, we refer to the overview paper by Aldous and Lyons [5].

Informally, a random rooted (marked) graph is unimodular if it looks the same
(in distribution), when the root is moved to any other vertex. In order to formalize
this notion, we denote by G∗ the space of locally finite rooted graphs, with marks
on the vertices or edges (we assume marks to belong to some fixed finite set for
simplicity). We view two graphs that differ by an isomorphism as identical. This
space can be endowed by a metric that metrizes local convergence, and hence a
Borel σ -algera.

Analogously, we denote by G∗∗ the space of doubly rooted graphs [a doubly
rooted graph is a graph with two distinguished vertices, i.e., a triple (G,u, v)

where G= (V ,E) is a graph, and u, v ∈ V ]. As for the simply rooted case, G∗∗ can
be made into a complete metric space; we regard it as a measurable space endowed
with the Borel σ -algebra.

DEFINITION 2.4. Let (G,∅) be a random rooted graph with root ∅. We
say that (G,∅) is unimodular if, for any measurable function f :G∗∗ → R≥0,
(G,u, v) �→ f (G,u, v), we have

E
[ ∑
v∈V (G)

f (G,∅, v)

]
= E

[ ∑
v∈V (G)

f (G,v,∅)

]
.(8)

Consequences, and equivalent versions of unimodularity can be found in [5, 34].
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TABLE 1
Synchronous peeling algorithm

SYNCHRONOUS PEELING (Graph G = (F,V,E))

F ′ ← F

V ′ ← V

E′ ←E

J0 ← (F,V,E), t = 0
While Jt has a variable node of degree ≤ 1 do

t ← t + 1
Vt ←{v ∈ V ′ : degGt−1

(v)≤ 1}
Ft ←{a ∈ F ′ : (v, a) ∈ E′ for some v ∈ Vt }
Et ←{(v, a) ∈E′ :a ∈ Ft , v ∈ V ′}
F ′ ← F ′ \ Ft

V ′ ← V ′ \ Vt

E′ ←E′ \Et

Jt ← (F ′,V ′,E′)
End While
TC← t

GC←G′
Return (GC, TC, (Ft )

TC
t=1, (Vt )

TC
t=1, (Jt )

TC
t=1)

3. Proof of Theorem 2. In this section, we describe the construction of clus-
ters and sparse bases within the clusters [or for the whole space of solutions for
α ∈ [0, αd(k))]. The analysis of this construction is given in Section 3.3 in terms
of a few technical lemmas. Finally, the formal proof of Theorem 2 is given in
Section 3.4.

3.1. Construction of the sparse basis. The construction of a sparse basis,
which is at the heart of Theorem 2, is based on the following algorithm, formally
stated in Table 1. The algorithm constructs a sequence of residual factor graphs
(Jt )t≥0, starting with the instance under consideration J0 = G. At each step, the
new graph is constructed by removing all variable nodes of degree one or zero,
their adjacent factor nodes, and all the edges adjacent to these factor nodes. We
refer to the algorithm as synchronous peeling or simply peeling.

We denote the sets of nodes and edges removed at step (or round) t ≥ 1 by
(Ft ,Vt ,Et ), so that Jt−1 = (Ft ,Vt ,Et )∪ Jt . Notice that, at each step, the residual
graph Jt is check-induced. The algorithm halts when the residual graph does not
contain any variable node of degree smaller than two. We let the total number of
iterations be TC(G), where we will drop the explicit dependence on G when it
is clear from context. The final residual graph is then JTC ≡ GC. The following
elementary fact is used in several papers on this topic [14, 27, 32].
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REMARK 3.1. The residual graph GC resulting at the end of synchronous
peeling is the 2-core of G.

It is convenient to reorder the factors (from 1 to m) and variables (from 1 to n)
as follows. We index the factors in increasing order according to F1,F2, . . . ,FTC ,
choosing an arbitrary order within each Ft for 1≤ t ≤ TC.

For the variable nodes, we first index nodes in V1, then nodes in V2 and so on.
Within each set Vt , the ordering is chosen in such a way that nodes that have degree
0 in Jt−1 have lower index than those with degree 1 [notice that, by definition, for
any v ∈ Vt , degJt−1

(v) ≤ 1]. Finally, for variable nodes in Vt that have degree 1
in Jt−1, we use the following ordering. Each such node v ∈ Vt is connected to a
unique factor node in Ft . Call this the associated factor, and denote it by fv . We
order the nodes degJt−1

(v) = 1 according to the order of their associated factor,
choosing an arbitrary internal order for variable nodes with the same associated
factor.

For A⊆ F , B ⊆ V , we denote by HA,B the submatrix of H consisting of rows
with index a ∈ A and columns i ∈ B . The following structural lemma is immedi-
ate, and we omit its proof.

LEMMA 3.2. Let G be any factor graph [not necessarily in G(n, k,m)]
with no 2-core. With the order of factors and variable nodes defined through
synchronous peeling, the matrix H is partitioned in TC × TC blocks
{HFs,Vt }1≤s≤TC,1≤t≤TC with the following structure:

1. For any s > t , HFs,Vt = 0.
2. The diagonal blocks HFs,Vs , have a staircase structure, namely for each such

block the columns can be partitioned into consecutive groups (Cl)
�
l=0, for �= |Fs |,

such that columns in C0 are equal to 0, columns in C1 have only the first entry
equal to 1, columns in C2 have only the second entry equal to 1, etc. See below for
an example.

An example of a staircase matrix⎡⎢⎢⎣
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎦ .(9)

Note that Vt is not empty and Ft is not empty for all t < TC. On the other hand,
FTC may be empty, in which case, we adopt the convention that all columns corre-
sponding to VTC are included in C0.

The above ordering reduces H to an essentially upper triangular matrix. It is
then immediate to construct a basis for its kernel. We will do this by partitioning
the set of variable nodes as the disjoint union V = U ∪ W in such a way that
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U ∈ {0,1}m×m and HU is square with full rank, and W ∈ {0,1}m×(n−m). We then
treat xW as independent variables and xU as dependent ones. The partition is then
constructed by letting W =W1 ∪ · · · ∪WTC and U =U1 ∪ · · · ∪UTC , whereby for
each t ∈ {1, . . . , TC}, Wt ⊆ Vt is chosen by considering the staircase structure of
block HFt ,Vt and the corresponding partition over columns Vt = C0∪C1∪ · · ·∪C�.
We let Wt = C0 ∪ C′1 ∪ · · · ∪ C′�, where C′i includes all the elements of Ci except
the first (and is empty if |Ci | = 1). Finally, Ut ≡ Vt \Wt . With these definitions,
HF,U is an m×m binary matrix with full rank. In addition, it is upper triangular
with diagonal blocks HFt ,Ut = I|Ut | for t = 1, . . . , TC, where Ir is the r× r identity
matrix.

In order to construct a sparse basis for the clusters when α > αd(k) [and hence
prove Theorem 2, point 2(a)], we will have to consider matrices H (without a
2-core) that contain rows with exactly 2 nonzero entries (i.e., check nodes of de-
gree 2). Whenever this happens, the construction must be modified, by introducing
the notion of collapsed graph. The basic idea is that a factor node of degree 2 con-
strains the adjacent variables to be identical and hence we can replace each set of
variables that are thus constrained to be equal by a single proxy variable (a “super-
node”). This proxy variable node will have an edge with each factor that was pre-
viously connected to a replaced variable node, with a small modification: Since
we are operating in GF(2), we retain a single edge for edges with odd multiplicity,
and drop edges with even multiplicity.

DEFINITION 3.3. The collapsed graph G∗ = (F∗,V∗,E∗) of a graph G =
(F,V,E) is the graph of connected components in the subgraph induced by factor
nodes of degree 2. Formally,

F∗ ≡ {
f ∈ F : |∂f | ≥ 3

}
,

V∗ ≡ {
S ⊆ V :dG(2) (i, j) <∞,∀i, j ∈ S

}
,

E∗ ≡ {
(S, a) :S ∈ V∗, a ∈ F∗,

∣∣{i ∈ S s.t. (i, a) ∈E
}∣∣ is odd

}
,

where G(2) is the subgraph of G induced by factor nodes of degree 2. We let
n∗ ≡ |V∗|, m∗ ≡ |F∗|. An element of V∗ is referred to as a supernode.

Note that for a graph G with no 2-core, the collapsed graph G∗ also has no
2-core. We let Q denote the corresponding adjacency matrix of G∗. Finally, we
construct a binary matrix L with rows indexed by V , and columns indexed by V∗,
and such that Li,v = 1 if and only if i belongs to connected component v. We apply
peeling to G∗, thus obtaining the decomposition of V∗ into U∗ ∪W∗ as described
for the original graph G above.

The following is the key deterministic lemma on the construction of the basis.
We denote the size of the component of v ∈ V∗ in G(2) by S(v), and for v ∈ V∗,
t ≥ 0 we let S(v, t) =∑

w∈BG∗ (v,t) S(w) be the sum of sizes of vertices within
distance t from v.



THE SET OF SOLUTIONS OF RANDOM XORSAT FORMULAE 2759

LEMMA 3.4. Assume that G∗ has no 2-core, then the columns of

L
[
(QF∗,U∗)

−1QF∗,W∗
I(n∗−m∗)×(n∗−m∗)

]
form an s-sparse basis of the kernel of H, with s =maxv∗∈V∗ S(v∗, TC(G∗)). Here,
we have ordered the super-nodes v∗ ∈ V∗ as U∗ followed by W∗, and the matrix
inverse is taken over GF[2].

The proof of Lemma 3.4 is presented in the Appendix A.

3.2. Construction of the cluster decomposition. When G does not contain a
2-core [which happens w.h.p.for α < αd(k)] the above lemma is sufficient to char-
acterize the space of solutions S . When G contains a 2-core [w.h.p. for α > αd(k)]
we need to construct the partition of the space of solutions S1 ∪ · · · ∪ SN .

We let GC = (FC,VC,EC) denote the 2-core of G, and PG : {0,1}V → {0,1}VC
be the projector that maps a vector x to its restriction xVC

. Next, we let HC ≡
HFC,VC be the restriction of H to the 2-core, and denote its kernel by SC. Obviously,
for any x ∈ S , we have PGx ∈ SC. Further,

S = ⋃
xC∈SC

S(xC), S(xC)≡ {x ∈ S :PGx = xC},(10)

with {S(xC)}xC∈SC forming a partition of S .
It is easy to check HF\FC,V \VC has full row rank. For instance, this follows from

the fact that the subgraph induced by (F \ FC,V \ VC) is annihilated by peeling
(cf. Remark 3.1). Thus, S(xC) is nonempty for all xC ∈ SC, and the sets S(xC) are
simply translations of each other.

It turns out that {S(xC)}xC∈SC is not exactly the partition of S that we seek. In
our next lemma, we show that the set of solutions of the core SC can be partitioned
in well-separated core-clusters. Moreover, the core-clusters are small and have a
high conductance. We will form sets in our partition of S by taking the union of
S(xC) over xC that lie in a particular core-cluster.

We write x′ � x for binary vectors x′, x if x′i ≤ xi for all i. We write x′ ≺ x if
x′ � x and x′ �= x. We need the following definition:

LC(�)≡ {
x :x ∈ SC(G), d(x,0)≤ �,�x′ ∈ SC(G) \ {0} s.t. x′ ≺ x

}
.(11)

The set LC(�) consists of minimal nonzero solutions of the 2-core having weight
at most �. (Here, the support of a binary vector x is the subset of its coordinates
that are nonzero, and the weight of x is the size of its support.)

LEMMA 3.5. For any α ∈ (αd(k), αs(k)), there exists ε = ε(α, k) > 0 such
that the following holds. Take any sequence (sn)n≥1 such that limn→∞ sn = ∞
and sn ≤ εn. Let G ∼ G(n, k,αn). Then w.h.p., we have: (i) LC(εn) = LC(sn);
(ii) |LC(εn)|< sn; (iii) For any x, x′ ∈ LC(εn), we have x ∧ x′ = 0, where ∧ de-
notes bitwise AND. In other words, different elements of LC(εn) have disjoint sup-
ports.
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Lemma 3.5 is proved in Section 7.

REMARK 3.6. Let En be the event that points (i), (ii) and (iii) in Lemma 3.5
hold. Assume En and s2

n < εn. Let SC,1 be the set of core solutions with weight
less than εn. Then SC,1 forms a linear space over GF(2) of dimension |LC(εn)|,
with LC(εn) being a sn-sparse basis for SC,1. Moreover, every element of SC,1 is
s2
n-sparse.

Let

g ≡ 2|LC(εn)|.(12)

We partition the set SC of core solutions in disjoint core-clusters, as follows. For
x, x′ ∈ SC, we write x � x′ if x⊕ x′ ∈ span(LC(εn)). It is immediate to see that �
is an equivalence relation. We define the core-clusters to be the equivalence classes
of�. Obviously, the core clusters are affine spaces that differ by a translation, each
containing g ≤ 2sn solutions. Their number is to be denoted by N . Denote the core-
clusters by SC,1,SC,2, . . . ,SC,N . Note that for any x, x′ ∈ SC belonging to different
core-clusters, we have d(x, x′) > nε, that is, the core-clusters are well separated.
We use the following partition of the solution space (including noncore variables)
S into clusters, based on the core-clusters defined above:

S =
N⋃

i=1

Si , Si ≡ {x ∈ S :PGx ∈ SC,i}.(13)

A version of Lemma 3.5 was claimed in [12, 29, 31]. These papers capture the
essence of the proof but miss some technical details, and make the erroneous claim
that, w.h.p. each pair of core solutions is separated by Hamming distance �(n).

We next want to study the internal structure of clusters. By linearity, it is suf-
ficient to consider only one of them, say S1, which we can take to contain the
origin 0. For any x ∈ S1, we have PGx ∈ SC,1 = span(LC(εn)), and LC(εn) forms
a sn-sparse basis for SC,1, which coincides with the projection of S1 onto the core.
Consider the subset of solutions x ∈ S , such that PGx = xC for some xC ∈ SC,1.
The set of variables that take the same value for all solutions in this set is strictly
larger than the 2-core. In order to capture this remark, we define the backbone
(variables that are uniquely determined by the core assignment) and periphery
(other variables) of a graph G.

DEFINITION 3.7. Define the backbone augmentation procedure on G with
the initial check induced subgraph G

(0)
b as follows. Start with G

(0)
b . For any t ≥ 0,

pick all check nodes which are not in G
(t)
b and have at most one neighbor outside

G
(t)
b . Build G

(t+1)
b by adding all these check nodes and their incident edges and

neighbors to G
(t)
b . If no such check nodes exist, terminate and output Gb =G

(t)
b .
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The backbone GB = (FB,VB,EB) of a graph G = (F,V,E) is the output of
backbone augmentation procedure on G with the initial subgraph GC, the 2-core
of the graph G.

The periphery GP of a graph G = (F,V,E) is the subgraph induced by the
factor nodes FP = F \ FB and variable nodes VP = V \ VB that are not in the
backbone.6

We can now define our basis for S1. This is formed by two sets of vectors.
The first set has a vector corresponding to each element of LC(εn). For each xC ∈
LC(εn), we construct a sparse solution x ∈ S1 such that PGx = xC (Lemma 3.8
below guarantees the existence of such a vector, and bounds its sparsity). This set
of vectors forms a basis for the projection of S1 onto the backbone.

For the second set of vectors, let HP ≡HFP,VP be the matrix corresponding to
the periphery graph. We construct a sparse basis for the kernel of the matrix HP,
following the general procedure described in Section 3.1. Namely, we first col-
lapse the graph and then peel it to order the nodes. Note that this second set of
basis vectors vanishes on the backbone variables. Lemma 3.4 is used to bound its
sparsity.

The first set of vectors is characterized as below (see Section 8 for a proof).

LEMMA 3.8. Consider any α ∈ (αd(k), αs(k)). Let G be drawn uniformly
from G(n, k,m). Take ε(α, k) > 0 from Lemma 3.5, and consider any sequence
(cn)n≥1 such that limn→∞ cn =∞. Then, with high probability, the following is
true. For every xC ∈ LC(εn), there exists cn-sparse x ∈ S1 such that PGx = xC.

3.3. Analysis of the construction. The main challenge in proving Theorem 2
is bounding the sparsity of the bases constructed (either for the full set of solu-
tions, when G does not have a core, or for the cluster S1, when G has a core). This
involves two type of estimates: the first one uses Lemma 3.4, while the second is
stated as Lemma 3.8. In the first estimate, we need to bound all the quantities in-
volved in the sparsity upper bound: the number of iterations T after which peeling
(on the collapsed graph G∗) halts, and the maximum size maxv∈V∗ S(v,T ) of any
ball of radius T in the collapsed graph. In particular, we will show that, w.h.p., we
have T = O(log logn), and that maxv∈V∗ S(v,T ) ≤ (logn)C w.h.p., which gives
sparsity s ≤ (logn)C .

Proving these bounds turns out to be a relatively simpler task when G does not
have a 2-core, partly because the graph in question has no factor nodes of degree 2,
and thus the collapse procedure is not needed. A second reason is that when G has
a 2-core, we need to apply Lemma 3.4 to the periphery subgraph as discussed

6Notice that there may be a few variables (w.h.p. at most a constant number) in the periphery that
also are uniquely determined by the core assignment.
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above. Remarkably, the periphery graph admits a relatively explicit probabilistic
characterization. We say that a graph is peelable if its core is empty, and hence the
peeling procedure halts with the empty graph. It turns out that, conditional on the
degree distribution, the periphery is uniformly random among all peelable graphs.

Such an explicit characterization is not available, however, when we consider
the subgraph obtained by removing the core (the periphery is obtained by removing
the entire backbone). Nevertheless, the proof of Lemma 3.8 requires the study of
this more complex subgraph. We overcome this problem by using tools from the
theory of local weak convergence [5, 6, 9].

Given a graph G = (F,V,E), its check-node degree profile R = (Rl)l∈N is a
probability distribution such that, for any l ∈N, mRl is the number of check nodes
of degree l. A degree profile R can conveniently be represented by its generating
polynomial R(x) ≡∑

l≥0 Rlx
l . The derivative of this polynomial is denoted by

R′(x). In particular, R′(1)=∑
l≥0 lRl is the average degree.

Given integers m, n and a probability distribution R = (Rl)l≤k over {0,1, . . . ,

k}, we denote by D(n,R,m) the set of check-node-degree-constrained graphs,
that is, the set of bipartite graph with m labeled check nodes, n labeled variable
nodes and check node degree profile R. As for the model G(n, k,m), we will write
G∼D(n,R,m) to denote a graph drawn uniformly at random from this set. Note
that we have restricted the checks to have degree no more than k. Further, we will
only be interested in cases with R0 =R1 = 0.

LEMMA 3.9. Let G = (F,V,E) ∼ G(m,n, k) and let GP be its periphery.
Suppose that with positive probability, GP has np variable nodes, mp check nodes,
and check degree profile Rp. Then, conditioned on GP ∈ D(np,R

p,mp), the pe-
riphery GP is distributed uniformly over the set D(np,R

p,mp)∩P , where P is the
set of peelable graphs.

There is a small technical issue here in that if G′ ∈ D(np,R
p,mp), then vari-

able nodes in G′ have labels from 1 to np, whereas GP has variable node labels
that form a subset of {1,2, . . . , n}, and similarly for check nodes. We adopt the
convention that the variable and check nodes in GP are relabeled sequentially, re-
specting the original order, before comparing with elements of D(np,R

p,mp).
The above lemma establishes that the periphery is roughly uniform, conditional

on being peelable. Its proof is in Section 6.1.
Conceptually, we will bound the sparsity, as estimated in Lemma 3.4 by pro-

ceeding in three steps: (1) Bound the estimated basis sparsity maxv S(v, T ) for
check node degree constrained graphs D(n,R,m), in terms of the degree distri-
bution; (2) Estimate the “typical” degree distribution for the periphery, and prove
concentration around this estimate; (3) Prove that, if R is close to the typical de-
gree distribution, then G∼ D(n,R,m) is peelable with uniformly positive proba-
bility. The latter allows us to transfer the sparsity estimates from the uniform model
D(n,R,m) to the actual distribution of the periphery.



THE SET OF SOLUTIONS OF RANDOM XORSAT FORMULAE 2763

Lemma 3.11 below accomplishes steps (1) and (3), while Lemma 3.12 takes
care of step (2). In order to state these lemmas, it is convenient to introduce den-
sity evolution (the terminology comes from the analysis of sparse graph codes
[27, 28, 36]).

DEFINITION 3.10. Given α > 0, a degree profile R, and an initial condition
z0 ∈ [0,1], we define the density evolution sequence {zt }t≥0 by letting for any
t ≥ 1,

zt = 1− exp
{−αR′(zt−1)

}
.(14)

Whenever not specified, the initial condition will be assumed to be z0 = 1. The
one-dimensional recursion (14) will be also called density evolution recursion.

We say the pair (α,R) is peelable at rate η for η > 0 if zt ≤ (1− η)t/η for all
t ≥ 0. We say that the pair (α,R) is exponentially peelable (for short peelable) if
there exists η > 0 such that it is peelable at rate η.

The density evolution recursion (14) describes the large graph asymptotics of a
certain belief propagation algorithm that captures the peeling process, and will be
described Section 4.

The next lemma is proved in Section 5.

LEMMA 3.11. Consider the set D(n,R,αn), where R = (Rl)l≤k is a check
degree profile such that R0 = R1 = 0. Assume that the pair (α,R) is peelable
at rate η. Then there exist constants N0 = N0(η, k) <∞, δ = δ(η, k) > 0, C1 =
C1(η, k) <∞, C2 = C2(η, k) <∞ such that the following hold, for G a random
graph drawn from D(n,R,m) with n > N0:

(i) The graph G is peelable with probability at least δ. Further, if R2 = 0, one
can take δ arbitrary close to 1 (in other words G is peelable w.h.p.).

(ii) Conditional on G being peelable, peeling on the collapsed graph G∗ ter-
minates after T ≤ C1 log logn iterations, with probability at least 1− n−1/2.

(iii) Letting Tub = �C1 log logn�, we have maxv∈V∗ S(v,Tub)≤ (logn)C2 , with
probability at least 1− n−1/2.

Our final lemma is proved in Section 6.2 and establishes the peelability condi-
tion for the periphery.

LEMMA 3.12. For any α > αd there exist constants η = η(k,α) > 0, γ∗ =
γ∗(k,α) > 0 such that the following holds. Let G = (F,V,E) be a graph drawn
uniformly at random from the ensemble G(n, k,m), m = nα, and let GP =
(FP,VP,EP) be its periphery. Let mP ≡ |FP|, nP ≡ |VP|, αP ≡ mP/nP and de-
note by RP the random check degree profile of GP. Then, for any ε > 0, w.h.p. we
have: (i) The pair (αP,R

P) is peelable at rate η; (ii) n(γ∗ − ε)≤ np ≤ n(γ∗ + ε).
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3.4. Putting everything together. At this point, we can formally summarize the
proof of our main result, Theorem 2, that builds on the construction and analysis
provided so far.

PROOF OF THEOREM 2. 1. For α < αd(k), w.h.p., the graph G does not con-
tain a 2-core (cf. Theorem 4), hence peeling returns an empty graph. Using the con-
struction in Lemma 3.4, we obtain an s-sparse basis, with s =maxv∈V |B(v, TC)|
(notice that in this case there is no factor node of degree 2, and hence the col-
lapsed graph coincides with the original graph). The number of peeling itera-
tions TC is bounded by Lemma 3.11(ii), using the fact that, by definition of αd(k)

the pair (α,R), with Rk = 1 is peelable at rate η = η(α, k) > 0 for α < αd(k).
Hence, TC ≤ C1 log logn w.h.p., for some C1 = C1(α, k) <∞. Finally, by apply-
ing Lemma 3.11(iii) we obtain the thesis.

Next, consider point 2. The partition into clusters is constructed as per equa-
tion (13), and in particular the number of clusters N is equal to the number of
solutions of the core linear system HCx = 0 divided by g given by equation (12).
Let us consider the various claims concerning this partition:

2(a). By construction, it is sufficient to construct a basis of the cluster S1 con-
taining the origin, cf. Section 3.2. The basis has two sets of vectors.

The first set of vectors is given by Lemma 3.8. Their projection onto the core
spans the core solutions in SC,1. Since variables in the backbone are uniquely de-
termined by those on the core, their projection onto the backbone spans the back-
bone projection of S1. By Lemma 3.8, these vectors are, w.h.p., cn-sparse for any
cn →∞. Lemma 3.4 provides the second set of vectors. These span the kernel of
the adjacency matrix of the periphery, Hp and vanish identically in the backbone.
In particular, they are independent from the first set. It is easy to check that the two
sets of vectors together form a basis for the cluster S1.

We are left with the task of proving that the second set of basis vectors is sparse.
The construction in Lemma 3.4 proceeds by collapsing the periphery graph GP,
and applying peeling. We thus need to bound the sparsity s = maxv∈V S(v,TC).
Define the event (implicitly indexed by n)

E1 ≡ {(
αP,R

P) is peelable at rate η > 0 and nP ≥ nγ∗/2
}
.

By Lemma 3.12, we know that E1 holds with high probability for suitable choices
of η = η(k,α) > 0 and γ∗ = γ∗(α, k) > 0. Further RP

0 = RP
1 = 0 with probabil-

ity 1.
From Lemma 3.9, we know that GP is drawn uniformly from the set D(nP,R

P,

mP)∩P . Let G′ be drawn uniformly from D(nP,R
P,mP), with (nP,R

P,mP) dis-
tributed as for GP, conditional on (αp,R

p) ∈ E1. We can then apply Lemma 3.11
to G′. From point (i), it follows that G′ is peelable with probability at least
δ = δ(α, k) > 0. Let G′∗ be the result of collapsing G′. From points (ii) and
(iii) it follows that, with probability at least 1− n−0.5

P ≥ 1− (nγ∗/2)−0.5 → 1 as
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n→∞, we have maxv∈V ′∗ SG′(v, TC)≤maxv∈V ′∗ SG′(v, Tub)≤ (logn)C , for some
C = C(α, k) <∞. (We use the subscript on S to indicate the graph under consid-
eration.)

Since E1 holds for GP w.h.p., and since G′ is peelable with probability uni-
formly bounded away from zero, it follows that the same bound on the sparsity
holds for GP as well. In other words, w.h.p., we have that

max
v∈VP,∗

SGP(v, TC)= (logn)C.

Here, VP,∗ is the set of super-nodes resulting from the collapse of GP. Finally,
using Lemma 3.4, we deduce that the second set of basis vectors obtained from
this construction is s-sparse for s = (logn)C .

2(b). By Lemma 3.5, w.h.p., for any two core solutions xC ∈ SC,1, xC
′ ∈ SC,b,

b �= 1 we have d(xC, xC
′) ≥ nε. This immediately implies d(x, x′) ≥ nε, for any

two solutions x ∈ S1, x′ ∈ S \S1. By linearity, we conclude d(Sa,Sb)≥ nε for all
a, b.

2(c). Let NC be the number of solutions of the core linear system HCx = 0. This
was proved to concentrate on the exponential scale in [18, 20], with n(� − ε) ≤
logNC ≤ n(� + ε) with high probability, and � given as in the statement (cf.
also [29]). The number of clusters is N =NC/g for g = 2LC(εn), cf. equation (12).
Using the bound |LC(εn)| ≤ sn from Lemma 3.5(ii) and choosing sn to diverge
sufficiently slowly with n, we deduce that N also concentrates on the exponential
scale with the same exponent as NC. �

4. A belief propagation algorithm and density evolution. A useful analysis
tool is provided by a belief propagation algorithm [cf. equations (4) and (5)] that
refines the peeling algorithm introduced in Section 3.1. The same algorithm is also
of interest in iterative coding; see [29, 36].

We restate the BP update rules for the convenience of the reader.

νt
v→a =

{
∗, if ν̂t−1

b→v = ∗ for all b ∈ ∂v \ a,
0, otherwise,

and

ν̂t
a→v =

{
0, if νt

u→a = 0 for all u ∈ ∂a \ v,
∗, otherwise.

The initialization at t = 0 depends on the context, but it is convenient to sin-
gle out two special cases. In the first case, all messages are initialized to 0:
ν0
v→a = ν̂0

a→v = 0 for all (a, v) ∈ E. In the second, they are all initialized to ∗:
ν0
v→a = ν̂0

a→v = ∗ for all (a, v) ∈ E. We will refer to these two cases (resp.) as
BP0 and BP∗. We let νt ≡ (νt

v→a)(a,v)∈E and ν̂t ≡ (̂νt
v→a)(a,v)∈E denote the vec-

tor of messages.
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We mention here that BP∗ on the a graph G ∈G(n, k,m) turns out to be trivial
(all messages remain ∗). However, we find it useful to run BP∗ on the subgraph
induced by variable and check nodes outside the core. We describe this in detail in
Section 4.2.

The belief propagation algorithm introduced here enjoys an important mono-
tonicity property. More precisely, define a partial ordering between message vec-
tors by letting 0 � ∗ and ν � ν′ if νv→a � ν′v→a and ν̂a→v � ν̂a→v for all
(a, v) ∈E.

LEMMA 4.1 ([29, 36]). Given two states νt
1 � νt

2, we have νt ′
1 � νt ′

2 and ν̂t ′
1 �

ν̂t ′
2 at all t ′ ≥ t .

As a consequence, the iteration BP0 is monotone decreasing (i.e., νt+1 � νt )
and BP∗ is monotone increasing (i.e., νt+1 � νt ). In particular, both converge to a
fixed point in at most |E| iterations.

It is not hard to check by induction over t that BP0 corresponds closely to the
peeling process.

LEMMA 4.2. A variable node v is eliminated in round t of peeling, that is,
v ∈ Vt , if there is at most one incoming 0 message to v in iteration t − 1 of BP0
but this was not true in previous rounds. A factor node a is eliminated in round t

of peeling (i.e., a ∈ Ft ), along with all its incident edges, if it receives a ∗ message
for the first time in iteration t of BP0.

Further, the fixed point of BP0 captures the decomposition of G into core, back-
bone and periphery as follows.

LEMMA 4.3. Let (ν∞, ν̂∞) denote the fixed point of BP0. For v ∈ V , we
have:

• v ∈ VC if and only if v receives two or more incoming 0 messages under ν̂∞,
• v ∈ VB \VC if and only if v receives exactly one incoming 0 message under ν̂∞,
• v ∈ VP if and only if v receives no incoming 0 messages under ν̂∞.

For a ∈ F , we have

• a ∈ FC if and only if a receives no incoming ∗ message under ν∞,
• a ∈ FB \ FC if and only if a receives one incoming ∗ message under ν∞,
• a ∈ FP if and only if a receives two or more incoming ∗ messages under ν∞.

Finally, GC is the subgraph induced by (FC,VC) and similarly for GB and GP.

The proofs of the last two lemmas are based on a straightforward case-by-case
analysis, and we omit them. (In fact, this correspondence is well known in iterative
coding, albeit in a somewhat different language [36].)
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4.1. Density evolution. It turns out that distribution of BP messages is closely
tracked by density evolution, in the large graph limit. Before stating this fact for-
mally, it is useful to introduce a different ensemble C(n,R,m) that will be used in
some of the proofs. A graph G in C(n,R,m) is constructed as follows. We label
variable nodes 1 through n and check nodes 1 through m. We choose an arbitrary
partition of the m check nodes into k + 1 sets with the lth set consisting of mRl

check nodes with degree l each, for l = 0,1, . . . , k. For each check node of de-
gree l, we draw l half-edges distinct from each other. Each of these half-edges is
connected to an arbitrary variable node.

There is a close relationship between the sets D(n,R,m) and C(n,R,m). Any
element of D(n,R,m) corresponds to

∏k
l=2(l!)mRl elements of C(n,R,m), with

the ambiguity arising due to the ordering of the neighborhood of a check node
in C(n,R,m). Conversely, any element of C(n,R,m) with no double edges [two
or more edges between the same (variable, check) pair] corresponds to a unique
element of D(n,R,m). Moreover, the fraction of elements of C(n,R,m) that have
no double edges is uniformly bounded away from zero as n→∞ [10]. This leads
to Lemma 4.4 below.

LEMMA 4.4. Let E be a graph property that does not depend on edge la-
bels [e.g., E(G) ≡ {G is a tree}]. There exists C = C(k,αmax) <∞ such that the
following is true for any α ∈ [0, αmax]. Suppose E holds with probability 1 − ε

for G drawn uniformly at random from C(n,R,αn), for some ε ∈ [0,1]. Then E
holds with probability at least 1 − Cε for G′ drawn uniformly at random from
D(n,R,αn).

An important tool in the following will be the notion of almost sure local con-
vergence of graph sequences. We made this notion precise in Definition 1.2, fol-
lowing [15].

We now return to the distribution of BP messages and density evolution.

LEMMA 4.5. Let {zt } be the density evolution sequence defined by (14), for
a given polynomial R, with z0 = 1, and define ẑt ≡ R′(zt )/R

′(1). Assume Gn ∼
D(n,R,m) or Gn ∼C(n,R,m) with m= nα.

Let R
(t)
l0,l∗ be the fraction of check nodes receiving l0 incoming 0 messages and

l∗ incoming ∗ messages after t iterations of BP0 in Gn. Similarly, let L
(t)
l0,l∗ the

fraction of variable nodes receiving l0 incoming 0 messages and l∗ incoming ∗
messages after t iterations of BP0.

Then for any fixed t ≥ 0, the following occurs almost surely:

lim
n→∞R

(t)
l0,l∗ = Rl0+l∗

(
l0 + l∗

l0

)
z
l0
t (1− zt )

l∗ for l0, l∗ ∈ {0,1, . . . , k},(15)

lim
n→∞L

(t)
l0,l∗ = P{X0 = l0,X∗ = l∗} for all l0, l∗ ∈N,(16)
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where X0 ∼ Poisson(R′(1)αẑt ), X∗ ∼ Poisson(R′(1)α(1− ẑt )) are two indepen-
dent Poisson random variables.

PROOF. Notice that both D(n,R,m) and C(n,R,m), m = nα converge lo-
cally to unimodular bipartite trees. More precisely, if rooted at random vari-
able nodes, they converge to Galton–Watson trees with root offspring distribu-
tion Poisson(R′(1)α) at variable nodes, and equal to the size-biased version of
R at check nodes. The proof of the analogous statement in the case of nonbi-
partite graphs can be found in [15], Proposition 2.6. It uses an explicit calcula-
tion to show that the empirical distribution of local neighborhoods converges in
expectation, and a martingale concentration argument to verify the assumptions
of Borel–Cantelli, and hence deduce almost sure convergence. The same proof
extends—with minimal changes—to bipartite (factor) graphs.

Messages are local functions of the graph, hence their distribution converges to
the one on the limit tree. In particular, incoming messages on the same node are
asymptotically independent because they depend on distinct subtrees. The message
distribution can be computed through a standard tree recursion (see [29, 36]) that
coincides with the density evolution recursion (14). �

Using the correspondence in Lemma 4.2 between BP0 and the peeling algo-
rithm, we can use density evolution to track the peeling algorithm.

LEMMA 4.6. Given a factor graph H , let n1(H) denote the number of vari-
able nodes of degree 1, and n2+(H) the number of variable nodes of degree 2 or
larger in H . For l ∈N, let ml(H) be the number of factor nodes of degree l in H .

Consider synchronous peeling for t ≥ 1 rounds on a graph G∼D(n,R,αn) or
G ∼ C(n,R,αn), with R0 = R1 = 0, and let Jt denote the residual graph after
t iterations. Let ω ≡ αR′(1). Then for any δ > 0, there exists N0 = N0(δ, k, t, α)

such that with probability at least 1− 1/n2 ∣∣∣∣ml(Jt )

n
− αRlz

l
t

∣∣∣∣≤ δ

(17)
for l ∈ {2,3, . . . , k},∣∣∣∣n1(Jt )

n
−ωẑt exp(−ωẑt )

(
1− exp

(−ω(̂zt−1 − ẑt )
))∣∣∣∣≤ δ,(18) ∣∣∣∣n2+(Jt )

n
− 1+ exp(−ωẑt )(1+ωẑt )

∣∣∣∣≤ δ.(19)

PROOF. For the sake of simplicity, let us consider n1(Jt ). By Lemma 4.2,
a node v has degree 1 in the residual graph Jt if and only if there is one incom-
ing 0 message to v at time t , and there were two or more incoming 0 messages
to v at time t − 1. By Lemma 4.5, the number of incoming 0 messages to v at
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time t converges in distribution to Z1 ∼ Poisson(ωẑt ). Using monotonicity of the
algorithm, and again Lemma 4.5, the number of incident edges such that the mes-
sage incoming to v at time t − 1 is 0 but changes to ∗ at time t , converges to
Z2 ∼ Poisson(ω(̂zt−1 − ẑt )), and is asymptotically independent of the number of
0 messages (converging to Z1). Therefore, n1,t /n converges as n→∞ to

P[Z1 = 1]P[Z2 ≥ 1] = ωẑt exp(−ωẑt )
(
1− exp

(−ω(̂zt−1 − ẑt )
))

.

This establishes that the estimate (18) holds with high probability. In order to
obtain the desired probability bound, one can use a standard concentration of mea-
sure argument [19, 36]. Namely, we first condition on the degrees of the check
nodes. Since the unconditional distributions D(n,R,m) and C(n,R,m) are recov-
ered by a random relabeling of the check nodes, such conditioning is irrelevant. We
then regard n1(Jt ) as a function of the independent random variables X1, . . . ,Xm

whereby Xa is the neighborhood of the ath check node. We denote by En the
event that all the balls BG(v,2t) of radius t in G have size smaller than (logn)C .
We have∣∣E{n1(Jt )|X1, . . . ,Xa−1,Xa;En

}−E
{
n1(Jt )|X1, . . . ,Xa−1,X

′
a;En

}∣∣≤ (logn)C.

The desired probability estimate then follows by applying Azuma’s inequality (in a
form that allow for exceptional events; see, e.g., [19], Theorem 7.7) and bounding
P(Ec

n) (see, e.g., Section 5.2). �

4.2. BP fixed points. For our purposes, it is important to characterize the fixed
point of the BP0 algorithm introduced above. Indeed, the structure of this fixed
point is directly related to the decomposition of G into core, backbone and periph-
ery (cf. Lemma 4.3), which is in turn crucial for our definition of clusters. Let us
start from an easy remark on density evolution.

LEMMA 4.7. Let {zt }t≥0 be the density evolution sequence defined by equa-
tion (14) with initial condition z0 = 1. Then t �→ zt is monotone decreasing, and
hence has a limit Q≡ limt→∞ zt which is given by

Q= sup
{
z s.t. z= 1− exp

{−αR′(z)
}}

.(20)

PROOF. Monotonicity follows from the fact that z �→ f (z) ≡ 1 −
exp{−αR′(z)} is monotone increasing, and that z1 = 1 − exp{−αR′(1)} < z0,
whence z2 = f (z1)≤ f (z0)= z1, and so on. �

Notice that the definition of Q given in this lemma is consistent with the one in
Theorem 1, that corresponds to the special case of regular, degree-k check nodes,
that is, R(x)= xk . We further let Q̂≡R′(Q)/R′(1).

We know that both BP0 and density evolution converge to a fixed point. Since
density evolution tracks BP0 for any bounded number of iterations, it would be
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tempting to conclude that a description of the BP0 fixed point is obtained by re-
placing zt by Q and ẑt by Q̂ in Lemma 4.5. This is, of course, far from obvious
because it requires an inversion of the limits n→∞ and t →∞. Despite this
caveat, this substitution is essentially correct.

LEMMA 4.8. Assume Gn ∼ G(n, k,m) with m = nα, and α ∈ [0, αd(k)) ∪
(αd(k),∞).

Let R
(∞)
l0,l∗ be the fraction of check nodes receiving l0 incoming 0 messages and

l∗ incoming ∗ messages at the fixed point of BP0. Similarly, let L
(∞)
l0,l∗ the fraction

of variable nodes receiving l0 incoming 0 messages and l∗ incoming ∗ messages
at the fixed point of BP0.

The following occurs with probability 1:

lim
n→∞R

(∞)
l0,l∗ =

(
k

l0

)
Ql0(1−Q)l∗ for l0 ∈ {0,1, . . . , k}, l∗ = k− l0,(21)

lim
n→∞L

(∞)
l0,l∗ = P{X0 = l0,X∗ = l∗} for all l0, l∗ ∈N,(22)

where X0 ∼ Poisson(kαQ̂), X∗ ∼ Poisson(kα(1− Q̂)) are two independent Pois-
son random variables.

Given Lemma 4.5 above, Lemma 4.8 says that the messages change very little
beyond a large constant number of iterations. A hint at the fact that Lemma 4.8 is
significantly more challenging than Lemma 4.5 is given by the assumption in the
former that α �= αd(k). In fact, this turns out to be a necessary assumption, because
it implies an important correlation decay property.

Molloy [32] established the analog of equation (22) for
∑

�0≥2,�∗≥0 L
(∞)
l0,l∗ , which

corresponds to the relative size of the core. We find that the complete theorem
presents new challenges: keeping track of the backbone turns out to be hard. One
hurdle is that the “estimated backbone” after t iterations of BP0 (i.e., the subset
of variable nodes that receive exactly one 0 message) does not evolve monotoni-
cally in t . In contrast, the “estimated core” (i.e., the subset of variable nodes that
receive two or more 0 messages) can only shrink. Another hurdle is that, unlike the
periphery (cf. Section 6), it turns out that the backbone is not uniformly random
conditioned on the degree sequence.

The proof of Lemma 4.8 is quite long and will be presented in Section 4.3. The
basic idea is to run BP starting from the initialization with 0 messages coming
from vertices in the core and ∗ messages everywhere else. This corresponds to
BP∗ on the noncore GNC [i.e., the subgraph induced by (F \ FC,V \ VC)], since
messages outside the noncore do not change: Messages within the core and from
core variables to noncore checks stay fixed to 0. Messages from noncore checks to
core variables stay fixed to *. We refer to this algorithm simply as BP∗, with the
understanding that BP∗ is actually run on GNC.
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It is not hard to check by induction over t that BP∗ corresponds to the backbone
augmentation procedure.

LEMMA 4.9. Consider the backbone augmentation procedure with the initial
subgraph GC. A factor node a is added to the backbone in round t of backbone
augmentation, that is, a ∈G

(t)
b \G

(t−1)
b (cf. Definition 3.7) if all but one incoming

message to a in iteration t of BP∗ are 0, but this was not the case in previous
iterations.

A variable node v is added to the backbone in round t , of backbone augmenta-
tion, that is, v ∈G

(t)
b \G

(t−1)
b if there is one incoming 0 message to v in iteration

t of BP∗ but this was not true in previous iterations.

It then follows immediately from Lemma 4.3 that BP0 and BP∗ converge to the
same fixed point. Denote the messages at this fixed point by ν0,∞

v→a .
Denote by ν∗,tv→a the messages produced in iteration t of BP∗, and ν0,t

v→a

the messages produced by BP0. Monotonicity of BP update implies ν0,t
v→a �

ν0,∞
v→a � ν∗,tv→a . The proof consists in showing that the fraction of 0 messages

in {ν0,t
v→a}(a,v)∈E is, for large fixed t , close to the fraction of 0 messages in

{ν∗,tv→a}(a,v)∈E . The challenge is that no analog of Lemma 4.5 is available for BP∗.
Our final lemma is a straightforward consequence of Lemmas 4.5 and 4.8 above.

LEMMA 4.10. Consider any k ≥ 3, any α ∈ (0, αd) ∪ (αd, αs) and any δ > 0.
There exists T <∞ such that the following occurs. Let Gn ∼ G(n, k,αn). Then,
eventually (in n) almost surely, the fraction of (check-to-variable or variable-to-
check) messages that change after iteration T of BP0 is smaller than δ.

PROOF. Let Nt(n) be the fraction of variable-to-check messages that are equal
to 0 after t iterations on Gn (with t =∞ corresponding to the fixed point). Then
equations (15) and (21) imply that

∣∣Nt(n)− zt

∣∣≤ δ

3k
,

∣∣N∞(n)−Q
∣∣≤ δ

3k

holds eventually almost surely. Using Lemma 4.7, there exists T large enough so
that, for t ≥ T , |zt −Q| ≤ δ/(3k). By the triangle inequality |Nt(n)−N∞(n)| ≤
δ/k. The thesis for variable-to-check messages follows since, by monotonicity of
BP0, Nt(n)−N∞(n) is exactly equal to the fraction of messages that change value
from iteration t to the fixed point. Each change in a variable-to-check message can
lead to a change in at most k− 1 check-to-variable messages. Thus, the fraction of
check-to-variable messages that change after iteration T is smaller than δ. �
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4.3. Proof of Lemma 4.8. Throughout this section, the notion of convergence
adopted is convergence locally (cf. Definition 1.2).

For n ≥ 0, draw a graph Gn uniformly at random from G(n, k,αn). Consider
equation (22). Since the total number of incoming messages is equal to the ver-
tex degree, which is Poisson(kα), it is sufficient to control the distribution of 0
incoming messages. In particular, we define

L
(t)
�+ ≡

∞∑
�∗=0

∞∑
l0=�

L
(t)
l0,l∗,

that is the fraction of nodes that receive � or more 0 incoming messages.
We prove a series of lemmas, leading to the desired estimate for L

(t)
�+.

An upper bound on L
(∞)
�+ is relatively easy to obtain.

LEMMA 4.11. With probability 1 with respect to the choice of (Gn)n≥0, we
have for all l ≥ 0,

lim sup
n→∞

L
(∞)
�+ ≤ P

{
Poisson(kαQ̂)≥ �

}
.

PROOF. Using Lemma 4.5 (and using the fact that Ll ≤ C exp(−l/C) for all
l holds eventually almost surely, for some C <∞) we have,

lim
n→∞L

(t)
�+ = P

{
Poisson(kαẑt )≥ �

}
holds w.p. 1. From Lemma 4.1, it follows that L

(t)
�+ is monotone decreasing. Thus,

we have

lim sup
n→∞

L
(∞)
�+ = P

{
Poisson(kαẑt )≥ �

}
w.p. 1.

Fix an arbitrary δ > 0. Lemma 4.7 implies that, for t large enough,[
P
{
Poisson(kαẑt )≥ �

}− P
{
Poisson(kαQ̂)≥ �

}]≤ δ,

which implies that

lim sup
n→∞

L
(∞)
�+ ≤ P

{
Poisson(kαQ̂)≥ �

}+ δ

holds almost surely. Since δ is arbitrary, we obtain the claimed result. �

The lower bound on L
(∞)
�+ cannot be obtained by the same approach. We go

therefore through a detour.
Let μn ≡ μ(Gn) be the measure on rooted factor graphs with marks (called

“networks” in [5]), constructed as follows: Choose a uniformly random variable
node i ∈ Vn as root. Mark variable nodes with mark c if they are in the 2-core
of Gn.
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LEMMA 4.12. The sequence {μn}n≥0 converges locally to the measure on
random rooted tree with marks, T∗(α, k), defined as follows. Construct a random
bipartite Galton–Watson tree rooted at ∅ with offspring distribution Poisson(kα)

at variable nodes and deterministic k − 1 at factor notes. Let VC(T∗) be the max-
imal subset of its vertices such that each variable node has degree at least 2 and
each factor node has degree k in the induced subgraph. Mark with c all vertices in
VC(T∗).

PROOF. It is immediate to see that the sequence {μn}n≥0 is tight almost surely
with respect to the choice of (Gn)n≥0, that is, that for any ε ≥ 0 there exists a com-
pact set K such that P{H∗(n) ∈K} ≥ 1−ε. (E.g., take K to be the set of graphs that
have maximum degree �t at distance t for a suitable sequence t �→ �t .) There-
fore [5], any subsequence of {μn} admits a further subsequence that converges
locally weakly to a limiting measure on rooted networks. This subsequence can be
constructed through a diagonal argument: First, construct a subsequence {μnt

s
}s≥0

such that the depth-t subtree converges. Refine it to get a subsequence {μ
nt+1

s
}s≥0

such that the depth-(t + 1) subtree converges and so on. Finally, extract the diago-
nal subsequence {μns

s
}s≥0.

We will prove the thesis by a standard weak convergence argument [24]: We
will show that for any subsequence of {μn)}n≥0, there is a sub-subsequence that
converges locally weakly to the measure on T∗(α, k).

Consider indeed any sub-subsequence that converges locally weakly to limit-
ing random rooted graph with marks, which we denote by O∗. Define the un-
marking operator U that maps a marked rooted graph to the corresponding un-

marked rooted graph. We have that U(O∗) d= U(T∗) (here d= denotes equality in
distribution) from local weak convergence of random graphs to Galton–Watson
trees (see, e.g., [6, 15]). We will hereafter couple the two trees in such a way that
U(O∗)= U(T∗).

Recall that a stopping set is any subset of variable nodes of a factor graph, such
that each variable node has degree at least 2 in the induced subgraph. The 2-core
of the factor graph is the maximal stopping set and is a superset of any stopping
set. These notions are well defined for infinite graphs as well.

Now, the marks in T∗ correspond to the core by definition. The marks in O∗
form a stopping set, since the measure on O∗ is the local weak limit of μn, and
in any graph drawn from μn, w.p. 1 a vertex is marked only if at least two of its
neighboring checks have all marked neighboring variable nodes. Moreover, one
can show that both T∗ and O∗ are unimodular. Indeed T∗ is unimodular since the
unmarked tree is clearly unimodular, and the marking process does not make any
reference to the root. Unimodularity of O∗ is clear since it is the local weak limit
of a marked random graph [5]. Thus, in order to prove our thesis it suffices to
show that the density of marks is the same in T∗ and O∗. (Because the subset of
nodes that is marked in T∗ contains the subset marked in O∗ and the density of
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their difference is equal to the difference of the densities. Finally, for unimodular
network, if a mark type has density 0, then the set of marked nodes is empty by
union bounds.)

Let

E≡
{

lim
n→∞

∣∣Vc(Gn)
∣∣/n= P

{
Poisson(kαQ̂)≥ 2

}}
,

where Q and Q̂ are defined as at the beginning of Section 4. It was proved in [32]
that |Vc(Gn)|/n

a.s.−→ P{Poisson(kαQ̂)≥ 2}, that is, the event E occurs with prob-
ability 1. Now let the set of marked vertices in O∗ be denoted by V̂C(O∗). It is easy
to see that if E holds, the density of marks in O∗ is given by

P
{
∅ ∈ V̂C(O∗)

}= P
{
Poisson(kαQ̂)≥ 2

}
.(23)

Proceeding analogously to the proof of [8], Proposition 1.2, we obtain

P
{
∅ ∈ VC(T∗)

}= P
{
Poisson(kαQ̂)≥ 2

}
.(24)

The sketch of this step is the following. Let Et be the event that ∅ belongs to a
“depth t core,” where the requirement of “degree at least 2 in the subgraph” applies
only to variables up to depth t − 1. The probability on the left-hand side is just
P{E} for E =⋂

t≥1 Et . Since Et is a decreasing sequence, P{E} = limt→∞P{Et }.
On the other hand, P{Et } can be computed explicitly through a tree calculation and
converges to P{Poisson(αkQ̂)≥ 2} as t →∞ yielding (24).

Finally, the thesis follows by comparing equations (23) and (24), and recalling
that P(E)= 1. �

We next construct a random tree T̃∗(α, k) with marks on the directed edges
as follows. Marks take values in {0,∗} and to each undirected edge we associate
a mark for each of the two directions. We will refer to the direction toward the
root as to the “upward” direction, and to the opposite one as to the “downward”
direction. The marks correspond to fixed point BP messages, and we will call them
messages as well in what follows. First, consider only edges directed upward. This
is a multitype GW tree. At the root generate Poisson(kα) offsprings, and mark
each of the edges to 0 independently with probability Q̂, and to ∗ otherwise. At a
nonroot variable node, if the parent edge is marked 0, generate Poisson(kα(1−Q̂))

descendant edges marked ∗ and Poisson≥1(kαQ̂) descendant edges marked 0 [here
PoissonE(λ) denotes a Poisson random variable with parameter λ conditional to E].
If the parent edge is marked ∗, generate Poisson(kα(1 − Q̂)) descendant edges
marked ∗ and no descendant edges marked 0. At a factor node, if the parent edge
is marked 0, generate k − 1 descendant edges marked 0. If the parent node is
marked ∗, generate M ∼ Binom≤k−2(k − 1,Q) descendants marked 0, and k −
1−M descendants marked ∗.

For edges directed downward, marks are generated recursively following the
usual BP rules, cf. equations (4), (5), starting from the top to the bottom. It is easy
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to check that with this construction, the marks in T̃∗(α, k) correspond to a BP fixed
point.

We extend the unmarking operator U by allowing it to act on graphs with marks
on edges (and removing the marks).

LEMMA 4.13. U(T̃∗) and U(T∗) have the same distribution.

PROOF. For this, we construct U(T̃∗) (which is T̃∗ without the marks revealed)
in a “breadth first” manner as follows: First, we draw a Poisson(αk) number of
factor descendants for the root node. Let a be a factor descendant of the root. Then
a has k−1 variable node descendants. The message ν̂a→∅ is 0 with probability Q̂.
It immediate to check from our construction and Q̂=Qk−1 that:

Fact 1: Conditional on the degree of the root deg(∅)= d1, the d1(k−1) upward
messages incoming to the check nodes a ∈ ∂ø are independent, with P{νv→a =
0} =Q.

Now, we draw the number of descendants for each neighbor of a. Using fact 1,
together with the definition of T̃ , one can check that:

Fact 2: Conditional on the degree of the root deg(∅) = d1, the number of de-
scendants of each of the d1(k − 1) variable nodes v at the first generation is an
independent Poisson(kα) random variable. Further, the upward messages toward
these variable nodes are independent with P{̂νb→v = 0} = Q̂.

This argument (outlined for simplicity for the first generation) can be repeated
almost verbatim at any generation. Denote by T̃∗,d the first d generations of T̃∗,d
(with variable nodes at the leaves). One then proves by induction that at any d ,
conditional on U(T̃∗,d), the number of descendants of the variable nodes in the
last generation are i.i.d. Poisson(kα), and given these, the corresponding upward
messages are i.i.d. P{̂νb→v = 0} = Q̂. This implies the thesis. �

LEMMA 4.14. T̃∗ is unimodular.

PROOF. We already established unimodularity of U(T̃∗) [since U(T̃∗)= U(T∗)
is a unimodular Galton–Watson tree]. To establish the claim, let T̃ ′∗ be the random
tree whose distribution has Radon–Nikodym derivative deg(∅)/E{deg(∅)} with
respect to that of T̃∗. We need to show that moving the root to a uniformly random
descendant variable node of the root (via one check) in T̃ ′∗ , leaves the distribution
of T̃ ′∗ unchanged (cf. [5], Section 4).

Draw T̃ ′∗ at random, weighted by the degree of the root ∅. In this argument,
we make the root explicit by denoting the tree by (T̃ ′∗ ,∅). Reveal the degree
d1 = deg(∅) of the root. We have d1 > 0 almost surely. Take a uniformly ran-
dom neighboring check a ∈ ∂∅, and a uniformly random descendant i of a (we
know that a has k − 1 descendants). Reveal the number of descendants of i. Let
this number be d2 − 1, so that i has d2 neighbors in total. Note that we do not
reveal any of the messages in T̃ ′∗ . At this point, consider the incoming messages
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to the variable nodes ∅ and i except for ν̂a→∅ and ν̂a→i , and the incoming mes-
sages to the check a except for ν∅→a and νi→a . Call this vector of messages M .
The messages in M are independent, with probability Q̂ of for each incoming
message to variable nodes to be 0, and probability Q for incoming messages to a

to be 0.7 The messages ν̂a→∅, ν̂a→i , ν∅→a and νi→a are deterministic functions
of M . Finally, notice that d1 and d2 are independent, and identically distributed as
1+ Poisson(αk). At this point, it is clear that (T̃ ′∗ , i) is distributed identically to
(T̃ ′∗ ,∅), which establishes unimodularity. �

LEMMA 4.15. Let F be a map from “trees with marked edges” to “trees with
marked variable nodes” defined as follows: F(T ) is obtained from T by putting a
c mark on vertex i if and only if at least two incoming edges have a 0 mark.

Then F(T̃∗(α, k))
d= T∗(α, k).

PROOF. It is easy to check that the subset of variable nodes in T̃∗ that receive
two or more incoming 0’s forms a stopping set (since the set of messages is at
a BP fixed point). But the density of marked nodes in F(T̃∗) (i.e., the probability
of the root being marked) is P{Poisson(kαQ̂) ≥ 2}, which is exactly the same as
the density of marked nodes in T∗ (recall that T∗ is also unimodular, cf. proof of
Lemma 4.12). On the other hand, the set of marked nodes in T∗ is the core by
definition and hence includes the marked nodes in F(T̃∗). We deduce that the set of
vertices that are marked in T∗ but not in F(T̃∗) has vanishing density and, therefore,

F(T̃∗(α, k))
d= T (α, k). �

We let B be the subset of variable nodes v of T̃∗(α, k) such that at least one
message incoming to v is equal to 0. Then this set has density

P{∅ ∈ B} = P
{
Poisson(kαQ̂)≥ 1

}≡ Q̂.(25)

In light of Lemma 4.15, we further denote the set of variable nodes in T̃∗ having
two or more incoming 0 messages by VC(T̃∗).

Consider running BP∗ on U(T̃∗) [this is BP starting with zeros from the variable
nodes in VC(T̃∗) and ∗ elsewhere]. Let the trees with marks on edges obtained after
t iterations be denoted by T̃ t∗ .

Denote by μ̃t
n the measure on the rooted factor graph with marks on the edges

constructed as follows: Choose a uniformly random variable node i ∈ V (Gn).
Mark the edges (in each direction) with the messages corresponding to BP∗ run
for t iterations.

LEMMA 4.16. The measures (μ̃t
n)n≥0 converge locally to the measure on T̃ t∗ .

7The argument establishing this is essentially the one above, where we showed that U(T̃∗) =
U(T∗).
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PROOF. This result is immediate from Lemmas 4.12 and 4.15. �

The following is immediate from the construction of T̃∗.

REMARK 4.17. If ∅ ∈ B , then there exists a subtree of T̃∗ rooted at ∅ with
the following properties: (i) If j is a variable node in the subtree, either j ∈ VC(T̃∗)
or at least one descendant factor node is in the subtree; (ii) If a is a factor node in
the subtree, all its descendants are also in the subtree.

We call the subtree just defined a witness for ∅ (there might be more than one
in principle). Notice that a priori a witness can be finite [if it ends up with nodes in
VC(T̃∗)], or infinite.

LEMMA 4.18. Almost surely any node i ∈ B has a finite witness. Thus,
limt→∞ T̃ t∗ = T̃∗.

PROOF. It is sufficient to prove that the following event has zero probability:
∅ ∈ B and ∅ only has infinite witnesses. Suppose ∅ ∈ B . We will look for a
minimal witness for ∅. If ∅ ∈ VC(T̃∗), then it is itself a witness and we are done.
If not then, there is exactly one incoming 0 message, say from factor a. Then factor
a has k − 1 incoming 0 messages from descendants. The subtrees corresponding
to these descendants are independent. Consider a descendant i of a. We have

P
(
i ∈ B \ VC(T̃∗)

)= P
{
Poisson≥1(αkQ̂)= 1

}
= exp(−αkQ̂)αkQ̂/

(
1− exp(−αkQ̂)

)
= exp(−αkQ̂)αkQk−2.

Conditioned on i ∈ B \ VC(T̃∗), the node i has exactly k − 1 descendant variable
nodes (via one check node). Thus, conditioned on ∅ ∈ B , the minimal witness is
a Galton–Watson tree with offspring distributed as Z, whereby Z = (k − 1) with
probability exp(−αkQ̂)αkQk−2, and Z = 0 otherwise. The branching factor of
this tree is exp(−αkQ̂)αk(k − 1)Qk−2 < 1 (cf. Lemma 6.6 below). The lemma
follows. �

LEMMA 4.19. Consider the setting of Lemma 4.8. We have

lim inf
n→∞L

(∞)
1+ ≥ P

{
Poisson(kαQ̂)≥ 1

}
,

almost surely with respect to the choice of Gn.

PROOF. Let Bt be the subset of variable nodes in T̃ t∗ that receive at least one 0
message. Let yt be the density of nodes in Bt . From Lemma 4.18, we have imme-
diately

lim
t→∞yt = P

{
Poisson(kαQ̂)≥ 1

}
.(26)
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Let Bt(n) ⊆ V (Gn) be the subset of nodes having at least one incoming 0 af-
ter t iterations of BP∗. Let yt (n) be the fraction of these nodes, that is, yt (n) ≡
|Bt(n)|/n. From Lemma 4.16, we have

lim
n→∞yt (n)= yt(27)

almost surely. By equation (26), we have limn→∞ yt (n) ≥ P{Poisson(kαQ̂) ≥
1} − δ for all t ≥ T (δ). By monotonicity of BP∗, we have lim infn→∞L

(∞)
1+ ≥

limn→∞ yt (n)≥ P{Poisson(kαQ̂)≥ 1} − δ, which implies the thesis. �

LEMMA 4.20. Consider the setting of Lemma 4.8. We have, for all �≥ 2,

lim inf
n→∞L

(∞)
�+ ≥ P

{
Poisson(kαQ̂)≥ �

}
,

almost surely with respect to the choice of Gn.

PROOF. The proof is very similar to that of the previous lemma. Let C(�;n)⊆
V be the subset of variable nodes in Gn that are in the core and have at least �

neighboring check nodes in the core. Then we have (by monotonicity of BP∗)

L
(∞)
�+ ≥ |C(�;n)|

n
.(28)

On the other hand, let y(�) be the density of variable nodes in T̃∗ that receive two
or more 0 messages and have at least � neighboring check nodes in the set

{a : For each i ∈ ∂a, node i receives two or more 0 messages}.
It follows from Lemmas 4.12 and 4.15 that

lim inf
n→∞

1

n

∣∣C(�;n)
∣∣= y(�).(29)

On the other hand, it is easy to check that the construction of T̃∗ implies that
y(�) coincides with the density of nodes receiving � or more 0 messages (here the
assumption �≥ 2 is crucial). Hence, y(�)= P{Poisson(kαQ̂)≥ �}, which together
with equations (28), (29) yields the thesis. �

PROOF OF LEMMA 4.8. Equation (22) follows from Lemmas 4.11, 4.19
and 4.20. Equation (21) follows from a completely analogous argument. �

Recall that μ̃t
n is the measure on the rooted factor graph with marks on the edges

constructed as follows: Choose a uniformly random variable node i ∈ V (Gn).
Mark the edges (in each direction) with the messages corresponding to BP∗ run
for t iterations. Recall that μ̃∗n is defined similarly with marks corresponding to the
BP fixed point. Denote by μ̃t

n(d), the measure obtained from μ̃t
n by restricting the

depth of the rooted graph to d .
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LEMMA 4.21. For any d ≥ 0 and any δ > 0, there exists t <∞ such that
almost surely,

lim sup
n→∞

∥∥μ̃t
n(d)− μ̃∗n(d)

∥∥
TV < δ.

PROOF. Consider running BP∗ on Gn. From Lemma 4.16, we know μ̃t
n con-

verges locally to the measure on T̃ t∗ . From Lemma 4.18, we know limt→∞ T̃ (t)∗ =
T̃ ∞∗ . In particular, the fraction of 0 variable-to-check messages in T̃ (t)∗ con-
verges to Q (i.e., the fraction of 0 variable-to-check messages in T̃ (∞)∗ ). But from
Lemma 4.8, the fraction of 0 variable-to-check messages in μ̃∗n converges eventu-
ally almost surely to the same value, and similarly for check-to-variable messages
the fraction of 0 messages converges to Q̂ [using the fact that Ll ≤ C exp(−l/C)

for all l holds eventually almost surely, for some C <∞]. Using monotonicity of
BP∗, we deduce that for any ε > 0, there exists t large enough such that,

lim sup
n→∞

{Number of message changes after iteration t in Gn}/n≤ ε(30)

holds almost surely. Now, we can choose ε small enough such that eventually (in n)
almost surely, for any set of εn edges in Gn, the union of balls of radius d around
these edges contains no more than δn nodes. Combining with equation (30), at
least (1− δ) fraction of nodes have all messages in a ball of radius d unchanged
after iteration t , almost surely. This yields the result. �

PROOF OF THEOREM 3. From Lemma 4.16, we know μ̃t
n converges locally

to the measure on T̃ t∗ . From Lemma 4.18, we know limt→∞ T̃ t∗ = T̃ ∞∗ . Combining
with Lemma 4.21, we obtain that

lim sup
n→∞

∥∥μ̃∗n(d)−μ
(
T̃ ∞∗ (d)

)∥∥
TV < δ(31)

almost surely. Since δ is arbitrary, we obtain, for every d , that

lim sup
n→∞

∥∥μ̃∗n(d)−μ
(
T̃ ∞∗ (d)

)∥∥
TV = 0(32)

holds almost surely. The result follows. �

5. Proof of Lemma 3.11: Peelability implies a sparse basis.

5.1. Proof of Lemma 3.11(i) and (ii). Let us begin by describing the proof
strategy.

Instead of analyzing peeling on the collapsed graph G∗, we analyze a differ-
ent peeling process. We first run synchronous peeling on G for a large constant
τ number of iterations. We then collapse the resulting graph, as discussed in Sec-
tion 3.1, that is, coalescing variables connected to each other via degree 2 factors
(cf. Definition 3.3). Finally, we run synchronous peeling on the collapsed graph
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until it gets annihilated. We show that this process takes at least as many iterations
as synchronous peeling on G∗ (Lemma 5.1 below). In order to bound the number
of iterations under this new two-stages process, we proceed as follows. We choose
the constant τ such that the residual graph Jτ is subcritical, and hence consists of
trees and unicyclic components of size O(logn) w.h.p. As a consequence, the col-
lapsed graph—to be denoted by T(Jτ )—contains only checks of degree 3 or more,
and consists of trees and unicyclic components of size O(logn). It is not hard
to show that it takes only O(log logn) additional rounds of peeling to annihilate
T(Jτ ) under this condition (see Lemma 5.4 below).

Several technical lemmas follow, which are proved in the Appendix B, except
Lemma 5.1, which we prove below. At the end of the subsection, we provide a
proof of Lemma 3.11, parts (i) and (ii).

Consider the peeling algorithm and define J to be the peeling operator corre-
sponding to one round of synchronous peeling (cf. Table 1). Thus, for a bipartite
graph G, the residual graph after t rounds of peeling is Jt (G). Denote by J∞(G)

the graph produced by the peeling procedure after it halts: this is the empty graph
if G is peelable, and the core of G otherwise. Recall that TC(G) denotes the num-
ber of rounds of peeling performed before halting at J∞(G). Further, define T to
be the collapse operator as per Definition 3.3. For instance G∗ = T(G). The next
lemma bounds from above the number of rounds of peeling required to annihilate
G∗, in terms of the modified peeling process (consisting of τ rounds of peeling,
followed by collapse, and then peeling until annihilation).

LEMMA 5.1. For any constant τ ≥ 0 and any peelable bipartite graph G,

TC
(
T(G)

)≤ TC
(
T
(
Jτ (G)

))+ τ.

Peelability of a pair (α,R) immediately implies some useful properties.

LEMMA 5.2. For a factor degree profile (α,R) that is peelable at rate η > 0,
we have:

(i) 2αR2 ≤ 1− η.
(ii) α ≤ 1.

Notice that the factor graph induced by degree 2 check nodes is in natural cor-
respondence with an ordinary graph (replace every check node by an edge) which
is uniformly random given the number of edges. The average degree of this graph
is 2αR2, and Lemma 5.2(i) implies that it is subcritical, as we would expect for a
peelable degree distribution.

Lemma 3.11 is stated for the ensemble D(n,R,m), m= nα. However, in parts
of the proof of this lemma, we find it convenient to work instead with the ensemble
C(n,R,m) introduced in Section 4.1.
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We need to characterize the residual graph Jt after t rounds of peeling. Lem-
mas 5.3 and 4.6 achieves this for G∼C(n,R,m). Together, they show essentially
that density evolution provides an accurate characterization of Jt . Using these
Lemmas, we are able to deduce [see proof of Lemma 3.11(i) and (ii) below] that
Jτ consists of small trees and unicyclic components w.h.p., for large enough τ .
Finally, using Lemma 4.4, we apply the same results to G∼D(n,R,m).

Recall that n1(G) denotes the number of variable nodes of degree 1 in G, and
n2+(G) denotes the number of variable nodes of degree 2 or more in G. Let

C
(
n,R,m;n′1, n′2

)≡ {
G :G ∈C(n,R,m),n1(G)= n′1, n2+(G)= n′2

}
.(33)

In the lemma below, we slightly modify the peeling process, choosing to retain all
variable nodes V in the residual graph (check nodes are eliminated as usual). With
a slight abuse of notation, we keep denoting by Jt the residual graph, although this
is obtained from Jt by adding a certain number of isolated variable nodes.

LEMMA 5.3. Consider a graph G drawn uniformly at random from C(n,R,

m). For any t ∈ N, consider synchronous peeling for t rounds on G, result-
ing in the residual graph Jt . Suppose that for some (R̃, m̃, ñ1, ñ2), we have
Jt ∈ C(n, R̃, m̃; ñ1, ñ2) with positive probability. Then, conditioned on Jt ∈
C(n, R̃, m̃; ñ1, ñ2), the residual graph Jt is uniformly random within C(n, R̃, m̃;
ñ1, ñ2).

Our final technical lemma bounds the number of peeling rounds needed to an-
nihilate a tree or unicyclic component.

LEMMA 5.4. Consider a factor graph G= (F,V,E) with no check nodes of
degree 1 or 2, and that is a tree or unicyclic. Then G is peelable and TC(G) ≤
2�log2 |V |�.

PROOF OF LEMMA 3.11(i) and (ii). A standard calculation (see, e.g., [14], or
Section 7.1 which carries through a similar calculation) shows that, for a uniformly
random graph C(n, R̃, m̃; ñ1, ñ2), with ñ1, ñ2 ≥ nε and with m̃R̃′(1)≥ ñ1+2ñ2+
nε for some ε > 0, the asymptotic degree distribution of variable nodes is

P{D = 0} = q0,

P{D = 1} = q1,

P{D = �} = (1− q0 − q1)P
{
Poisson≥2(λ)= �

}
for all �≥ 2

for suitable choices of q0, q1, λ depending on the ensemble parameters. Further, by
a standard breadth-first search argument, the neighborhood of a vertex v is domi-
nated stochastically by a (bipartite) Galton–Watson tree, with offspring distribution
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equal to the size-biased version of R̃ at check nodes, and equal to of P{D = ·} at
variable nodes.

Consider G∼C(n,R,m). Using Lemmas 4.6 and 5.3, it is possible to estimate
the degree distribution, of Jt . A lengthy but straightforward calculation shows that
the corresponding branching factor is θ(Jt )= αR′(zt ). Now, notice that

R′(z)= 2R2 +
k∑

l=3

l(l − 1)zl−2 ≤ 2R2 + k(k − 1)z

for z≤ 1. Choose τ = τ(η, k) <∞ such that zτ ≤ η/(3αk(k − 1)). Then we have
αR′(1)ρ′(zτ )≤ 2αR2+η/3. But Lemma 5.2 tells us that 2αR2 ≤ 1−η. It follows
that αR′(zτ )≤ 1− 2η/3.

In particular, the branching factor θ = θ(Jτ ) associated with the random graph
Jτ satisfies θ ≤ 1− η/3, with probability at least 1− 1/n2. Following a standard
argument [11] where we explore the neighborhood of v by breadth first search,
we obtain that with probability at least 1− 1/n1.7 for n≥N1(η, k), the connected
component containing v is a tree or unicyclic, with size less than C4 logn, for
some C4 = C4(η, k) <∞. Applying a union bound, we obtain that for n ≥ N2 =
N2(η, k), with probability at least 1/n0.7, the event En occurs, where

En ≡ {All connected components in Jτ are trees or unicyclic
(34)

and have size at most C4 logn}.
Then, from Lemma 4.4, we infer that En occurs with probability at least 1/n0.6

for G∼ D(n,R,m) provided n ≥ N3, where N3 = N3(k) <∞. We stick to G∼
D(n,R,m) for the rest of this proof.

We now analyze the peeling process starting with Jτ and consider only what
happens on En since it occurs with sufficiently large probability. Let us consider
first point (i). Clearly, tree components are peelable. If R2 = 0, then there are
no factors of degree 2, and unicyclic components are also peelable (Lemma 5.4).
Thus, the entire graph is annihilated by peeling w.h.p., as claimed. If R2 > 0,
then the number of unicyclic components of size smaller than M is asymptoti-
cally Poisson with parameter C5 <∞ uniformly bounded in M (this follows, e.g.,
by [37]; see also [11, 38]). It follows that with probability at least exp(−C5)/2
for n ≥ N4, there are no unicyclic components of size smaller than M . The ex-
pected number of unicyclic components of size M or larger is upper bounded by∑

�≥M θ�/(2�)≤ θM/(1− θ), and for M large enough no unicyclic component of
this sizes exists, with probability at least 1− exp(−C5)/4. Considering these two
contributions, the graph contains no cycle with probability at least exp(−C5)/4 for
n≥N4, and hence it is peelable. This completes part (i).

For (ii), notice that in collapsing a connected component of Jτ , the number
of variable nodes does not increase. Further, a tree component collapses to a
tree and a unicyclic component collapses either to a tree or a unicyclic compo-
nents. Thus, we can use Lemma 5.4 with N ≤ C4 logn to obtain the a bound of
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(C1/2) log logn ≤ C1 log logn − τ on the number of additional peeling rounds
needed, with probability at least 1 − 1/n0.6. Since the probability of peelability
is uniformly bounded away from zero as n→∞, the probability that the same
bound on the number of peeling rounds holds conditioned on peelability is at least
(for some δ > 0) 1− 1/(δn0.6)≥ 1− 1/n0.5 for n≥N5, as required. �

5.2. Proof of Lemma 3.11(iii). The following lemma bounds the size of a su-
percritical Galton–Watson tree, observed up to finite depth. The proof is in the
Appendix B.

LEMMA 5.5. Consider a Galton–Watson branching process {Zt }∞t=0 with
Z0 = 1 and with offspring distribution P{Z1 = j} = bj , j ≥ 0. Suppose br ≤
(1 − δ)r/δ for all r ≥ 0, for some δ > 0. Also, assume that the branching fac-
tor satisfies θ ≡∑∞

j=1 jbj = E[Z1]> 1. Then there exists C = C(δ) > 0 such that
the following happens.

For any β > 3 and T ∈N, we have

P

[
T∑

t=0

Zt > (βθ)T

]
≤ 2 exp

(−C(β/3)T
)
.(35)

PROOF OF LEMMA 3.11(iii). From Lemma 5.2(ii), we know that α ≤ 1. The
following occurs in the collapse process: Let G(2) = (F (2), V ,E(2)) be the sub-
graph of G induced by the degree 2 factor nodes (with isolated vertices retained).
We have F∗ = F \F (2). All variable nodes that belong to a single connected com-
ponent of G(2) coalesce into a single supernode v′ ∈ V∗ in G∗, with a neighbor-
hood that consists of the union of the individual neighborhoods restricted to F∗
(cf. Definition 3.3). As mentioned above, G(2) is a random factor graph with αR2n

factor nodes of degree 2, and is in one-to-one correspondence with a uniformly
random graph. For v′ ∈ V∗, we denote by S(v′) the number of variable nodes in V

in the component v′. Lemma 5.2(i) implies that the branching factor of G(2) obeys
2αR2 ≤ 1 − η, that is, G(2) is subcritical. This leads to the following claim that
follows immediately from a well-known result on the size of the largest connected
component in a subcritical random graph [11].

Claim 1: There exists C2 = C2(η) <∞, N2 = N2(η) <∞ such that the fol-
lowing occurs for all n > N2. No component v′ ∈ V∗ is composed of more than
C2 logn variable nodes, that is, maxv′∈V∗ S(v′)≤ C2 logn, with probability at least
1− 1/n.

Let G∼2 ≡ (F∗,V ,E \ E(2)), that is, G∼2 is the subgraph of G induced by
factors of degree greater than 2 (with isolated vertices retained).

From Poisson estimates on the node degree distribution, we get the following.
Claim 2: There exists C3 = C3(η, k) <∞, N3 = N3(η, k) <∞ such that the

following occurs. For all n > N3, no variable node v ∈ V has degree larger than
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C3 logn in G∼2, that is, degG∼2(v) ≤ C3 logn for all v ∈ V , with probability at
least 1− 1/n.

Note that we used α < 1 [from Lemma 5.2(i)] to avoid dependence on α in the
above claim.

Let

En ≡ {
S
(
v′
)≤C2 logn for all v′ ∈ V∗

}
∩ {degG∼2(v)≤ C3 logn for all v ∈ V

}
.

Using claims 1 and 2 above and a union bound, we deduce that En holds with
probability at least 1− 2/n for n > N4, for some N4 =N4(η, k) <∞.

Clearly, G∼2 is independent of G(2). In particular, for v ∈ V that is part of
supernode v′ ∈ V∗, we know that |S(v′)| is independent of G∼2. There is a slight
dependence between the degree of different variable nodes, but assuming En, the
effect of this is small if we only condition on polylog(n) nodes in G∗. This enables
our bound on the size of balls in G∗.

Recall that the distribution of random variable X1 is dominated by the distri-
bution of X2, if there exists a coupling between X1 and X2 such that X1 ≤ X2

with probability 1. In bounding the size of a ball of radius Tub, we are justified in
replacing degree distributions by dominating distributions, and in assuming that
there are no loops.

Fixing a vertex v ∈ V∗, we construct the ball BG∗(v, Tub) sequentially through
a breadth-first search. Choose ε = η/2. For n large enough, the distribution of
|S(v′)| is dominated by the distribution of the number of nodes in a Galton–Watson
tree with offspring distribution Poisson(2αR2 + ε). The distribution of degG∼2(v)

is dominated by Poisson(α(
∑k

l=3 lRl) + ε). In particular, the degree distribution
of G∗ is dominated by a geometric distribution br ≤ (1 − δ)r/δ for some δ =
δ(η, k) > 0. Assuming En, this also holds conditionally on the nodes revealed so
far, as long as the number of these is, say, polylog(n).

Thus, assuming En, the number of nodes in a ball of radius Tub = C1 log logn is
dominated by the number of nodes in a Galton–Watson tree of depth Tub with off-
spring distribution (br)

∞
0 satisfying br ≤ (1−δ)r/δ for some and θ ≡∑∞

j=1 jbj <

C5, for n≥N5. We deduce from Lemma 5.5 that

P
[

max
v′∈V∗

∣∣BG∗
(
v′, Tub

)∣∣≤ (logn)C6
∣∣En

]
≥ 1− 1/n(36)

for some C6 = C6(η, k) <∞, where |BG∗(v
′, Tub)| denotes the number of super-

nodes in BG∗(v
′, Tub). But given En, the size of components v′ ∈ V∗ is uniformly

bounded by C2 logn. Thus, conditioned on En, we have maxv′∈V∗ S(v′, Tub) ≤
C2(logn)C6+1 with probability at least 1 − 1/n. At this point, we recall that
P[En]> 1− 2/n, and the result follows. �
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6. Characterizing the periphery. Consider a factor graph G when it has a
nontrivial 2-core. Recall the definitions of the 2-core, backbone and periphery of
a graph from Section 3.2. First, we note some of the properties of these subgraphs
that will be useful in the proof of the main lemmas of this section.

As a matter of notation, for a bipartite graph G chosen uniformly at random
from the set G(n, k,m) we denote by GP the periphery of G and by Gp (lower
case subscript) a subgraph of G that is a potential candidate for being the periphery
of G. Similarly, we denote by GB the backbone of G and by Gb a subgraph of G

that is a potential candidate for being the backbone of G.

6.1. Proof of Lemma 3.9: Periphery is conditionally a uniform random graph.
Lemma 3.9 states that if we fix the number of nodes and the check degree profile
of the periphery of a graph G chosen uniformly at random from the set G(n, k,m)

then the periphery, GP, is distributed uniformly at random conditioned on being
peelable. Since the original graph G is chosen uniformly at random, in order to
prove this lemma it is enough to count, for each possible choice of the periphery
GP, the number of graphs G that have the periphery GP.

Before proving Lemma 3.9, we first introduce the concept of a “rigid” graph
and establish a monotonicity property for the backbone augmentation procedure
which was defined in Section 3.2. We use the notation G⊆G′ if G is a subgraph
of G′.

LEMMA 6.1. Let G= (F,V,E) be a bipartite graph and let Gs be the sub-
graph of G induced by some Fs ⊆ F . Let Fl and Fu be subsets of F such that
Fl ⊆ Fu and Fl ⊆ Fs. Let B

(0)
l be the subgraph induced by Fl (so B

(0)
l ⊆Gs) and

let B
(0)
u be the subgraph induced by Fu. Denote by B

(∞)
l the output of the back-

bone augmentation process on Gs with the initial graph B
(0)
l and by B

(∞)
u the

output of the backbone augmentation process on G with the initial graph B
(0)
s .

Then B
(∞)
l ⊆ B

(∞)
u .

The proof of Lemma 6.1 can be found in the Appendix C.

DEFINITION 6.2. Define a graph to be rigid if its backbone is the whole graph.
We denote by R(n, k,m) the class of rigid graphs with n variable nodes, and m

check nodes each of degree k.

LEMMA 6.3. Consider a bipartite graph G = (F,V,E) from the ensemble
G(n, k,m). For some set of check nodes Fb ⊆ F denote by Gb = (Fb,Vb,Eb) the
subgraph induced by Fb, and denote by Gp = (Fp,Vp,Ep) the subgraph of G

induced by the pair (Fp ≡ F \ Fb,Vp ≡ V \ Vb). Assume Gb and Gp satisfy the
following conditions:
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• Gp is peelable,
• Gb is rigid,
• |∂a| ≥ 2,∀a ∈ Fp.

Then Gb is the backbone of G (and Gp is the periphery).

PROOF. If Gb is empty, the lemma is trivially true. Assume Gb is nonempty.
We prove this lemma in two steps. In the first step we prove that Gb is a subgraph
of GB, the backbone of G. In the second step we show that GB cannot contain
anything outside Gb.

Since Gb is rigid, it contains a nonempty 2-core (Gb)C and the output of the
backbone augmentation procedure with initial graph (Gb)C is Gb itself. Further-
more, (Gb)C is part of GC, the 2-core of the original graph G, since by definition a
2-core is the maximal stopping set (cf. Definition 2.2) and (Gb)C is a stopping set
in G. Hence, the monotonicity of the backbone augmentation procedure implies
that Gb ⊆GB.

In the second step, we prove that GB cannot contain any node outside Gb.
First, note that Gp cannot contain any check node from the 2-core of the original
graph G. We prove this by contradiction. Suppose instead that F̃ is the nonempty
set of all the check nodes from the 2-core of G that are in Gp. Let Ṽ be the set of
neighbors of F̃ in Gp. The nodes in Ṽ are also part of the 2-core of G and have
degree at least 2 in the 2-core of G. Furthermore, there is no edge incident from
Fb to Vp because, by definition, Gb is check-induced. In particular, in the 2-core
of G, there is no other edge incident on variables in Ṽ beyond the ones coming
from F̃ . Hence, in the nonempty subgraph G̃⊆Gp induced by the check nodes in
F̃ and all their neighbors every variable node has degree at least 2. This subgraph
is then, by definition, a stopping set in Gp. But by assumption Gp is peelable and
cannot contain a stopping set. This is a contradiction that rules out the existence of
a nonempty set F̃ . Hence, the 2-core of G is contained entirely in Gb (recall that
both Gb and the 2-core are check-induced).

Let B(GC) and B(Gb) be the output of the backbone augmentation procedure
on G, once with initial subgraph given by the 2-core of G and once with the ini-
tial subgraph given by Gb (which contains the 2-core of G). By monotonicity,
B(GC) ⊆ B(Gb). But the process with the initial subgraph Gb terminates immedi-
ately since, by assumption, all check node outside Gb have at least two neighbors
in Gp. Therefore, GB = B(GC) ⊆ B(Gb) =Gb. This completes our proof. �

It is easy to see that the converse of Lemma 6.3 is also true, as stated below.

REMARK 6.4. If Gb =GB is the backbone of G, then the subgraphs Gb and
Gp =G \Gb =GP satisfy the condition of Lemma 6.3. Here, G \Gb denotes the
subgraph of G induced by (F \ Fb,V \ Vb).
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Notice that the fact that the graph G \ Gb is peelable follows from the con-
nection between the peeling algorithm and BP0 stated in Lemmas 4.2 and 4.3.
We stated that the messages coming out of the backbone are always 0. From the
check node update rule, an incoming 0 message to a check node can be dropped
without changing any of the outgoing messages as long as there is at least one
other incoming message. By definition, there is no edge between variable nodes in
the periphery and check nodes in the backbone. Furthermore, all the check nodes
in the periphery have at least two neighbors in the periphery. Therefore, BP0 on
the periphery has the same messages as the corresponding messages of BP0 on the
whole graph. In particular, the fixed point of BP0 on the periphery is all ∗messages
which shows that the periphery subgraph is peelable. We now prove Lemma 3.9.

PROOF OF LEMMA 3.9. Our goal is to characterize the probability of observ-
ing the periphery of G to be Gp = (Fp,Vp,Ep). We use the shorthand notation
G \ Gp to denote the subgraph of G induced by the check-variable nodes pair
(F \ Fp,V \ Vp). Let Gb = (F \ Fp,V \ Vp,Eb)=G \Gp and Epb = {(i, a)|i ∈
V \Vp, a ∈ Fp} be a set of edges that satisfy the condition degEp

(a)+degEpb
(a)=

k for all a ∈ Fp. As before, we denote by GB and GP the actual periphery and
backbone of the graph G. Define the set of rigid graphs on nb variable nodes, mb
check nodes and check degree k, R(nb, k,mb), as

R(nb, k,mb)
(37)

= {
Gb = (Fb,Vb,Eb) : |Fb| =mb,Vb = nb, |∂a| = k ∀a ∈ Fb,Gb is rigid

}
.

By Lemma 6.3,{
G ∈G(n, k,m) :GP =Gp,GB =Gb

}
(38)

= {
G ∈G(n, k,m) :Gp ⊆G,G \Gp =Gb,Gp ∈ P,Gb ∈R

}
,

and in particular,{
G ∈G(n, k,m) :GP =Gp

}
(39)

= {
G ∈G(n, k,m) :Gp ⊆G,Gp ∈ P,G \Gp ∈R

}
.

From equation (39), and counting all the choices for the subgraph Gb =G \Gp,
and the edges that connect Gp and Gb,∣∣{G ∈G(n, k,m) :GP =Gp

}∣∣
=∑

Gb

∑
Epb

∣∣{G ∈G(n, k,m) :Gp ⊆G,Gp ∈ P,G \Gp =Gb,Gb ∈R,(40)

E \ (Ep ∪Eb)=Epb
}∣∣.
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For fixed Gp and Gb, we can count the number of ways these two subgraphs can
be connected to each other. Letting R̄ be the degree profile of Gp, we have∣∣{G ∈G(n, k,m) :GP =Gp

}∣∣
(41)

= ∑
G\Gp

k∏
l=2

(
n− |Vp|
k − l

)|Fp|R̄l

I(G \Gp ∈R)I(Gp ∈P).

We can rewrite this as∣∣{G ∈G(n, k,m) :GP =Gp
}∣∣

(42)

=
k∏

l=2

(
n− |Vp|
k − l

)|Fp|R̄l ∣∣R(
n− |Vp|, k,m− |Fp|)∣∣I(Gp ∈ P).

It is clear that the cardinality of the set R(nb, k,mb) is a function of only nb
and mb. Hence,∣∣{G ∈G(n, k,m) :GP =Gp

}∣∣= Z
(
np, k,Rp,mp

)
I(Gp ∈ P),(43)

for some function Z(·, ·, ·, ·). Since the graph G itself was chosen uniformly at
random from the set G(n, k,m), this shows that conditioned on (np,R

p,mp), all
graphs Gp ∈ P with np variable nodes, mp check nodes, and check degree profile
Rp are equally likely to be observed. �

6.2. Proof of Lemma 3.12: Periphery is exponentially peelable. Let G =
(F,V,E) be a graph drawn uniformly at random from G(n, k,αn), and let
GP = (FP,VP,EP) be its periphery. Recall the connection between BP0 and the
peeling algorithm from Section 4. Let Q be defined as in Theorem 1, that is, Q is
the largest positive solution of Q = 1− exp{−kαQk−1}. In light of Lemma 4.8,
we define the asymptotic degree profile pair of the periphery, (ᾱ, R̄(x)) as follows
(recall that, from Lemma 4.3, the periphery does include check nodes receiving at
most k− 2 messages of type 0).

DEFINITION 6.5.

R̄(x)≡ 1

1−Qk − k(1−Q)Qk−1 ·
k∑

l=2

(
k

l

)
(1−Q)lQk−lxl,(44)

ᾱ ≡ α

(
1−Qk − k(1−Q)Qk−1

1−Q

)
.(45)

Unlike the backbone where all check nodes are of degree k, the periphery can
have check nodes of degrees between 2 and k. Among these, check nodes of de-
gree 2 are of importance to us since they can potentially form long strings. Strings
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are particularly unfriendly structures for the peeling algorithm; peeling takes linear
time to peel such structures. In the next lemma, we define a parameter θ as a func-
tion of Q, which is the estimated branching factor of the subgraph of the periphery
induced by check nodes of degree 2. Lemma 6.6 proves that this branching factor
is less than one for all α ∈ (αd(k),1].

LEMMA 6.6. Let θ ≡ αk(k−1)(1−Q)Qk−2 with Q as defined in Theorem 1.
Then θ < 1 for all α ∈ (αd(k),1].

Proof of this lemma can be found in the Appendix C.

LEMMA 6.7. Let Q be defined as in Theorem 1. Then there exists η1 =
η1(α, k) > 0 such that the pair (ᾱ, R̄) defined in Definition 6.5 is peelable at
rate η1. Further, 0≤ f (z, ᾱ, R̄)≤ (1− η1)z for all z ∈ (0,1].

PROOF. In view of the density evolution recursion (Definition 14), define

f (z)= 1− exp
(−ᾱR̄′(z)

)
.

We prove the lemma by showing that f ′(0)= θ < 1 and that f (z) < z strictly for
z ∈ (0,1].

Using the definitions of ᾱ and R̄(z), the function f (z) can be written as

f (z)= 1− exp
(−αk

((
Q+ (1−Q)z

)k−1 −Qk−1)).(46)

By a straightforward calculation, and using Lemma 6.6, we get

f ′(0)= ᾱR̄′(0) exp
(−ᾱR̄′(0)

)= αk(k − 1)(1−Q)Qk−2 = θ < 1.(47)

Assume 0≤ y ≤ 1 to be fixed point of f , that is,

y = 1− exp
(−αk

((
Q+ (1−Q)y

)k−1 −Qk−1)).(48)

Using the identity Q= 1− exp(−αkQk−1) and after some calculation, we get

Q+ (1−Q)y = 1− exp
(−αk

(
Q+ (1−Q)y

)k−1)
.(49)

Equation (49) shows that Q + (1 − Q)y is a fixed point of the original den-
sity evolution recursion (14) with R(x) = xk . Since, by definition, Q is the
largest fixed point of that recursion, y = 0 is the only fixed point of f (z) =
1 − exp(−ᾱR̄′(z)) in the interval [0,1]. Since f ′(0) < 1, we have f (z) < z for
all z ∈ (0,1] and, therefore, f (z)/z < 1 for all z ∈ [0,1]. The claim follows by
taking η1 = 1− supz∈[0,1] f (z)/z, with η1 > 0 by continuity of z �→ f (z)/z over
the compact [0,1]. �

We can now prove Lemma 3.12.
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PROOF OF LEMMA 3.12. For any ε > 0, by Lemmas 4.3 and 4.8, we know
that

|αP − ᾱ|< ε,
(50) ∣∣RP

l − R̄l

∣∣< ε for l ∈ {2, . . . , k},
hold w.h.p.

As before, let f (z,α,R) = 1 − exp{−αR′(z)}. Using RP
0 = RP

1 = 0 we ob-
tain that the function f (z,α,R)/z is an analytic function over set [0,1]k+2. By
Lemma 6.7, f (z, ᾱ, R̄)/z ≤ 1 − η1. It follows that, for ε > 0 small enough,
∂f (z, ᾱ, R̄)/∂z ≤ 1− (η1/2) using continuity ∂f/∂z with respect to the other ar-
guments of f . We infer that the periphery is w.h.p. peelable at rate η= η1/2. This
proves part (i). Part (ii) follows immediately from Lemma 4.8. �

7. Proof of Lemma 3.5. We find it convenient to work within the configura-
tion model: we assume here that G is drawn uniformly at random from C(n, k,m).
The following fact is an immediate consequence of Lemma 5.3.

FACT 7.1. Assume G is drawn uniformly at random from C(n, k,m), and
denote by nC,mC the number of variable and check nodes in the core of G. Sup-
pose (nC = nc,mC = mc) occurs with positive probability. Then conditioned on
(nC = nc,mC =mc), the core is drawn uniformly from C(nc, k,mc;0, nc) [recall
the definition of this ensemble in equation (33)].

In words, the core is drawn uniformly from C(nC, k,mC) conditioned on all
variable nodes having degree 2 or more.

Now, it has been proved [14] that, w.h.p.∣∣nC/n− (
1− exp(−αkQ̂)(1+ αkQ̂)

)∣∣= o(1),(51) ∣∣mC/n− αQk
∣∣= o(1),(52)

where (Q, Q̂) is as defined in Theorem 1. The above bounds also follow from
Lemmas 4.3 and 4.5.

The kernel of the core system SC contains all vectors x with the following prop-
erty. Let V(1) ⊆ VC be the subset of variables taking value 1 in x (i.e., the support
of x). Then the subgraph of GC induced by V(1) has no check node with odd de-
gree.

We will refer to such subgraphs as to even subgraphs. Explicitly, even subgraphs
are variable-induced subgraphs such that no check node has odd degree. We want
characterize the even subgraphs of GC having no more than nε variable nodes,
in terms of their size and number. Lemma 7.4 in Section 7.1 below allows us to
do this provided certain conditions are met. Our next lemma tells us that the core
meets these conditions w.h.p.
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LEMMA 7.2. Fix k and consider any α ∈ (αd(k), αs(k)). There exists δ =
δ(α, k) > 0 such that the following happens. Let G be drawn uniformly from
C(n, k,αn). Let nC be the (random) number of variable nodes in the core, mC

be the number of check nodes in the core and αC ≡mC/nC. Let ηC be the unique
positive solution of

ηC(e
ηC − 1)

eηC − 1− ηC
= αCk(53)

and let θ2C ≡ ηC(k − 1)/(eηC − 1). For any δ′ > 0, we have, w.h.p.:

(i) θ2C ≤ 1− δ.
(ii) αC ∈ [2/k+ δ,1].

(iii) nC/n≥ (1− exp(−αkQ̂)(1+ αkQ̂))− δ′.

The discussion in Section 7.1 throws light on the definitions of ηC and θ2C used.

PROOF OF LEMMA 7.2. From equations (51), (52), we deduce that ηC =
αkQ̂+ o(1) w.h.p., leading to

θ2C = αk(k − 1)Qk−2(1−Q)+ o(1)≤ 1− δ

for sufficiently small δ, using Lemma 6.6. Thus, we have established point (i).
Point (iii) and the lower bound in point (ii) are easy consequences of equa-

tions (51), (52). The upper bound in point (ii), αC ≤ 1 w.h.p., follows directly from
the fact that for α < αs, the system Hx = b has a solution for all b ∈ {0,1}m w.h.p.

�

PROOF OF LEMMA 3.5. Consider first G∼C(n, k,m). Applying Fact 7.1 and
Lemma 7.2, we deduce that, conditional on the number of nodes, the core is GC ∼
C(nc, k,mc;0, nc) and satisfies the conditions of Lemma 7.4 proved below. By
Lemma 7.4, the elements of LC(εn) are in correspondence with simple loops in the
subgraph of GC induced by degree-2 variable nodes. The sparsity bounds follows
from Lemma 7.4. The clam that they are, with high probability, disjoint, follows
instead from the fact that this random subgraph is subcritical (since 2αR2 < 1),
and hence decomposes in trees and unicyclic components.

Using Lemma 4.4, we deduce that the result holds also for the G∼G(n, k,m)

as required. �

7.1. Characterizing even subgraphs of the core. This section aims at charac-
terizing the small even subgraphs of the core GC. For the sake of simplicity, we
shall drop the subscript C throughout the subsection.

Fix k. Consider some α > 2/k. Let η∗ > 0 be defined implicitly by

η∗(eη∗ − 1)

eη∗ − 1− η∗
= αk.(54)
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For α ∈ (2/k,∞), we have η∗(α) > 0 and η∗ is an increasing function of α at
fixed k [14].

Consider a graph G= (F,V,E) drawn uniformly at random from C(n, k,αn;
0, n). The rationale for this definition of η∗ is that the asymptotic degree distri-
bution of variable nodes in G is Poisson(η∗) conditioned on the outcome being
greater than or equal to 2 [to be denoted below Poisson≥2(η∗)].

We are interested in even subgraphs of G.
Consider the subgraph G2 = (F,V (2),E(2)) of G induced by variable nodes

of degree 2 (with all factor nodes retained). The asymptotic branching factor this
subgraph turns out to be θ2 ≡ η∗(k − 1)/(eη∗ − 1). We impose the condition θ2 ≤
1− δ for some δ > 0 (since this is true of the core). Note that θ2 is a decreasing
function of η∗, and hence a decreasing function of α, for fixed k.

First, we state a technical lemma that we find useful.

LEMMA 7.3. Consider any k, any α ∈ (2/k,1] and ε ∈ (0,1]. Then there
exists N0 ≡N0(k, ε) <∞ and C = C(k) <∞ such that the following occurs for
all n > N0. Consider a graph G = (F,V,E) drawn uniformly at random from
C(n, k,m;0, n), m = nα. With probability at least 1− 1/n, there is no subset of
variable nodes V ′ ⊆ V such that |V ′| ≤ εn and the sum of the degrees of nodes in
V ′ exceeds Cε log(1/ε)n.

PROOF. Let deg(i) be the degree of variable node i ∈ V . Let Xi ∼
Poisson≥2(η∗) be i.i.d. for i ∈ V . Then (deg(i))ni=1 is distributed as (Xi)

n
i=1, con-

ditioned on
∑n

i=1 Xi =mk. Consider V ′ = {1,2, . . . , l}. We have

P

{
l∑

i=1

deg(i)≥ γ l

}
= P

{
l∑

i=1

Xi ≥ γ l

∣∣∣∣ n∑
i=1

Xi =mk

}

≤ P{∑l
i=1 Xi ≥ γ l}

P{∑n
i=1 Xi =mk} .

Now, nE[Xi] = nαk =mk, by our choice of η∗ in equation (54). Since α ≤ 1,
we deduce that η∗ ≤ C1 = C1(k) < ∞. Using a local central limit theorem
(CLT) for lattice random variables (Theorem 5.4 of [22]) we obtain P{∑n

i=1 Xi =
mk} ≥ C2n

−1/2 for some C2 = C2(k) > 0. A standard Chernoff bound yields
P{∑l

i=1 Xi ≥ γ l} ≤ exp{−lγC3}, for some C3(k) ∈ (0,1], provided γ > 2αk.
Thus, we obtain

P

{
l∑

i=1

deg(i)≥ γ l

}
≤ n1/2 exp{−lγC3}/C2,(55)

provided γ > 2αk. We use γ = C′(1+ log(1/ε)) with C ′ = 2αk/C3. Take l = εn.
The number of different subsets of variable nodes of size l is

(n
l

) ≤ (e/ε)l for
n≥N1 for some N1 =N1(ε) <∞. A union bound gives the desired result. �
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LEMMA 7.4. Fix k ≥ 3, and δ > 0 so that for any α ∈ [2/k + δ,1], we
have θ2(α, k) ≤ 1 − δ. Then, for any δ′ > 0, there exists ε = ε(δ, k) > 0, C =
C(δ, δ′, k) <∞ and N0 =N0(δ, δ

′, k) <∞ such that the following occurs for ev-
ery n > N0. Consider a graph G = (F,V,E) drawn uniformly at random from
C(n, k,αn;0, n). With probability at least 1− δ′, both the following hold:

(i) Consider minimal even subgraphs consisting of only degree 2 variable
nodes. There are no more than C such subgraphs. Each of them is a simple cy-
cle consisting of no more than C variable nodes.

(ii) Every even subgraph of G with less than εn variable nodes contains only
degree 2 variable nodes.

PROOF. Part (i): Reveal the mk edges of G sequentially. The expected number
of nodes in V (2), conditioned on the first t edges revealed forms a martingale
with differences bounded by 2. Then, from Azuma–Hoeffding inequality [19], we
deduce that |V (2)| concentrates around its expectation:

P
(∣∣∣∣V (2)

∣∣−E
[∣∣V (2)

∣∣]∣∣≥ ζ
√

n
)≤ exp

(−Ĉ1ζ
2)

for all ζ > 0, where Ĉ1 = Ĉ1(k) > 0. The expectation can be computed for in-
stance using the Poisson representation as in the proof of Lemma 7.3, yielding
|E|V (2)| − nη2∗/(2(eη∗ − 1 − η∗))| ≤ n3/4, for all α < 1, n ≥ N̂0(k). We deduce
that for any δ1 = δ1(δ, k) > 0, we have

P
(∣∣∣∣V (2)

∣∣/n− η2∗/
(
2
(
eη∗ − 1− η∗

))∣∣≥ δ1n
)≤ 1/n(56)

for all n > N̂1, where N̂1 = N̂1(δ, k) <∞.
Now, condition on |V (2)| = n(2), for some n(2) such that∣∣n(2)/n− η2∗/

(
2
(
eη∗ − 1− η∗

))∣∣< δ1n.(57)

Note that by choosing δ1 small enough, we can ensure n(2) = �(n). We are now
interested in the check degree distribution R(2) in G2. Reveal the 2n(2) edges of G2
sequentially. Consider l ∈ {0,1, . . . , k}. The expected number of check nodes with
degree l in G2, conditioned on the edges revealed thus far, forms a martingale with
differences bounded by 2. Let Z ∼ Binom(k,2n(2)/(mk)). We have E[R(2)

l ] =
P(Z = l)+O(1/n). Arguing as above for each l ≤ k, we finally obtain

P

(
k∑

l=0

∣∣R(2)
l − P(Z = l)

∣∣≥ δ1n

)
≤ 1/n(58)

for all n > N̂2, where N̂2 = N̂2(δ, k) <∞.
Now condition on both n(2) satisfying equation (57) and R(2) satisfying

k∑
l=0

∣∣R(2)
l − P(Z = l)

∣∣< δ1.
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Let ζ be the branching factor of G2 (i.e., of a graph that is uniformly random con-
ditional on the degree profile R(2)). Under the above conditions on n(2) and R(2),
a straightforward calculation implies that ζ is bounded above by θ2+ δ2, for some
δ2 = δ2(δ1, k) such that δ2 → 0 as δ1 → 0. Thus, by selecting appropriately small
δ1, we can ensure that δ2 ≤ δ/2, leading to a bound of 1− δ/2 on the branching
factor for all n(2), R(2) within the range specified above.

Now we condition also on the degree sequence, that is, the sequence of check
node degrees in G2. The factor graph G2 can be naturally associated to a graph,
by replacing each variable node by an edge and each check node by a vertex.
This graph is distributed according to the standard (nonbipartite) configuration
model. Using [37], Theorem 4, we obtain that the number of cycles of length
l ∈ {1,2, . . . , l0} for a constant l0 are asymptotically independent Poisson random
variables, with parameters8

λl = ζ l/(2l) for ζ =
[

k∑
d=1

d(d − 1)R(2)(d)

]/[
k∑

d=1

dR(2)(d)

]
.

More precisely, for any constants c1, c2, . . . , cl0 ∈N ∪ {0}, we have

P
[
En(c)

]= l0∏
l=1

P
(
Poisson(λl)= cl

)+ o(1),

where En(c) is the event that there are cl cycles of length l for l ∈ {1,2, . . . , l0}with
all cycles disjoint from each other, and c = (cl)

l0
l=1. Choosing l0 large enough, we

have ∑
c∈N

P
[
En(c)

]≥ 1− exp

(
−
∞∑
l=1

λl

)
− δ/4= 1− (1− ζ )−1/2 − δ′/4,

where N = {c : c �= 0, cl ≤ l0 for l ∈ {1,2, . . . , l0}}, for n large enough.
On the other hand, we know that the probability of having no cycles in G2 is

(1− ζ )−1/2 + o(1) under our assumption of ζ ≤ 1− δ/2. The argument for this
was already outlined in the proof of Lemma 3.11, cf. Section 5.1: the Poisson
approximation of [37] is used to estimate the probability of having no cycles of
length smaller than M , while a simple first moment bound is sufficient for cycles
of length M or larger. Thus, with probability at least 1− δ′/3, we have no more
than l2

0 cycles, disjoint and each of length no more than l0. Choosing C = l2
0 , we

obtain part (i) with probability at least 1− δ′/2 for large enough n.
Part (ii): Let m ≡ αn. Let N (G; l, j) be the number of even subgraphs of G

induced by l variable nodes such that the sum of the degrees of the l variable

8The model in [37] is slightly different from the configuration model for its treatment of self-loops
and double edges. However, the results and proof can be adapted to the configuration model.
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nodes is 2(l + j). We are interested in l ≤ εn (we will choose ε later) and j > 0.
In particular, we want to show that, for any δ′ > 0,

P

{
εn∑
l=1

mk/2∑
j=1

N (G; l, j) > 0

}
≤ δ′/2.(59)

This immediately implies the desired result from linearity of expectation and
Markov inequality.

From Lemma 7.3, we deduce that

P

{
εn∑
l=1

mk/2∑
j=ε′n

N (G; l, j) > 0

}
≤ 1/n,(60)

for some ε′(ε, k) with the property that ε′ → 0 as ε→ 0. Thus, we only need to
establish

εn∑
l=1

ε′n∑
j=1

E
[
N (G; l, j)

]≤ δ′/3,(61)

for all n large enough, since the claim then follows from Markov inequality.
A straightforward calculation [29, 36] yields

E
[
N (G; l, j)

]= (n
l

)
T1T2T3( mk

2(l+j)

)
T4

,

where

T1 = coeff
[(

ey − 1− y
)l;y2(l+j)],

T2 = coeff
[(

ey − 1− y
)n−l;ymk−2(l+j)],

T3 = coeff
[(

(1+ y)k + (1− y)k

2

)m

;y2(l+j)

]
,

T4 = coeff
[(

ey − 1− y
)n;ymk].

It is useful to recall the following probabilistic representation of combinatorial
coefficients.

FACT 7.5. For any η > 0, we have

coeff
[(

ey − 1− y
)N ;yM]= η−M(

eη − 1− η
)NP

[
N∑

i=1

Xi =M

]
,(62)

where Xi ∼ Poisson≥2(η) are i.i.d. for i ∈ {1, . . . ,M}.
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Consider T4. By definition, cf. equation (54), η∗ is such that for Xi ∼
Poisson≥2(η∗) we have E[Xi] = αk = mk/n. Moreover, α ∈ [2/k + δ,1] im-
plies η∗ ∈ [C1,C2] for some C1 = C1(δ, k) > 0 and C2 = C2(k) < ∞. From
η∗ ≤ C2 and using a local CLT for lattice random variables [22], it follows that
P[∑n

i=1 Xi = mk] ≥ C3/
√

n for some C3 = C3(δ, k) > 0. Thus, using Fact 7.5,
we have

T4 ≥ η−mk∗
(
eη∗ − 1− η∗

)n
C3n

−1/2.(63)

Now, consider T2. Again use η = η∗ in Fact 7.5. From η∗ ≥ C1 and again us-
ing a local CLT for lattice r.v.’s [22], we obtain P[∑n−l

i=1 Xi = mk − 2(l + j)] ≤
C4/2

√
n− l ≤ C4/

√
n for some C4 = C4(δ, k) <∞, since l ≤ εn. Thus, Fact 7.5

yields

T2 ≤ η−mk+2(l+j)∗
(
eη∗ − 1− η∗

)n−l
C4n

−1/2.(64)

Fact 7.5 yields that T1 can be bounded above as

T1 ≤ η−2(l+j)(eη − 1− η
)l(65)

for any η > 0. We will choose a suitable η later.
Finally, for T3, similar to Fact 7.5, we can deduce that

T3 ≤
(

(1+ ξ)k + (1− ξ)k

2

)m

ξ−2(l+j)

for all ξ > 0. Now, it is easy to check that

(1+ ξ)k + (1− ξ)k

2
≤ exp

{(
k

2

)
ξ2
}

,

by comparing coefficients in the series expansions of both sides. Choosing ξ =√
(l + j)/(m

(k
2

)
), we obtain

T3 ≤
(

em
(k
2

)
l + j

)l+j

.(66)

Finally, we have(
n

l

)
≤ nl

l! ,
(

mk

2(l + j)

)
≥ (mk− 2(l + j))2(l+j)

(2(l + j))! .(67)

Putting together equations (63), (64), (65), (66) and (67), we obtain

E
[
N (G; l, j)

]≤ C6 · (e
η − 1− η)l

η2(l+j)
· η

2(l+j)∗
(eη∗ − 1− η∗)l

×
(

e(k − 1)(1+C5((l + j)/n))

2(l + j)k

)l+j

· (2(l + j))!
l!αlmj

,
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for some C6 = C6(k, δ) <∞. Now, N ! ≥ C7
√

N(N/e)N for all N ∈ N, for some
C7 > 0. Using this with N = l + j , we obtain(

e

l + j

)l+j

· (2(l + j))!
l! ≤

√
l + j

C7
· (2(l + j))!

l!(l + j)!

≤
√

l + j

C7lj
·
(

2(l + j)

(l + j)

)
≤ C822(l+j)

lj
,

for some C8 <∞. Plugging back, we get

E
[
N (G; l, j)

]≤ C9(T5)
l(T6)

j ,

where

T5 = 2θ2
(eη − 1− η)

η2

(
1+C5

(
(l + j)/n

))
,

T6 = 4(k − 1)η2∗
mlη2 .

Without loss of generality, assume δ ≤ 0.1. Now, we choose ε = ε(δ, k) > 0 such
that ε+ ε′ ≤ δ/(10C5). We choose η= η(k) > 0 such that (eη− 1−η)η−2 ≤ (1+
δ/10)/2 [note that (eη − 1− η)η−2 → 1/2 as η→ 0]. This leads to T5 ≤ 1− δ/2
for all l ≤ εn and j ≤ ε′n, when we use θ2 ≤ 1− δ. Also, T6 ≤ C10/n for all l, j ,
for some C10 = C10(k) <∞. Thus,

E
[
N (G; l, j)

]≤ C9(1− δ/2)l
(

C10

n

)j

.

Summing over j and l, we obtain

εn∑
l=1

ε′n∑
j=1

E
[
N (G; l, j)

]≤ C11

n
(68)

for some C11 = C11(k, δ) <∞. This implies equation (61) for large enough n as
required. �

8. Proof of Lemma 3.8: A sparse basis for low-weight core solutions. For
each xC ∈ LC(εn), we need to find a sparse solution x ∈ S1 that matches xC on the
core. From Lemma 3.5, we know that w.h.p., xC consists of all zeros except for a
small subset of variables. Indeed, we know from Lemma 7.4 that these variables
correspond to a cycle of degree-2 variable nodes. Although this is not used in the
following, we shall nevertheless refer to the set of variable nodes corresponding
to an element of LC(εn) as a cycle. Denote by L1 the cycle corresponding to xC.
Recall that the noncore GNC = (FNC,VNC,ENC) is the subgraph of G induced by
FNC = F \ FC and VNC = V \ VC. Suppose we set all noncore variables to 0. The
set of violated checks consists of those checks in FNC that have an odd number of
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neighbors in L1. We show that w.h.p., each such check can be satisfied by changing
a small number of noncore variables in its neighborhood to 1. To show that this is
possible, we make use of the belief propagation algorithm described in Section 4.

Our strategy is roughly the following. Consider a violated check a. We wish to
set an odd number of its noncore neighboring variables to 1. But then, this may
cause further checks to be violated, and so on. A key fact comes to our rescue.
If check node a receives an incoming ∗ message in round T , then we can find a
subset of noncore variable nodes in a T -neighborhood of a such that if we set those
variables to 1, check a will be satisfied (with an odd number of neighboring ones
in the noncore) without causing any new violations. We do this for each violated
check. Now w.h.p., for suitable T , all violated checks will receive at least one
incoming ∗ by time T (note that each noncore check receives an incoming ∗ at
the BP fixed point). Thus, we can satisfy them all by setting a small number of
noncore variables to 1.

LEMMA 8.1. Consider G drawn uniformly from G(n, k,m). Denote by F (l) ⊆
FNC the checks in the noncore having degree l with respect to the noncore, for
l ∈ {1,2, . . . , k}. Condition on the core GC, and F (l) for l ∈ {1,2, . . . , k}.
• Then EC,NC and GNC are independent of each other. Here EC,NC denotes the

edges between core variables VC and noncore checks FNC.
• The edges in EC,NC are distributed as follows: For each a ∈ FNC, if a ∈ F (l), its

neighborhood in GC is a uniformly random subset of VC of size k − l, indepen-
dent of the others.

• Clearly, (GC, (F
(l))kl=1) uniquely determine the parameters (nNC,R

NC,mNC) of
the noncore. The noncore GNC is drawn uniformly at random from D(nNC,R

NC,

mNC) conditioned on being peelable, that is, GNC is drawn uniformly at random
from D(nNC,R

NC,mNC)∩P .

PROOF. Each G ∈G(n, k,m) with the given (GC, (F
(l))kl=1) has a GNC corre-

sponding to a unique element of D(nNC,R
NC,mNC)∩P and EC,NC corresponding

to a subset of VC of size k− l for each a ∈ F (l), for l ∈ {1, . . . , k}. The converse is
also true. This yields the result. �

PROOF OF LEMMA 3.8. Take any sequence (sn)n≥1 such that limn→∞ sn =∞
and sn ≤ εn. If points (i), (ii) and (iii) in Lemma 3.5 hold, let Vcycle denote the
union of the supports of the solutions in LC(sn). Let

E1 ≡ E1,a ∩ E1,b ∩ E1,c,

E1,a ≡ {
Points (i), (ii) and (iii) in Lemma 3.5 hold

}
,

E1,b ≡ {∣∣F (l)
∣∣≥ n/C2 for all l ∈ {1,2, . . . , k}},

E1,c ≡ {No variable in Vcycle has degree exceeding log sn}.
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(Note that these events are implicitly indexed by n.) We argue that E1 holds w.h.p.
for an appropriate choice of C2 = C2(k,α) <∞. Indeed, Lemma 3.5 implies that
E1,a holds w.h.p. Lemma 4.8 implies that E1,b holds w.h.p. for sufficiently large
C2. Finally, Lemma 8.1 and a subexponential tail bound on the Poisson distribution
ensure E1,c holds w.h.p.

Assume that E1 holds. Let sets of variable nodes on the disjoint cycles cor-
responding to elements of LC(εn) be denoted by Li for i ∈ {1,2, . . . , |LC(εn)|}.
Consider a cycle Li . Denote by aij , j ∈ {1,2, . . . ,Zi}, the checks in the noncore
having an odd number of neighbors in Li . (Thus, Zi is the number of such checks.)
Call these marked checks. Given E1, we know that Zi ≤ sn log sn, and that there
are no more than s2

n log sn marked checks in total:

|LC(εn)|∑
i=1

Zi ≤ s2
n log sn.

Define

E2 ≡ {
No more than n/s3

n messages change after Tn iterations of BP0
}
.

By Lemma 4.10, the event E2 holds w.h.p. provided limn→∞ Tn =∞ and sn grows
sufficiently slowly with n [for the given choice of (Tn)n≥1].

Let

Bij ≡ {Not all messages incoming to check aij have converged

to their fixed-point value in Tn iterations}.
We wish to show that ⋂

i,j

Bc
ij(69)

holds w.h.p. We have

P
(⋃

i,j

Bij

)
≤ E(GC,EC,NC)

[
E
[
I[E1,E2]

∑
i,j

I[Bij ]
∣∣∣GC,EC,NC

]]
+ P

[
Ec

1
]+ P

[
Ec

2
]
.

Given E2, we know that the number of checks for which an incoming message
changes after Tn is no more than n/s3

n . Suppose aij ∈ F (l) is a marked check. Then
we have

E
[
I[E1,E2]I[Bij ]|GC,EC,NC

]≤ n

s3
n|F (l)| ≤

1

C2s3
n

,

since all check nodes in F (l) are equivalent with respect to the noncore, from
Lemma 8.1. We already know that under E1, the number of marked checks is
bounded by s2

n log sn. This leads to

P
(⋃

ij

Bij

)
≤ log sn

C2sn
+ P

[
Ec

1
]+ P

[
Ec

2
] n→∞−→ 0,
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implying equation (69) holds w.h.p.
Condition on GC and EC,NC. This identifies the marked checks. Lemma 8.1

guarantees us that all checks in F (l) are equivalent with respect to GNC. Suppose
E1 holds. Define a ball of radius t around a check node as consisting of the neigh-
boring variable nodes, and the balls of radius t around each of those variables.
Similar to the proof of Lemma 3.11(iii), we can show that∣∣BGNC(aij , Tn)

∣∣≤ C
Tn

3(70)

holds with probability at least 1−C4 exp(−2Tn/C4), for some C3 = C3(α, k) <∞
and C4 = C4(α, k) <∞, for all marked checks aij . Thus, the probability that this
bound on ball size holds simultaneously for all marked checks, by union bound,
is at least 1− s2

n log snC4 exp(−2Tn/C4)→ 1 as n→ 1 provided Tn →∞ and sn
grows sufficiently slowly with n.

Suppose equation (69) and E1 hold. Consider any marked check aij adjacent to
v ∈ Li for any Li . It receives at least one incoming ∗ message at the BP0 fixed
point and since Bij = 0, this is also true after Tn iterations of BP0. Hence, there is
a subset of variables V (ij) ⊆ BGNC(aij , Tn), such that setting variables in V (ij) to 1
satisfies aij without violating any other checks. Define

V (i) ≡ {
v :v occurs an odd number of times in the sets

(
V (ij))Zi

j=1

}
.

It is not hard to verify that the vector xc,i with variables in Li ∪ V (i) set to one
and all other variables set to zero, is a member of S1. If equation (70) holds for
all marked checks, then we deduce that |V (i)| ≤ C

Tn

3 sn log sn ≤ cn for Tn and sn
growing sufficiently slowly with n. Thus, xc,i ∈ S1 is cn-sparse assuming these
events, each of which occurs w.h.p. We repeat this construction for every Li . �

APPENDIX A: PROOF OF LEMMA 3.4

LEMMA A.1. Assume that G has no 2-core, and let

K≡
[(

H−1
F,UHF,W

I(n−m)×(n−m)

)]
,

where U and W are constructed as in Lemma 3.2, we order the variables as U

followed by W , and the matrix inverse is taken over GF[2]. Then the columns of
K form a basis of the kernel of S , which is also the kernel of H. In addition, if
Ki,j = 1, then dG(i, j)≤ TC.

PROOF. A standard linear algebra result shows that K is a basis for the ker-
nel of H. The bottom identity block of K corresponds to the (n−m) independent
variables w ∈W , and in this block a 1 only occurs if the row and column corre-
spond to the same variable, that is, for i, j ∈W , Ki,j = 1 implies i = j , and thus
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dG(i, j)= 0. To prove the distance claim for the upper block of K, we proceed by
induction on TC. For a variable u ∈U that is peeled along with factor node a ∈ F ,
we will reference u via the factor node it was peeled with as ua .

• Induction base: For TC = 1, HF,U = Im, and thus

K=
[(

HF,W

I(n−m)×(n−m)

)]
.

Since TC = 1, note that ever variable node must be connected to no more than 1
factor node. Thus, (HF,W )a,i = 1 implies that factor node a was connected to
independent variable node i. Thus, variables i and ua are both adjacent to fac-
tor a, and consequently dG(ua, i)= 1.

• Inductive step: Assume that TC = T + 1 and consider the graph J(G) =
(FJ,VJ,EJ) (recall that J denoted the peeling operator). By construction
TC(J(G))= T , and thus by the inductive hypothesis the columns of

KJ(G) ≡
[

K̃

I((n−n1)−(m−m1))×((n−n1)−(m−m1))

]
≡
[

H−1
FJ,UJ

HFJ,WJ

I((n−n1)−(m−m1))×((n−n1)−(m−m1))

]
,

form a basis for the kernel of HJ(G), where FJ, UJ, and WJ refer to the set of
factor nodes of the factor graph J(G), and their corresponding partition, respec-
tively. In addition, (KJ(G))a,i = 1 only if dJ(G)(ua, i)≤ T . To extend this basis
to a basis for the kernel of H, note that

K≡
[

H−1
F,UHF,W

I(n−m)×(n−m)

]
=
⎡⎣(HF1,U1 HF1,UJ

0 HFJ,UJ

)−1 (HF1,W1 HF1,WJ

0 HFJ,WJ

)
I(n−m)×(n−m)

⎤⎦

=
⎡⎣
(

I|U1| −HF1,UJH
−1
FJ,UJ

0 H−1
FJ,UJ

)(
HF1,W1 HF1,WJ

0 HFJ,WJ

)
I(n−m)×(n−m)

⎤⎦

=
⎡⎣
(
HF1,W1 HF1,WJ +HF1,UJK̃

0 K̃

)
I(n−m)×(n−m)

⎤⎦ .

By construction if (HF1,W1)a,i = 1, then dG(ua, i)= 1≤ T . Consider the (a, i)

entry of the matrix B ≡HF1,WJ +HF1,UJK̃. A necessary condition for Ba,i = 1
is the existence of an edge between check node a ∈ F1 and independent variable
node i ∈W \W1 =WJ [i.e., (HF1,WJ)a,i = 1], or the existence of both an edge
between a ∈ F1 and dependent variable node j ∈ UJ that is in the basis for
independent variable i [i.e., ((HF1,UJ)a,j = 1, K̃j,i = 1)].

We note that if dJ(G)(ua, i) ≤ T , then dG(ua, i) ≤ T also, since EJ ⊂ E.
Thus, if (HF1,UJ)a,j = 1, K̃j,i = 1, then dG(ua, i) ≤ T + 1. Similarly, if
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(HF1,WJ)a,i = 1, then dG(ua, i)= 1 as in the base case. Thus, if Ki,j = 1, then
dG(i, j)≤ T + 1= TC. �

A direct result of this is the sparsity bound given below.

LEMMA A.2. For K constructed as in Lemma A.1, the columns of K form an
s-sparse basis for the kernel of H, with

s ≤max
i∈V

∣∣BG(i, TC)
∣∣.

PROOF. By Lemma A.1, dG(a, i)≤ TC is a necessary condition for Ka,i = 1.
Thus, for all i ∈W , the ith column of K can only contain 1’s on the entries that
correspond to variables at distance at most TC from i. The result follows by taking
a union bound over all i ∈W . �

PROOF OF LEMMA 3.4. Let

K̂= L
[
Q−1

F∗,U∗QF∗,W∗
I(n−m)×(n−m)

]
,

where the matrix inverse is taken over GF[2]. If G∗ �=G, then all degree 2 check
nodes constrain their adjacent variable nodes to the same value. Therefore, all
variables in the same connected component take on the same value in a satisfying
solution, that is, for all v∗ ∈ V∗, if Hx = 0, then for all i ∈ v∗, either xi = 0 or
xi = 1. Consequently, Hx = 0 if and only if x = Lx∗ for some x∗ such that Qx∗ =
0 Thus, {x(1), . . . , x(N)} is a basis for the kernel of H if and only if x(i) = Lx

(i)∗
and {x(1)∗ , . . . , x

(N)∗ } is a basis for the kernel of Q.
Finally notice that Lx∗ has |v∗| nonzero entries for each v∗ ∈ V∗ such that

x∗,v∗ �= 0. Thus, the sparsity bound follows as a direct extension of the bound
from Lemma A.2, and the columns of K̂ form an s-sparse basis for the kernel of
H, with

s ≤ max
v∗∈V∗

S
(
v∗, TC(G∗)

)
. �

APPENDIX B: PROOFS OF TECHNICAL LEMMAS IN SECTION 5

PROOF OF LEMMA 5.2. Let ω ≡ αR′(1). Define f (z) ≡ 1− λ(1− ρ(z)) =
1− exp(−αR′(1)ρ(z)). We obtain

f ′(0)= 2αR2.(71)

Now, we know that zt → 0 as t →∞, it follows that limt→∞ zt+1/zt → f ′(0).
We then deduce from peelability at rate η that

f ′(0)≤ 1− η.(72)
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Combining equations (71) and (72), we obtain the desired result (i).
In order to prove (ii) notice that, for the pair to be peelable, need z ≤ 1 −

exp(−αR′(z)) for all z ∈ [0,1], that is,

R′−1(x)≤ 1− e−αx for all x ∈ [0,R′(1)
]
,(73)

where R′−1 is the inverse mapping of z �→R′(z). We next integrate the above over
[0,R′(1)], using∫ R′(1)

0
R′−1(x)dx =

∫ 1

0
wR′′(w)dw =R′(1)− 1,(74)

∫ R′(1)

0

(
1− e−αx)dx = R′(1)− 1

α

(
1− e−αR′(1)).(75)

We thus obtain

1≥ 1

α

(
1− e−αR′(1)),(76)

which yields α ≤ 1− e−αR′(1) < 1. �

PROOF OF LEMMA 5.3. We use the notation (G) = (ml(G))kl=2 whereby
ml(G) is the number of check nodes of degree lin G. Let

n
(t)
1 ≡ n1(Jt ), n

(t)
2 ≡ n2(Jt ), m(t) ≡m(Jt ),

α(t) ≡
(

k∑
l=2

m
(t)
l

)/
n, R

(t)
l ≡m

(t)
l

/(
k∑

l′=2

m
(t)
l′

)
for l ∈ {2,3, . . . , k}.

Note that R(t) defined above is, in fact, the check degree profile of Jt .
As above, let J(·) denote the operator corresponding to one round of syn-

chronous peeling [so that Jt = Jt (G)]. Define the set

S(G; m̂, n̂1, n̂2)≡ {
Ĝ :n1(Ĝ)= n̂1, n2(Ĝ)= n̂2,m(Ĝ)= m̂, J(Ĝ)=G

}
.

We prove the result by induction. By definition, we know that J0 =G is drawn
uniformly from the C(n,R,αn). Suppose, conditioned on m(t), n

(t)
1 , n

(t)
2 , the graph

Jt is drawn uniformly from C(n,R(t), α(t)n). Let the probability of each possi-
ble Jt [with parameters (m(t), n

(t)
1 , n

(t)
2 )] be denoted by q(m(t), n

(t)
1 , n

(t)
2 ). Consider

a candidate graph G′ with parameters (m′, n′1, n′2). We have

P
[
Jt+1 =G′

]= ∑
Jt : J(Jt )=G′

P[Jt ]

= ∑
m̂,n̂1,n̂2

∑
Jt∈S(G′;m̂,n̂1,n̂2)

P[Jt ]

= ∑
m̂,n̂1,n̂2

q(m̂, n̂1, n̂2)
∣∣S(G′; m̂, n̂1, n̂2

)∣∣.
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A straightforward count yields∣∣S(G′; m̂, n̂1, n̂2
)∣∣

=
(

n− n′1 − n′2
n̂1

)
·�! · coeff

[(
ez − 1

)n′1(ez)n′2; z�−n̂1
] · I[n̂2 = n′1 + n′2

]
,

where � ≡ ∑k
l=1(m̂l − m′l)l. Thus, P[Jt+1 = G′] depends on G′ only through

(m′, n′1, n′2). �

To simplify the proof of Lemma 5.4, we first prove a simple technical lemma.

LEMMA B.1. Let G= (F,V,E) be a factor graph that is a tree with no check
node of degree 1 or 2, rooted at a variable node v, with |V | > 1. Then |{u ∈
V : deg(u) ≤ 1, u �= v}| ≥ |V |/2, that is, at least half of all variable nodes are
leaves. (Here, a leaf is defined as a variable node that is distinct from the root and
has degree at most 1.)

PROOF. We proceed by induction on the maximum depth t of the tree G

rooted at v.

• Induction base: For a tree of depth 1, let c= deg(v) > 0. Since all check nodes
have degree 3 or more, G has Nl ≥ 2c leaves and |V | =Nl + 1. Clearly, Nl ≥
|V |/2.

• Inductive step: Consider G having depth t + 1 and perform 1 round of syn-
chronous peeling, resulting in J(G)=G′ = (F ′,V ′,E′). Let N ′

l be the number
of leaves in V ′. The inductive hypothesis implies |V ′| ≤ 2N ′

l, since G′ is also a
tree. Since, by construction, every factor node has degree at least 3 in G, every
leaf in G′ must have at least 2 leaves in G as descendants, that is, 2N ′

l ≤ Nl,
where Nl is the number of leaves in G. Combining these two inequalities yields

|V | = ∣∣V ′∣∣+Nl ≤ 2N ′
l +Nl ≤ 2Nl,

as desired. �

PROOF OF LEMMA 5.4. By Lemma B.1, if G is a tree, at least one-half of
all variable nodes are leaves at every stage of peeling. Thus, G is peelable and
TC(G) ≤ �log2 |V |�. (After �log2 |V |� − 1 rounds of peeling, we have 2 or less
variable nodes remaining, and hence no checks. At most one more round of peeling
leads to annihilation.)

Now suppose G is unicyclic. Each factor in the cycle has degree at least 3,
hence it has a neighbor outside the cycle and must eventually get peeled. Breaking
ties arbitrarily, let a be the first factor in the cycle to be peeled, and let u ∈ ∂a be
the variable node that “causes” it to get peeled (clearly u is not in the cycle). Let
tu ≤ TC(G) be the peeling round in which u and a are peeled. Consider the subtree
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Gu = (Fu,Vu,Eu) rooted at u defined as follows: Gu is the maximal connected
subgraph of G that includes u, but not a. Using Lemma B.1 on this subtree and
reasoning as above, we have tu ≤ �log2 |Vu|� ≤ �log2 |V |�.

As at least one factor node in the unicycle is peeled in round tu, we must have
that Jtu is a tree or forest, which by Lemma B.1 can be peeled in at most �log2 |V |�
additional iterations, since the number of variable nodes in the Jtu is at most |V |.
Thus, TC(G)≤ tu + �log2 |V |�. Combining these two inequalities yields

TC(G)≤ tu + ⌈
log2 |V |

⌉≤ 2
⌈
log2 |V |

⌉
. �

PROOF OF LEMMA 5.5. The lemma can be derived from known results (see,
e.g., [7]), but we find it easier to provide an independent proof.

We use a generating function approach to prove the bound

P
[
ZT > (βθ)T

]≤ 2 exp
(−C(β/2)T

)
.(77)

Equation (35) follows (eventually for a different constant C) via union bound.
Define f (s)≡ E[sZ1] =∑∞

j=0 sjbj . By assumption, it is clear that f (s) is finite

for s ∈ (0,1/(1− δ)). Define f (t)(s)≡ E[sZt ] for t ≥ 1 [so that f (s)= f (1)(s)].
It is well known that

f (t)(s)= f
(
f (t−1)(s)

)
(78)

for τ ≥ 2. It follows that f (t)(s) is finite for s ∈ (0,1/(1− δ)), and all τ ≥ 2.
By dominated convergence f is differentiable at 0 with f ′(0)= θ . Hence, there

exists ε0 > 0 such that, for all ε ∈ [0, ε0]
f (1+ ε)≤ 1+ 2θε.(79)

By applying the recursion (78) and the fact that f is monotone increasing, we
obtain, for all ε ∈ [0, ε0] obtain

f (T )(1+ ε)≤ 1+ (2θ)T ε.(80)

In particular setting ε = ε0/(2θ)T , we get f (T )(1+ ε)≤ 1+ ε0 ≤ 2.
Finally, by Markov inequality,

P
{
ZT ≥ (βθ)T

}≤ (1+ ε)−(βθ)T f (T )(1+ ε)

≤ 2
(

1− ε

2

)(βθ)T

≤ 2e−(βθ)T /2,

which completes the proof. �
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APPENDIX C: PROOF OF TECHNICAL LEMMAS OF SECTION 6

PROOF OF LEMMA 6.1. We prove this lemma by induction. Let B
(t)
l and B

(t)
u

be the result of t steps of backbone augmentation on graphs Gs and G with ini-
tial graphs B

(0)
l and B

(0)
u , respectively. By assumption B

(0)
l ⊆ B

(0)
u . Now assume

B
(t)
l ⊆ B

(t)
u . It is enough to show that if a ∈ B

(t+1)
l \ B

(t)
l then a ∈ B

(t+1)
u . Since

a ∈ B
(t+1)
l \B(t)

l , we know that a ∈G and has at most one neighbor outside of B
(t)
l .

By induction assumption B
(t)
l ⊆ B

(t)
u and, therefore, a has at most one neighbor

outside B
(t)
l . Hence, either a ∈ B

(t)
u or it is added to B

(∞)
u at step t + 1. �

PROOF OF LEMMA 6.6. Define f (x) = 1 − exp{−kαxk−1}. It follows im-
mediately from the definition of αd(k), that for α > αd(k), we have Q > 0 and
f ′(Q)≤ 1. Furthermore, a straightforward calculation yields

f ′(Q)= k(k − 1)αQk−2 exp
{−kαQk−1}.(81)

It is therefore sufficient to exclude the case f ′(Q) = 1. Solving the equations
f (Q)=Q and f ′(Q)= 1, we get the following equation for Q:

−(1−Q) log(1−Q)= Q

k− 1
,(82)

which has a unique solution Q∗(k) due to the concavity of the left-hand side. We
can then solve for α yielding the unique value α = α∗(k) such that f (Q)=Q and
f ′(Q)= 1 admits a solution. On the other hand, these two equations are satisfied at
αd(k) by a continuity argument. It follows that αd(k)= α∗(k), and hence f ′(Q) <

1 for all α > αd(k). �
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