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JIGSAW PERCOLATION: WHAT SOCIAL NETWORKS CAN
COLLABORATIVELY SOLVE A PUZZLE?
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We introduce a new kind of percolation on finite graphs called jigsaw
percolation. This model attempts to capture networks of people who inno-
vate by merging ideas and who solve problems by piecing together solutions.
Each person in a social network has a unique piece of a jigsaw puzzle. Ac-
quainted people with compatible puzzle pieces merge their puzzle pieces.
More generally, groups of people with merged puzzle pieces merge if the
groups know one another and have a pair of compatible puzzle pieces. The
social network solves the puzzle if it eventually merges all the puzzle pieces.
For an Erdős–Rényi social network with n vertices and edge probability pn,
we define the critical value pc(n) for a connected puzzle graph to be the
pn for which the chance of solving the puzzle equals 1/2. We prove that
for the n-cycle (ring) puzzle, pc(n) = �(1/ logn), and for an arbitrary con-
nected puzzle graph with bounded maximum degree, pc(n) = O(1/ logn)

and ω(1/nb) for any b > 0. Surprisingly, with probability tending to 1 as the
network size increases to infinity, social networks with a power-law degree
distribution cannot solve any bounded-degree puzzle. This model suggests a
mechanism for recent empirical claims that innovation increases with social
density, and it might begin to show what social networks stifle creativity and
what networks collectively innovate.

1. Introduction. Solving difficult problems and creating new ideas are
sometimes compared to merging the pieces of a puzzle [2, 25]. Often these
breakthroughs are achieved not by one person working in isolation but rather by a
collection of people who exchange and merge partial solutions and ideas [25]. As
a result, the structure of collaboration networks (who collaborates with whom) can
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affect the success of the network’s creative output, as found empirically for scien-
tific breakthroughs [9, 18, 27] and for hit Broadway musicals [38, 39]. In business,
some companies connect their employees using internal social networks [30] and
expertise location systems [12] to match compatible ideas and expertise. Some
companies outsource their most difficult R&D problems to leverage knowledge
worldwide using services such as Innocentive and Kaggle. Digital tools for mas-
sive collaboration are also being used to solve problems in mathematics [19],
climate change [24] and software design [26].

Here we formalize this metaphor of a large group of people collaboratively solv-
ing a puzzle by introducing a new kind of percolation on finite graphs that aims
to model a network of people who merge compatible ideas into bigger and better
ideas. The model is reminiscent of other models of percolation on graphs, such as
bond percolation [22] and bootstrap percolation [23], but jigsaw percolation has
more complex dynamics.

Consider a social network of n people with vertex set V = {1,2, . . . , n}, each of
whom has a unique “partial idea” that could merge with one or more other partial
ideas belonging to other people. These “partial ideas” can be thought of as pieces
of a jigsaw puzzle: an idea is compatible with certain other ideas, just as a piece of
a jigsaw puzzle can join with certain other puzzle pieces (in the correct solution
of the puzzle). Thus we use “ideas” and “puzzle pieces” interchangeably. The two
networks are:

• the people graph (V ,Epeople), denoting who knows and communicates with
whom;

• the puzzle graph (V ,Epuzzle), denoting which ideas are compatible and thus can
merge to form a bigger, better idea.

In this paper, we assume each person has a unique idea, so there are n ideas (puzzle
pieces), and the system of people and their compatible ideas is a graph with two
sets of edges, Epeople and Epuzzle. Allowing a person to have multiple ideas or
multiple people to have the same idea requires two vertex sets, which we leave for
future work; see Section 6.

Next we propose a natural dynamic for people to merge their compatible ideas
(puzzle pieces). If two people u,w know each other and have compatible puzzle
pieces (i.e., uw ∈ Epeople ∩ Epuzzle), then they merge their puzzle pieces. After
u,w merge their puzzle pieces, we say that u,w belong to the same jigsaw cluster
U ⊆ V . The general rule is that two jigsaw clusters U,W merge if at least two
people (one from each cluster) know each other, and at least two people (one from
each cluster) have compatible puzzle pieces. More precisely, we say that jigsaw
clusters U,W are people-adjacent if uw ∈ Epeople for some u ∈ U,w ∈ W . Simi-
larly, U,W are puzzle-adjacent if u′w′ ∈ Epuzzle for some u′ ∈ U,w′ ∈ W . Jigsaw
clusters U,W merge if they are both people-adjacent and puzzle-adjacent.

http://www.innocentive.com/
http://www.kaggle.com/
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FIG. 1. Illustration of the jigsaw dynamic. Dashed and solid edges denote the people graph and
puzzle graph, respectively. Jigsaw clusters U and W contain three and four nodes each. Nodes u,w

know each other but do not have compatible puzzle pieces. However, they have merged their puzzle
pieces with nodes u′,w′, who do have compatible puzzle pieces. Thus U and W merge.

The motivation for this dynamic is the notion that after merging their ideas,
a group of people can use any of those ideas to merge with the ideas of other people
whom they know. We illustrate this in Figure 1. Here two nodes u,w in different
jigsaw clusters U,W know each other (uw ∈ Epeople), but their puzzle pieces are
incompatible (uw /∈ Epuzzle). However, u and w have merged their puzzle pieces
with those of u′ and w′, respectively, and u′ and w′ do have compatible puzzle
pieces (u′w′ ∈ Epuzzle). Thus u can tell w about her friend u′, and w can tell u

about his friend w′. Then u′ and w′ merge their compatible puzzle pieces, and the
jigsaw clusters U and W merge.

Our main results, Theorems 1 and 2, characterize a phase transition in the prob-
ability that a random graph solves a jigsaw puzzle in the manner described above.
We find, roughly speaking, the required number of interactions among a group of
people for them to collectively solve a large puzzle. This phase transition might
begin to inform what properties of social networks facilitate their ability to collab-
oratively solve problems and to innovate.

1.1. Related literature. Previous models of scientific discovery and innova-
tion can be roughly partitioned into three sets. Models in the first set focus on the
structure of the social network but not on the space of ideas; an example is an epi-
demic model of a single idea that spreads like a slow, hard-to-catch disease in a
social network [5, 7]. Models in the second set focus on the space of ideas but not
on the social network; an example is a branching process of new ideas mating with
old ones [37]. Models in the third set attempt to capture both the social network
and how it interacts with some space of ideas. One example is a model of peo-
ple trading and gifting ideas with neighbors in a social network to obtain certain
ideas needed to produce an output [14]. Four other models in this set are reviewed
in [10]: an ant colony model of scientists seeking papers to cite like ants seeking
food; the costs and benefits of hunting for references in bibliographic habitats (“in-
formation foraging theory”); the A–B–C model of finding triadic closure among
ideas; and bridging structural holes (gaps between dense communities of graphs)
in networks of people and ideas. However, researchers have noted the difficulty
in modeling how teamwork and collaboration lead to greater collective creativity
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and discovery [6, 16]. Our contribution to this literature is a model that focuses
on the way people might collaboratively merge their partial solutions to a difficult
problem (or their partial ideas that combine to form a better idea).

1.2. Road map for the paper. In Section 2, we define the jigsaw percolation
process formally. We present the main results in Section 3 and prove them in Sec-
tions 4–5. In Section 6, we discuss simulations and open questions.

2. Formal definition of jigsaw percolation. Formally, jigsaw percolation on
(V , Epeople, Epuzzle) proceeds in steps as follows. At every step i ≥ 0, we have a
partition Ci of the vertex set V . The elements of Ci , called “jigsaw clusters,” are
labels on vertices that denote which puzzle pieces have merged by step i:

(1) Initially, C0 is the set of singletons {{v} :v ∈ V }.
(2) At step (i + 1) ≥ 1, we merge every pair of jigsaw clusters in Ci that are

both puzzle- and people-adjacent; see Figure 2.

For example, after the first step, C1 is the set of connected components in the
graph (V ,Epeople ∩ Epuzzle). Note that three or more jigsaw clusters can merge
simultaneously, as illustrated in Figure 2.

It is useful to write jigsaw percolation as a dynamical system as follows. At
step i, let Ei be the unordered pairs of clusters in Ci that are people-adjacent and
puzzle-adjacent. Then the jigsaw clusters in Ci+1 are the connected components of
the graph (Ci ,Ei):

Ci+1 =
{ ⋃

U∈A

U :A is a connected component of (Ci ,Ei)

}
.(2.1)

Given (V ,Epeople,Epuzzle), we merge jigsaw clusters until no more merges can
be made, that is, iterate equation (2.1) to a fixed point C∞. After finitely many
steps, no more merges can be made. We say that the people graph solves the puz-
zle if all nodes belong to the same jigsaw cluster at the end of the process (i.e.,
C∞ = {V }). Figure 3 illustrates a people graph that fails to solve a 2 × 2 puzzle.

FIG. 2. Jigsaw clusters U1, U2, U3, U4, U5 ∈ Ci at stage i. At stage i + 1, jigsaw clusters U1, U2,
U3 merge.
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FIG. 3. A complete trajectory of the jigsaw dynamics. The people graph (dashed edges) does not
solve this 2 × 2 puzzle.

An equivalent definition of the process that is elegant and simple to code on
the computer is to iteratively contract nodes that are adjacent in Epeople ∩ Epuzzle
until no more contractions are possible. The people graph solves the puzzle if this
procedure ends with a single node.

3. Statement of results.

3.1. Erdős–Rényi random graphs solving ring and bounded-degree puzzles.
In most of this paper, we consider people graphs that are Erdős–Rényi random
graphs G(n,pn), in which each possible edge appears independently with proba-
bility pn, with associated probability distribution Ppn . (The exception is Section 5,
in which we consider power-law random graphs rather than Erdős–Rényi random
graphs.) For a fixed, connected puzzle graph of size n, we are interested in the
probability of the event

Solve := {the people graph solves the puzzle} = {
C∞ = {V }}.

We denote this probability by P(Solve) or by Ppn(Solve) to make explicit the
value of pn. Note that the jigsaw dynamic is monotonic, in that adding more edges
to the people graph or to the puzzle graph cannot decrease the chance of solv-
ing the puzzle. Thus, for fixed n, Pp(Solve) is nondecreasing with p. Trivially,
P0(Solve) = 0 and P1(Solve) = 1. Furthermore, Pp(Solve) is a polynomial
in p of degree at most

(n
2

)
. Thus for each n there exists a unique p ∈ (0,1) such

that Pp(Solve) = 1/2, and we make the following definition.

DEFINITION 1. The critical value pc(n) for solving a connected puzzle is the
unique value of pn ∈ (0,1) such that Ppn(Solve) = 1/2.

REMARK 1. There is nothing special about the number 1/2. For our results,
we could have taken any fixed positive real number strictly smaller than 1. How-
ever, the critical value pc(n) depends on the choice of the puzzle graph, which we
suppress in the notation pc(n).
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REMARK 2. If the people graph is not connected, then the puzzle can-
not be solved. Thus pc(n) ≥ tn, where tn is the unique real number such
that P(G(n, tn) is connected) = 1/2. Asymptotically we have tn ≈ (logn −
log log 2)/n; see [17]. Note that the equality pc(n) = tn holds when the puzzle
graph is the star graph ({1,2, . . . , n}, {(i, n) : 1 ≤ i < n}), because in this case the
puzzle can be solved if and only if the people graph is connected.

We use the following standard notation for describing sequences of nonnegative
real numbers an and bn: an = O(bn) means there exists C > 0 so that an ≤ Cbn

for all sufficiently large n; an = �(bn) means an = O(bn) and bn = O(an); an =
o(bn) means an/bn → 0 as n → ∞; and an = ω(bn) means bn = o(an).

Our main results are the following two theorems.

THEOREM 1 (Ring puzzle). If the people graph is the Erdős–Rényi random
graph and the puzzle graph is the n-cycle, then

1

27 logn
≤ pc(n) ≤ π2

6 logn

(
1 + o(1)

)
.

Moreover, for pn = λ/ logn, Ppn(Solve) → 0 or 1 according as λ < 1/27 or
λ > π2/6.

REMARK 3. We believe that our upper bound is tight; see Section 6. We did
not attempt to optimize the constant 1/27 in the lower bound; this value was chosen
to make the proof easier to read. We do not think that our proof method will yield
an optimal lower bound.

THEOREM 2 (Connected puzzle of bounded degree). For an Erdős–Rényi peo-
ple graph solving a connected puzzle with bounded maximum degree,
pc(n) = O(1/ logn) and pc(n) = ω(1/nb) for any b > 0. In particular, we have
Ppn(Solve) → 0 for pn = O(1/nb) for any b > 0, and Ppn(Solve) → 1 for
pn = λ/ logn with λ > π2/6.

REMARK 4. The upper bound for pc(n) in Theorem 2 holds for any connected
puzzle graph, even with maximum degree growing with n as n → ∞; see Propo-
sition 2. The star graph example in Remark 2 provides a counterexample to the
lower bound when the maximum degree is unbounded.

REMARK 5. The jigsaw dynamic is symmetric under swapping the people and
puzzle graphs. Thus Theorems 1 and 2 also apply to a ring and bounded-degree
people graph (resp.) solving an Erdős–Rényi puzzle.

Some of the techniques in our proofs resemble those used for long-range perco-
lation and for bootstrap percolation, but our arguments differ in key ways. In our
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proof of the lower bound on pc(n) for the ring puzzle graph, we show that a set
of cut points, which must separate jigsaw clusters in the final configuration C∞,
exists with high probability for sufficiently small p. This is similar in spirit to
finding a positive density of points over which no edge crosses in the context of
one-dimensional long range percolation [13, 35] to show that no infinite compo-
nent exists.

In our proof of the upper bound on pc(n), we use the fact that once a sufficiently
large, solved cluster emerges, that cluster will inevitably continue to merge and
ultimately solve the puzzle. As in bootstrap percolation on the lattice graph [1, 23],
our upper bound arises from a sufficient condition for the formation of a large
cluster.

3.2. Power-law random graphs solving bounded-degree puzzles. As a model
of social networks, the Erdős–Rényi random graph assumes no structure other than
the average number of connections (neighbors) per person. However, in many so-
cial networks—from scientific citations [33] to scientific collaborations [3, 31, 32]
to sexual partners [28]—some people have orders of magnitude more connections
than others. The broad-scale degree distributions of such networks are well de-
scribed by a power-law (or by a power-law with a cutoff), in which the fraction of
vertices having degree k is proportional to k−α for some power α > 2. In light of
these findings, we consider jigsaw percolation on people graphs that are given by
the configuration model [29] with limiting power-law degree distribution p = {pk}
satisfying

pk = 0 for k < dmin for some dmin ≥ 3 and
(3.1)

pk � k−α+o(1) as k → ∞ for some power α > 2.

The condition dmin ≥ 3 is imposed to ensure that the resulting people graph is
connected with high probability. Here and later the phrase “with high probability”
refers to “with probability tending to 1 as the size of the graph (network) grows to
infinity.”

In the configuration model, the people graph (V ,Epeople) is constructed in two
stages. Assuming |V | = n, first the degrees d1, d2, . . . , dn are chosen to be i.i.d.
from the aimed degree distribution p, and di many half-edges are assigned to ver-
tex i,1 ≤ i ≤ n. We make the sum of the degrees even by possibly adding one
to dn. This has no effect on the analysis that follows. Then, conditioned on {di}ni=1,
(V ,Epeople) is chosen uniformly from the collection of (multi-)graphs having de-
gree sequence (d1, d2, . . . , dn) by randomly matching the half-edges at each vertex.

Surprisingly, such heterogeneous social networks cannot solve a large class of
puzzles.

PROPOSITION 1. For any α > 2, if (V ,Epeople) is given by the configuration
model on n vertices with power-law degree distribution p satisfying (3.1), and if
(V ,Epuzzle) has bounded maximum degree, then P(Solve) → 0 as n → ∞.
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REMARK 6. Because collaboration networks in science [3, 31, 32] manage
to collectively solve puzzles despite their degree distributions being well mod-
eled by power-laws with exponential decay, more realistic assumptions, such as
unbounded-degree puzzles and randomly grown collaboration networks, merit fu-
ture work; see Section 6 for more details.

For degree exponent α > 2 of the social network, we expect Proposition 1 to
hold for models of power-law random graphs other than the configuration model
as well. It is easy to check that the maximum of n i.i.d. random variables from the
distribution given in (3.1) is tight under the scaling n−1/(α−1). Thus one expects
to couple the power-law random graph as a subgraph of an Erdős–Rènyi random
graph with edge probability 1/nb with b < 1/(α − 1) and deduce Proposition 1
from Theorem 2 and a monotonicity argument. This conclusion is indeed true for
the Chung–Lu power-law random graph model (cf. [11]) with α > 3. However, for
α < 3 the power-law random graphs contain large cliques having size polynomial
in n. This excludes the possibility of the above coupling, as the maximum size of
a clique in the Erdős–Rényi random graph G(n,n−b) is at most poly-logarithmic
in n.

The proof of Proposition 1, presented in Section 5, circumvents this issue with
a direct argument without the need for any coupling. Furthermore, for α ∈ (1,2),
we expect the power-law random graph given by the configuration model to solve
any bounded-degree puzzle with high probability, because then the people graph
has very small diameter; cf. [40]. However, we do not have a rigorous proof for
that conjecture.

3.3. Subsequent work. After this work appeared as a preprint, Slivken [36]
proved a related result for random puzzle graph. In this model, both the people
and the puzzle graphs are Erdős–Rényi with edge probabilities pppl and ppuz, re-
spectively, which satisfy pppl ∧ ppuz ≥ (1 + ε) logn/n for some ε > 0 to ensure
that both graphs are connected with high probability. It is shown in [36] that the
probability of solving the puzzle is close to zero if pppl · ppuz ≤ c/(n logn) and is
close to one if pppl · ppuz ≥ log logn/(cn logn), for some constant c > 0. In an-
other subsequent paper [21], Gravner and one of the present authors proved that for
an Erdős–Rényi people graph solving a general puzzle graph with bounded max-
imum degree D, the critical value pc is �(1/ logn), where the constants depend
only on D.

4. Erdős–Rényi random graphs solving ring and bounded-degree puzzles.
In this section, we prove Theorems 1 and 2, in which the people graph is the Erdős–
Rényi random graph. In Section 4.1, we prove the upper bound on the critical value
pc(n) for both Theorems 1 and 2. In Section 4.2, we prove the lower bound for the
ring puzzle in Theorem 1, and in Section 4.3 we prove the lower bound for arbitrary
puzzles with bounded maximum degree.



JIGSAW PERCOLATION 2021

4.1. Upper bound on the critical value. In this section, we prove that the crit-
ical value has upper bound π2/(6 logn) for any connected puzzle graph.

PROPOSITION 2 (Upper bound for the critical value). For an Erdős–Rényi
people graph and any connected puzzle graph on n vertices, if λ > π2/6 and pn =
λ/logn, then

lim
n→∞Ppn(Solve) = 1.

REMARK 7. A close look at the proof of Proposition 2 reveals that the same
conclusion is true as long as pn ≥ π2/(6 logn) · (1 + c log logn/logn) for some
constant c ∈ (0,∞).

For simplicity, one can look at the ring puzzle graph (the n-cycle), with

Epuzzle = {
(1,2), (2,3), . . . , (n − 1, n), (n,1)

}
.

The idea of the proof is the following sufficient condition to solve the ring puzzle,
illustrated in Figure 4. Suppose that in the people graph, node 2 is adjacent to
node 1; node 3 is adjacent to 1 or 2; node 4 is adjacent to 1, 2 or 3; and so on, so
that node j is people-adjacent to at least one of {1,2, . . . , j − 1} for all 2 ≤ j ≤ n

(as illustrated in Figure 4). Then the people graph solves the puzzle.
However, to obtain a good bound, we do not consider solving the whole puzzle

in the manner depicted in Figure 4. Instead, we partition the puzzle graph into
disjoint blocks and use the sufficient condition depicted in Figure 4 within each
block. If the blocks are sufficiently large, then solving just one block suffices to
solve the whole puzzle. We call a set U ⊆ V internally solved if the people graph
induced on U can solve the puzzle graph induced on U and prove the existence of
a “large” internally solved set. We use the following lemma to partition the puzzle
graph into disjoint blocks. The motivation comes from analyzing the ring puzzle
graph.

FIG. 4. Illustration of the sufficient condition to solve the ring puzzle: j is people-adjacent to
{1,2, . . . , j − 1} for all j = 2,3, . . . , n. This event is contained in the event Solve.
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LEMMA 1. Let m ≥ 1 be a fixed integer. For any connected graph G with
vertex set V , there exists an integer k ≥ |V |/(2m) and subsets B1,B2, . . . ,Bk of V

such that:

(i) V = ⋃k
i=1 Bi ;

(ii) |Bi | ∈ [m,2m] for i = 1,2, . . . , k − 1 and |Bk| < 2m;
(iii) the induced subgraph on Bi is connected for all i = 1,2, . . . , k;
(iv) Bi and Bj share at most one vertex in common for all 1 ≤ i < j ≤ k.

PROOF. The proof proceeds by induction on n := |V |. The lemma is obviously
true for n ≤ 2m, so let us assume that n ≥ 2m + 1.

For any connected graph G of size n, fix a spanning tree T of G. Removing
a single vertex v0 from the tree T results in finitely many disjoint components
C1,C2, . . . ,Ck , each of which has a unique marked vertex adjacent to v0 in T . We
consider three disjoint cases.

CASE 1. If one of the components has size between [m,2m], we define this
component as B1 and use induction on the graph G with the vertex set B1 removed,
which is still connected.

CASE 2. If all of the components have size < m, define l as the smallest
integer such that |C1| + |C2| + · · · + |Cl−1| < m and |C1| + |C2| + · · · + |Cl| ≥ m.
Such an l exists, because |C1|+|C2|+· · ·+|Ck| = n−1 > m. Necessarily we have
|C1|+ |C2|+ · · ·+ |Cl| < 2m, because |Ci | < m for all i. We take B1 := ⋃l

i=1 Ci ∪
{v0} and use induction on the graph G with vertex set

⋃l
i=1 Ci removed (note

that v0 will appear in more than one subset because it has not yet been removed
from G).

CASE 3. If none of the components has size between [m,2m] and at least one
component has size > 2m, we choose one such component (and ignore the other
components), call it V1, and remove the marked vertex v1 from it. Removing v1
creates several new components, each containing a marked vertex adjacent to v1
in T . We repeat this procedure until reaching the following situation: the size of
Vk is > 2m, but if we remove the marked vertex vk from it, then all the resulting
components have size ≤ 2m. If one of them has size more than m, then we take that
component as B1, and we continue by induction with the rest of the tree, which is
connected by construction. If all of the components have size < m, we follow the
steps in Case 2 to define B1 and continue by induction.

To complete the proof we need to check properties (iii) and (iv) for each
block Bi , which follow easily from the spanning tree and marked vertex construc-
tion. �
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PROOF OF PROPOSITION 2. Using Lemma 1, we partition the puzzle graph
into blocks B1, B2, . . . ,Bk of size ≤ 2m (where m is determined later) with
|Bi | ≥ m for all i < k. Note that k ≥ n/(2m). Let Bi be the event that block Bi

is solved using only people edges in block Bi . Let S := ∑k−1
i=1 1Bi

be the number
of blocks (excluding the last block Bk) that are solved using people edges only
within each block (i.e., internally solved). The events Bi are independent because
the blocks use disjoint sets of edges, and they are Bernoulli random variables with
mean P(Bi).

Next we show that if pn = λ/ logn with λ > π2/6, then

P(S ≥ 1) → 1 as n → ∞.

Consider the subgraph of the puzzle graph induced by Bi . We can fix a rooted
spanning tree and label the vertices with integers 1,2, . . . , |Bi | in such a way
that the vertex with label j is puzzle-adjacent to the set of vertices with labels
{1,2, . . . , j − 1} in the spanning tree for all j ≥ 1. As illustrated in Figure 4, a suf-
ficient condition for the event Bi to occur is the event

Bi := {
for all 1 ≤ j ≤ |Bi |, the vertex labeled j is people-adjacent

to the set of vertices labeled {1,2, . . . , j − 1}} ⊂ Bi.

[Note that there could be other ways to solve the puzzle. For example, in the case
of a ring puzzle, j is people-adjacent to j + 1, and j + 1 (but not j ) is people-
adjacent to {1, . . . , j − 1}. Thus B1 is not a necessary condition for B1 to occur,
that is, B1 � B1.] The events that j + 1 is people-adjacent to {1,2, . . . , j} occur
independently with probability ≥ 1 − (1 − pn)

j , so

P(Bi) ≥
|Bi |−1∏
j=1

(
1 − (1 − pn)

j ) ≥
2m∏
j=1

(
1 − (1 − pn)

j )
.

Thus the random variable S stochastically dominates

S′ ∼ Binomial

(
k − 1,

2m∏
j=1

(
1 − (1 − pn)

j ))
.

For n ∈ N, let εn := − log(1 − pn), so that 1 − pn = e−εn . We use the next
lemma to obtain a lower bound on

logES′ = log(k − 1) +
2m∑
j=1

log
(
1 − e−jεn

)
.

The proof of Lemma 2 follows the present proof.
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LEMMA 2. Let θ(x) := − ∫ x
0 log(1 − e−t ) dt for x ∈ [0,∞]. If limε→0 mεε =

x ∈ [0,∞], then

lim
ε→0

ε

mε∑
i=1

log
(
1 − e−iε) = −θ(x).

Moreover, for all m ≥ 1 and ε > 0,∣∣∣∣∣
m∑

i=1

log
(
1 − e−iε) + π2

6ε

∣∣∣∣∣ ≤ 1

2
log

2e2

ε
+ π2

6εemε
.(4.1)

Fix δ > 0, and let m := �(1 + δ)(logn)/εn�. Here we tacitly assume that n is
large, so that 2m < n. Using Lemma 2, we estimate

logE
(
S′) ≥ log

(
n

2m
− 1

)
− π2

6εn

+
( 2m∑

j=1

log
(
1 − e−jεn

) + π2

6εn

)

≥
(

1 − π2

6λ

)
logn − log

2m

1 − 2m/n
− 1

2
log

2e2

εn

− π2

6εne2mεn

≥
(

1 − π2

6λ

)
logn − log

m√
εn

− O(1)

≥
(

1 − π2

6λ

)
logn − 5

2
log logn − O(1)

→ ∞ as n → ∞.

In the last inequality we used the fact that m = O(logn/εn) and εn ≥ pn =
λ/ logn. Since S′ is binomial, E(S′) → ∞ implies that P(S′ ≥ 1) → 1.

Let I := inf{i ≥ 1 :Bi is internally solved} be the random index such that BI is
the first block among B1,B2, . . . that is internally solved. We define I = ∞ when
no internally solved block exists. Thus we have P(I < ∞) = P(S ≥ 1) ≥ P(S′ ≥
1) → 1 as n → ∞.

Let U be a deterministic set of size m. The probability that all the remaining
n − m vertices in V \ U are connected to U by a people edge is(

1 − (1 − pn)
m)n−m ≥ (

1 − e−εnm)n ≥ 1 − ne−εnm ≥ 1 − n−δ.

Note that by connectivity of the puzzle graph and people graph, the event that
all vertices in V \ U are connected to U by people edges and U is internally
solved implies Solve. Moreover the event that a particular set of vertices forms
an internally solved subset or not depends only on the edges among those vertices.
Thus we have

P(Solve) ≥ P(Solve, I < ∞)

≥
k∑

i=1

P(Solve|I = i)P(I = i) ≥ (
1 − n−δ)P(I < ∞) → 1
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as n → ∞. The proof is complete. �

PROOF OF LEMMA 2. Note that

−ε

k∑
i=1

log
(
1 − e−iε) = ε

k∑
i=1

∞∑
j=1

e−ijε

j
= ε

∞∑
j=1

1 − e−jkε

j (ejε − 1)

=
∞∑

j=1

1 − e−jkε

j2 −
∞∑

j=1

(1 − e−jkε)(ejε − 1 − jε)

j2(ejε − 1)
.

Using the power series expression of ex , it is easy to see that (ex − 1 − x)/(ex −
1) ≤ min{x/2,1}. Applying the last inequality, we have

∞∑
j=1

(1 − e−jkε)(ejε − 1 − jε)

j2(ejε − 1)
≤

∞∑
j=1

min{jε/2,1}
j2 ≤ ∑

j≤m

ε

2j
+ ∑

j>m

1

j2

≤ ε

2
(logm + 1) + 1

m
= ε

2
log

2e2

ε

using m = 2/ε. Thus, combining the last two displays,∣∣∣∣∣
k∑

i=1

ε log
(
1 − e−iε) +

∞∑
j=1

1 − e−jkε

j2

∣∣∣∣∣ ≤ ε

2
log

2e2

ε
.(4.2)

In particular, if limε→0 kεε = x ∈ [0,∞], then interchanging the sum and the inte-
gral

lim
ε→0

ε

kε∑
i=1

log
(
1 − e−iε) = −

∞∑
j=1

1 − e−jx

j2

= −
∞∑

j=1

1

j

∫ x

0
e−j t dt =

∫ x

0
log

(
1 − e−t )dt,

which completes the proof. The bound (4.1) follows from (4.2) and the fact that
e−jkε ≤ e−kε for all j ≥ 1. �

4.2. Lower bound for the ring puzzle. In this section, we prove a matching-
order lower bound for an Erdős–Rényi people graph solving the ring puzzle. The
idea of the proof is to show the existence of a cut set that divides the ring into
pieces that never merge.

PROPOSITION 3. For the ring puzzle graph, if λ ≤ 1/27 and pn = λ/logn,
then Ppn(Solve) → 0. Therefore pc(n) ≥ 1/(27 logn).
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PROOF. Let x be a positive integer to be chosen later [it will be �(logn)].
We will identify the vertices in the ring puzzle graph (V ,Epuzzle) with elements
from Zn, so that two vertices u, v ∈ Zn are neighbors if and only if u − v = ±1,
where all additions and subtractions in Zn are modulo n. We denote the interval
{a, a + 1, . . . , b} ⊆ Zn by [a, b] and its length by |[a, b]| = b − a + 1.

Given an interval I = [a, b] ⊂ Zn, we call it x-good if there is a vertex u ∈ I

such that u is not people-adjacent to any vertex in the interval [a − x, b + x]. We
call the vertex u ∈ I an x-good vertex in I . The proof hinges on the following
observation. Loosely speaking, if throughout the puzzle there are people unac-
quainted with anyone in a sufficiently large neighborhood of the puzzle, then these
people obstruct the growing solution, and the social network cannot solve the puz-
zle.

LEMMA 3. Suppose that there exist integers 0 = a0 < a1 < · · · < ak = n such
that, for all j = 0,1, . . . , k − 1, the interval Ij := [aj + 1, aj+1] is x-good and has
length |Ij | ≤ x. Then the puzzle cannot be solved.

PROOF. Let vj ∈ Ij be an x-good vertex in Ij for j = 0,1, . . . , k − 1.
Clearly 1 ≤ v0 < v1 < · · · < vk−1 ≤ n. Furthermore, each vj has no people
edges with [vj−1, vj+1] (where j + 
 is taken modulo k) because |Ij | ≤ x for
all j = 0,1, . . . , k − 1.

Suppose for contradiction that the puzzle can be solved. Then there must exist
a first stage, i, after which there exists an index j such that two distinct vertices,
u ∈ [vj , vj+1] and v ∈ [vj+1, vj+2], belong to the same cluster in Ci . One of these
vertices must be vj+1 (without loss of generality, u = vj+1), because otherwise
vj+1 would have to belong to a larger cluster in Ci−1, and therefore vj+1 would
have merged at an earlier stage of the process, which is a contradiction. Since
vj+1 is not people-adjacent to any other vertices in [vj+1, vj+2], v must be in a
component in Ci−1 that contains vertices outside of [vj+1, vj+2], but this is also a
contradiction. Thus the puzzle cannot be solved. �

In light of Lemma 3, to complete the proof we need to show the existence of
such intervals with probability tending to 1. Suppose n ≥ x2. Define k := �n/(x −
1)� ≤ n. Define

li := x for 1 ≤ i ≤ n − k(x − 1),

li := x − 1 for n − k(x − 1) < i ≤ k,

and ai := l1 + l2 + · · · + li for i = 0,1, . . . , k. Note that ak = n. Clearly all the
intervals Ii := [ai + 1, ai+1],0 ≤ i ≤ k − 1 are of length x − 1 or x. Let Z be the
number of intervals that are not x-good,

Z :=
k−1∑
i=0

1{the interval Ii is NOT x-good}.
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It suffices to show that P(Z > 0) → 0 as n → ∞ for appropriate choice of x. We
will use Lemma 4 to estimate the probability that an interval is not x-good.

LEMMA 4. Fix an integer x ≥ 1. Let I be an interval of length lx for some
number l > 0. Suppose that t := px ∈ (0,1/(l + 2)). Then we have

P(I is NOT x-good) ≤ exp
[
− t

2p

(
2l log(

√
1 + l/t − 1) + (

l2 + 4l + 2
)
t

− 2t
√

1 + l/t − 2l log l − l
)]

.

In our case, all intervals are of length x − 1 or x, so l ∈ [1 − 1/x,1]. If we
suppose that t := px < 1/3, then

P(Z > 0) ≤ E(Z)

≤ n exp
[
− t

2p

(
2 log(

√
1 + 1/t − 1) + 7t − 2t

√
1 + 1/t − 1 + η(x)

)]
,

where η(x) → 0 when x → ∞. In particular, if p = pn = λ/ logn and x =
t logn/λ for some t < 1/3, we have

P(Z > 0) ≤ exp
[
logn − t logn

2λ

(
2 log(

√
1 + 1/t − 1) + 7t

− 2t
√

1 + 1/t − 1 + η(t logn/λ)
)]

→ 0 as n → ∞
when

λ <
t

2

[
2 log(

√
1 + 1/t − 1) + 7t − 2t

√
1 + 1/t − 1

]
.(4.3)

One can easily check (by taking t = 0.07) that

sup
t∈(0,1/3)

t

2

[
2 log(

√
1 + 1/t − 1) + 7t − 2t

√
1 + 1/t − 1

]
> 1/27.

Thus given λ ≤ 1/27, we can choose t ∈ (0,1/3) such that (4.3) holds, and taking
x = t logn/λ we have

P

(
k−1∑
i=0

1{the interval Ii is NOT x-good} > 0

)
→ 0 as n → ∞.

This completes the proof. �

PROOF OF LEMMA 4. Without loss of generality, suppose that the inter-
val I is [1, lx]. Recall that I is x-good if there is a vertex u ∈ I such that
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u has no people edges with Ix := [1 − x, lx + x]. Thus I is not x-good im-
plies that all vertices in I have at least one people edge with Ix , in other words∑

j∈Ix
1{i has a people edge with j} ≥ 1 for all i ∈ I , and thus∑

i∈I

∑
j∈Ix

1{i has a people edge with j} ≥ lx.

The number of distinct pairs of vertices between I and Ix \ I is 2lx2, and the
number of distinct pairs of vertices within I is

(lx
2

)
. Therefore∑

i∈I

∑
j∈Ix

1{i has a people edge with j} d= X + 2Y,

where X ∼ Bin(2lx2,p), Y ∼ Bin(
(lx

2

)
,p) and X,Y are independent. In particular,

we have

P(I is not x-good) ≤ P(X + 2Y ≥ lx)

≤ P
(
X + 2Y ′ ≥ lx

) ≤ e−θlxE
(
eθX+2θY ′)

for any θ > 0, where Y ′ ∼ Bin(l2x2/2,p) is independent of X. We have

P
(
X + 2Y ′ ≥ lx

) ≤ e−θlx(
1 − p + peθ )2lx2(

1 − p + pe2θ )l2x2/2

(4.4)
≤ exp

[−lx
(
θ − 2t

(
eθ − 1

) − lt
(
e2θ − 1

)
/2

)]
,

where t := px. Note that we have

E(X + 2Y ′)
lx

= (l + 2)px = (l + 2)t.

Hence, under the assumption t ∈ (0,1/(l + 2)), we have lx > E(X + 2Y ′) and√
1 + l/t − 1 > l. Taking θ = log[(√1 + l/t − 1)/ l] in (4.4), we finally have

P(I is not x-good) ≤ exp
[
− t

2p

(
2l log(

√
1 + l/t − 1) + (

l2 + 4l + 2
)
t

− 2t
√

1 + l/t − 2l log l − l
)]

.

This completes the proof. �

Propositions 2 and 3 give Theorem 1.

4.3. Lower bound for puzzles with bounded degree. In this section, we prove
the lower bound in Theorem 2 for arbitrary puzzle graphs with bounded degree as
n → ∞.

PROPOSITION 4. For any sequence of connected puzzle graphs with bounded
maximum degree as |V | = n → ∞, pc(n) = ω(1/nb) for any b > 0.
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PROOF. Let p = n−b such that k ≥ 2 and b ∈ (1
k
, 1

k−1) are fixed, and suppose
that the maximum degree of (V ,Epuzzle) is at most D for all n. After stage i we
have a collection of jigsaw clusters Ci . Initially C0 = {{v} :v ∈ V }, and after the first
stage C1 is the set of connected components in the graph (V ,Epeople ∩ Epuzzle).
Thereafter, two clusters U,U ′ ∈ Ci merge if there is an edge between the two
clusters in Epeople and an edge between the two clusters in Epuzzle. Therefore,
if U,U ′ ∈ Ci , then U,U ′ ⊂ W ∈ Ci+1 if and only if there is some nonnegative
integer 
 and a sequence of clusters U = U0,U1, . . . ,U
 = U ′ ∈ Ci such that Uj

merges with Uj+1 at stage i + 1.
Observe that for i ≥ 1, every merge event in stage i + 1 must involve at least

one cluster that was formed by a merge in stage i. Inspired by this observation, we
let Ai ⊆ Ci be the set of active clusters that were the result of at least one merge
in stage i when i ≥ 1, and let A0 = C0. Next we define the events Ei and Fi for
i = 0, . . . , k as

Ei = {|Ai | ≥ Cin
1−ib}

,

Fi = {
max

{|W | :W ∈ Ci

} ≥ Li

}
,

where Ci and Li are constants that depend on d and k, which we will define later.
In words, Ei is the event that there are at least Cin

1−ib active clusters following
stage i, which is contained in the event that at least Cin

1−ib merges occur at stage i,
because each active cluster must be the result of at least one merge. Fi is the event
that the largest cluster following stage i has at least Li vertices. For sufficiently
large n, the event Ek is equivalent to the event that at least one merge occurs
at stage k, because kb > 1. Therefore, our goal is to show that P(Ek) → 0 and
P(Fk) → 0 as n → ∞, which implies that no merges occur after stage k and that
the largest cluster has size at most Lk , so the puzzle remains unsolved.

Our strategy is to prove this by induction on i. It is trivially true that P(E0) = 0
and P(F0) = 0 with C0 = 2 and L0 = 2. Now, let us assume that P(Ei) → 0
and P(Fi) → 0 as n → ∞ for some i ∈ {0,1, . . . , k − 1}, which implies that
P(Ec

i ∩ Fc
i ) → 1. On the event Ec

i ∩ Fc
i , we know that the number of active clus-

ters is |Ai | < Cin
1−ib, and the largest cluster has at most Li vertices. The latter

implies that every cluster has fewer than DLi neighboring clusters in (V ,Epuzzle)

because each vertex has at most D total neighboring vertices in the puzzle graph.
We will use this fact in two ways. First, we will show that the number of merges
at stage i + 1 is small because each active cluster after stage i has relatively few
opportunities to merge. Second, we will show that no path of neighboring clusters
longer than length k − i merge at stage i + 1 because few such paths exist.

To meet our first goal, we define a random variable I i+1
{A,B} for each pair of an

active cluster A ∈ Ai and a neighboring cluster B ∈ Ci such that B �= A, and there
is an edge in Epuzzle between A and B . The random variable I i+1

{A,B} is the indicator
of the event that A and B merge at stage i + 1. On the event Fc

i , the probability
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that A merges with B is at most

1 − (
1 − n−b)(DLi)

2 ≤ 1 − (
1 − (DLi)

2n−b) = (DLi)
2n−b,(4.5)

where we use the fact that (1 − x)n ≥ 1 − nx for x ∈ (0,1). For conve-
nience, we now order the clusters in Ci so that A1,A2, . . . ,A|Ai | ∈ Ai and
A|Ai |+1,A|Ai |+2, . . . ,A|Ci | ∈ Ci \ Ai . Therefore, on Ec

i ∩ Fc
i , the total number

of merges that occur in stage i + 1,

|Ai |∑
j=1

|Ci |∑

=j+1

I i+1
{Aj ,A
},

is stochastically dominated by Xi ∼ Binomial(DLiCin
1−ib, (DLi)

2n−b). This is
because there are at most DLiCin

1−ib distinct pairs of neighboring clusters, at
least one of which is active, and the events that each of these pairs merges at stage
i + 1 are independent because they depend on disjoint sets of edges in the people
graph. If we let Ci+1 = 2(DLi)

3Ci (this is 2EXi/n1−(i+1)b), then by Chebyshev’s
inequality

P
(
Ei+1|Ec

i ∩ Fc
i

) = P

(|Ai |∑
j=1

|Ci |∑

=j+1

I i+1
{Aj ,A
} ≥ Ci+1n

1−(i+1)b

∣∣∣∣Ec
i ∩ Fc

i

)

≤ P
(
Xi ≥ Ci+1n

1−(i+1)b)
= P(Xi −EXi ≥ EXi)

≤ (EXi)
−1 = O

(
n−1+(i+1)b) → 0.

Since P(Ec
i ∩ Fc

i ) → 1, we have that P(Ei+1) → 0.
Next we must show that the largest cluster after stage i + 1 has size at most

Li+1. Define a cluster path of length 
 ≥ 0 between U,U ′ ∈ Ci to be a sequence of
distinct clusters U = U0,U1, . . . ,U
 = U ′ ∈ Ci such that Uj and Uj+1 are puzzle-
adjacent for all j ∈ {0, . . . , 
 − 1}. For a fixed cluster A ∈ Ci , let Y i

A denote the
number of cluster paths of length k that start at A (meaning that U0 = A) and such
that Uj will merge with Uj+1 at stage i + 1 for each j ∈ {0, . . . , k − 1}. For any
cluster path U0, . . . ,Uk , the probability that Uj and Uj+1 merge at stage i + 1 is
bounded above by (DLi)

2n−b on the event Fc
i , by inequality (4.5). The number

of cluster paths of length k in after stage i that start at A is bounded by (DLi)
k

on Fc
i because each cluster has at most DLi neighboring clusters. Therefore, by

Markov’s inequality,

P

( ∑
A∈Ci

Y i
A ≥ 1

∣∣∣Fc
i

)
≤ nP

(
Y i

A ≥ 1|Fc
i

)

≤ n
[
(DLi)

k((DLi)
2n−b)k] = O

(
n1−kb) → 0.
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This implies that there are no cluster paths of length k or longer that merge
at stage i + 1. Note that clustering can occur in any tree-like pattern, and the
maximum size of a rooted tree with depth (maximum distance from the root)
k and maximum degree DLi is Li(1 + (DLi)

1 + (DLi)
2 + · · · + (DLi)

k) =
Li((DLi)

k+1 − 1)/(DLi − 1).
In turn, this implies that the largest cluster after stage i + 1 is smaller than

Li+1 := Li((DLi)
k+1 − 1)/(DLi − 1) with high probability on the event Fc

i , so
P(Fi+1) → 0, which completes the proof. �

Propositions 2 and 4 give Theorem 2.

5. People graphs with limiting power-law degree distributions. In this
section, we prove Proposition 1, which states that a configuration model ran-
dom people graph with limiting power-law degree distribution having exponent
α > 2 cannot solve bounded-degree puzzles with high probability. Recall that a set
U ⊆ V is internally solved if the people graph induced on U can solve the puzzle
graph induced on U . We will call this event SolveU . The idea is to show that
with high probability no set of vertices of a certain, finite size is internally solved.

LEMMA 5. Suppose U ⊆ V such that |U | = m > 1 + 2α
α−2 is constant. Then

P(SolveU) = o
(
n−1)

.

PROOF. Without loss of generality, suppose that U = [m]. Fix γ := α/2 ∈
(1, α−1) and ε := 1/2−1/α, so that (1−ε)γ > 1. It is easy to see that Ed

γ
1 < ∞.

Define the event

Dn,m := {
there exists a pair of indices 1 ≤ i < j ≤ m, such that didj ≥ n1−ε

}
.

By union bound and Markov’s inequality, we have

P(Dn,m) ≤
(

m

2

)
P

(
d1d2 ≥ n1−ε) ≤

(
m

2

)
E(d

γ
1 )E(d

γ
2 )

n(1−ε)γ
= o

(
n−1)

.(5.1)

Observe that the event SolveU implies that the people graph induced by U is
connected, which in turn implies that it contains at least m − 1 (nonloop) edges.
Partitioning on Dn,m, we have

P(SolveU)
(5.2)

≤ P(Dn,m) + P
(
Epeople|U has ≥ m − 1 nonloop edges,Dc

n,m

)
.

Let Fk := {d1 = k1, . . . , dm = km} be the event that the degrees of the vertices
in U are k := (k1, . . . , km). On the event Fk, label the half-edges at vertex u ∈ U

as (u,1), (u,2), . . . , (u, ku). Let

E = E(k) denote the set of all pairs of half-edges
{
(u, 
u), (v, 
v)

}
(5.3)

such that 1 ≤ u < v ≤ m,1 ≤ 
u ≤ ku and 1 ≤ 
v ≤ kv.
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Note that E does not contain any pairs of half-edges that would form a self-loop if
joined.

Conditional on Fk, for each e ∈ E , let Ye be the indicator that the half-edges
in e are matched in the construction of the configuration model graph, so Epeople
contains an edge between the vertices of e. The number of nonloop people edges
between vertices of U is then Xm = ∑

e∈E Ye. By Markov’s inequality, the proba-
bility of {Xm ≥ m − 1} given Fk is at most the expected number of subsets of E
with size m − 1 such that all half-edge pairs in the subset get matched in the con-
struction of the configuration model graph. Therefore,

P(Xm ≥ m − 1|Fk) ≤ |E |m−1 maxP(Ye1 = · · · = Yem−1 = 1|Fk),

where the maximum is taken over all subsets of size m − 1 of E . If Fk ⊆ Dc
n,m,

then on the event Fk,

|E | = ∑
1≤u<v≤m

kukv ≤ m2n1−ε.

For any fixed set of half-edge pairs, e1, . . . , em−1 ∈ E , we consider the probability
of matching each of these pairs sequentially in the configuration model. Since
dmin ≥ 3, each vertex outside of U has at least 3 half-edges, so each half-edge
among the first 2(m − 1) that get matched have at least 3(n − m) − 2(m − 1) ≥ n

(for large n) choices for half-edges to get matched with. Therefore,

P(Ye1 = · · · = Yem−1 = 1|Fk) ≤
(

1

n

)m−1

.

The last three displays imply that

P(Xm ≥ m − 1|Fk) ≤ m2mn−ε(m−1),

provided Fk ⊆ Dc
n,m. Therefore,

P
(
Epeople|U has ≥ m − 1 nonloop edges, Dc

n,m

)
(5.4)

= ∑
k : Fk⊆Dc

n,m

P(Fk)P(Xm ≥ m − 1|Fk) ≤ m2mn−ε(m−1).

Choosing m such that ε(m − 1) > 1, and combining equations (5.1), (5.2)
and (5.4) show that P(SolveU) = o(n−1). �

Finally we are ready to complete the proof of Proposition 1. First, observe that
the jigsaw percolation process can be slowed down, such that at every step only a
single pair of clusters is merged. The final set of clusters after all possible merges
are made will be the same as in the original formulation, but in the slowed down
version, the size of the largest cluster can at most double at each step. This means
that for any k ≤ n/2,

P(Solve) ≤ P

( ⋃
m∈[k,2k]

⋃
U⊂V,|U |=m

SolveU

)
.(5.5)
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Furthermore, observe that the second union on the right-hand side can be restricted
to only those subsets U ⊂ V that are connected in (V ,Epuzzle). The number of
connected subsets of vertices in (V ,Epuzzle) of size m is crudely bounded above
by n · (m− 1)!Dm−1. This bound is obtained by building a connected set U of size
m by first choosing a starting vertex v, in n ways, then adding one vertex at a time
to U until U contains m vertices. When U contains 
 vertices, there are at most

D vertices that are adjacent to a vertex in U that can be added in the next step. If
we fix k > 1 + 2α

α−2 , then (5.5) and Lemma 5 imply that

P(Solve) ≤ (k + 1)(2k)!D2k · n · max
m∈[k,2k] max

U⊂V,|U |=m
P(SolveU) = o(1).

6. Discussion and future directions. In our early attempts to understand jig-
saw percolation on the ring graph, we tried to use simulations to inform our con-
jectures about the critical value pc(n) [Figure 5(a)]. However, as with bootstrap
percolation [20], we expect a slow rate of convergence to the critical value.

CONJECTURE 1. For jigsaw percolation on the ring puzzle graph with an
Erdős–Rényi people graph, there exist constants b > 0, c1 > 0 and c2 such that

pc(n) = c1

logn
+ c2

(logn)1+b
+ o

(
(logn)−1−b)

.

If true, this means that estimating c1 to within 1% via simulation would require
taking n to be at least exp[(100c2/c1)

1/b], which is prohibitively large if |c2/c1| is
much larger than 0.1, and b is at most 1. However, we expect our upper bound on
pc(n) to be tight for the ring graph.

(a) Fraction of trials in which the people graph (b) Average number of steps before the
solves the n = 1000 ring puzzle process stops

FIG. 5. Simulations of jigsaw percolation on a ring of size n = 1000, with 200 trials for 21 equally
spaced values of p ∈ [0,1.05 × π2/(6 logn)] (which took 57 days on a department server). Dots
are averages of 200 trials, while shaded gray areas denote ±1 standard deviation. The estimated
critical value pest

c ≈ 0.11, denoted in red, is obtained by fitting a line between the two data points
with Pp(Solve) just below and above 1/2. Characterizing the average number of time steps before
the process terminates (b) remains an open question.
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CONJECTURE 2. For jigsaw percolation on the ring puzzle graph, c1 = π2/6.

This conjecture is based on a computation (not shown here) that implies that a
two-sided growth version of the sufficient condition used in the proof of Proposi-
tion 2 (i.e., the one-sided requirement that j is connected to {1,2, . . . , j − 1} for
each j ) yields the same upper bound of π2/(6 logn) but with a correction of order
(logn)−3/2. Of course, even when the two-sided growth process fails starting from
every vertex, it may still be possible to solve the puzzle by merging the clusters
formed. However, if none of these “two-sided growth clusters” intersect, then the
puzzle is unlikely to be solved, so we suspect that c1 = π2/6 is the correct lower
bound.

Of particular interest for future study, the number of steps until the process stops
measures how efficiently the network solves the puzzle or determines that it cannot
be solved. We numerically simulated the average number of steps until the process
terminates for the ring puzzle [Figure 5(b)]. As expected, the number of steps
increases around the phase transition pc(n). The process terminates quickly when
the puzzle is not solved, and the proof of Proposition 2 implies that the number
of steps is at most O(logn/pn), though this is not the best bound possible. The
proof of Proposition 3 shows that for the ring puzzle with pn ≤ 1/(27 logn), the
largest jigsaw cluster (and hence number of steps) is smaller than logn. As pn

increases near pc(n), the puzzle may be solved, but just barely, so the number of
steps required is largest. As pn increases further, more people-edges leads to larger
clusters early in the process. Determining the form of the function in Figure 5(b)
is an interesting open problem.

OPEN PROBLEM 1. For the ring puzzle, let Nn be the smallest value of i such
that Ci = Ci+1. Determine the asymptotic behaviors of

Epn

[
Nn|Solvec] and Epn[Nn|Solve]

as functions of pn.

Finally, we suspect that the phase transition at pc(n) is sharp, in the following
sense.

CONJECTURE 3. Define pε(n) as the unique p for which Pp(Solve) = ε.
Then

pε(n)/p1−ε(n) → 1

as n → ∞ for any ε ∈ (0,1) fixed.

Other avenues of future study include extensions and modifications of jigsaw
percolation. Different people and puzzle graphs (especially ones with unbounded
degree) are one natural direction, with mathematical and practical interest.
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OPEN PROBLEM 2. Consider other people and puzzle graphs, especially puz-
zles with unbounded degree.

Another natural direction is to modify the model to make it more realistic. For
example, by analogy with the “adjacent-edge” modification of explosive percola-
tion [15], in the “adjacent-edge” (AE) version of jigsaw percolation, the rule for
merging two clusters U and W requires that the people- and puzzle-edges between
U and W coincide on at least one vertex. That is, in the AE rule, two jigsaw clusters
U and W merge only if there exist u ∈ U and w,w′ ∈ W such that (u,w) ∈ Epuzzle
and (u,w′) ∈ Epeople. In this version, a single person must determine whether her
friends’ jigsaw clusters fit with her piece of the puzzle, but she does not need to be
aware of how her entire jigsaw cluster fits with the clusters of her acquaintances.
This process is slightly more local, so we suspect that more detailed, rigorous re-
sults are possible. Note that all of our results for jigsaw percolation also hold for
AE jigsaw percolation.

OPEN PROBLEM 3. Does the behavior of AE jigsaw percolation differ signif-
icantly from that of jigsaw percolation for some class of puzzle graphs? Can more
precise statements be made about the behavior of AE jigsaw percolation on the
ring graph?

Another potentially interesting modification is to change the map from people
to puzzle pieces so that it is no longer bijective. This would allow many people to
have the same idea and a single person to have multiple ideas.

OPEN PROBLEM 4. What is the effect of changing the map between people
and puzzle pieces on a network’s ability to solve the puzzle?

In this paper, each person has one unique puzzle piece (or idea). The critical
value pc(n) marks the phase transition in the connectivity of the Erdős–Rényi
people graph at which it begins to solve the puzzle with high probability. For a
large class of puzzle graphs (n-cyles in Theorem 1, bounded-degree puzzles in
Theorem 2), we show that this phase transition decreases with n. However, the
critical average degree, npc(n), increases with the size n of the social network
and of the puzzle. Thus, as social networks and the puzzles they try to solve grow
commensurately in size, people must interact with more people in order to realize
enough compatible, partial solutions. This model therefore suggests a mechanism
for the recent statistical claims that as cities become more dense, people inter-
act more [34] and hence innovate more [4, 8]. Furthermore, most social networks
wish to minimize communication overhead; the critical value pc(n) indicates the
minimal communication needed to collaboratively solve large puzzles.

Surprisingly, social networks with power-law degree distributions lack the con-
nectivity needed to solve bounded-degree puzzles (Proposition 1). However, sci-
entific collaboration networks manage to solve puzzles despite their heavy-tailed
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degree distributions [3, 31, 32]. This highlights the importance of considering more
realistic assumptions in the model and of drawing from (still nascent) studies on
knowledge spaces [10].

This work, the first step in analyzing a rich, mathematical model, begins to sug-
gest why certain social networks stifle creativity and why others innovate. With a
homogeneous degree distribution and sufficiently many interactions, a social net-
work can collectively merge the pieces of a large puzzle—and perhaps merge the
ideas that lead to a great idea.
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