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RANDOMIZED AND BACKWARD SDE REPRESENTATION FOR
OPTIMAL CONTROL OF NON-MARKOVIAN SDES

BY MARCO FUHRMAN1 AND HUYÊN PHAM

Politecnico di Milano and Université Paris Diderot and CREST-ENSAE

We study optimal stochastic control problems for non-Markovian
stochastic differential equations (SDEs) where the drift, diffusion coefficients
and gain functionals are path-dependent, and importantly we do not make any
ellipticity assumptions on the SDE. We develop a control randomization ap-
proach and prove that the value function can be reformulated under a family
of dominated measures on an enlarged filtered probability space. This value
function is then characterized by a backward SDE with nonpositive jumps
under a single probability measure, which can be viewed as a path-dependent
version of the Hamilton–Jacobi–Bellman equation, and an extension to G-
expectation.

1. Introduction. We consider non-Markovian controlled stochastic differen-
tial equations (SDEs) of the form

dXs = bs(X,αs) ds + σs(X,αs) dWs, 0 ≤ s ≤ T ,(1.1)

where W is a n-dimensional Wiener process, α is a progressive control process
and the drift and diffusion coefficients b and σ may depend on the trajectory of
the solution X-valued in Rd in a nonanticipative way. Given initial conditions
determined in our context by t ∈ [0, T ] and x ∈ Cd , the set of continuous functions
from [0, T ] into Rd , we denote by Xt,x,α the solution to (1.1) associated to the
control α, and starting from Xs = x(s) for s ∈ [0, t]. We are then interested in the
value function for the optimal stochastic control problem

v(t, x) = sup
α

E

[∫ T

t
fs

(
Xt,x,α, αs

)
ds + g

(
Xt,x,α)]

,(1.2)

where the running and terminal reward functionals f and g may also depend on
the past trajectory of the solution X.

In the Markovian framework (see, e.g., [18]), that is, when bs , σs , fs depend
on X only through its current value Xs , and g only on XT , the value function
also depends at time t only on the current state value Xt = x(t), and hence is a
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deterministic function on [0, T ]×Rd . By the dynamic programming approach, the
value function is then described by the Hamilton–Jacobi–Bellman (HJB) partial
differential equation (PDE), which is satisfied in general in the viscosity sense,
and which characterizes the control problem once we have a uniqueness result for
the HJB PDE. We refer to the monographs [12] and [24] for a detailed exposition of
this theory of dynamic programming and viscosity solutions for stochastic optimal
control.

The representation of stochastic control problems and HJB equations has been
also developing by means of backward stochastic differential equations (BSDEs).
In the Markovian case where the controller can affect only the drift coefficient, the
HJB equation is a semilinear PDE and is known to be related to a standard BSDE;
see [21]. The controlled diffusion case, arising typically in finance in uncertain
volatility models, leads to a fully nonlinear HJB PDE, and can be represented by
second-order BSDE (2BSDE), as introduced in [3] and [27], whose basic idea is
to require that the solution verifies the equation almost surely for every probabil-
ity measure in a nondominated class of mutually singular measures. This theory
is closely related to the notion of nonlinear and G-expectation (see [22]), but re-
quires a nondegeneracy condition on the diffusion coefficient together with some
constraint between drift and diffusion. The general case without any ellipticity as-
sumption on the controlled diffusion is addressed in [17], where it is proved that
fully nonlinear HJB equations can be represented by a class of BSDE with non-
positive jumps. The basic idea, following [16] (see also [2] for optimal switching
problem), is to randomize the control process α by replacing it by an uncontrolled
pure jump process associated to a Poisson random measure, and then to constrain
the jumps-component solution to the BSDE driven by Brownian motion and Pois-
son random measure, to remain nonpositive, by adding a nondecreasing process
in a minimal way. A key feature of this class of BSDEs is its formulation under a
single probability measure like for standard BSDE in contrast with 2BSDEs, thus
avoiding technical issues in quasi-sure analysis. It is then proved in [17] that the
minimal solution to the BSDE with nonpositive jumps satisfies the nonlinear HJB
equation, so that it coincides with the value function of the Markovian stochas-
tic control problem, once one has at disposal a uniqueness result for this HJB
PDE; see [4] for a review on comparison results for viscosity solutions to non-
linear PDEs. Such Feynman–Kac-type representation leads to a new probabilistic
approximation scheme for the numerical resolution of HJB equations in high di-
mension, as studied in [15].

The main goal of this paper is to extend the result of [17] to the non-Markovian
framework. More precisely, we aim to prove that the value function in (1.2) may
be represented in terms of a BSDE with nonpositive jumps, which can then be seen
as a non-Markovian version of HJB equation. We use a control randomization ap-
proach, by replacing the control process α by a pure-jump process associated to a
Poisson random measure independent of the Wiener process, with fixed finite in-
tensity measure. We then show that the value function in its weak formulation can
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be written equivalently as a randomized control problem under a family of domi-
nated (and even equivalent) probability measures on an enlarged probability space,
whose effect is to change the intensity measure of the Poisson random measure.
By means of this randomized representation, we are finally able to relate the min-
imal solution to the BSDE with nonpositive jumps to the original value function
(1.2). The arguments in this paper for proving this connection are quite different
from the Markovian case studied in [17]. Indeed, this connection is shown in that
paper through the HJB equation, which is satisfied both by the value function and
the minimal solution, and thus requires a uniqueness result. Here, we prove this
connection through the randomized control problem by purely probabilistic ar-
guments. The main issue is to approximate continuous control processes by pure
jump processes associated to random measures with a compensator which is ab-
solutely continuous with respect to a given finite intensity measure. In particular,
we do not rely on the path-dependent HJB equation associated by dynamic pro-
gramming principle to the value function in the non-Markovian context, thus cir-
cumventing delicate issues of dynamic programming (as originally studied in [7]
for general non-Markovian stochastic control problems), viscosity solutions and
comparison principles for fully nonlinear path-dependent PDEs, as recently stu-
died in [23], [6] and [28]; see also [10] for HJB equations in infinite dimension
arising typically for stochastic systems with delays. This suggests in particular an
original approach to derive the HJB equation for value function of stochastic con-
trol problem from the BSDE representation, hence without dynamic programming
principle. Notice that compared to the paper [17], which treats a Markovian version
of our problem with controlled jump-diffusion, we focus here only on the diffusion
case, mainly for convenience. We believe that our randomization approach can be
extended to the case of controlled Lévy-driven SDE, up to some technicalities in-
herent with jumps.

We mention that optimal control for path-dependent SDEs was also recently
studied in [19] by adopting a quasi-sure formulation approach, which allows
the author to prove a pathwise dynamic programming principle, and to derive a
2BSDE satisfied by the value function. However, the results are obtained essen-
tially under a nondegeneracy condition on the matrix diffusion coefficient and
when control cannot affect independently drift and diffusion; see for details As-
sumption 2.1 and Remark 2.2 in [19]. Our results do not require any nondegen-
eracy condition on σ , and include the case of control both on drift and diffusion
coefficient arising, for instance, in portfolio optimization problems. Let us finally
also point out the very general construction in [20], which proves in particular the
dynamic programming principle for non-Markovian stochastic control, and leads,
at least formally, to a representation of the value functions as a solution to 2BSDE.
Such representation holds under general assumption (see their Assumption 2.1),
which may not exclude the possibility of degenerate diffusion coefficient.

The rest of the paper is organized as follows. In Section 2, we detail the con-
trolled path-dependent SDE, and introduce the corresponding value function in its
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weak formulation. Section 3 presents the main results of the paper. We formulate
the value function by means of a randomized control problem over changes of
dominated measures on an enlarged probability space. This randomized represen-
tation allows us to characterize the value function as the solution to a BSDE with
nonpositive jumps. The proofs are reported in Section 4. Finally, we collect in the
Appendix some useful results about random measures and their compensators.

2. Control of path-dependent SDEs. We introduce in this section the path-
dependent control setting and assumptions, and we define the value function for
the associated optimal control problem.

2.1. Non-Markovian controlled SDE. Let A, the control space, be a Lusin
space (some authors call it a Borel space), that is, a topological space homeomor-
phic to a Borel subset of a Polish space, endowed with a metric, denoted by ρ. As
a subspace of a separable metric space, A is itself separable. We may assume with-
out loss of generality that ρ(a, a′) < 1, for any a, a′ ∈ A, by replacing otherwise
the initial metric by the equivalent one, ρ/(1 + ρ). We denote by B(A) the Borel
σ -algebra of A. In the sequel, we also need to consider the set of all positive finite
measures on (A,B(A)) with full topological support, which will be denoted by
Mf (A). This set is not empty: for instance, it contains the measure

∑∞
n=1 2−nδan ,

where (an) is a dense sequence in A, and δan denotes the Dirac measure at an. We
note that A can be a finite or countable set, a Borel subset of Rq or more generally
any Polish space.

In order to specify the measurability assumptions on the coefficients of the con-
trolled equation, and of the control problem over a fixed horizon T < ∞, we intro-
duce the path space Cd of continuous maps from [0, T ] to Rd , and we equip Cd

with the usual supremum norm ‖x‖∞ = x∗
T , where we set x∗

t := sups∈[0,t] |x(s)|,
for t ∈ [0, T ] and x ∈ Cd . We define the filtration (Ct )t∈[0,T ], where Ct is the σ -
algebra generated by the canonical coordinate maps Cd → Rd , x(·) 	→ x(s) up to
time t ,

Ct := σ
{
x(·) 	→ x(s) : s ∈ [0, t]}.

Let Prog(Cd) denote the progressive σ -algebra in [0, T ]×Cd with respect to (Ct ).
The drift and diffusion coefficients

[0, T ] × Cd × A −→ Rd, [0, T ] × Cd × A −→ Rd×n,

(t, x, a) 	−→ bt (x, a), (t, x, a) 	−→ σt (x, a)

are Prog(Cd) ⊗ B(A)-measurable. This measurability requirement is a standard
one for ensuring that the stochastic differential equations (SDEs) with path-
dependent coefficients is well posed. We shall make the usual assumption:

(H1):

(i) For all t ∈ [0, T ], and x ∈ Cd , the functions bt (x, a) and σt (x, a) are con-
tinuous in A.
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(ii) There exists a nonnegative constant K1 such that∣∣bt (x, a) − bt

(
x′, a

)∣∣ + ∣∣σt (x, a) − σt

(
x′, a

)∣∣ ≤ K1
(
x − x′)∗

t ,(2.1) ∣∣bt (0, a)
∣∣ + ∣∣σt (0, a)

∣∣ ≤ K1,(2.2)

for all (t, x, x′, a) ∈ [0, T ] × Cd × Cd × A.

We now formulate the controlled path-dependent SDE. Borrowing some termi-
nology from [26], by an admissible set-up (or simply a set-up) we mean

A = (�,F,G,Q,W),

where (�,F,Q) is a probability space equipped with a filtration G= (Gt )t≥0 sat-
isfying the usual conditions, and W = (Wt)0≤t≤T is an n-dimensional standard
(Q,G)-Wiener process. Notice that G is not necessarily the natural filtration of W .
We define the space of A-admissible controls, denoted A(A), as the set of pro-
cesses defined on [0, T ] × �, valued in A, which are progressively measurable
(for short, progressive) with respect to G. For fixed t ∈ [0, T ], x ∈ Cd , and given
α ∈A(A), we consider the stochastic differential equation⎧⎨

⎩
Xs = x(s), s ∈ [0, t],
Xs = x(t) +

∫ s

t
bu(X,αu) du +

∫ s

t
σu(X,αu) dWu, s ∈ [t, T ].(2.3)

By standard results (see, e.g., [26], Theorem V.11.2), under (H1), there exists a
unique G-adapted strong solution X = (Xs)0≤s≤T to (2.3) with continuous trajec-
tories and satisfying, for every p ∈ [2,∞),

EQ
[

sup
s∈[t,T ]

|Xs |p
]
≤ C

(
1 + (

x∗
t

)p)
(2.4)

(where EQ denotes of course the expectation under Q) for some constant C de-
pending only on p,T , and K1 as defined in (H1). We will denote the solution
Xt,x,A,α to stress dependence on these parameters. Notice that {Xt,x,A,α

s , t ≤ s ≤
T } depends on x only on the past trajectory {x(u),0 ≤ u ≤ t}.

REMARK 2.1. It is worth to mention that in contrast with [27], [19], no nonde-
generacy assumption on the diffusion coefficient σ , nor specific condition between
the drift and the diffusion coefficient is imposed. In particular, we may control in-
dependently both drift and diffusion, and it may well happen that some lines or
columns of σ are equal to zero, and even σ = 0, in which case we have results for
deterministic control problems.

REMARK 2.2. One may consider a priori more general non-Markovian con-
trolled equations of the form

dXt = bt (X,W,αt) dt + σt (X,W,αt) dWt,
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that is, where the drift and diffusion coefficients are nonanticipative functionals of
the trajectory of the Wiener process W as well. However, this generality is only
apparent, since we can adopt the following standard procedure to reduce to the case
presented above: we introduce a second state component Y = W and consider the
equivalent controlled system{

dXt = bt (X,Y,αt ) dt + σt (X,Y,αt ) dWt,

dYt = dWt,

which is of the form considered above, but with an enlarged state (X,Y ). It is easy
to formulate assumptions on bt (X,W,αt), σt (X,W,αt) that allow us to verify the
requirements in (2.1)–(2.2) on the resulting controlled system, so we omit the de-
tails. We only remark that the fact that the latter has degenerate noise does not
prevent the possibility of applying our results, as noted above.

2.2. The value function. We are given a running and terminal reward function

[0, T ] × Cd × A −→ R, Cd −→ R,

(t, x, a) 	−→ ft (x, a), x 	−→ g(x),

which are respectively Prog(Cd) ⊗B(A)-measurable, and CT -measurable, and we
assume:

(H2):

(i) for all t ∈ [0, T ], the function ft (x, a) is continuous in (x, a) ∈ Cd × A,
and the function g is continuous on Cd ;

(ii) there exist nonnegative constants K2 and m such that∣∣ft (x, a)
∣∣ + ∣∣g(x)

∣∣ ≤ K2
(
1 + ‖x‖m

∞
)
,

for all (t, x, a) ∈ [0, T ] × Cd × A.

We then define the gain functional

J (t, x,A, α) = EQ

[∫ T

t
fs

(
Xt,x,A,α, αs

)
ds + g

(
Xt,x,A,α)]

,

for (t, x) ∈ [0, T ] × Cd , A = (�,F,G,Q,W) a set-up, α ∈ A(A) and the value
function in its weak formulation as the supremum over all admissible set-ups and
controls,

v(t, x) = sup
A

sup
α∈A(A)

J (s, x,A, α), (t, x) ∈ [0, T ] × Cd .(2.5)

Due to (2.4) and the polynomial growth condition on f,g in (H2), it is easy to
check that v is always finite and satisfies actually∣∣v(t, x)

∣∣ ≤ K
(
1 + ∣∣x∗

t

∣∣m)
, (t, x) ∈ [0, T ] × Cd,(2.6)
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for some positive constant K . Thus, v is a real-valued function defined on
[0, T ] × Cd . Moreover, since {Xt,x,A,α

s , t ≤ s ≤ T } depends on x only on the past
trajectory {x(u),0 ≤ u ≤ t}, this is also the case for v(t, x). In other words, v(t, ·)
is Ct -measurable for all t ∈ [0, T ]. We do not address here the question of joint
measurability of v in its arguments, that is, whether v is Prog(Cd)-measurable,
since it is not needed for our purpose. We simply mention that this issue is already
not trivial in the Markovian case and usually relies on a measurable selection the-
orem. Actually, it is proved in [9] that v is indeed measurable when A is a Polish
space.

REMARK 2.3. One could also consider the optimal control problem in the
strong formulation, that is, the search for an optimal control α ∈ A(A) in a given
set-up A, and the corresponding value function (in general depending on A), which
is defined as in (2.5), but dropping the supremum with respect to A; see, for exam-
ple, [10], Section IV.2, [30], Sections 2.4.1–2.4.2 or [9] for detailed formulations.
In the Markovian framework, when a verification theorem for the HJB equation
holds under appropriate conditions, the value functions for the weak and strong
formulations are known to be the same; see [10], Remark IV.3.2. In the general
non-Markovian context, we refer to [9] for a discussion about the equivalence be-
tween the weak and strong formulations.2

REMARK 2.4. Fix an initial condition t = 0, x = 0, a set-up A and given
a control α ∈ A(A), denote by Qα(A) the distribution of X0,0,A,α , which can
be seen as a probability measure on the canonical space Cd . Then the family
{Qα(A), α ∈ A(A)} is not dominated in general when the diffusion coefficient
depends on the control α. In particular, when b = 0, σt (x, a) = a, so that the
SDE (2.3) degenerates to a stochastic integral, and for f = 0, we see that the value
function (2.5) falls into the class of sublinear expectations studied in [5]. More
precisely, by considering g as a random variable on the canonical space, we have

v(0,0) = sup
A

sup
α∈A(A)

EQα(A)[g],

so that the mapping g 	→ v(0,0) may be viewed as a generalization of G-
expectation [22], where the volatility αt of the canonical process is uncertain, val-
ued in A.

3. Randomized control problem and BSDE representation. In this section,
we provide a randomized representation of the control problem (2.5) by random-
ization of the controls. This will allow us to characterize the value function as the
solution to a backward stochastic differential equation (BSDE) with nonpositive
jumps, formulated under a single probability measure. This should be understood

2We would like to thank Xiaolu Tan for pointing us this reference.
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as a non-Markovian analog of fully nonlinear Hamilton–Jacobi–Bellman equa-
tion, and an alternative to 2BSDE [27], [19] under more general conditions; see
Remark 2.1. We shall assume that (H1) and (H2) hold throughout this section.

3.1. Randomized representation with dominated measures. To state the ran-
domized control problem we initially fix a finite measure λ on (A,B(A)) with
full topological support, that is, an element of Mf (A), according to our previous
notation. By a randomized admissible set-up (or simply a randomized set-up), we
mean

Dλ = (�,F,P,W,μλ),

where (�,F,P) is a probability space, W = (Wt)0≤t≤T is an n-dimensional
standard Wiener process and μλ = ∑

n≥1 δ(Sn,ηn) is a Poisson random measure
in [0,∞) × A with compensator λ(da) dt , independent of W . We denote by
F = (Ft )t≥0 the completion of the natural filtration of the pair (W,μλ). Although
it depends on Dλ, we do not make it explicit in the notation. It is proved in [29],
Lemma A1, that F is right-continuous, and hence it satisfies the usual conditions.

Let V(Dλ) be the class of random fields νt (ω, a) : [0,∞) × � × A → (0,∞)

which are P(F) ⊗ B(A)-measurable, where P(F) denotes the predictable σ -
algebra associated to F, and essentially bounded with respect to the measure
dt ⊗ dP⊗ λ(da). For ν ∈ V(Dλ), the Doléans–Dade exponential process

Lν
t := exp

(∫ t

0

∫
A

(
1 − νs(a)

)
λ(da) ds

) ∏
Sn≤t

ν
Sn

(ηn), t ≥ 0,(3.1)

is a positive (P,F)-martingale on [0, T ], that is, E[Lν
T ] = 1 [since ν is bounded

and λ(A) < ∞], and defines a probability measure Pν on (�,F), equivalent to P,
by setting Pν(dω) = Lν

T (ω)P(dω). We recall that, by Girsanov’s theorem (see,
e.g., [14] Theorem 4.5), under Pν the random measure μλ admits compensator
νt (a)λ(da) dt on [0, T ]×A, and W remains a Wiener process independent of μλ.

In order to define the gain functional, in addition to λ ∈ Mf (A), we also fix an
element a ∈ A, a starting time t ∈ [0, T ] and an initial condition x ∈ Cd . Then we
define a pair of processes (I,X) = (Is,Xs)0≤s≤T as the unique strong solution to⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Is = a, s ∈ [0, t],
Is = a +

∫
(t,s]

∫
A

(
a′ − Iu−

)
μλ

(
du, da′), s ∈ [t, T ],

Xs = x(s), s ∈ [0, t],
Xs = x(t) +

∫ s

t
bu(X, Iu) du +

∫ s

t
σu(X, Iu) dWu, s ∈ [t, T ].

(3.2)

We note that I is determined by the initial point a and the restriction of μλ to
(t, T ] × A: more precisely, letting Nt = ∑

n≥1 1Sn≤t denote the number of jumps
of μλ in the time interval [0, t], we have the explicit formula

Is = a1[0,SNs+1)(s) + ∑
n≥Ns+1

ηn1[Sn,Sn+1)(s), s ∈ [0, T ].
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The uncontrolled pure-jump process I valued in A should be understood as a ran-
domization of the control α in the primal problem defined in the previous para-
graphs. Instead of (I,X), we may write (I t,a,λ,Dλ,Xt,x,a,λ,Dλ) to stress depen-
dence on these parameters.

We notice that the papers [11] and [8] also use a notion of “randomized” con-
trols, which is, however, different from ours: the authors relaxed A-valued controls
by a measure-valued process, but do not consider additional randomness and fil-
tration as in our approach with the Poisson random measure.

We then introduce the randomized gain functional

J ∗(t, x, a, λ,Dλ, ν) = Eν

[∫ T

t
fs

(
Xt,x,a,λ,Dλ, I t,a,λ,Dλ

s

)
ds + g

(
Xt,x,a,λ,Dλ

)]

(here Eν denotes the expectation under Pν) for (t, x, a) ∈ [0, T ] × Cd × A,
λ ∈ Mf (A), Dλ a randomized set-up and ν ∈ V(Dλ). The intuitive interpreta-
tion is that in the randomized control problem we first replace the control α by
a Poisson point process I , and we can then control the system by modifying the
intensity of I . More precisely, we are able to change its compensator λ(da) dt

into νt (a)λ(da) dt by choosing the density ν in the class of bounded positive and
predictable random fields.

We finally introduce two value functions for the randomized formulation. The
first one is defined by

v∗
1(t, x, a, λ,Dλ) = sup

ν∈V(Dλ)

J ∗(t, x, a, λ,Dλ, ν)(3.3)

and corresponds to optimizing with respect to every choice of ν in the fixed set-up
Dλ and for a fixed λ ∈Mf (A); that is, it corresponds to the strong formulation of
the randomized optimal control problem. The second one is the value function in
the weak formulation, where the set-up is part of the control

v∗
2(t, x, a, λ) = sup

Dλ

v∗
1(t, x, a, λ,Dλ).(3.4)

We shall see later that the strong and weak randomized formulations are equivalent,
that is, v∗

1 does not depend on Dλ, and so it is equal to v∗
2 . For the moment, we can

easily check, as in the original control problem, that v∗
1 and v∗

2 are always finite,
satisfying actually the same growth condition (2.6), and v∗

1(t, x, ·) and v∗
2(t, x, ·)

depend on x ∈ Cd only via the past trajectory {x(s),0 ≤ s ≤ t}.
Our first main result is to connect the primal control problem to the weak ran-

domized one.

THEOREM 3.1. We have

v(t, x) = v∗
2(t, x, a, λ), (t, x) ∈ [0, T ] × Cd,

for all a ∈ A, λ ∈Mf (A). In particular, v∗
2(t, x, a, λ) does not depend on (a, λ).



RANDOMIZED AND BSDE REPRESENTATION 2143

REMARK 3.1. The randomized problem is a control problem over equivalent
probability measures Pν , whose effect is to change the intensity measure of the
pure-jump component I . Theorem 3.1 then formally means that one can formulate
the primal control problem originally written in a nondominated Wiener space
framework into a dominated framework by enlarging the filtered probability space
with an additional Poisson random measure. Moreover, the result is invariant with
respect to the choice of the intensity measure for the Poisson random measure.

3.2. BSDE characterization. Throughout this section, we fix λ ∈Mf (A) and
the initial conditions t ∈ [0, T ], x ∈ Cd and a ∈ A. We consider a randomized set-
up Dλ = (�,F,P,W,μλ), denote by F the completion of the natural filtration of
(W,μλ) and define a pair of processes (I,X) as the solution to the system (3.2),
dropping their dependence on t, x, a, λ,Dλ in the notation.

Following [17], we say that a quadruple (Y,Z,U,K) is a solution to the BSDE
with nonpositive jumps⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ys = g(X) +
∫ T

s
fr(X, Ir) dr + KT − Ks

−
∫ T

s
Zr dWr −

∫ T

s

∫
A

Ur(a)μλ(dr, da), s ∈ [0, T ],
Us(a) ≤ 0

(3.5)

if Y ∈ S2, the space of càdlàg F-adapted processes Y satisfying ‖Y‖2 :=
E[sups∈[0,T ] |Ys |2] < ∞, identified up to indistinguishability, Z ∈ L2(W), the
space of F-predictable processes with values in Rn such that ‖Z‖2

L2(W)
:=

E[∫ T
0 |Zs |2 ds] < ∞, identified up to ds ⊗ dP-a.e. equality, U ∈ L2(μ̃), the

space of P(F)⊗B(A)-measurable real-valued processes U such that ‖U‖2
L2(μ̃)

:=
E[∫ T

0
∫
A |Us(a)|2λ(da) ds] < ∞, identified up to ds ⊗ dP ⊗ λ(da)-a.e. equality,

K ∈ K2, the subspace of S2 consisting of nondecreasing predictable processes
such that K0 = 0, P-a.s. and the equation in (3.5) holds P-a.s., while the nonpos-
itive jump constraint holds on [0, T ] × � × A-a.e. with respect to the measure
ds ⊗ P(dω) ⊗ λ(da).

DEFINITION 3.1. A minimal solution to the BSDE (3.5) is a quadruple
(Y,Z,U,K) ∈ S2 ×L2(W)×L2(μ̃)×K2 solution to (3.5) such that for any other
solution (Y ′,Z′,U ′,K ′) to the same BSDE, we have P-a.s.

Ys ≤ Y ′
s , s ∈ [0, T ].

As noticed in Remark 2.1 in [17], the minimal solution, when it exists, is unique
as an element of S2 × L2(W) × L2(μ̃) × K2. By misuse of language, we say
sometimes that Y [instead of the quadruple (Y,Z,U,K)] is the minimal solution
to (3.5).

We state the main result of this paper.



2144 M. FUHRMAN AND H. PHAM

THEOREM 3.2. For all (t, x, a) ∈ [0, T ] × Cd × A, λ ∈ Mf (A) and Dλ set-
up, we have the following assertions:

(1) There exists a unique minimal solution Y = Y t,x,a,λ,Dλ to (3.5). Moreover,
for s ∈ [0, t], Y t,x,a,λ,Dλ

s is deterministic and does not depend on Dλ.
(2) This minimal solution is related to the primal and randomized control prob-

lems by

v(t, x) = v∗
1(t, x, a, λ,Dλ) = v∗

2(t, x, a, λ) = Y
t,x,a,λ,Dλ
t .(3.6)

In particular, v∗
1 does not depend on Dλ, that is, the strong and weak randomized

control problems coincide, and none of the functions in (3.6) depend on (a, λ).

REMARK 3.2. The HJB equation for a stochastic control problem is usually
derived from a dynamic programming principle on the value function. We note that
in view of the above relation, v(t, x) = Y

t,x,a,λ,Dλ
t [or simply v(t, x) = Y

t,x
t since it

does not depend on a,λ,Dλ], which is proved by purely probabilistic arguments,
this gives another method to derive the HJB equation from the minimal BSDE
solution Y . In the Markovian case, it is shown in [17] that the solution Yn to an
appropriate penalized BSDE satisfies a semilinear PDE, and by passing to the limit,
one obtains that Y

t,x
t is solution to the nonlinear HJB equation. Such derivation

does not resort to dynamic programming principle, which is known to be a delicate
issue, and would be interesting to explore in the non-Markovian context.

4. Proof of the main results. Throughout this section, we make the standing
assumptions (H1) and (H2).

4.1. Proof of Theorem 3.1. We start with the inequality v(t, x) ≥ v∗
2(t, x, a, λ),

which is the easy part in the proof of Theorem 3.1, and it is to be expected since,
intuitively, in the randomized control problem we control X through the intensity
of the control process I , so we cannot have a better performance than choosing
directly the control process α as we do in the primal problem.

4.1.1. Proof of the inequality v ≥ v∗
2 . Fix t ∈ [0, T ], x ∈ Cd , a ∈ A, λ ∈

Mf (A) and an admissible randomized set-up Dλ = (�,F,P,W,μλ). Let F =
(Ft )t≥0 be the completion of the natural filtration generated by (W,μλ). Choose a
random field ν in the class V(Dλ), and define the corresponding probability mea-
sure Pν . Define (I,X) as the solution to (3.2), and consider the gain for the ran-
domized control problem

J ∗(t, x, a, λ,Dλ, ν) = Eν

[∫ T

t
fs(X, Is) ds + g(X)

]
.

Now we note that A := (�,F,F,Pν,W) is an admissible set-up for the original
control problem. Moreover, since the process I is progressive with respect to F, it
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belongs to the class of A-admissible controls; that is, it is an element of A(A). The
corresponding trajectory can be obtained solving equation (2.3) with α = I , which
coincides with the equations defining the process X in (3.2). It follows that, with
this choice of A and α, the gain for the original and the randomized problems are
the same, so we have

J ∗(t, x, a, λ,Dλ, ν) = J (t, x,A, I ) ≤ v(t, x).

The required conclusion follows by taking the supremum with respect to ν ∈
V(Dλ), and then with respect to Dλ, on the left-hand side.

4.1.2. Proof of the inequality v∗
2 ≥ v. The required inequality will be a conse-

quence of the following proposition:

PROPOSITION 4.1. Fix t ∈ [0, T ], x ∈ Cd , a ∈ A, λ ∈ Mf (A). Then, for
every admissible set-up A′ = (�′,F ′,G′,Q′,W), for every admissible control
α ∈ A(A′) and for every number δ > 0, there exist an admissible randomized set-
up Dλ = (�,F,P,W,μλ) and an element ν ∈ V(Dλ) such that

J ∗(t, x, a, λ,Dλ, ν) ≥ J
(
t, x,A′, α

) − δ.

We first check that the required inequality v∗
2(t, x, a, λ) ≥ v(t, x) is an immedi-

ate consequence. Indeed, from the inequality of Proposition 4.1, it follows that

v∗
2(t, x, a, λ) ≥ J

(
t, x,A′, α

) − δ.

Taking the supremum with respect to α ∈ A(A′), and then with respect to all ad-
missible set-ups A′, we conclude that v∗

2(t, x, a, λ) ≥ v(t, x) − δ, and finally the
required inequality follows from the arbitrariness of δ.

The rest of this section is devoted to the proof of Proposition 4.1. Since the proof
is rather technical, in order to simplify the notation we will limit the exposition to
the case when t = 0. The general case can be proved in the same way, with slight
and obvious changes. We fix elements x ∈ Cd , a ∈ A, λ ∈ Mf (A). We also fix an
admissible set-up A′ = (�′,F ′,G′,Q′,W), an admissible control α ∈ A(A′) and
δ > 0. The corresponding trajectory X is the unique solution to

Xt = x(0) +
∫ t

0
bs(X,αs) ds +

∫ t

0
σs(X,αs) dWs, t ∈ [0, T ].(4.1)

Note that x(·) affects the trajectory X only through the value x(0). The gain func-
tional is

J
(
0, x,A′, α

) = EQ′
[∫ T

0
ft (X,αt ) dt + g(X)

]
.

Following [18], we introduce a metric in the set A(A′) of admissible controls.
Recall that ρ denotes the metric in A, chosen such that ρ < 1. Next define, for any
α1, α2 ∈ A(A′),

ρ̃
(
α1, α2) = EQ′

[∫ T

0
ρ

(
α1

t , α
2
t

)
dt

]
.
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Note that a sequence αn converges in A(A′) to a limit α with respect to this metric
if and only if αn → α in dt ⊗ dQ′-measure, that is, if and only if

lim
n→∞

(
dt ⊗ dQ′)({(t,ω′) ∈ [0, T ] × �′ :ρ

(
αn

t

(
ω′), αt

(
ω′)) > ε

}) = 0,

for any ε > 0. In [18], the following continuity result of the gain functional with
respect to the control is proved in the case of controlled diffusion processes. The
extension to our non-Markovian situation is straightforward, so we only sketch its
proof.

LEMMA 4.1. The map α 	→ J (0, x,A′, α) is continuous with respect to the
metric ρ̃.

PROOF. In this proof we write E′ instead of EQ′
for short. Suppose αn,α ∈

A(A′) and αn → α in dt ⊗ dQ′-measure. Denote Xn,X the corresponding trajec-
tories. Then, starting from the state equation (4.1), using usual arguments involv-
ing the Burkholder–Davis–Gundy inequalities and the Gronwall lemma, for every
p ∈ [2,∞) we arrive at

E′[ sup
t∈[0,T ]

∣∣Xn
t − Xt

∣∣p]

≤ C

{
E′

[∫ T

0

∣∣bt

(
X,αn

t

) − bt (X,αt )
∣∣p + ∣∣σt

(
X,αn

t

) − σt (X,αt )
∣∣p dt

]}
,

for a suitable constant C, independent of n. Recalling bound (2.4) on the solu-
tion X, by standard arguments we first conclude, by the dominated convergence
theorem, under (H1), that E′[supt∈[0,T ] |Xn

t −Xt |p] → 0 as n → ∞. Next we have
∣∣J (

0, x,A′, αn) − J
(
0, x,A′, α

)∣∣
≤ E′

[∫ T

0

∣∣ft

(
Xn,αn

t

) − ft (X,αt )
∣∣dt

]
+E′∣∣g(

Xn) − g(X)
∣∣.

To finish the proof we show that the right-hand side tends to zero. Suppose on the
contrary, that there exist η > 0 and a subsequence [denoted (Xn′

, αn′
)] such that

E′
[∫ T

0

∣∣ft

(
Xn′

, αn′
t

) − ft (X,αt )
∣∣dt

]
≥ η,(4.2)

for every n′. Passing to a sub-subsequence, still denoted by the same symbol, we
can assume that

sup
t∈[0,T ]

∣∣Xn′
t − Xt

∣∣ → 0, dQ′-a.s., ρ
(
αn′

t , αt

) → 0, dt ⊗ dQ′-a.e.

as n′ → ∞, and by the assumed continuity properties of f it follows that
ft (X

n′
, αn′

t ) → ft (X,αt ), dt ⊗ dQ′-a.e. Next we extract a further subsequence
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(n′
j ) such that

(
E′[ sup

t∈[0,T ]
∣∣Xn′

j

t − Xt

∣∣p])1/p ≤ 2−j ,

so that the random variable X̄ := ∑
j supt∈[0,T ] |X

n′
j

t − Xt | satisfies E′|X̄|p < ∞
as well as |Xn′

j

t | ≤ |Xt | + |X̄| for every t and j . Recalling the polynomial growth
condition of f in (H2), we obtain

∣∣ft

(
X

n′
j , α

n′
j

t

) − ft (X,αt )
∣∣ ≤ C

(
1 + sup

t∈[0,T ]
∣∣Xn′

j

t

∣∣m + sup
t∈[0,T ]

|Xt |m
)

≤ C
(
1 + |X̄|m + sup

t∈[0,T ]
|Xt |m

)

for a suitable constant C, and choosing p = max(m,2), we conclude that the right-
hand side is integrable, which gives a contradiction with (4.2) by the dominated
convergence theorem. This shows that E′[∫ T

0 |ft (X
n,αn

t ) − ft (X,αt )|dt] → 0,
and in a similar way one shows that E′|g(Xn) − g(X)| → 0. �

REMARK 4.1. For further use we note that the metric ρ̃ can be defined
on the set of all B([0, T ]) ⊗ F ′-measurable A-valued processes. Now suppose
that we have a sequence of filtrations Hm = (Hm

t ), satisfying G′
t ⊂ Hm

t for ev-
ery t ≥ 0, such that W is a Wiener process with respect to each of them, and
denote Am = (�′,F ′,Hm,Q′,W) the corresponding set-ups. Then, given a se-
quence αm ∈ A(Am) and α ∈ A(A′), the convergence ρ̃(αm,α) → 0 still implies
J (0, x,Am,αm) → J (0, x,A′, α). This is a slight extension of Lemma 4.1 that can
be proved by the same arguments as before.

The following lemma shows that we can replace any control process by another
control which is a pure jump process, without changing the gain too much.

LEMMA 4.2. There exists an admissible control process ᾱ ∈ A(A′), such that

J
(
0, x,A′, ᾱ

) ≥ J
(
0, x,A′, α

) − δ,(4.3)

and ᾱ has the form ᾱt = ∑N−1
n=0 αn1[Tn,Tn+1)(t), where 0 = T0 < T1 < · · · < TN =

T is a deterministic partition of [0, T ], α0, . . . , αN−1 are A-valued random vari-
ables that take only a finite number of values, and each αn is G′

Tn
-measurable. In

addition, we can choose ᾱ satisfying α0 = a.

PROOF. In [18], Lemma 3.2.6, it is proved that the set of admissible controls ᾱ

having the form specified in the lemma are dense in A(A′) with respect to the met-
ric ρ̃. The lemma is then a consequence of the continuity property of Lemma 4.1.
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The additional requirement that α0 = a can be fulfilled by adding, if necessary,
another point T ′ close to 0 to the subdivision and modifying ᾱ setting ᾱt = a for
t ∈ [0, T ′). This modification is as close as we wish to the original control with
respect to the metric ρ̃, provided T ′ is chosen sufficiently small. �

Before proceeding further, we need to recall some useful facts, summarized in
the following remark.

REMARK 4.2. We start with an admissible set-up A′ = (�′,F ′,G′,Q′,W),
and we need to give new definitions or make suitable constructions using addi-
tional, independent, random variables or stochastic processes. If these random ob-
jects are not already defined on (�′,F ′,Q′), we can perform the following stan-
dard construction in order to reduce to this case. We consider another probability
space (�′′,F ′′,Q′′) on which are defined these random objects, and we define
(�,F,Q) setting

� = �′ × �′′, F =F ′ ⊗F ′′, Q= Q′ ⊗Q′′.
We can also define a filtration G = (Gt ) in (�,F) setting Gt = {B × �′′ :B ∈ G′

t }
for t ≥ 0.

Any random variable Z [resp., stochastic process (Yt )] in (�′,F ′) admits a
natural extension to a random variable (resp., stochastic process) on (�,F), still
denoted by the same symbol, given by Z(ω) = Z(ω′) [resp., Yt (ω) = Yt (ω

′)],
for ω = (ω′,ω′′) ∈ �. It easily verified that if Y is G′-adapted (resp., optional,
progressive, predictable), then its extension is G-adapted (resp., optional, pro-
gressive, predictable). Moreover, the extension of W is a Wiener process with
respect to G and Q, so that we have constructed another admissible set-up
A := (�,F,G,Q,W). Note that the extension of an A′-admissible control is A-
admissible, that the trajectory of an extended control process is the extension of the
original trajectory, and that the corresponding gain functional has the same value.

Similar considerations hold for random objects originally defined on �′′. For
instance, if (Vn) denotes a random sequence on �′′, its extension has the same law
and is independent of G′∞ (hence independent of W ) under Q.

We shall briefly describe this construction by saying that � is an enlargement
of �′, or that the set-up (�,F,G,Q,W) is an enlargement of (�′,F ′,G′,Q′,W).

In conclusion, starting with our admissible set-up A′ = (�′,F ′,G′,Q′,W), we
have proved the existence of an enlargement A= (�,F,G,Q,W) on which there
exist random elements with arbitrary prescribed laws and independent of G′∞ un-
der Q.

In the proof of Proposition 4.1, we need a preliminary result, stated below as
Lemma 4.3, where we basically prove that the marked point process ᾱ in the state-
ment of Lemma 4.2 can be slightly perturbed in such a way that its compensator
becomes absolutely continuous with respect to the measure λ(da) dt . Then we
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shall see in Lemma 4.4 that the corresponding gain will also be changed slightly.
The proof depends on a more general and technical result, reported in the Appendix
as Lemma A.11.

Let us come back again to the original set-up A′ = (�′,F ′,G′,Q′,W) in the
statement of Proposition 4.1 and denote by ᾱ the admissible control of Lemma 4.2.
Let A = (�,F,G,Q,W) be an enlargement of the set-up A′, as described in Re-
mark 4.2, and denote the extension of the control ᾱ still by the same symbol. It
is convenient to extend further the definition of ᾱ to [0,∞) × � in a trivial way
setting

αn = αN−1, n ≥ N; Tn = T + n − N, n > N,

and defining ᾱt = ∑∞
n=0 αn1[Tn,Tn+1)(t). This way, ᾱ is associated to the marked

point process (Tn,αn)n≥1 and α0 = a.
For every integer m ≥ 1, on � we can find sequences (Um

n )n≥1, (Sm
n )n≥1 of real

random variables satisfying the following conditions:

(1) every Um
n is uniformly distributed on (0,1);

(2) every Sm
n admits a density [denoted f m

n (t)] with respect to the Lebesgue
measure, and we have 0 < Sm

1 < Sm
2 < Sm

3 < · · · and
∑

n≥1 Sm
n < 1/m for every m;

(3) for every m, the random variables Um
n ,Sm

k (n, k ≥ 1) are independent, and
independent of G′∞.

For every m ≥ 1, let B(b,1/m) denote the open ball of radius 1/m, with re-
spect to the metric ρ, centered at b ∈ A. Since λ(da) has full support, we have
λ(B(b,1/m)) > 0, and we can define a transition kernel qm(b, da) in A setting

qm(b, da) = 1

λ(B(b,1/m))
1B(b,1/m)(a)λ(da).

We recall that we require A to be a Lusin space. It follows from Lemma A.10 that
there exists a function qm :A × [0,1] → A, measurable with respect to B(A) ⊗
B([0,1]), such that for every b ∈ A the measure B 	→ qm(b,B) (B ∈ B(A)) is the
image of the Lebesgue measure on [0,1] under the mapping u 	→ qm(b,u). Thus if
U is a random variable defined on some probability space and having uniform law
on [0,1], then for fixed b ∈ A, the random variable qm(b,U) has law qm(b, da)

on A. The use of the same symbol qm should not generate confusion.
Define

Rm
n = Tn + Sm

n , βm
n = qm(

αn,U
m
n

)
, n,m ≥ 1,(4.4)

and set Rm
0 = 0. Since we assume Sm

n < Sm
n+1, we see that (Rm

n ,βm
n )n≥1 is a marked

point process in A. Let κm = ∑
n≥1 δ(Rm

n ,βm
n ) denote the corresponding random

measure, and (Fκm

t ) the corresponding natural filtration. Finally set

Hm
t = Gt ∨Fκm

t , t ≥ 0.(4.5)
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Now Lemma A.11 in the Appendix provides us with the following explicit formula
for the compensator κ̃m of κm with respect to the filtration Hm = (Hm

t ):

κ̃m(dt, da) = ∑
n≥1

1(Tn∨Rm
n−1,R

m
n ](t)qm(αn, da)

f m
n (t − Tn)

1 − Fm
n (t − Tn)

dt,

where we denote by Fm
n (s) = ∫ s

−∞ f m
n (t) dt the cumulative distribution function

of Sm
n , with the convention that f m

n (s)

1−Fm
n (s)

= 0 if Fm
n (s) = 1.

We summarize the relevant properties of this construction in the following re-
sult.

LEMMA 4.3. With the previous notation, in the enlarged set-up A the follow-
ing properties hold true:

(1) Tn < Rm
n and

∑
n≥1(R

m
n − Tn) < 1/m;

(2) ρ(αn,β
m
n ) < 1/m;

(3) the (Q,Hm)-compensator of κm is absolutely continuous with respect to
λ(da) dt , so that it can be written in the form

κ̃m(dt, da) = φm
t (a)λ(da) dt

for a suitable nonnegative P(Hm) ⊗B(A)-measurable function φm.

PROOF. The first property follows from the fact that Sm
n > 0 and

∑
n≥1 Sm

n <

1/m. Since, for every b ∈ A, qm(b, da) is supported in B(b,1/m), we have
ρ(αn,β

m
n ) < 1/m. Finally, from the choice of the kernel qm(b, da), we obtain

φm
t (a) = ∑

n≥1

1(Tn∨Rm
n−1,R

m
n ](t)

1

λ(B(αn,1/m))
1B(αn,1/m)(a)

f m
n (t − Tn)

1 − Fm
n (t − Tn)

.
�

Now recall that we have fixed from the beginning t = 0, x ∈ Cd , a ∈ A, λ ∈
Mf (A), a set-up A′, α ∈ A(A′) and δ > 0. Also recall the notation J (0, x,A′, α)

for the gain functional.

LEMMA 4.4. There exists an admissible set-up A′′ = (�,F,H,Q,W), which
is an enlargement of A′, and an admissible control α̂ ∈ A(A′′) such that:

(1) J (0, x,A′′, α̂) > J (0, x,A′, α) − 2δ;
(2) there exists an H-marked point process (Rn,βn)n≥1 such that α̂t =∑
n≥0 βn1[Rn,Rn+1)(t) (R0 = 0, β0 = a);
(3) the (Q,H)-compensator of the corresponding random measure κ =∑
n≥1 δ(Rn,βn) is absolutely continuous with respect to λ(da) dt , so that it can

be written in the form

κ̃(dt, da) = φ′
t (a)λ(da) dt

for a suitable nonnegative P(H) ⊗B(A)-measurable function φ′.
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PROOF. We first construct an appropriate enlargement A = (�,F,G,Q,W)

of A′. Then we take the control ᾱ of Lemma 4.2, and we extend it to [0,∞)×� as
described above, so that it is associated to the G-marked point process (Tn,αn)n≥1.
Finally, for every m ≥ 1, we introduce (Rm

n ,βm
n )n≥1 and the filtration Hm = (Hm

t )

defined by (4.4) and (4.5). Since the random variables Sm
n , Um

n occurring in (4.4)
are independent of G∞, it follows that W is a Wiener process with respect to Hm.
Therefore Am := (�,F,Hm,Q,W) is an admissible set-up. Next we define

α̂m
t = ∑

n≥0

βm
n 1[Rm

n ,Rm
n+1)

(t)

with the convention Rm
0 = 0, βm

0 = a, and note that it is an admissible con-
trol, that is, an element of A(Am). Now let us compare those controls with
ᾱt = ∑∞

n=0 αn1[Tn,Tn+1)(t). The first two conclusions of Lemma 4.3 show that
α̂m

t converges to ᾱ in dQ ⊗ dt-measure as m → ∞, hence with respect to
the metric ρ̃ introduced before. By Lemma 4.1 and Remark 4.1, this shows
that J (0, x,Am, α̂m) → J (0, x,A′, ᾱ) as m → ∞. So there exists M so large
such that J (0, x,AM, α̂M) > J(0, x,A′, ᾱ) − δ and, by (4.3), J (0, x,AM, α̂M) >

J(0, x,A′, ᾱ) − 2δ. We finally set

A′′ := AM, Ht := HM
t , βn := βM

n ,

Rn := RM
n , α̂t := α̂M

t , φ′
t (a) := φM

t (a). �

For the rest of the proof of Proposition 4.1, only Lemmas 4.4 and 4.1 will be
used. The idea is now to add to the control an additional independent Poisson
measure with compensator k−1λ(da) dt , with k large, that is, with intensity so
small that the gain is not much affected. The formal construction is as follows.

Let A′′ = (�,F,H,Q,W), (Rn,βn)n≥0, α̂t = ∑
n≥0 βn1[Rn,Rn+1)(t), κ =∑

n≥1 δ(Rn,βn) with compensator κ̃(dt, da) = φ′
t (a)λ(da) dt , denote the objects

introduced in Lemma 4.4. By Remark 4.2 we can assume that, for every integer
k ≥ 1, on the probability space (�,F,Q) there exists a Poisson random measure
on (0,∞) × A, denoted

πk = ∑
n≥1

δ(T k
n ,ξk

n ),

admitting compensator k−1λ(da) dt with respect to its natural filtration Fπk =
(Fπk

t ), and independent of H∞. Now we define another random measure setting

μk = κ + πk.

Note that the jumps times (Rn) are independent of the jump times (T k
n ), and the

latter have absolutely continuous laws. It follows that, except possibly on a set of
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Q probability zero, their graphs are disjoint, that is, κ and πk have no common
jumps. Therefore, the random measure μk admits a representation

μk = ∑
n≥1

δ(Sk
n,ηk

n),

where (Sk
n, ηk

n)n≥1 is a marked point process, each Sk
n coincides with one of the

times Rn or one of the times T k
n and each ηk

n coincides with one of the random
variables ξk

n or one of the random variables βn. Since κ and πk are independent it
follows from Proposition A.2 that μk has compensator (φ′

t (a)+k−1)λ(da) dt with

respect to the filtration H ∨ Fπk = (Ht ∨ Fπk

t ). Let us denote by Fk = (Fk
t ) the

completion of the natural filtration generated by (W,μk). Clearly, W is a Wiener
process with respect to Fk .

Now we need to prove that the compensator of μk with respect to Fk remains ab-
solutely continuous with respect to λ(da) dt ; see Lemma 4.5 below. For its formu-
lation, consider the measure space ([0,∞)×�×A,B([0,∞))⊗F ⊗B(A), dt ⊗
Q(dω)⊗λ(da)). Although this is not a probability space, one can define in a stan-
dard way the conditional expectation of any positive measurable function, given
an arbitrary sub-σ -algebra. Let us denote by φt(ω, a) the conditional expectation
of the random field φ′

t (ω, a) with respect to the σ -algebra P(Fk) ⊗B(A).

LEMMA 4.5. The compensator of μk with respect to (Q,Fk) is (φt (a) +
k−1)λ(da) dt .

PROOF. Let H denote an arbitrary positive P(Fk) ⊗ B(A)-measurable func-
tion. Denote by F0,k = (F0,k

t ) the uncompleted natural filtration generated by
(W,μk). Then there exists a positive P(F0,k) ⊗ B(A)-measurable function H ′
such that, for Q-almost all ω, Ht(ω, a) = H ′

t (ω, a) for every t, a. Since clearly

F0,k
t ⊂ Ht ∨ Fπk

t for every t ≥ 0, H ′ is also measurable with respect to P(H ∨
Fπk

) ⊗B(A), and we have

EQ

[∫ ∞
0

∫
A

Ht(a)μk(dt, da)

]
= EQ

[∫ ∞
0

∫
A

H ′
t (a)μk(dt, da)

]

= EQ

[∫ ∞
0

∫
A

H ′
t (a)

(
φ′

t (a) + k−1)
λ(da) dt

]

= EQ

[∫ ∞
0

∫
A

Ht(a)
(
φ′

t (a) + k−1)
λ(da) dt

]

= EQ

[∫ ∞
0

∫
A

Ht(a)
(
φt(a) + k−1)

λ(da) dt

]
,

which proves the required result. �
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Let us define the pure-jump process valued in A associated to the random mea-
sure μk by setting

I k
t = ∑

n≥0

ηk
n1[Sk

n,Sk
n+1)

(t), t ≥ 0,

with the convention that ηk
0 = a (a ∈ A was arbitrary and fixed above). Then Ak :=

(�,F,Q,Fk,W) is an admissible set-up, and I k is an admissible control, that is,
I k ∈ A(Ak). We can prove that, for large k, I k is close to α̂ with respect to the
metric ρ̃:

LEMMA 4.6. We have ρ̃(I k, α̂) → 0 as k → ∞.

PROOF. We have to prove that I k → α̂ in dt ⊗ dQ-measure. Recall that the
jump times of πk are denoted T k

n . Since T k
1 has exponential law with parameter

λ(A)/k the event Bk = {T k
1 > T } has probability e−λ(A)T /k , so that Q(Bk) → 1

as k → ∞. Noting that on the set Bk , we have α̂t = I k
t for all t ∈ [0, T ], the

conclusion follows immediately. We remark that we have used the fact that α0 =
ηk

0 = a. �

Applying Lemma 4.1 and Remark 4.1, we conclude that J (0, x,Ak, I k) →
J (0, x,A′′, α̂) as k → ∞. So there exists k large enough such that J (0, x,Ak,

I k) > J (0, x,A′′, α̂)−δ and, by Lemma 4.4, J (0, x,Ak, I k) > J (0, x,A′, α)−3δ.
Introducing the notation

A′′′ := Ak, Ft := Fk
t , ηn := ηk

n, Sn := Sk
n, It := I k

t , t ≥ 0,

we see that we have proved the following result, where we choose ε = k−1 [recall
that we have fixed from the beginning t = 0, x ∈ Cd , a ∈ A, λ ∈ Mf (A), set-up
A′, α ∈A(A′) and δ > 0]:

LEMMA 4.7. There exists an admissible set-up A′′′ = (�,F,F,Q,W), which
is an enlargement of A′, and an admissible control I ∈ A(A′′′) such that:

(1) J (0, x,A′′′, I ) > J (0, x,A′, α) − 3δ;
(2) there exists an F-marked point process (Sn, ηn)n≥1 such that It =∑
n≥0 ηn1[Sn,Sn+1)(t) (S0 = 0, η0 = a);
(3) F is the completion of the natural filtration of (W,μ), where μ =∑
n≥1 δ(Sn,ηn) is the corresponding random measure;
(4) the (Q,F)-compensator of μ is absolutely continuous with respect to

λ(da) dt , and it can be written in the form

μ̃(dt, da) = (
φt(a) + ε

)
λ(da) dt

for some ε > 0 and a nonnegative P(F) ⊗B(A)-measurable function φ.
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We note for further use that the process I and the corresponding trajectory
(Xt)t∈[0,T ] are the solution to

⎧⎪⎪⎨
⎪⎪⎩

It = a +
∫
(0,t]

∫
A

(
a′ − Is−

)
μ

(
ds, da′), t ∈ [0, T ],

Xt = x(0) +
∫ t

0
bs(X, Is) ds +

∫ t

0
σs(X, Is) dWs, t ∈ [0, T ],

(4.6)

which coincides with (3.2) in the case t = 0 that we are addressing.
The final step in the proof of Proposition 4.1 consists in showing that the addi-

tion of the noise πk above (a noise with intensity “of size ε = k−1”) now makes
it possible to make a Girsanov transformation and construct a randomized admis-
sible set-up where μ is a Poisson random measure with compensator λ(da) dt ,
as required to fit the framework for the randomized control problem described in
paragraph 3.1.

END OF THE PROOF OF PROPOSITION 4.1. Recall that we fix x ∈ Cd , a ∈ A,
λ ∈ Mf (A) and, without loss of generality, t = 0. We take arbitrary admissi-
ble set-up A′ = (�′,F ′,G′,Q′,W), admissible control α ∈ A(A′) and δ > 0.
Next we consider again the set-up A′′′ = (�,F,F,Q,W), the marked point pro-
cess (Sn, ηn)n≥1 (with S0 = 0, η0 = a), the corresponding admissible control
It = ∑

n≥0 ηn1[Sn,Sn+1)(t) and random measure μ = ∑
n≥1 δ(Sn,ηn) and its com-

pensator μ̃(dt, da) = (φt (a) + ε)λ(da) dt in the statement of Lemma 4.7, and we
recall that we have

J
(
0, x,A′′′, I

)
> J

(
0, x,A′, α

) − 3δ.(4.7)

We want to show that there exist:

(1) a probability measure P on (�,F) such that

Dλ = (�,F,P,W,μ)(4.8)

is an admissible randomized set-up;
(2) an element ν̄ ∈ V(Dλ) such that

J ∗(0, x, a, λ,Dλ, ν̄) > J
(
0, x,A′′′, I

) − δ.(4.9)

By (4.7), and since δ is arbitrary, this is enough to finish the proof of Proposi-
tion 4.1.

To this end, let us define ν = φ + ε, and note that ν is a positive P(F) ⊗ B(A)-
measurable random field. Since νt (a)λ(da) dt is the compensator of the nonexplo-
sive process μ, it follows easily that

∫ T
0 νt (a)λ(da) dt < ∞ Q-a.s., so that we can

and will assume that ν takes only finite values on [0, T ] × � × A. Finally, since
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the inverse ν−1 is bounded and λ(A) < ∞, it follows from standard criterion (see,
e.g., [25]) that the Doléans–Dade exponential process

Mt := exp
(∫ t

0

∫
A

(
1 − νs(a)−1)

νt (a)λ(da) ds

) ∏
Sn≤t

νSn(ηn)
−1,

(4.10)
t ≥ 0,

is a strictly positive martingale on [0, T ] (with respect to F and Q), and we
can define an equivalent probability P on the space (�,F) setting P(dω) =
MT (ω)Q(dω). The expectation under P will be denoted simply E (while the ex-
pectation under Q is denoted EQ). Now we make the following claims:

(i) μ (or more precisely its restriction to (0, T ]×A) has compensator λ(da) dt

(with respect to F and P); in particular, it is a Poisson random measure.
This follows from a theorem of Girsanov type [see [14], Theorem (4.5)], which

guarantees that under the new probability P the compensator of μ is given by
νt (a)−1νt (a)λ(da) dt = λ(da) dt .

(ii) W is a (P,F)-Wiener process.
The proof is as follows. Since the probabilities P and Q are equivalent, the

quadratic variation of X computed under P and Q is the same, and equals 〈W 〉t = t .
So it is enough to show that W is a (P,F)-local martingale, which is equivalent to
the fact that MW is a (Q,F)-local martingale. Finally, this follows from a general
fact: since M is a (Q,F)-martingale of finite variation, it is purely discontinuous
and therefore orthogonal (under Q) to W ; thus, their product MW is a (Q,F)-local
martingale.

(iii) W and μ are independent under P.
To prove this claim it is enough to show that, for any measurable B ⊂ A, the

process

NB
t :=

∫ t

0

∫
B

μ(ds, da) = ∑
n

1{Sn≤t}1{ηn∈B},

is independent from W under P. From claims (i) and (ii) it follows that NB is a
Poisson process, and W is a Wiener process, both with respect to F and P. By a
general result (see, e.g., Theorem 11.43 in [13]), to check the independence it is
enough to note that their right bracket [NB,W ] is null, which is obvious, since W

is continuous and NB has no continuous part.

From claims (i), (ii), (iii), and recalling that F is the completion of the natural
filtration of (W,μ), we deduce that Dλ defined in (4.8) is indeed an admissible
randomized set-up. Note that we have checked that the P-compensator of μ is
λ(da) dt , although we do not make it explicit in the notation.

Next we proceed to verify (4.9). Since in general we cannot assert that the ran-
dom field ν is bounded on [0, T ] × � × A, we cannot conclude that it belongs to
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the class V(Dλ). However, we can still define the process Lν by formula (3.1),
which defines a strictly positive local martingale, hence supermartingale, with
respect to P. It follows immediately from formulas (3.1) and (4.10) that Lν

T is
the inverse of MT . It follows that E[Lν

T ] = EQ[MT Lν
T ] = 1, so that Lν is in-

deed a P-martingale on [0, T ], and we can define the corresponding probability
Pν(dω) := Lν

T (ω)P(dω). Thus, the Girsanov transformation P 	→ Pν is the in-
verse to the transformation Q 	→ P made above, and changes back the probability
P into Pν = Q considered above. In addition, we recall that the control I ∈ A(A′′′)
constructed in Lemma 4.7 and the corresponding trajectory (Xt)t∈[0,T ] are the so-
lution to the system (4.6), which coincides with (3.2), since we are assuming t = 0.
It follows that

J
(
0, x,A′′′, I

) = EQ

[∫ T

0
ft (X, It ) dt + g(X)

]

(4.11)

= Eν

[∫ T

0
ft (X, It ) dt + g(X)

]
,

where Eν denotes the expectation under Pν . If ν belongs to V(Dλ), the right-hand
side equals the gain J ∗(0, x, a, λ,Dλ, ν) for the randomized control problem and
the desired inequality (4.9) obviously holds with ν̄ = ν. However, since in gen-
eral we cannot assert that ν ∈ V(Dλ), we revert to the following approximation
procedure by truncation.

For any integer k ≥ 1, define νk
t (a) = νt (a) ∧ k. Therefore νk ∈ V(Dλ), and

we can define the corresponding process Lνk
by formula (3.1), the probability

Pνk
(dω) = Lνk

T (ω)P(dω), and compute the gain

J ∗(
0, x, a, λ,Dλ, ν

k) = Eνk
[∫ T

0
ft (X, It ) dt + g(X)

]
,

where Eνk
denotes the expectation under Pνk

. We claim that, for k → ∞,

Eνk
[∫ T

0
ft (X, It ) dt + g(X)

]
−→ Eν

[∫ T

0
ft (X, It ) dt + g(X)

]
.(4.12)

If we can prove the claim, it follows from (4.11) that inequality (4.9) is verified
with ν̄ = νk and k sufficiently large. So it remains to prove (4.12), that we re-write
in the form

Eνk [�] = E
[
Lνk

T �
] −→ E

[
Lν

T �
] = Eν[�],(4.13)

where we have set � := ∫ T
0 ft (X, It ) dt + g(X). We note for further use that the

assumption of polynomial growth in (H2) implies that there exists a constant C

such that

|�| ≤ C
(
1 + sup

t∈[0,T ]
|Xt |m

)
.(4.14)
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For N ≥ 1 we define AN = {supt∈[0,T ] |Xt | > N} and obtain

∣∣Eνk [�] −Eν[�]∣∣ ≤ Eνk [
1AN

|�|] +Eν[
1AN

|�|] +E
[∣∣Lνk

T − Lν
T

∣∣1Ac
N
|�|].

By (4.14) we have

Eνk [
1AN

|�|] ≤ CEνk
[
1AN

(
1 + sup

t∈[0,T ]
|Xt |m

)]

≤ C

N
Eνk

[
sup

t∈[0,T ]
|Xt |

(
1 + sup

t∈[0,T ]
|Xt |m

)]
≤ C′

N

for a suitable constant C′, independent of k, where for the last inequality we have
used estimate (2.4), whose right-hand side is the same for all probabilities Pνk

.
A similar estimate holds for Eν[1AN

|�|], and we obtain

∣∣Eνk [�] −Eν[�]∣∣ ≤ 2C′

N
+E

[∣∣Lνk

T − Lν
T

∣∣1Ac
N
|�|].(4.15)

By the dominated convergence theorem we have
∫ T

0

∫
A

(
1 − νk

s (a)
)
λ(da) ds −→

∫ T

0

∫
A

(
1 − νs(a)

)
λ(da) ds,

a.s. (with respect to any of the equivalent probabilities P,Pν,Pνk
) and

∏
Sn≤T

νk
Sn

(ηn) −→ ∏
Sn≤T

νSn(ηn),

a.s., since the product has finitely many factors a.s. From formula (3.1) that defines
Lν and Lνk

, we obtain Lνk

T → Lν
T a.s. Since E[Lνk

T ] = E[Lν
T ] = 1, we even have

Lνk

T → Lν
T in L1(�,F,P). By (4.14) the random variable 1Ac

N
|�| is bounded a.s.,

so letting k → ∞ in (4.15) we have

lim sup
k→∞

∣∣Eνk [�] −Eν[�]∣∣ ≤ 2C′

N
.

Letting N tend to infinity we conclude the proof of claim (4.13), and the proof of
Proposition 4.1 is also complete. �

4.2. Proof of Theorem 3.2. We fix initial conditions (t, x, a) ∈ [0, T ] × Cd ×
A, λ ∈ Mf (A), a randomized set-up Dλ = (�,F,P,W,μ), denote by F the com-
pletion of the natural filtration of (W,μ) and consider the pair of processes (I,X)

as the solution to the system (3.2). Note that we write μ instead of μλ for sim-
plicity and because our results do not depend a posteriori on the choice of λ. Let
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us introduce the family of penalized BSDEs associated to (3.5), parametrized by
integer n ≥ 1,

Yn
s = g(X) +

∫ T

s
fr(X, Ir) dr + n

∫ T

s

∫
A

Un
r (a)+λ(da) dr

(4.16)

−
∫ T

s
Zn

r dWr −
∫ T

s

∫
A

Un
r (a)μ(dr, da), 0 ≤ s ≤ T ,

where u+ = max(u,0). It follows from a result in [29], Lemma 2.4, that there
exists a unique solution (Y n,Zn,Un) ∈ S2 × L2(W) × L2(μ̃) to (4.16), where
we drop the dependence on (t, x, a, λ,Dλ). In that paper this result is proved by
a classical argument in the theory of BSDE, namely a Picard iteration technique
combined with a martingale representation theorem. This proof makes clear the
following facts:

(1) It is possible to find a P-null set �0 and to choose a version of the process
Yn (in the sense of indistinguishability) in such a way that Yn

s (ω) is a constant for
every s ∈ [0, t] and ω /∈ �0. We will always consider such a version in the sequel,
and we will say for short that the process Yn

s is deterministic for s ∈ [0, t]. To
verify this, denote by Ft = (F t

s )s≥t the completed filtration on [t,∞) generated
by the restriction of the random measure μ to (t,∞) × A and by the increments
of the Wiener process W on [t,∞). As noticed for the filtration F = F0, Ft is
right-continuous by the result in [29], Lemma A1. Then, recalling that Xs = x(s)

and Is = a for s ∈ [0, t], one sees that (X, I) is Ft -progressive and that the BSDE
(4.16) can be solved on the time interval [t, T ] with respect to Ft . In particular it
follows that Yn

t is F t
t -measurable, hence constant, except possibly on a P-null set

�0. Setting, for s ∈ [0, t] and ω /∈ �0,

Zn
s = 0, Un

s (a) = 0, Y n
s = Yn

t +
∫ t

s
fr(x, a) dr,

and defining (e.g.) Yn
s , Zn

s , Un
s (a) to be zero on �0 ×[0, t], one obtains the solution

to (4.16) on [0, T ], and Yn has the required properties.
(2) The law of the solution (Y n,Zn,Un), hence in particular the (determinis-

tic) values of Yn
s , for s ∈ [0, t], is determined by the coefficients b,σ,f, g as well

as the fixed elements T ,λ, a, t, x and n, but it does not depend on the particu-
lar choice of the probability space, the Wiener process and the Poisson process.
Thus Yn

s (s ∈ [0, t]) has the same value if equation (4.16) is solved in another ran-
domized admissible control system D′

λ = (�′,F ′,P′,W ′,μ′), provided μ′ has P′-
compensator λ(da) dt with respect to the natural filtration generated by (W ′,μ′).

We provide an explicit representation of the solution to the penalized BSDE
in terms of a family of auxiliary randomized control problems. For every integer
n ≥ 1, let Vn(Dλ) denote the subset of elements νt (ω, a) in V(Dλ) valued in (0, n].
The following result is a slight modification of [17], Proposition 4.1.
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LEMMA 4.8. We have for all n ≥ 1,

Yn
s = ess sup

ν∈Vn(Dλ)

Eν

[∫ T

s
fr(X, Ir) dr + g(X)

∣∣∣Fs

]
, s ∈ [0, T ],P-a.s.(4.17)

PROOF. Fix n ≥ 1, and consider (Y n,Zn,Un) the solution to (4.16). For
any ν ∈ Vn(Dλ), let μν(ds, da) := μ(ds, da) − νs(a)λ(da) ds denote the Pν -
compensated martingale measure of μ. It is shown in [17], Lemma 4.2 that for
Zn ∈ L2(W) and Un ∈ L2(μ̃), the processes∫ ·

0
Zn dW,

∫ ·
0

∫
A

Un
s (a)μν(ds, da),

are Pν -martingales. Therefore, by taking the conditional expectation Eν given Fs

in (4.16), we obtain

Yn
s = Eν

[∫ T

s
fr(X, Ir) dr + g(X)

∣∣∣Fs

]

+Eν

[∫ T

s

∫
A

[
nUn

r (a)+ − νr(a)Un
r (a)

]
λ(da) dr

∣∣∣Fs

]
, s ∈ [0, T ].

From the elementary numerical inequality, nu+ − νu ≥ 0 for all u ∈ R, ν ∈ [0, n],
we deduce that

Yn
s ≥ ess sup

ν∈Vn(Dλ)

Eν

[∫ T

s
fr(X, Ir) dr + g(X)

∣∣∣Fs

]
, s ∈ [0, T ].

For ε ∈ (0,1), define

νε
s (a) = n1{Un

s (a)≥0} + ε1{−1<Un
s (a)<0} − εUn

s (a)−11{Un
s (a)≤−1}.

Then νε ∈ Vn(Dλ), and we have

nUn
s (a)+ − νε

s (a)Un
s (a) ≤ ε, 0 ≤ s ≤ T ,

so that

Yn
s ≤ Eνε

[∫ T

s
fr(X, Ir) dr + g(X)

∣∣∣Fs

]
+ εT λ(A)

≤ ess sup
ν∈Vn(Dλ)

Eν

[∫ T

s
fr(X, Ir) dr + g(X)

∣∣∣Fs

]
+ εT λ(A),

which is enough to complete the proof. Note that we could not take νs(a) =
n1{Un

t (a)≥0}, since this process does not belong to Vn(Dλ) because of the require-
ment of strict positivity. �

As a consequence of this explicit representation of the penalized BSDE, we
obtain the following uniform estimate on the sequence (Y n)n:
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LEMMA 4.9. The sequence (Y n)n is monotonically increasing in n, and we
have

sup
s∈[0,T ]

∣∣Yn
s

∣∣ ≤ C
(
1 + sup

s∈[0,T ]
|Xs |m

)
, P-a.s.

for some constant C depending only on T , m and on the constants K1,K2 as
defined in (H1), (H2).

PROOF. Monotonicity follows from the formula for Yn presented in Lem-
ma 4.8, since Vn(Dλ) ⊂ Vn+1(Dλ). Then the inequality Yn

s ≤ Yn+1
s holds P-a.s.

for all s ∈ [0, T ] since these processes are càdlàg.
Below we denote by C a generic constant depending only on T ,m,K1,K2,

whose precise value may possibly change at each occurrence. Recalling the poly-
nomial growth condition on f and g in (H2), it follows from Lemma 4.8 that∣∣Yn

s

∣∣ ≤ C ess sup
ν∈Vn(Dλ)

Eν
[
1 + sup

r∈[0,T ]
|Xr |m

∣∣Fs

]
, s ∈ [0, T ],P-a.s.

Next we note that standard estimates on the stochastic equation (3.2) satisfied by
X, based on the Lipschitz and linear growth conditions in (H1), lead for every
s ∈ [0, T ] to the inequality

Eν
[

sup
r∈[s,T ]

|Xr |m|Fs

]
≤ C

(
1 + sup

r∈[0,s]
|Xr |m

)
, P-a.s.,

which can be viewed as a conditional form of estimate (2.4), and where the
constant C can be chosen to be the same for every ν ∈ V(Dλ). It follows that
|Yn

s | ≤ C(1 + supr∈[0,s] |Xr |m), P-a.s., and the required conclusion follows imme-
diately. �

REMARK 4.3. In [17], uniform estimates for (Y n) in S2 are obtained in the
general case where the generator f may also depend on Yn,Zn, but under the
assumption that there exists a solution to (3.5). Here, in our specific control case
[which leads to the explicit formula (4.17)], one derives directly from Lemma 4.9
and (2.4) a uniform estimate for (Y n) in S2,

E
[

sup
s∈[0,T ]

∣∣Yn
s

∣∣2]
≤ C

(
1 + ‖x‖2m∞

)
.

We are now in a position to complete the proof of Theorem 3.2.

END OF THE PROOF OF THEOREM 3.2.

• Lemma 4.9 corresponds to the statements of Lemmas 3.1 and 3.2 in [17].
Following the same arguments used there, it can be proved that the sequence
(Y n,Zn,Un,n

∫ ·
0
∫
A Un(a)+λ(da) ds) converges, in the sense specified in [17],

Theorem 3.1, to the required minimal solution (Y,Z,U,K) to the BSDE (3.5).
Thus, for s ∈ [0, T ], the value Ys = limn→∞ ↑ Yn

s inherits from Yn
s the property

of being deterministic, and not dependent on the choice of the set-up Dλ.
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• Since Yn
s ,Xs, Is are deterministic for s ∈ [0, t], it follows from Lemma 4.8 that

Yn
t = sup

ν∈Vn(Dλ)

Eν

[∫ T

t
fs(X, Is) ds + g(X)

]
.

By sending n to infinity, this shows that

Yt = lim
n→∞ ↑ Yn

t = sup
ν∈V(Dλ)

Eν

[∫ T

t
fs(X, Is) ds + g(X)

]

(4.18)
= v∗

1(t, x, a, λ,Dλ).

Indeed, since Vn(Dλ) ⊂ V(Dλ), we have limn→∞ ↑ Yn
t ≤ v∗

1(t, x, a, λ,Dλ). To
prove the opposite inequality, take any ν ∈ V(Dλ), and define νn

t (a) = νt (a)∧n.
By similar arguments to those used in the proof of equality (4.12), one can show
that for n → ∞,

Eνn
[∫ T

t
fs(X, Is) ds + g(X)

]
−→ Eν

[∫ T

s
fs(X, Is) ds + g(X)

]
,

which implies that limn→∞ Yn
t ≥ v∗

1(t, x, a, λ,Dλ) since ν is arbitrary in V(Dλ),
and thus equality (4.18). This shows in particular that v∗

1 does not depend on the
choice of Dλ, and so is equal to v∗

2 . Moreover, by combining with the result of
Theorem 3.1, we obtain that Yt represents also the value v(t, x) of the original
control problem. �

APPENDIX: SOME FACTS ON RANDOM MEASURES AND THEIR
COMPENSATORS

We first recall the following fact, used in the previous sections.

PROPOSITION A.2. Let (�,F,P) be a probability space endowed with two
filtrations (Ft ), (Kt ), such that F∞ and K∞ are independent. Let (Tn,αn)n≥1
be a marked point process with respect to (Ft ) and (Sn,βn)n≥1 a marked point
process with respect to (Kt ). Denote μ = ∑

n≥1 δ(Tn,αn), κ = ∑
n≥1 δ(Sn,βn) the

associated random measures, and μ̃(dt, da), κ̃(dt, da) the respective (Ft )- and
(Kt )-compensators. Finally assume that the processes have no common jumps.

Then the random measure μ + κ admits μ̃(da dt) + κ̃(da dt) as a (Ft ∨ Kt )-
compensator.

The rest of this section is devoted to a technical result, stated below as
Lemma A.11, that was used in the proof of Lemma 4.3.

We recall that in our paper we require A to be a Lusin space, and we denote by
B(A) its Borel σ -algebra.
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LEMMA A.10. Let q(b, da) be a transition kernel on the Lusin space A. Then
there exists a function q :A × [0,1] → A, measurable with respect to B(A) ⊗
B([0,1]) and B(A), such that for every b ∈ A, the measure B 	→ q(b,B) [B ∈
B(A)] is the image of the Lebesgue measure on [0,1] under the mapping u 	→
q(b,u); equivalently,

∫
A

k(a)q(b, da) =
∫ 1

0
k
(
q(b,u)

)
du,

for every nonnegative measurable function k on A.

PROOF. When A is a separable complete metric space (in particular, when A

is the unit interval [0,1]), the result is known and follows from a construction of
Skorohod; see, for example, [31], Theorem 3.1.1. The general case reduces to this
one, since it is known that any Lusin space is either finite or countable (with the
discrete topology) or isomorphic, as a measurable space, to the interval [0,1]; see,
for example, [1], Corollary 7.16.1. �

From the lemma, it follows that if U is a random variable defined on some prob-
ability space and having uniform law on [0,1], then for fixed b ∈ A, the random
variable q(b,U) has law q(b, da) on A. The use of the same letter q should not be
a source of confusion.

Now let (�,F,P) be a probability space with a filtration (Ft ), let (Tn,αn)n≥1
be a marked point process in A, with respect to (Ft ) and let μ = ∑

n≥1 δ(Tn,αn)

the corresponding random measure. Assume that we can find sequences (Un)n≥1,
(Sn)n≥1 of real random variables defined on � and satisfying the following condi-
tions:

(1) every Un is uniformly distributed on [0,1];
(2) every Sn admits a density [denoted fn(t)] with respect to the Lebesgue

measure, and we have 0 < S1 < S2 < S3 < · · · < ∞;
(3) the random variables Un,Sk (n, k ≥ 1) are independent, and independent of

F∞.

Define

Rn = Tn + Sn,βn = q(αn,Un), n ≥ 1,

and set R0 = 0. Since we assume Sn < Sn+1, we see that (Rn,βn)n≥1 is a marked
point process in A. Let κ = ∑

n≥1 δ(Rn,βn) denote the corresponding random mea-
sure, and (Fκ

t ) the corresponding natural filtration. Finally set Ht = Ft ∨Fκ
t . We

wish to compute the compensator κ̃ of κ with respect to the filtration H = (Ht ).
We use the notation Fn(s) = ∫ s

−∞ fn(t) dt and the convention fn(s)
1−Fn(s)

= 0 if
Fn(s) = 1.
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LEMMA A.11. With the previous assumptions and notation, the compensator
of the random measure κ with respect to (Ht ) is given by the formula

κ̃(dt, da) = ∑
n≥1

1(Tn∨Rn−1,Rn](t)q(αn, da)
fn(t − Tn)

1 − Fn(t − Tn)
dt.

PROOF. Let us first check that κ̃(dt, da), defined by the formula above,
is an (Ht )-predictable random measure. We note that Tn ∨ Rn−1 and Rn are
(Ht )-stopping times and that αn and fn(t−Tn)

1−Fn(t−Tn)
are FTn-measurable and hence

FTn∨Rn−1 -measurable. It follows that for every C ∈ B(A), the process

1(Tn∨Rn−1,Rn](t)q(αn,C)
fn(t − Tn)

1 − Fn(t − Tn)

is (Ht )-predictable and finally that κ̃(dt, da) is an (Ht )-predictable random mea-
sure.

To prove the lemma we need now to verify that for every positive P(H)⊗B(A)-
measurable random field Ht(ω, a), we have

E

[∫ ∞
0

∫
A

Ht(a)κ(dt da)

]
= E

[∫ ∞
0

∫
A

Ht(a)κ̃(dt da)

]
.

Since Ht = Ft ∨Fκ
t , by a monotone class argument it is enough to consider H of

the form

Ht(ω, a) = H 1
t (ω)H 2

t (ω)k(a),

where H 1 is a positive (Ft )-predictable random process, H 2 is a positive (Fκ
t )-

predictable random process and k is a positive A-measurable function. Since (Fκ
t )

is the natural filtration of κ , by a known result [see, e.g., [14], Lemma (3.3)] H 2

has the following form:

H 2
t = b1(t)1(0,R1](t) + b2(β1,R1, t)1(R1,R2](t)

+ b3(β1, β2,R1,R2, t)1(R2,R3](t) + · · ·
+ bn(β1, . . . , βn−1,R1, . . . ,Rn−1, t)1(Rn−1,Rn](t) + · · · ,

where each bn is a positive measurable deterministic function of 2n − 1 real vari-
ables. Since

E

[∫ ∞
0

∫
A

Ht(a)κ(dt da)

]
= E

[∑
n≥1

HRn(βn)

]
,

to prove the thesis it is enough to check that for every n ≥ 1, we have the equality

E
[
HRn(βn)

] = E

[∫ ∞
0

∫
A

Ht(a)q(αn, da)
fn(t − Tn)

1 − Fn(t − Tn)
1Tn∨Rn−1<t≤Rn dt

]
,
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which can also be written

E
[
H 1

Rn
bn(β1, . . . , βn−1,R1, . . . ,Rn−1,Rn)k(βn)

]

= E

[∫ ∞
0

∫
A

H 1
t bn(β1, . . . , βn−1,R1, . . . ,Rn−1, t)k(a)q(αn, da)

× fn(t − Tn)

1 − Fn(t − Tn)
1Tn∨Rn−1<t≤Rn dt

]
.

We use the notation

Kn(t) = H 1
t bn(β1, . . . , βn−1,R1, . . . ,Rn−1, t)

to reduce the last equality to

E
[
Kn(Rn)k(βn)

]
(A.19)

= E

∫ ∞
0

∫
A

Kn(t)k(a)q(αn, da)
fn(t − Tn)

1 − Fn(t − Tn)
1Tn∨Rn−1<t≤Rn dt.

By the definition of Rn and βn, we have E[Kn(Rn)k(βn)] = E[Kn(Tn+Sn)k(q(αn,

Un))]. As noted above, since Un has uniform law on (0,1), the random variable
q(b,Un) has law q(b, da) on A, for any fixed b ∈ A. Recalling that Sn has density
fn and noting that the random elements Un, Sn and (F∞, β1, . . . , βn−1,R1, . . . ,

Rn−1) are all independent, we obtain

E
[
Kn(Rn)k(βn)

] = E

[∫ ∞
0

∫
A

Kn(Tn + s)k(a)q(αn, da)fn(s) ds

]
.(A.20)

Using again the independence of Sn and (F∞, β1, . . . , βn−1,R1, . . . ,Rn−1), we
also have

E

[∫ ∞
0

∫
A

Kn(Tn + s)k(a)q(αn, da)
fn(s)

1 − Fn(s)
1Sn≥s ds

]

= E

[∫ ∞
0

∫
A

Kn(Tn + s)k(a)q(αn, da)
fn(s)

1 − Fn(s)
P(Sn ≥ s) ds

]
,

and since P(Sn ≥ s) = ∫ ∞
s fn(r) dr = 1−Fn(s), this coincides with the right-hand

side of (A.20). By a change of variable we arrive at the equality

E
[
Kn(Rn)k(βn)

]

= E

[∫ ∞
Tn

∫
A

Kn(t)k(a)q(αn, da)
fn(t − Tn)

1 − Fn(t − Tn)
1Sn≥t−Tn dt

]
(A.21)

= E

[∫ ∞
0

∫
A

Kn(t)k(a)q(αn, da)
fn(t − Tn)

1 − Fn(t − Tn)
1Tn<t≤Rn dt

]
.

We finally claim that

fn(t − Tn)1Tn<t≤Rn = fn(t − Tn)1Tn∨Rn−1<t≤Rn, P⊗ dt-a.s.
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If we can prove the claim, we conclude that (A.21) coincides with (A.19), and the
proof will be complete. To prove the claim, we show that the following integral is
zero:

E

[∫ ∞
0

fn(t − Tn)|1Tn<t≤Rn − 1Tn∨Rn−1<t≤Rn |dt

]

(A.22)

= E

[∫ ∞
0

fn(t − Tn)1Tn<t≤Tn∨Rn−1 dt

]
.

Since Tn ∨Rn−1 = Tn ∨ (Tn−1 +Sn−1) ≤ Tn ∨ (Tn +Sn−1) = Tn +Sn−1, the right-
hand side of (A.22) is smaller or equal to

E

[∫ ∞
0

fn(t − Tn)1Tn<t≤Tn+Sn−1 dt

]
= E

[∫ ∞
0

fn(s)1s≤Sn−1 ds

]
.

Since Sn and Sn−1 are independent, and Sn−1 < Sn-a.s., we finally have

E

[∫ ∞
0

fn(s)1s≤Sn−1 ds

]
= E[1Sn≤Sn−1] = 0. �
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